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Abstract

Phase I dose-finding trials are increasingly chal-
lenging as the relationship between efficacy and
toxicity of new compounds (or combination of
them) becomes more complex. Despite this,
most commonly used methods in practice fo-
cus on identifying a Maximum Tolerated Dose
(MTD) by learning only from toxicity events. We
present a novel adaptive clinical trial methodol-
ogy, called Safe Efficacy Exploration Dose Al-
location (SEEDA), that aims at maximizing the
cumulative efficacies while satisfying the toxicity
safety constraint with high probability. We evalu-
ate performance objectives that have operational
meanings in practical clinical trials, including
cumulative efficacy, recommendation/allocation
success probabilities, toxicity violation probabil-
ity, and sample efficiency. An extended SEEDA-
Plateau algorithm that is tailored for the increase-
then-plateau efficacy behavior of molecularly tar-
geted agents (MTA) is also presented. Through
numerical experiments using both synthetic and
real-world datasets, we show that SEEDA out-
performs state-of-the-art clinical trial designs by
finding the optimal dose with higher success rate
and fewer patients.

1. Introduction

An adaptive clinical trial utilizes the accumulated results to
dynamically modify its future trajectory for better efficiency
and ethics, while preserving the integrity and validity of the
study. Studies such as the phase I trial in Acute Myeloid
Leukaemia in (Yap et al., 2013) and Cancer Research UK
study CR0720-11 in (Whitehead et al., 2012) have suggested
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that even some simple forms of adaptive design lead to better
usage of resources and require fewer participants. These
promising results have spawned the interest in developing
adaptive clinical trial methodologies in recent years (Villar
et al., 2015a; Pallmann et al., 2018; Atan et al., 2019; Lee
et al., 2020), which is of great importance because running
an actual clinical trial on human subjects is expensive and
ethically sensitive. A well-designed trial methodology with
thorough theoretical and simulated investigation is widely
acknowledged as a crucial first step.

Traditionally, the goal of phase I clinical trials is to iden-
tify the Maximum Tolerated Dose (MTD) of a cytotoxic
(CTX) or therapeutic agent, which is then used for subse-
quent studies (Storer, 1989). However, modern cancer phase
I trials test antineoplastic agents in patients with advanced
cancer stages, who have often exhausted all other available
treatment options (Roberts et al., 2004). These participants
usually expect therapeutic benefit from participating in the
trial, which has motivated the trial design to include ef-
ficacy as a co-primary end point of phase I dose-finding
studies (Yan et al., 2017; Paoletti & Postel-Vinay, 2018). In
addition, the monotonic assumption for the dose-efficacy
relationship is widely adopted in state of the art designs,
which is reasonable for cytotoxic agents but may not ap-
ply to the new molecularly targeted agents (MTA) such as
monoclonal antibodies (see (Postel-Vinay et al., 2009) for
an exemplary trial that illustrates this issue). Designing
adaptive clinical trials that can properly address the intrinsic
conflict between learning and treatment effectiveness for
general dose-response models has become an important task
for phase I clinical trials.

In addition to the well-known 3+3 design (Storer, 1989) and
continual reassessment method (CRM) (O’Quigley et al.,
1990) (and its many variants), Bayesian approaches such
as Thompson Sampling (TS) (Aziz et al., 2019) and Gittins
index (Villar et al., 2015a;b) have been proposed in the liter-
ature for dose-finding studies. However, these methods were
originally designed for simplified models that do not capture
some of the unique characteristics of clinical trials, often
leading to lack of randomization (Villar et al., 2015b), ineffi-
cient use of side information (Villar & Rosenberger, 2018),
and reduced power levels and estimation issues. Notably,
for cases where the best dose for combination therapies
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Table 1: Representative adaptive clinical trial studies

Study Treatment | Category Methodology Evaluation
(Tighiouart et al., 2014) | Veliparib CTX EWOC-PH simulated trial
(Whitehead et al., 2012) | MK-0752 CTX joint phase I and II design simulated trial

(Lee et al., 2017) Erlotinib MTA extended TITE-CRM simulated trial
(Thiessen et al., 2010) Lapatinib MTA escalation to DLT real-world trial data

is to be found, unknown synergistic/antagonist effects are
likely to exist and naive designs will fail to identify them.
For MTA, the existence of a plateau of efficacy has been
discussed in (Zang et al., 2014) and (Riviere et al., 2018),
which indicates that the toxicity constraint must be jointly
studied with the dose-efficacy relationship for certain new
compounds. This is also confirmed by the real-world trial
result; see (Tighiouart et al., 2014). Last but not the least,
safety constraints such as minimizing the adverse events
(AE) (Petroni et al., 2017) have not been properly evalu-
ated with theoretical guarantees. Table 1 summarizes some
representative studies in this direction.

In this paper, we address these challenges by developing
new dose-finding methods that explicitly impose safety con-
straints to the allocation and recommendation of dose levels
in a phase I clinical trial. Through the lens of multi-armed
bandits (MAB), we propose the Safe Efficacy Exploration
Dose Allocation (SEEDA) algorithm that adaptively updates
the admissible set of dose levels satisfying the safety con-
straints, thus limiting the exploration of doses with harmful
effect. Performance analysis for SEEDA is carried out with
respect to several measures that have operational meanings
in clinical trials, including the probability of safety con-
straints violation, the average efficacy for patients, and the
recommendation and allocation probabilities. Noting that
SEEDA only leverages the dose-toxicity logistic model and
makes no assumptions on the efficacy, we then show that,
by considering the increasing-then-plateau feature of the
dose-efficacy relationship for MTA, SEEDA-Plateau leads
to improved bandit learning performance over SEEDA by
leveraging the unimodal structure. Experiments on simu-
lated datasets as well as clinical trials built from real-world
datasets show that the proposed methods are capable of
finding the optimal dose with higher success rate and fewer
patients in most cases, compared to other state-of-the-art
designs.

2. Model and Problem Formulation
2.1. The dose-finding model

In a phase I dose-finding clinical trial, a total of K doses are
given where the k-th dose is denoted as d, € D, k € K =
{1,2,..., K}. The performance is characterized by both
efficacy and toxicity. We model the efficacy X and toxicity
Y for dose d;, as Bernoulli random variables with unknown

probabilities g and py, respectively, where X = 1 (X = 0)
indicates that the dose level is effective (not effective), and
Y = 1 (Y = 0) suggests that the dose is harmful (not
harmful) to the patient!.

We consider adaptive clinical trials where information
learned from previous trial patients can be used in allocating
doses to subsequent patients (Atan et al., 2019; Villar et al.,
2015a; Aziz et al., 2019). For the ¢-th patient, dose I(t) is
selected based on a policy that uses past observations, and
administrated to the patient. The efficacy outcome X; and
toxicity response Y; are realized based on their distributions
Xt ~ Ber(qi)) and Y; ~ Ber(pr)), and observed by
the trialist.

We adopt a well-known dose-toxicity logistic model pro-
posed by in (O’Quigley et al., 1990) to describe the toxicity
probability for different dose levels:

(D

tanhd, +1\“
pe(a) = (———) ,

2

where a is a global parameter for all the dose levels. It can
be verified that Eqn. (1) satisfies the assumption that the
toxicity monotonically increases with dose dj,. The unsafe
dose levels are defined as those whose toxicity probabilities
pr’s are above a pre-determined target toxicity probability 6,
which is referred as the MTD threshold. Hence the toxicities
of all doses can be written as p; < py < -+ < py <
0 < pypr+1 < ---pg where the (unknown) M denotes the
number of safe doses. The efficacy-dose relationship is not
modeled to allow for the development of a general algorithm.
The specific increase-then-plateau efficacy behavior of MTA
will be exploited in Section 4.

2.2. Problem formulation

Several objectives are often desired for a successful dose-
finding study, which are summarized as follows.

¢ Successful recommendation. At the end of the trial (n
patients) a dose recommendation l%n is made, which is
desired to match the optimal dose k* that is the lowest
safe dose that achieves the highest efficacy (Zang et al.,
2014): k* = min{k : qx = maxyicx,p,<6 ¢ }-

» Effective treatment. The cumulative treatment for trial

"This is typically measured by the presence of absence of a
dose-limiting toxicity (DLT) reported in a fixed evaluation window
after administrating the drug.
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participants Z?:l X, is desired to be maximized.

* Minimal violation of the safety constraint. There are
different formulations for the safety constraint. One is to
minimize B[}, -, - o Ni(n)/n] where Nj(¢) denotes
the number of times dose k£ is allocated to the first ¢ pa-
tients. Another formulation is to minimize the probability
that the average toxicity exceeds the MTD threshold.

* Small sample size. Most phase I trials have a pre-
determined n which is decided as the minimum number of
trial participants to achieve a pre-defined confidence level
of successful recommendation. It is desirable to have a
small n for cost and efficiency considerations.

Proposing a learning model that explicitly guarantees all
of the above objectives is elusive and non-constructive in
developing the dose-allocation policy. We thus formulate
dose-finding clinical trials as an online efficacy learning
problem with explicit safety constraint, and subsequently
provide performance analysis on the metrics of interest.
Specifically, we aim at maximizing the cumulative efficacy
over a finite number of patients n while simultaneously
guaranteeing that the average toxicity observed from the n
dose allocations is kept under the probability threshold 6
with high probability. This can be written as:

S,
t=1

1 n
subjectto P [ g Y, <0
n
t=1

maximize [E

>1-4. (2

Essentially, problem formulation (2) focuses on safe explo-
ration among all the dose levels to maximize cumulative
efficacies. Clinical trials using a design based on (2) pursue
simultaneously both objectives of toxicity and efficacy.

3. The SEEDA Algorithm

3.1. Algorithm description

The proposed Safe Efficacy Exploration Dose Allocation
(SEEDA) design is completely described in Algorithm 1. In
particular, p(¢) and gy (¢) are the estimated toxicity and effi-
cacy, respectively, after administrating the ¢-th patient. The
principle of dose selection is to first dynamically construct
the admissible set D; (¢) using the Upper Confidence Bound
(UCB) principle (Auer et al., 2002), where the confidence

interval «(t) is constructed as
J1

2K\ 2
at) = C1K <log2t6 ) : 3)

where C; and ¥, are algorithm parameters. Note that the
admissible set consists of doses that, with high confidence,

2See Section B in the supplementary material for a discussion
on how to select these algorithm parameters.

satisfy the toxicity constraint.

Then, limiting to those in the admissible set D (¢), the algo-
rithm again applies the UCB principle (UCB-1 from (Auer
et al., 2002)) to select a dose with the largest F'(p, s, n) for
the efficacy estimate:
clog(n

F(p7s,n):p+ %v (4)
with ¢ denoting the UCB-1 coefficient. It should be noted
that (4) can be replaced by other UCB principles, e.g., KL-
UCB (Garivier & Cappe, 2011).

Algorithm 1 The Safe Efficacy Exploration Dose Alloca-
tion (SEEDA) Algorithm

Input: py(a) for each k € K; MTD threshold 6; total
number of patients n.

Initialize: Ny (1) = 0,p,(1) = 0,Gx(1) = 0, Vk € K;
Sample each dose once and set: I(t) = t, ;1) (K) =
Xy, ﬁ](t)(K) =Y, N[(t)(K) =1,fort = 1to K;
t=K+ 1.

1: while t < ndo

2:  Compute the estimated parameter: a(t) =
Sy wi(t = Dax(t — 1);

3:  Set the admissible set: Dy (t) = {d € D : pr(a(t) +
a(t)) < 0}

4:  Select dose: 1(t) =
arg maxg, ep, (1) F(Gr(t), Ni(t),1),;

5:  Observe the revealed outcomes X; and Y;;

6:  Update estimations: dren(t) =
drcey (E—1)Np(ey (E—1)+X; .
B T G 2010 =
prty(t—1) Ny (t—1)+Y: .
O Niw (1) = N (= 1)+ 1;
7:  Update parameter estimation:  Gap)(t) =

arg ggi} IP1t)(a) = Prey()];
8:  Update weights: wg(t) = Ni(t)/t, Vdy, € D;
9. t=t+1

10: end while

Output: d(n) = arg maxg, ., (a(n))<o Pr(@(n)).

3.2. Performance analysis

The SEEDA algorithm is developed with the aim to solve
problem (2). It is thus important to analyze (a) whether
the cumulative efficacy is maximized, and (b) how often
the toxicity constraint is violated. For metric (a), it can
be equivalently formulated as regret minimization, i.e., the
cumulative efficacy difference between the oracle policy
with full information and that of the learning algorithm.
Formally, the efficacy regret is defined as

Z QI(t)‘| ) @)
t=1

R(n)=¢'n—E
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where ¢* = ¢~ denotes the efficacy associated with the
optimal dose defined in Section 2.2, and a* denotes the true
parameter in (1). As for metric (b), we need to evaluate

1 n
o Zpl(t)(a*) > 9] )
t=1

in conjunction with (5), i.e., whether the proposed SEEDA
algorithm minimizes R(n) and satisfies e(n) < ¢ at the
same time. In addition, other performance measures such
as successful recommendation probability and sample effi-
ciency are of practical interest, and we provide theoretical
guarantees for them as well. Due to space limitations, all
proofs are provided in the supplementary material.

e(n) =P

3.2.1. CUMULATIVE EFFICACY

We start the theoretical analysis by showing that for each
patient ¢ in SEEDA, the dose levels whose toxicities are
below the MTD threshold are included in the admissible set
with high probability. This corresponds to the “false alarm”
(type 1) error event.

Lemma 1 P [pg(a(t) + a(t)) > 0] < 6, Vpr(a*) < 6.

Next we prove that with sufficient patients, the dose levels
exceeding the toxicity threshold are excluded from the ad-
missible set with high probability. This corresponds to the
“miss detection” (type II) error event.

2
Lemma2 If t > t; = 1 (&1_1;)” log 25, A =
mingei Ak, where A, = |a* —p;1(9)| is the gap between
a* and the parameter when the toxicity is at 0, then:

P [p(a(t) + a(t)) < 6] < exp(—2te?), Ypr(a®) > 6.
(6)

Combining Lemmas 1 and 2 leads to the main result on
cumulative efficacy regret.

Theorem 1 With t, defined in Lemma 2, the regret of
SEEDA can be upper bounded as:

Rin)< Y 2y (n5Q + Lty + EZM)
di:pr(a*)<0
(7

where Q = max;ci |q; — qx+ | denotes the maximal single-
step regret, and € > 0 is a constant. Furthermore, if 6 =
O(%), we have that R(n) < O(logn).

n

Theorem 1 indicates that the efficacy regret is bounded by
O(logn). A closer look at this scaling reveals that it consists
of two parts. The first is due to the structureless model for
efficacy — we impose no assumption on the efficacy of differ-
ent dose levels. The second part, which is reflected through
t1, is determined by the structured model for toxicity, which

affects the admissible set. As will be shown in Section 4,
with the increase-then-plateau efficacy assumption, the first
log n component can be further improved.

3.2.2. SAFETY CONSTRAINT VIOLATION

We now move on to analyzing the safety constraint violation.
The first result is to verify whether the SEEDA algorithm
indeed satisfies the safety constraint in problem (2).

Theorem 2 For any given n, the average toxicity observed
from the SEEDA algorithm satisfies

n

1
P ﬁzpl(t) —0 < Coe™| 21—,
t=1

for arbitrary € > 0. Cy and vy, are problem-dependent pa-
rameters defined in Section A of the supplementary material.

The safety constraint in problem (2) is formulated based
on the average toxicity exceeding the MTD threshold. In
practice, we are often interested in minimizing the number
of patients that have been exposed to unsafe dose levels,
E[> ek po>o Ni(n)/n]. Corollary 1 analyzes this metric.

Corollary 1 The number of unsafe dose allocations from
SEEDA, i.e., the selected dose levels exceed the MTD thresh-
old, can be bounded as:
K-M
E| > Ne(n)| <ti+ o
dy:pr >0

Interestingly, Corollary 1 indicates that unsafe dose alloca-
tions in SEEDA are upper bounded by a constant, which is
linear in the number of unsafe doses K — M regardless of
the number of trial participants n.

3.2.3. RECOMMENDATION ACCURACY

Finally, we analyze the recommendation accuracy of
SEEDA at the end of the n-th dose allocation.

Corollary 2 The probability that SEEDA recommends the
MTD satisfies:

P [dA(n) = arg max pk] >1-96q, 8)

k:PE <0

A 21
where 61 = 2K exp [ —2 (le‘;() n .

Corollary 2 guarantees the finding of the MTD with high
probability. The recommendation error rate decays expo-
nentially with the number of trial participants, which is a
nice property. It is worth noting that a lower bound of the
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minimal number of trial participants for a given accuracy
requirement can be inferred from the upper bound of rec-
ommendation error rate (8). This is a practically important
result, as sample efficiency directly relates to the cost and
ethical constraints of a trial. This is further illustrated in the
numerical experiments in Section 5.1.3.

4. Extension to the Increase-Then-Plateau
Efficacy Model

Algorithm 2 The SEEDA-Plateau Algorithm

Input: py(a) for each k € K; MTD threshold 6; total
number of patients n.

Initialize: Ny (1) = 0,px(1) = 0,4x(1) = 0, Vk € K,
L(1) = K;n=2; 1, =0, Vk € K; Sample each dose
once and set: I(t) = t, Gr1)(K) = X, proy(K) =Yy,
Nip(K)=1,fort =1to K;t =K + 1.

1: while t < n do

2:  Compute the estimated parameter: a(t) =
Sory w(t — Dag(t - 1);

3:  Set the admissible set: Dy (t) = {d € D : pr(a(t) +
alt)) < 0};

4: Set L(t) = argmaxg, ¢p, (+) §x(t) and increase I1 (¢
by 1;

5. If MO € N, I(t) = L(t): Otherwise I(t) =

F(qr(t), Ni(t), 1)

arg max
{L(t)—1,L(t),L(t)+1}
NDu1(t)

6:  Observe the revealed outcomes X; and Y;;

7: Update estimations: dre(t) =
dro (t=DNy ) (= D+X, ) _
= Nl(t)(i(—)l)—‘rl ’ p[(t)(t) -
priey(t—1) Ny (t—1)+Y; .
O i Niw (D) = Niy (= 1) + 1

8: Update parameter estimation:  a;u)(t) =

arg min |pr () (a) — Prer ();
9:  Update weights: wy(t) = Ng(t)/t,Vdy, € D;
10: t=t+1.
11: end while
12: Estimate the turning point of efficacy as:

Liw) = min {m >k dn(n) = G (0)

k:dr€D1(n)

clog(n) clog(n) . .

S + ydm n S m n ’

\/Nm(n) \/Nm+1(n) dm (1) < G ( )}
max a(n)).
oty <o PEE(M)

Output: d(n) = min{L;(n), Ly(n)}.

Ly(n) = arg

The proposed SEEDA dose allocation policy is general in
the sense that no efficacy model is assumed. In practice,
however, efficacy often exhibits certain structure which, if
utilized correctly, may further improve the performance.
For conventional cytotoxic agents, efficacy monotonically

increases with dose levels. The same is not true for MTAs,
for which the dose-efficacy curve increases initially and
then plateaus after reaching the level of saturation (Zang
et al., 2014; Riviere et al., 2018). In this section, we modify
the SEEDA algorithm to handle the increase-then-plateau
efficacy model, and analyze its performance.

Formally, we introduce the following increase-then-plateau
efficacy assumption, which holds for MTA.

Assumption 1 g,k € ICsatisfies n < g2 < g3 < --- <
QNZQN+1:"':(]K~

The SEEDA-Plateau algorithm is given in Algorithm 2.
With Assumption 1, the efficacy has an inherent non-
decreasing structure. The key idea is to combine the se-
lection rule of OSUB in (Combes & Proutiere, 2014) and
reform step 1 in Algorithm 1. Note that step 2 calculates
L(t) as the estimated dose level with the optimal efficacy
and safe toxicity at ¢. Algorithm 2 not only selects this
dose level frequently enough, but also keeps exploring its
neighboring dose levels.

We now analyze the regret of SEEDA-Plateau and present
the result in Theorem 3. Compared to Theorem 1 for
SEEDA without the increase-then-plateau efficacy model,
one can see that the first log(n) coefficient improves from
Cde:pk(a*)ge(q* —qx) ' toc(q* — gn_1)" L. This gain
comes precisely from the increase-then-plateau efficacy
model, as the unimodal structure that exploits this struc-
ture leads to log(n) regret only from the neighboring arm.

Theorem 3 The regret of SEEDA-Plateau satisfies:

R(n) < 2282+ O (loglog(n)) + (n6Q + t1 + #531) .
©)

Furthermore, if § = O(L), we have that R(n) < O(log n).

The optimal dose level we have defined before can be rewrit-
ten as k* = min{M, N}, the reccommendation accuracy of
SEEDA-Plateau is given in Theorem 4.

Theorem 4 With c set as 2 < ¢ < 2, the probability that
SEEDA-Plateau fails to recommend the optimal dose can
be bounded as:

Pld(n) # K] <~ + 61 (10)

Compared to Corollary 2, the error probability of SEEDA-
Plateau is increased by ni This is due to the ambiguity
of the efficacy-optimal dose and the toxicity-optimal one,
which leads to the two candidate doses Lq(n) and La(n).
In practice, however, this ambiguity can be eliminated via
preliminary experiments.
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5. Experiments
5.1. Synthetic dataset

To investigate the operational characteristics and evalu-
ate the performance of the proposed adaptive designs, we
present an experimental study with K = 6 dose levels and
n = 300 trial cohorts, with each cohort consists of 3 patients.
The estimation is updated after observing all individual out-
comes from a cohort. All experiment results are obtained
with 1000 trial repetitions. The MTD threshold is set as
0 = 0.35.

The trial setup is the same as (Riviere et al., 2018) and (Zang
et al., 2014), and we have simulated eight different efficacy
and toxicity scenarios®. Due to the space limitation, we only
report the results of the first scenario, where efficacy reach-
ing the maximal value (the optimal dose) before toxicity
hits MTD threshold. Additional results for this setting as
well as the other seven scenarios are reported in Section K
to M in the supplementary material.

The following baseline designs are used for compari-
son (whenever appropriate), whose details can be found
in the supplementary material: 3+3, CRM, MCRM, In-
dependent TS, KL-UCB, UCB-1, and multi-objective
bandits. Note that MTA-RA and other TS variants in
(Riviere et al., 2018) are not included because they as-
sume a different truncated efficacy model, which needs
to be perfectly known to the algorithm. For algo-
rithms that require prior information of toxicity and effi-
cacy, they are set as [0.02,0.06,0.12,0.20, 0.30, 0.40] and
[0.12,0.20,0.30, 0.40, 0.50, 0.59)], respectively.

5.1.1. RECOMMENDATION AND ALLOCATION
ACCURACY

We report the allocation and recommendation percentages
of each dose for all considered designs in Table 2. Dose 3
(in bold font) is the optimal biological dose for this scenario.
However, we comment that dose 4 also satisfies the optimal-
ity condition without violating the safety constraint. Never-
theless, it has a higher toxicity probability (although still be-
low MTD) without increasing efficacy; thus less preferable
to Dose 3. We note that for all the evaluated designs, the
recommendation rule is cf(n) = arg maxXy., (n)<g Gr (1),
where §i(n) and pi(n) are the final estimations of toxicity
and efficacy for dose level dy, respectively. This suggests
that safety constraint is considered in recommendation.

We can see from the results that SEEDA almost equally
recommends dose 3 and 4 with a total probability of 94.6%.

3We remark that although no real-world trial data is utilized
in the experiment, this approach is commonly accepted in clinical
trials as the first-step study for a new methodology; see (Whitehead
etal., 2012; Yap et al., 2013; Zang et al., 2014; Riviere et al., 2018).
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Figure 1: False alarm (left) and miss detection (right) error
rates as a function of number of cohorts.

This is because the algorithm cares about maximizing effi-
cacy without violating safety constraint, and both dose 3 and
4 satisfy such conditions. As a result, SEEDA treats both
equally as the optimal solution. However, by leveraging the
increase-then-plateau model assumption, SEEDA-Plateau
can further break the “tie”” between dose 3 and 4, and cor-
rectly recognize that dose 3 is the optimal biological dose:
it chooses dose 3 at 86.6% while dose 4 only 10.4%. We see
that the gain of SEEDA-Plateau in terms of recommending
the optimal dose is significant over all the other designs
(even compared to SEEDA). For a more detailed under-
standing of the recommendation accuracy, the correspond-
ing false alarm and miss detection error rates (definitions
are given in Section J in the supplementary material) are
plotted in Fig. 1, and we observe that both SEEDA and
SEEDA-Plateau outperform other baseline methods over
the range of cohorts.

As for allocation, we observe that both SEEDA and SEEDA-
Plateau concentrate at dose 3 and 4, while spending very
little budget on both tail ends of the dosage. In particular,
SEEDA-Plateau allocates the fewest percentages (1%) of
patients to the most toxic dose 6 among all designs.

5.1.2. CONVERGENCE AND SAFETY VIOLATION
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Figure 2: Comparison of efficacy per patient (left) and the
safety violation percentage (right).

To have a deeper understanding of the tradeoff between effi-
cacy and toxicity, we plot side-by-side the convergence of
efficacy and toxicity as ¢ increases in Fig. 2. KL-UCB, UCB
and Independent TS have good convergence but suffer from
significant safety violation in the process since they do not
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Table 2: Recommendation & allocation percentages of different designs. Optimal biological dose is #3. In each cell the first
row reports the mean value over 1000 repetitions, and the second row reports the (standard deviation).

Recommended Allocated
Toxicity probabilities 0.01 0.05 0.15 0.2 0.45 0.6 0.01 0.05 0.15 0.2 0.45 0.6
Efficacy probabilities 0.1 0.35 0.6 0.6 0.6 0.6 0.1 0.35 0.6 0.6 0.6 0.6
SEEDA 0 1 47.20 47.40 4.40 0 11.18 | 9.18 30.76 31.71 12.06 5.11
0) (0.71) | (3.40) | (3.41) (2.46) 0) (0.58) | (1.99) | (7.76) (7.69) (3.45) (0.62)
SEEDA-Plateau 0.80 2.20 86.60 10.40 0 0 7.83 8.98 30.12 37.17 14.91 1.00
0.32) | (1.96) | (8.58) | (3.65) (0) (0) (1.61) | @421 | 6.01) | (754) | 3.02) | (0.61)
Independent TS 2.60 9.40 44.60 35.40 6.60 1.40 3.66 7.26 22.22 21.00 22.26 23.60
(2.47) | (3.86) | (10.25) | (10.32) | (2.96) | (0.69) ||| (0.97) | (3.85) | (15.47) | (10.44) | (10.43) | (9.22)
KL-UCB 0.20 4.60 48.80 43.60 2.80 0 1093 | 7.16 21.33 20.91 21.21 18.46
(0.13) | 2.71) | (11.68) | (11.36) | (2.64) 0) (0.81) | (0.94) | (10.52) | (11.31) | (10.92) | (11.10)
UCB 0 2.40 54.00 40.40 3.20 0 5.45 9.50 22.13 20.93 20.43 24.57
0 | @215 | 992) | 9.05 | (3.09) | (0) 0.49) | (1.16) | (.11 | @24) | .15 | (.11
343 0 2.40 12.00 17.60 4520 | 22.80 16.04 | 17.82 | 20.19 18.12 16.81 5.82
0) 0.41) | 4.31) (5.31) (7.15) | (4.35) ||| (5.12) | (4.23) | (10.25) | (9.15) (8.15) (4.12)
CRM 0 0 0 33.80 65.80 0.40 0.12 0.35 2.62 33.90 57.69 5.33
0) 0) 0) (8.26) | (10.63) | (0.40) ||| (0.11) | (0.25) | (0.32) | (10.21) | (11.24) | (0.23)
MCRM 0 0 0.20 61.00 38.80 0 1.47 1.18 5.64 55.48 34.63 ,1.60
(0) 0 | ©.15 | 9.67) | 8.65 | (0 0.24) | (0.67) | (3.62) | (8.63) | (7.65) | (0.67)
Multi-obj 0.81 3.23 47.90 41.03 5.88 1.15 18.42 | 21.92 | 23.36 18.48 9.92 7.89
(0.19) | (0.94) | (11.86) | (11.90) | (1.80) | (0.36) ||| (6.07) | (5.55) | (6.68) (7.05) (5.17) (4.65)
consider the safety constraint during exploration. CRM has —
higher efficacy at the cost of bad safety constraint violation, 800 |~ SEEDA Pateau
while 3+3 performs poorly in efficacy but has the lowest 700 |—Ksuce
safety probability; this behavior is similarly observed for 2 600 Muiti-ob]
. . . . . <
multi-objective bandits. The SEEDA(-Plateau) algorithm, 2 500 100
. . . [
in comparison, converges to the optimal efficacy at a slower & 200 80
. . (<]
rate, but the exploration process is carefully controlled so % 500 o
that the safety violation is minimized, which is evident from E 200 20
the right subplot of Fig. 2. = 100 S R
5.1.3. SAMPLE EFFICIENCY % 02 04 06 08

Sample efficiency is measured by the minimum number of
trial participants to achieve a pre-specified recommenda-
tion accuracy (also known as early stopping (Montori et al.,
2005)). We start the trial with a minimum of 6 patients,
and continue recruiting patients until the stopping condition
is triggered. Fig. 3 plots the average minimum number of
patients to achieve a given a recommendation accuracy for
different algorithms*. We see that SEEDA-Plateau outper-
forms all other algorithms by a large margin, thanks to the
“double dipping” of the model assumptions which gives the
most accurate estimation of the optimal dose. In compari-
son, SEEDA performs similarly to the baseline algorithms.
The reason is that the goal of SEEDA is to recommend the
efficacy-maximal dose that satisfies the safety constraint. In
this particular setting, both dose 3 and 4 satisfy this condi-
tion, and SEEDA does not have the mechanism to further
minimize toxicity. This leads to a recommendation error
that is similar to other baseline designs.

4343, CRM and MCRM are excluded since they only target
finding MTD.

Recommendation Accuracy

Figure 3: The minimum number of trial participants to
achieve a given a recommendation accuracy.

The sample efficiency advantage of SEEDA-Plateau is of
critical importance in practice, as the significant cost associ-
ated with clinical trials is mostly proportional to the number
of trial participants. Furthermore, reducing the number of
patients while achieving the same level of accuracy mini-
mizes the safety and ethical concern in the trial, which is
another important consideration.

5.2. Real-world datasets

We evaluate the SEEDA algorithms in two real-world
datasets neurodeg and IBSCovars based on (Biesheuvel &
Hothorn, 2002). We first extract dose and resp variables
from the observations reported in the dataset. With these
samples, we fit them into a commonly used Emax dose-
response model as in (Bornkamp et al., 2011) with an R
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Table 3: Recommendation & allocation percentages of the neurodeg dataset. In each cell the first row reports the mean value
over 1000 repetitions, and the second row reports the (standard deviation).

Recommended Allocated
Toxicity 0.01 0.08 0.30 0.60 0.80 0.01 0.08 0.30 0.60 0.80
Efficacy 0.01 0.35 0.45 0.52 0.57 0.01 0.35 0.45 0.52 0.57
SEEDA 0.60 32.91 66.14 0 0 5.58 34.14 | 59.60 0.33 0.33
(0.40) | (10.57) | (10.59) ) 0) 0.42) | (6.08) | (6.25) | (0.25) (0.01)
SEEDA-Plateau 0.99 32.66 66.00 0 0 5.09 35.02 | 59.21 0.33 0.33
(0.31) | (10.12) | (10.36) ) ) (2.05) | (7.78) | (6.64) | (0.02) )
Independent TS 3.39 51.28 44.47 0.38 0.46 0.80 3.50 7.59 23.37 64.68
(2.56) | (9.92) | (10.34) | (0.33) | (0.37) 0.60) | (2.70) | (5.21) | (10.19) | (12.51)
KL-UCB 0.07 55.74 28.67 543 0.07 98.0 0.42 0.47 0.52 0.55
(0.06) | (12.38) | (12.76) | (2.10) | (0.05) (2.62) | (0.23) | (0.28) | (0.49) (0.04)
UCB 0.81 41.68 57.24 0.23 0.01 6.88 15.09 | 20.10 | 25.75 32.16
0.74) | (16.07) | (16.07) | (0.17) | (0.01) 0.29) | (1.60) | (2.10) | (2.55) (2.87)
343 0 2.40 12.00 17.60 | 45.20 16.04 | 17.82 | 20.19 18.12 16.81
) (1.02) (2.35) | (3.44) | (10.34) (5.60) | (9.48) | (1.84) | (1.60) (4.20)
CRM 0 0 0 100 0 0 0 0 99.66 0.33
0 0) (0) 0 0 0) (0) (0) (0.01) | (0.01)
MCRM 4.33 26.47 69.18 0 0 4.67 26.40 | 68.92 0 0
(0.25) | (1.80) (1.86) ) (V)] (0.25) | (1.80) | (2.10) 0 )
Multi-obj 0.24 15.33 17.59 0.12 0.03 24.33 | 26.12 | 18.95 16.05 14.52
(0.13) | (9.65) (9.71) | (0.05) | (0.03) 4.28) | (3.51) | (6.11) | (2.93) (2.61)

package implementation provided by (Yoshida, 2019). The
resulting models are as follows.

12.95dose
deg: =169.94 + ———
fieurodeg:  resp + 1.85 + dose’
0.68dose
IBS : =026+ ———F.
covars: resp + 101+ dose

As for the toxicity event, since it is not reported in the
dataset, we resort to simulations with model (1).

The allocation and recommendation percentages of each
dose for all the algorithms are shown in Table 3 and Table
4 for both datasets. We have similar observations as in
the synthetic experiment that SEEDA and SEEDA-Plateau
recommend the correct doses majority of the times, while
the suboptimal recommendation is mostly safe in that the
doses immediately below MTD are recommended second
most. The same is true for allocation.

6. Related Works

This work is concerned with adaptive phase I clinical trials,
whose uptake in practice is starting to increase considerably.
See (Bretz et al., 2017; Pallmann et al., 2018) for recent
comprehensive surveys. The main motivation to use these
adaptive designs is to learn as the trial progresses and use
this learning to deliver more efficient or more ethically ap-
pealing trials. Adaptive clinical trial with sequential patient
recruitment is considered in (Atan et al., 2019), but it does

not address the subsequent dose allocation. The 343 and the
CRM designs or their variations remain the de facto adaptive
designs in practice for dose-finding studies (Petroni et al.,
2017; Pallmann et al., 2018), although new methodologies
that aim at better safety protection are also proposed (Lee
et al., 2017). In recent years, there is a growing interest
in adaptive trial designs for MTA because of its different
dose-response relationships (Zang et al., 2014; Riviere et al.,
2018), but these studies do not explicitly enforce the safety
constraints during the trial; neither do they provide theoreti-
cal guarantees on the trial performance.

Multi-armed bandit has long been considered as an impor-
tant tool for the clinical trial methodology design, dating
back to the early papers of (Thompson, 1933; Robbins,
1952). Developing bandit models and algorithms that better
suit the specific requirements of adaptive clinical trials has
attracted some attention in recent years. Villar et. al (Vil-
lar et al., 2015b; Villar & Rosenberger, 2018) adopted the
(modified) forward-looking Gittins index rule for multi-arm
clinical trials. The authors of (Wang et al., 2018) propose
a regional bandit model that can be applied to learning the
drug dosage and patient response relationship. The sample
complexity of thresholding bandit is analyzed in (Garivier
et al., 2017), which matches MTD identification. Further-
more, dose-finding clinical trials with heterogeneous groups
are investigated in (Lee et al., 2020) from a MAB perspec-
tive. Probably the closest work to ours is (Aziz et al., 2019),
which also considers both toxicity and efficacy. However,
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Table 4: Recommendation & allocation percentages of the IBScovars datasets. In each cell the first row reports the mean
value over 1000 repetitions, and the second row reports the (standard deviation).

Recommended Allocated
Toxicity probabilities 0.01 0.10 0.30 0.70 0.95 0.01 0.10 0.30 0.70 0.95
Efficacy probabilities 0.01 0.20 0.27 0.33 0.43 0.01 0.20 0.27 0.33 0.43
SEEDA 1.14 35.04 63.47 0 0 10.11 | 34.35 | 54.86 0.33 0.33
(1.31) | (7.58) (7.60) ) ) (0.82) | (5.42) | (5.57) (0.17) (0.01)
2.08 36.51 61.06 0 0 8.97 | 34.60 | 55.75 0.33 0.33
SEEDA-Plateau (2.76) | (10.31) | (10.42) 0) ) (4.00) | (4.34) | (7.83) (0.02) (0.01)
Independent TS 7.52 48.47 43.30 0.31 0.39 1.82 3.89 26.66 20.65 23.17
(7.15) | (9.79) (9.71) | (0.60) | (0.17) (0.85) | (3.61) | (10.74) | (13.54) | (10.05)
KIL-UCB 28.55 | 44.90 23.24 3.28 0 98.33 | 0.37 0.40 0.42 0.45
9.21) | (9.95) | (10.06) | (2.60) ) (0.35) | (0.44) | (0.87) (0.06) (0.60)
UCB 1.73 45.26 52.81 0.17 0.01 9.41 15.37 18.94 23.22 33.04
1.21) | 9.21) (9.25) | (0.08) | (0.01) (0.38) | (1.45) | (1.87) (2.26) (2.61)
343 2.40 12.00 17.60 | 45.20 | 22.80 16.04 | 17.82 | 20.19 18.12 22.81
(0.88) | (7.65) (6.87) | (6.86) | (8.87) (2.85) | (5.29) | (8.29) (5.52) (5.45)
CRM 0 0 0 1.35 | 98.65 0 0 0 99.66 0.33
) 0) ©) (0.10) | (0.04) 0) ) 0) (0.86) (0.03)
MCRM 4.34 26.91 68.74 0 0 4.67 | 26.83 | 68.49 0 0
0.26) | (2.15) (2.20) 0) 0) (0.04) | (0.05) | (0.91) ) )
Multi-obj 0.45 16.18 16.56 0.10 0.02 1.23 3.27 5.79 13.11 76.56
(0.25) | (5.49) | (10.53) | (0.03) ) (1.14) | (3.12) | (5.12) (6.43) (6.04)

the safety constraint, which is an essential constraint of real-
world phase I trials, has not been explicitly considered in
these papers.

On the other hand, the problem of safe exploration has
attracted a lot of attention recently, albeit often in control
(Koller et al., 2018) and general reinforcement learning
(Berkenkamp et al., 2017). The authors in (Sui et al., 2015)
propose the SAFEOPT algorithm for safe exploration in
Gaussian processes, and (Kazerouni et al., 2017) presents
a variant of linear UCB method for the contextual linear
bandit problem. A different line of works (Maillard, 2013;
Galichet et al., 2013) consider minimizing risk in MAB, but
they are mostly casted in the mean-variance framework with
respect to the reward distribution.

7. Conclusions

Learning in adaptive clinical trials faces several unique chal-
lenges that have not been well addressed, which may have
contributed to their lack of adoption in actual clinical trials.
In particular, the safety constraints resulting from ethical and
societal considerations have been insufficiently researched,
which has motivated us to develop the SEEDA algorithm
that explicitly imposes safety constraints (in terms of tox-
icity) while also aiming for maximum patient response in
a dose-finding study. Theoretical analysis of SEEDA is
carried out and the proposed algorithm is further extended
to the increase-then-plateau efficacy model and shown to

have smaller regret thanks to the unimodal structure. The
performance advantages over state-of-the-art adaptive clin-
ical trial designs are illustrated with experiments on both
synthetic and real-world datasets.
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