Allan Variance-based Granulation Technique for Large Temporal
Databases

Lorina Sinanaj' ©?, Hossein Haeri>®®, Liming Gao’®¢, Satya Prasad Maddipatla’®¢, Cindy Chen'
¢ Kshitij Jerath?®!, Craig Beal*®# and Sean Brennan®*®"
1 Computer Science Department, University of Massachusetts Lowell, 220 Pawtucket St, Lowell, USA
2Mechanical Engineering Department, University of Massachusetts Lowell, Lowell, USA
3Mechanical Engineering Department, The Pennsylvania State University, University Park, USA

4Mechanical Engineering Department, Bucknell University, Lewisburg, USA
{lorina_sinanaj, hossein_haeri} @ student.uml.edu, {cindy_chen, kshitij_jerath} @uml.edu, {lug358, szm888,
snb10} @psu.edu, cbeal @ bucknell.edu

Keywords: Big Data, Data Reduction, Temporal Granulation, Allan Variance.

Abstract: In the era of Big Data, conducting complex data analysis tasks efficiently, becomes increasingly important
and challenging due to large amounts of data available. In order to decrease query response time with limited
main memory and storage space, data reduction techniques that preserve data quality are needed. Existing
data reduction techniques, however, are often computationally expensive and rely on heuristics for deciding
how to split or reduce the original dataset. In this paper, we propose an effective granular data reduction tech-
nique for temporal databases, based on Allan Variance (AVAR). AVAR is used to systematically determine the
temporal window length over which data remains relevant. The entire dataset to be reduced is then separated
into granules with size equal to the AVAR-determined window length. Data reduction is achieved by gen-
erating aggregated information for each such granule. The proposed method is tested using a large database
that contains temporal information for vehicular data. Then comparison experiments are conducted and the
outstanding runtime performance is illustrated by comparing with three clustering-based data reduction meth-
ods. The performance results demonstrate that the proposed Allan Variance-based technique can efficiently
generate reduced representation of the original data without losing data quality, while significantly reducing
computation time.

1 INTRODUCTION

Whether we are monitoring software systems, track-
ing applications, financial trading analytics, business
intelligence tools, etc., time-series data flows through
our data pipelines and applications at warp speed, en-
abling us to discover hidden and valuable information
on how that data changes over time. This has led to
a growing interest in the development of data mining
techniques capable in the automatic extraction of pat-

https://orcid.org/0000-0003-4687-5809
https://orcid.org/0000-0002-6772-6266
https://orcid.org/0000-0002-0159-4010
https://orcid.org/0000-0002-5785-3579
https://orcid.org/0000-0002-8712-8108
https://orcid.org/0000-0001-6356-9438
https://orcid.org/0000-0001-7193-9347
https://orcid.org/0000-0001-9844-6948

o A o o 9

—

=09

terns, anomalies, trends and other useful knowledge
from data (Johnston, 2001), (Liu and Motoda, 2002).

However, such hundreds of terabytes of data pose
an I/O bottleneck—both while writing the data into
the storage system and while reading the data back
during analysis. Given this magnitude and faced with
the curse of dimensionality which requires exponen-
tial running time to uncover significant knowledge
patterns (Keogh and Mueen, 2017), much research
has been devoted to the data reduction task (Januzaj
et al., 2004). To make it beneficial for data analysis,
it would be more convenient to deal with a reduced
set of representative and relevant dataset compared to
working on enormous amounts of raw and potentially
redundant data.

Traditional data reduction approaches have pro-
posed methods such as data compression (Rehman
et al., 2016), data cube aggregation (Gray et al.,
1997), sampling (Madigan and Nason, 2002), clus-

tering (Kile and Uhlen, 2012), etc. The most notable
technique to reduce data with limited loss of impor-
tant information is to use cluster representatives in-
stead of the original instances. Unfortunately, widely-
used clustering methods such as K-means (MacQueen
et al.,, 1967), K-medoids (Kaufmann, 1987), Fuzzy
C-means (Bezdek et al., 1984), etc., can be compu-
tationally expensive and often rely on heuristics for
choosing the appropriate number of clusters to use.
To overcome these drawbacks, we propose a gran-
ularity reduction method based on Allan Variance
(AVAR) (Allan, 1966), (Haeri et al., 2021) for large
temporal databases. In this particular work we fo-
cus on the time-series data, where order and time are
fundamental elements that are crucial to the meaning
of the data, such that to predict what will happen at
a future time, information about the time when past
events occurred is needed. This is different from a
data stream analysis where time may not be an impor-
tant feature of the data. Such data streams can have
time-series data or non time-series data. The time
complexity of the proposed method is O(n) where n
is the number of input data points. This method uses
the concept of the time window over which measure-
ments are relevant, to systematically decide the size
of a data granule. After segmenting the time-series
dataset into granules according to the characteristic
timescale given by AVAR, we use the average value of
the granules as partition representatives instead of the
original data points. As a result, a reduced representa-
tion of the data is produced without losing important
information, while being computationally efficient.
The rest of the paper is organized as follows. In
Section 2, we discuss related work. Section 3 de-
scribes the AVAR approach for finding the character-
istic timescale over which measurements are relevant.
The proposed algorithms and theoretical analysis of
the algorithms are presented in Section 4. The exper-
iments and results are demonstrated in Section 5. The
conclusions and future work follow in Section 6.

2 RELATED WORK

Granular computing is an information processing
paradigm to represent and process data into chunks
or clusters of information called information granules
(Pedrycz, 2001). Information granules are a collec-
tion of entities grouped together by similarity, prox-
imity, indistinguishability and functionality (Zadeh,
1997). The process of forming information granules
is called granulation. In this section, we briefly re-
view the related work which investigate data reduc-
tion based on granules or clusters.

Lumini and Nanni (Lumini and Nanni, 2006)
present a data reduction method based on cluster-
ing (CLUT). The CLUT approach adopts the fuzzy
C-means clustering algorithm to divide the original
dataset into granules, then use the centroid of each
granule as the representative instance to achieve the
reduced dataset. The authors use the Hartigan’s
greedy heuristic (Hartigan, 1975) to select the optimal
number of clusters. The time complexity for the fuzzy
C-means method (Bezdek et al., 1984) is O(n?) with
the increase in the size of the original data, as a num-
ber of successive iterations need to be completed with
the intention to converge on an optimal set of parti-
tions. In addition, requiring a priori specification of
the number of clusters by the Hartigan’s method, adds
more computational complexity to the overall cost.

Olvera et al. (Olvera-Lépez et al., 2010) achieve
data reduction by using a Prototype Selection based
Clustering method (PSC). PSC first divides the orig-
inal dataset into clusters using the C-means algo-
rithm, then checks each cluster if it is homogeneous,
such that all instances belong to the same class, or
not. For the final reduced prototype set, PSC selects
the set of the mean prototypes from each homoge-
neous cluster and the border prototypes from each
non-homogeneous cluster.

Sun et al. (Sun et al., 2019) propose to achieve
fast data reduction using granulation based instances
importance labeling (FDR-GIIL). The approach uses
K-means to generate the granules and then labels the
importance of each instance in each granule using the
Hausdorff distance (Henrikson, 1999). Data reduc-
tion is achieved by eliminating those instances which
have the lowest importance labels, until a user-defined
reduction ratio is reached. However, K-means al-
gorithm (MacQueen et al., 1967) is computationally
expensive with high volume datasets. Similar to the
fuzzy C-means algorithm, when the number of input
data points n increases, it is observed that the time
complexity becomes O(n?).

For Big Data, the previous related works are time
consuming because the used clustering algorithms of-
ten rely on heuristics such as Hartigan’s statistics, rule
of thumb, elbow method, cross-validation, etc. (Kod-
inariya and Makwana, 2013) to choose the appropri-
ate number of clusters or granules. Additionally, they
need to process many iterations in order to converge
to optimal cluster centers. This leads to a quadratic
time complexity which is very prohibitive for large
datasets. To the best of our knowledge, this paper is
the first to present a granular data reduction method
for temporal databases using Allan Variance, which
does not rely on heuristics and successive iterations
to process data into information granules.

3 ALLAN VARIANCE

Allan Variance (AVAR) was first proposed to charac-
terize the time drift in atomic clocks (Allan, 1966),
but later it became a practical method for sensor noise
characterization (Jerath et al., 2018). In its original
context, AVAR is often used to determine whether
noise values are correlated in time, and if they are,
it helps identify the correlation timescale. Drawing
inspiration from the classical applications of AVAR,
the authors recently proposed a novel method which
utilizes AVAR to identify the characteristic timescale
of any given temporal data set with numerical en-
tries (Haeri et al., 2021). Assuming a given noisy
temporal data follows a certain unknown pattern, the
characteristic timescale determines the time horizon
over which measurements yield a near-optimal mov-
ing average estimate (Haeri et al., 2021). Specifically,
our method suggests to consider measurements that
are not older than the characteristic timescale and use
them for estimation tasks.

3.1 AVAR-informed Characteristic
Timescale

Allan variance of a given temporal data set y =
{y1,y2,---,yn} is mathematically defined as the ex-
pected variance of two successive averaged groups of
measurements, i.e. data blocks, at a given timescale
m (Allan, 1966), (Jerath et al., 2018):

G (m) = 5[5k~ k)] n

where ¥ is simple moving average of the measure-
ments at time k and window length m, and is given
by:

1 k
==Y Vi 2
m i —m

To numerically estimate AVAR, we can compute
average of the term (7 — ¥x_,,)* across all possible
time steps k (Sesia and Tavella, 2008):

Y Gi-dem) ©

k=2m+1

63‘ (m) = 2(n j 2m)

A lower value of the AVAR at a given timescale
indicates lower bias and reduced variance between
data aggregated at that timescale. Depending on the
data patterns and noise characteristics, the variance
can increase or decrease as we increase the window
length or block size. Figure 1 shows three tempo-
ral signals and their corresponding AVAR calculated

Noise (Uncorrelated)
10 10 M 10
z o 0 ViAo

(a) (b) ()
0 200 400 600 800 1000 0 200 400 600 800 1000 O 200 400 600 800 1000
time step (K] time step (K] time step (K]

Signal (Correlated) Signal + Noise

g
g
8
E
E

)

2
W)

AVAR (o

8
2
&

100 10! 10? 100 10! 102 10° 10! 102
window length (m) window length (m) window length (m)

Figure 1: Characteristic timescale determines the time hori-
zon over which averaging data points yields a near optimal
results. (a) Gaussian white noise (b) Random walk signal.
(c) Random walk corrupted with Gaussian white noise. Fig-
ure (d), (e), and (f) show AVAR of the signals on top calcu-
lated at various window lengths (1 < m < n/4).

at various timescales/window-lengths. Figure 1(d)
shows the AVAR for uncorrelated temporal data (in
this case Gaussian white noise). It is observed that
the AVAR decreases as the timescale or averaging
window lengths m increase. This is intuitive because
the aggregated data block values, i.e. i, approach
the mean value as the block size increases and more
samples are included in the average. On the other
hand, if data points are correlated in time, there is a
possibility of the Allan variance increasing with in-
creasing window lengths. For example, Figure 1(b)
shows a random walk process, and it is intuitively un-
derstood that the aggregates at varying timescales or
window lengths will drift apart over time, irrespec-
tive of the size of the aggregation timescale. Thus,
as seen in Figure 1(e), the AVAR increases as block
size increases since the data is correlated in time and
the most relevant measurements to any point at k is
its immediate neighboring measurement at k — 1 and
k+1.

In this work, however, we are more interested in
cases like the one in Figure 1(c) where a correlated
signal is corrupted with an uncorrelated noise. In
this case, we are facing a trade-off where integrating
more data points help us eliminate the noise by per-
forming a moving averaging across a larger window
size but, at the same time, it would lower the accu-
racy by integrating less relevant measurements. The
proposed method suggests to choose a characteristic
timescale, i.e. the temporal aggregation timescale that
minimizes the AVAR.

3.2 Fast AVAR Calculation

Although AVAR yields valuable information regard-
ing the characteristic timescale of the temporal data,
it still needs to be efficiently computed for large data
sets. To accomplish this, we use the algorithm sug-

gested in (Prasad Maddipatla et al., 2021) and con-
strain the potential window lengths to powers of 2,
i.e m =2” where p € Z". Then we can quickly es-
timate the expression in (1) using a simple dynamic
programming method with O(n) running time ex-
plained in Algorithm 1, where n is the number of
input data points. The algorithm first constructs a
list of exponentially growing window length candi-
dates 7. Then, for each window length, starting from
T = 1, it calculates the associated AVAR by averaging
0.5(Y— Yk+1)2 across all valid k values. Meanwhile,
it pre-computes the next temporal list Y’ by averaging
adjacent data values Y and Yy .

Algorithm 1: Fast AVAR calculator

Input: a set Y of raw temporal data points
Output: a set 4 of AVAR values and a set 7
of associated timescales

construct 7 = {1,2,4,8, ...,2P} such that
2P < Y.length/2 < 2P+!

fort€ 7 do

Y’ = empty list

k=1

c=0

while k < Y.length do
c=c+ O.S(Yk — Yk+1)2
add 0.5(Y; + Yy q) to Y’
k=k+2

end

add m to 4

Y=Y

end
return 4 and 7

The theoretical analysis and the experiments in
Figure 2 prove that the running time for the Algorithm
1 is O(n). In the first iteration where T = 1, there will
be n x 1 calculations, in the second iteration because
T = 2, the number of calculations will be n x %, in the
third iteration T = 4, so the number of AVAR calcula-
tions is n X % and so on until the m-th iteration where
T = 27 In the last iteration the total number of calcu-
lations is n x ()?. Adding all the calculations in each
iteration yields a geometric series with the first term
is n, the common ratio is %, and the number of terms
is m. Using the sum formula for a finite geometric
series we can calculate the total time complexity of
Algorithm 1:

n

o= 1
S=Y n(z) =
L) =

Since the common ratio in this geometric series
is % (less than 1), the series converges with sum

“4)

N[—

S = O(n) = 2n. The linear complexity time of the fast
AVAR calculator is also shown in Figure 2, where the
execution time is linear and proportional to the num-
ber of measurements in the data.

350

0 10 20 30 40 50 60
Number of measurements (= 10°)

Figure 2: Fast AVAR calculator execution time.

Being able to efficiently compute the AVAR char-
acteristic window length for large amounts of data
is crucial, because the number of the final granules
or clusters in the reduced dataset is determined by
the temporal aggregation timescale given by the fast
AVAR algorithm.

4 AVAR-BASED GRANULATION

This section presents the structure of the pro-
posed AVAR-based granulation approach for tempo-
ral databases by describing the overall workflow of
the technique and the theoretical analysis of the algo-
rithm complexity, using the AVAR-informed charac-
teristic timescale.

4.1 System Architecture

The current state-of-the-art granulating temporal data
algorithms require successive iterations to be per-
formed as well as they rely on heuristics for choosing
how to partition the original data. This is a compu-
tationally expensive operation, especially for tempo-
ral databases with a large number of rows. The main
problem with using heuristics to specify the number
of clusters in advance, is that the final result will be
sensitive to the initialization of parameters. A practi-
cal approach is to compare the outcomes of multiple
runs with different k-number of clusters and choose
the best one based on a predefined criterion. How-
ever, this method is very time consuming due to the
large number of iterations that the algorithm needs to
carry out (MacQueen et al., 1967).

In our study, we propose an AVAR-based granu-
lation technique on large temporal databases, that in
O(n) time complexity takes in input the n-raw data
points, systematically determines the time window

Raw

Temporal
Database

AVAR

Characteristic Timescale
(block size)

Reduced

Temporal
Database

Insert

Sort in time

Apply AVAR

aggregated data

Calculate 154
block averages |® (@

Time

Figure 3: System Architecture—Schematic view of data granulation process based on Allan Variance.

over which data is relevant, and calculates the aggre-
gated information of the relevant data for each time
window. Compared to previous approaches where
authors used heuristics (Kodinariya and Makwana,
2013) to determine the optimal number of partitions
(granules), in our work the number of partitions is
systematically determined by the AVAR characteris-
tic timescale.

Figure 3 shows the overall workflow of the
proposed method including four steps: (1) Pre-
processing: A simple pre-processing step is applied
on the raw dataset (if it is not originally sorted) to sort
the data points in time prior to applying the AVAR al-
gorithm, (2) Allan variance calculation: The AVAR
algorithm takes as input the sorted temporal database,
and outputs a characteristic timescale over which the
measurements are relevant and should be averaged
across, (3) Granulation: The granulation algorithm
takes in input the AVAR timescale, partitions the data
in a series of non-overlapping time interval segments
and generates aggregated information for each inter-
val, and (4) Data preparation: Aggregated informa-
tion for each partition will then be used as representa-
tive instances for the new reduced dataset. As a result,
at a later stage, data mining methods can analyze the
data faster due to the decrease in volume without los-
ing data quality.

Compared to the other methods in the related
works section, the AVAR-based technique systemat-
ically identifies a characteristic timescale at which
measurements are relevant, representative and sta-
ble without relying on iterations or heuristics. As
a limitation to this method, input data should be
sorted in time before getting processed. However,
the worst-case time complexity when sorting the data
is O(nlog(n)) (Mishra and Garg, 2008), which still

has more advantage compared to methods that com-
pute a large number of iterations and use heuristics to
achieve approximate cluster representatives in O(n?).

4.2 AVAR Granulation Approach

A challenge in large sized databases is to evaluate
complex queries over a continuous stream of inputs.
The key idea is to reduce the volume using moving
window aggregations, i.e. the calculations of aggre-
gates in a series of non-overlapping (tumbling) win-
dows. Tumbling windows (Helsen et al., 2017) are
a series of fixed-sized, non-overlapping, and contigu-
ous time intervals where tuples are grouped in a single
window based on time. A tuple in the database cannot
belong to more than one tumbling window. In the pro-
posed algorithm, AVAR method determines the size
of the tumbling window over which the measurements
are relevant.

The complete temporal granulation process de-
fined according to the proposed methodology is de-
scribed by Algorithm 2. The algorithm takes as an
input the set of the original data points and the AVAR
characteristic timescale Tavar, and returns the set of
the granule representatives. Initially, it starts by se-
quentially scanning every data point in the original
set associated with their respective timestamp values.
It then partitions the data points into different time in-
tervals, by checking which window interval the times-
tamps fall into (if statement). Before jumping to a
new time window interval (else statement), the al-
gorithm calculates the average value for the current
granule and inserts that value in the representatives
set.

In Algorithm 2, the data is scanned only once in-
side the while loop. Each step inside the “if” and

“else” statements takes only O(1) time as it does
not contain loops, recursion or call to any other non-
constant time function. As a result, time complexity
of the AVAR-based granulation algorithm becomes
O(n), where n is the number of input data points. This
time complexity is linear and proportional to the size
of the original data. If we combine the time complex-
ity of Algorithm 1 with the time complexity of Al-
gorithm 2, the total time complexity of the proposed
approach is simply O(n). The more voluminous the
original data is, the slower the reduction algorithm
will be. However, our approach is a pre-processing
step to prepare the data for the future data analysing
techniques. Efficiency is achieved because data ana-
lytical methods can analyze the data faster due to the
decrease in volume without losing data quality.

The space complexity of the proposed algorithm
is the amount of memory space it needs to run ac-
cording to its input size. If the number of Information
Granules generated by the algorithm is g and the input
size is n, the storage requirement for the algorithm to
complete its task is O(ng).

Algorithm 2: AVAR-based temporal granu-
lation algorithm

Input: a set Y of raw temporal data points
and timescale TavarR
Output: a set Y’ of granule representatives

initialize windowsar; and windows;;,=TAvAR

g=1 // Information Granules counter

while y € Y do

if timestamp(y) € window interval then
| inserty in Information Granule /G,

else

set windowg ;s as
(windowgqr+windowyiz,)

shift window interval (windowgqs ,
Windowg g +windowsize)

calculate the average y, for all
y€1G,

add y, to Y’

q=q+1

end

end
return Y’

S EXPERIMENTS

In the following we present experimental results that
assess the performance of the AVAR method in the
granulation algorithm. As the experimental basis, a

simulation environment is used to produce a large
amount of temporal information for vehicular data.
Each tuple contains information about road-tire fric-
tion measurements at a certain point in time.

On this dataset we perform three separate experi-
ments: (1) we apply the AVAR method to determine
the characteristic timescale over which measurements
are relevant, (2) we apply the granulation algorithm
based on the AVAR output, on data of different sizes
to observe the algorithm execution time with respect
to input data size, and (3) on the input dataset and on
the reduced dataset, we run the same exact query to
analyze the performance of our reduction method. In
addition experimental analysis is conducted to com-
pare the proposed method against the competitors in
the related works.

The test results show that performing the same
type of query in the reduced dataset compared to ex-
ecuting the query in the original data, not only drasti-
cally reduces the query execution time but it can also
generate close results with a relatively low absolute
eITOr.

Hardware: The platform of our experimentation is a
PC with a 2.60 GHz Single Core CPU, 64 GB RAM
using PostgreSQL 10.12 on Linux kernel 3.10.0.

2 T T ™

15 a 1 i : i .
H

I I I I L
0 02 04 06 08 1 12 14 16 18 2

16)

Characteristic timescale (m

T
|
1
|
|
1
1
|
|
|
1
1
|
|
|
1
|
|
|
|
1

10° 102 104 108

Window length m [# of samples]
Figure 4: Top: Friction data. Negative values are outliers
but we retained them to show that the technique is robust
under different scenarios. Bottom: Allan variance for ve-
hicular friction measurements containing 91 million data
points, evaluated across various window lengths.The min-
imum point in the AVAR curve indicates the characteristic
timescale of the data.

5.1 Characteristic Timescale of
Vehicular Data

In this subsection, we evaluate the characteristic
timescale of the vehicular friction measurements by
calculating the AVAR across various window lengths
using the Algorithm 1. Figure 4(7Top) shows the
pattern of the friction values over time and Figure
4(Bottom) shows the corresponding AVAR curve.

5.2 Time Efficiency of AVAR-based
Granulation Algorithm

To measure the time efficiency of the AVAR-based
granulation algorithm, we will gradually increment
the size of the data to be granulated. We initially start
by applying the granulation algorithm on a temporal
database of size 2.5 GB (= 32 million data points),
and we measure its execution time. We repeat these
steps by applying the algorithm on data with differ-
ent sizes up to 25 GB (=~ 320 million data points) and
present the results in Figure 5.

350

300

250

150

100

Execution time (seconds)

50

0
25 50 75 100 125 150 175 200 225 250

Data size (GB)

Figure 5: Execution time of the AVAR-based granulation
algorithm.

From these results, we observe that for larger
amounts of input data, the algorithm takes more
time to execute. However, the increase in execution
time is linear to the size of the input data, once
again proving our theoretical algorithm analysis that
the time complexity for our proposed AVAR-based
granulation technique is O(n), where n is the number
of input data points.

5.3 Effectiveness of AVAR-based
Granulation Technique

We evaluate the proposed approach on a vehicular in-
formation dataset of size 7216 MB, which consists of
91,475,050 tuples measured at a time range of around
25 hours. Each tuple holds road-tire friction val-
ues associated with their respective timestamps. The
purpose of AVAR-based granulation is to reduce the

query execution time without losing important infor-
mation from data reduction. To show that this tech-
nique efficiently produces a reduced representation of
the data without losing data quality, we run the same
query on both datasets, the original and the reduced,
and we analyze the query execution time as well as
the query results. We use a query to output the av-
erage friction value for a given interval in time. The
query is run for different time intervals, to observe
how the query execution time changes when an in-
creasingly number of tuples have to be analyzed. We
show that after using our approach, data can be an-
alyzed faster due to the decrease in volume, without
losing important information.

First, we show that the query execution time can
be reduced drastically after applying the AVAR-based
granulation algorithm. The size of the reduced dataset
after the granulation technique with a characteristic
timescale of 16 milliseconds is 426 MB, with the
total number of tuples being 5,717,191. The storage
requirement is efficiently reduced as shown by the
calculated reduction rate of ~ 94 %. Experimental
results in Figure 6 show that for the same time
interval, the query takes less time to execute in the
reduced data compare to executing it in the original
data. In addition, we observe that for the original
dataset, the runtime growth of the query is higher
with the growth of the amount of data queried. From
these results we can observe that the benefits of data
reduction processes are sometimes not evident when
the data is small; they begin to become obvious when
the datasets start growing in size and more instances
have to be analyzed.

12000

—e—Original data Reduced data

10000
8000
6000

4000

Execution time (milliseconds)

2000

Time intervals queried (hours)

Figure 6: The runtime rising tendency of the query as more
data is analyzed

Second, we show that we do not lose data quality
while reducing the temporal database in a representa-
tive subset. The advantage of using representatives is
that besides improving query execution time, it also
improves the model generalization for the use of data
mining techniques in the future. We measured the
average, minimum and maximum friction values for
different time intervals on both datasets. Numerical
results are shown in Table 1.

Table 1: Query performance on the friction data.

AVG(friction) AVG query error

Interval of time

MIN(friction)

MIN query error MAX(friction) MAX query error

Original data Reduced data Percentage ~Absolute Original data Reduced data Percentage ~Absolute Original data Reduced data Percentage ~Absolute

between *2020-06-15

05:00:00” and *2020-06-15 0.754902 0.754902 1.14E-05 8.60E-08 -1.608
05:10:00"
between 2020-06-15
05:10:00" and 2020-06-15 0.654777 0.654776 1.05E-04 6.87E-07 0.253

05:20:00
between *2020-06-15
05:20:00" and *2020-06-15
05:30:00
between *2020-06-15

0.600036 0.600037 1.97E-04 1.18E-06 0.349

05:30:00" and *2020-06-15 0.686079 0.686078 1.46E-04 1.00E-06 -0.723
05:40:00"
between *2020-06-15
05:40:00” and *2020-06-15 0.849033 0.849026 8.27E-04 7.02E-06 -1.536
05:50:00"
between 2020-06-15
05:50:00” and "2020-06-15 0.897936 0.897934 2.36E-04 2.12E-06 0.633

06:00:00°

From Table 1 we can observe that for the aver-
age (AVG) query, the error is occurring at the 5 or
6" decimal place. This event mostly happens due
to the computer representation for binary floating-
point numbers in the IEEE Standard for Floating-
Point Arithmetic (IEEE 754)(IEEE, 2019). IEEE
754 standard, for floating point representation, al-
lows 23 bits for the fraction. 23 bits is equivalent
to log,((23) ~ 6 decimal digits. Beyond those num-
ber of significant digits, accuracy is not preserved,
hence round-off starts to occur as reported in Table
1. The absolute error values, mostly due to numeri-
cal accuracy round-off, are extremely small, proving
that the AVAR-based granulation technique in tempo-
ral databases keeps the quality of the original data.
Nevertheless, the vehicular friction values round to
the 4'" decimal place, already have enough accuracy
for vehicular control application.

For the minimum (MIN) and maximum (MAX)
queries, even though the absolute error is larger due
to the presence of outliers (as observed in Figure
4(Top)), the results are still close in value to each
other. A good approach in the future is to apply a
filtering algorithm that removes the outliers prior to
applying the AVAR granulation approach.

5.4 Comparative Evaluation

Comparison experiments are conducted by compar-
ing the proposed AVAR-based granulation algorithm
with the other clustering data reduction methods in
the related works. Five datasets selected from the UCI
Repository (Dua and Graff, 2019) with different sizes
are reduced to demonstrate the effectiveness of the
AVAR approach. The chosen datasets (Segmentation,
Magic, Letter, Shuttle, Covertype) are considered as
“large” datasets by the competitors FDR-GIIL (Sun
etal., 2019), CLU (Lumini and Nanni, 2006) and PSC
(Olvera-Lopez et al., 2010). CLU and PSC are not ap-
plicable to run in the Covertype dataset (250,000 in-

-0.929 42214 0.679 1.559 1.326 14.968 0.233
0.324 28.170 0.071 0.949 0.870 8.349 0.079
0.431 23.460 0.082 0.839 0.770 8.246 0.069
-0.258 64.385 0.466 1.732/ 1.532 11.571 0.200
-1.011 34.193 0.525 1.413 1.084 23317 0.329
0.728 14.931 0.095 1.074 0.975 9.214 0.099

stances), because they are very expensive when large
datasets are processed. A description of these datasets
is given in Table 2.

Table 2: Description of datasets.

Number of Number of
Dataset . X
instances attributes

Segmentation 2100 19
Magic 19,020 10
Letter 20,000 16
Shuttle 58,000 9
Covertype 250,000 54

There are two key experiments conducted in this
section; (i) measurement of the query performance
in each dataset after they have been reduced by the
AVAR-based approach and (ii) evaluation of how fast
the execution time of the proposed AVAR approach is
compared to the existing clustering based data reduc-
tion methods.

Figure 7, 8, 9, 10 and 11 show the AVAR calcu-
lated at various window lengths for each dataset. We
can observe from the graphs in Figures 7-11(a), how
each data has different characteristics and shapes.
Some of them have a large number of outliers (Shuttle
and Covertype), while some others have many repet-
itive data points (Letter). It is important to see how
the AVAR-method performs against different kind of
data, so that future work can be planned to make the
method applicable in more general cases.

The first step in the proposed granulation process
measures the characteristic window length at the min-
imum AVAR, shown in Figures 7-11(b). The next step
is to use this window length to separate the data into
granules and generate the aggregated information for
each such granule. After the reduction step is per-
formed, we observe the query performance for each
reduced dataset.

5120
= 100
52
2 8 4
2 6
2w
2

0

0 20 40 60 80 100 120 140
RAWRED-MEAN
(@)

Figure 7: AVAR of the Segmentation dataset calculated at various window lengths.

showing the characteristic window length=4 units.

1
09
08
07
06
05
04
03
02
01

0

fConc

0 1 2 3 4
fSize
(a)

[

Figure 8: AVAR of the Magic

characteristic window length = 128 units.

14 ° .
L L] L]
w 12 e @ o * o * o
° e o & o o o o
S 10 e & & & o+ & o o
p s 8 & 8 8 & &
° 8 e & & s & o s o
g * & s & s s o
5 6 s & 3 8 & 8 s o
g e & & & & & o
4 s & 3 s s o
s s & s
2 . - . °
s s e
o & @
o 2 4 6 8 10 12 14
x-box horizontal position of box
(a)

Figure 9: AVAR of the Letter dataset calculated at various window lengths.

characteristic window length = 64 units.

120

100
80
60
40

Column 7
j=1 g
[]
L}

220 0 20 *40 . 60 80 lDD. 129
-40 . o
-60
Time
(a)

160

AVAR

AVAR

16

140

102

AVAR

100k

X 4
Y 0.813667

-

10°

10' 10?
Window length (m)
(®)

(a)Segmentation data (b)AVAR curve

10°

102 3
3l X 128 i
10 Y 6.80534e-05
104k i i 3
100 10! 10? 10° 10*
Window length (m)
(b)

dataset calculated at various window lengths.

(a) Magic data (b) AVAR curve showing the

10°

X 64
Y 0.0256162

10°

102

10! 102 108 10*
Window length (m)
(®)

(a) Letter data (b) AVAR curve showing the

10" F

10°

X 64
Y 1.61999

10°

10°
Window length (m)
®)

Figure 10: AVAR of the Shuttle dataset calculated at various window lengths. (a) Shuttle data (b) AVAR curve showing the

characteristic window length = 64 units.

300
250
200
150
100

50

Hillshade index at noon,
summer solstice

0

0 10 20 30 40 50 60
Slope in degrees

(@)

70

AVAR

1 02 T T E|
X 2048
Y 1.59563
1 00 1 1
102 10*
Window length (m)

®)

Figure 11: AVAR of the Covertype dataset calculated at various window lengths. (a) Covertype data (b) AVAR curve showing

the characteristic window length = 2048 units.

Table 3: Query performance on the Segmentation data.

Tiatraordl GfF AVG(RAWBLUE-MEAN) AVG query error MIN(RAWBLUE-MEAN) MIN query error MAX(RAWBLUE-MEAN) MAX query error
RERREpQUEAN Original data Reduced data Percentage Absolute Original data Reduced data Percentage Absolute Original data Reduced data Percentage Absolute
[0, 29] 9.506 9.506 0.000 0.000 0.000 0.000 0.000 0.000 26.111 25.083 3.937 1.028
[29, 58] 39.698 39.778 0.202 0.080 18.333 24.417 33.186 6.084 54.111 51.639 4.568 2472
[58, 871 55.188 55.161 0.049 0.027 50.000 51.278 2.556 1.278 70.778 65.389 7.614 5.389
[87, 116] 92.963 92.877 0.093 0.086 72.000 72.250 0.347 0.250 107.444 103.639 3.541 3.805
[116, 145] 118.453 118.543 0.076 0.090 103.667 105.778 2.036 2.111 137.111 136.000 0.810 1.111

Table 4: Query performance on the Magic data.

AVG(fConc) AVG query error MIN(£Conc) MIN query error MAX(fConc) MAX query error
Interval of £Size

Original data Reduced data Percentage =~ Absolute Original data Reduced data Percentage ~ Absolute Original data Reduced data Percentage =~ Absolute

[2.0,2.5] 0.594 0.596 0.337 0.002 0.290 0.492 69.655 0.202 0.893 0.734 17.805 0.159
[2.5,3.0] 0.377 0.378 0.265 0.001 0.116 0.265 128.448 0.149 0.885 0.49 44.633 0.395
[3.0,3.5] 0.221 0.221 0.000 0.000 0.049 0.174 255.102 0.125 0.638 0.262 58.934 0.376
[3.5,4.0] 0.153 0.154 0.654 0.001 0.025 0.120 380.000 0.095 0.292 0.177 39.384 0.115
[4.0,4.5] 0.080 0.085 6.250 0.005 0.013 0.068 423.077 0.055 0.155 0.102 34.194 0.053

Table 5: Query performance on the Letter data.

Tt 6iF AVG(box_width) AVG query error MIN(box_width) MIN query error MAX(box_width) MAX query error

Lerlee i pEsEem Original data Reduced data Percentage ~ Absolute Original data Reduced data Percentage Absolute Original data Reduced data Percentage Absolute

[0, 3] 2.592 2.610 0.694 0.018 0.000 0.281 0.000 0.281 5.000 3.906 21.880 1.094
[3, 6] 5.235 5243 0.153 0.008 2.000 4.156 107.800 2.156 9.000 6.516 27.600 2.484
[6,9] 7.408 7.409 0.013 0.001 4.000 6.703 67.575 2.703 12.000 8.297 30.858 3.703
[9,12] 8.567 8.567 0.000 0.000 6.000 7.797 29.950 1.797 14.000 9.703 30.693 4.297
[12,15] 11.259 11.375 1.030 0.116 9.000 11.375 26.389 2.375 14.000 11.375 18.750 2.625

Table 6: Query performance on the Shuttle data.

AVG(column_7) AVG query error MIN(column_7) MIN query error MAX(column_7) MAX query error
Interval of time

Original data Reduced data Percentage Absolute Original data Reduced data Percentage Absolute Original data Reduced data Percentage ~ Absolute

[25, 45] 44.626 44.625 0.002 0.001 -16.000 37.531 334.569 53.531 104.000 50.750 51.202 53.250
[45, 65] 34.178 34.178 0.000 0.000 -26.000 28.000 207.692 54.000 105.000 48.016 54.270 56.984
[65, 85] 6.857 6.720 1.998 0.137 3.000 3.188 6.267 0.188 48.000 44.078 8.171 3.922
[85, 105] 2.156 2.039 5.427 0.117 -27.000 0.565 102.093 27.565 22.000 5.516 74.927 16.484
[105, 125] 0.321 -2.560 897.508 2.881 -43.000 -20.688 51.888 22312 3.000 1.203 59.900 1.797

Table 7: Query performance on the Covertype data.

AVG(hillshade_index_noon) AVG query error MIN(hillshade_index_noon) MIN query error MAX(hillshade_index_noon) MAX query error
Interval of slope

Original data ~ Reduced data Percentage ~ Absolute Original data ~ Reduced data Percentage Absolute Original data ~ Reduced data Percentage Absolute

[0, 10] 232452 232.383 0.030 0.069 219.000 227.854 4.043 8.854 249.000 237.337 4.684 11.663

[10, 20] 222.861 222.766 0.043 0.095 194.000 213.032 9.810 19.032 254.000 229.754 9.546 24.246

[20, 30] 204.780 204.199 0.284 0.581 162.000 190.453 17.564 28.453 254.000 212414 16.372 41.586

[30, 40] 184.955 182.371 1.397 2.584 126.000 172.000 36.508 46.000 252.000 190.098 24.564 61.902

[40, 50] 149.370 122.424 18.040 26.946 87.000 122.424 40.717 35.424 240.000 122.424 48990 117.576

For the Segmentation dataset, we measured the between a given interval. For the Shuttle dataset,
average, minimum and maximum rawblue values we measured the average, minimum and maxi-
where rawred was between a given interval. For mum Column_7 values where time was between
the Magic dataset, we measured the average, mini- a given interval. For the Covertype dataset, we
mum and maximum fConc values where £Size was measured the average, minimum and maximum
between a given interval. For the Letter dataset, hillshade_index_noon values where slope was be-
we measured the average, minimum and maximum tween a given interval.

box_width values where horizontal_position was Numerical results for each data are shown in Ta-

Table 8: Execution time of large datasets (seconds).

Dataset Number of instances Number of attributes
Segmentation 2100 19
Magic 19,020 10
Letter 20,000 16
Shuttle 58,000 9
Covertype 250,000 54

bles 3, 4, 5, 6 and 7. For the AVERAGE query we
can observe that the absolute error is almost always
close to 0, indicating that there is little difference be-
tween the results in the original and the reduced data.
There are special cases where the absolute error is
large, as in certain intervals of Table 6 and 7 which
is explained by the presence of outliers in those in-
tervals of the original data. The presence of outliers
has a more obvious effect in the results of the MINI-
MUM and MAXIMUM queries. In such queries there
is a larger gap in the results between the original and
the reduced data, hence the absolute error is worse.
As a recommendation in the future, a filtering algo-
rithm for the outliers removal will be used before the
AVAR-based granulation approach. As the number of
outliers increases, so does the absolute error.

While the competitors pick K-means or fuzzy C-
means to decide on the number of clusters, the AVAR
approach sets the size of the cluster by using the char-
acteristic window length on available data. The com-
parative experiments show that the AVAR-method can
still give good performance results in preserving data
quality even in data streams that are not time-series.
In the future we plan to extend this approach for both
spatio-temporal data. Next, the execution time of the
competitor algorithms FDR-GIIL, CLU and PSC are
added for each dataset to show the improvement in
the computational cost of the proposed AVAR-based
granulation method. The corresponding results are
recorded in Table 8. The ‘-’ sign indicates that the ex-
ecution time of the algorithm is more than 100 hours,
as we can see for CLU and PSC which have an expen-
sive computational cost when data increases in size
(Covertype data). Nevertheless, we have shown that
the AVAR approach can be executed for data up to
~ 90,000,000 instances (friction data). For temporal
data, while the other approaches perform two dimen-
sional clustering, the AVAR approach generates clus-
ters based on the characteristic timescale. The AVAR-
based method will offer fewer advantages for datasets
that are more complex or for which averaging is less
useful.

AVAR Execution time (seconds)

window size \yAR FDR-GIL. CLU PSC

4 0.286 39 6.0 7.0

128 0.217 88.6 167.1 172.1
64 0.210 14.5 2172 2262
64 0.351 30.9 2774 288.4
2048 0.321 649.7 - -

When the characteristic AVAR window size is
small, the number of the representative prototypes
is larger, hence there is a higher insertion cost of
these instances in the new reduced table (Segmenta-
tion dataset). When the characteristic AVAR window
size is large, the number of the representative proto-
types is smaller, hence there is a lower insertion cost
of these instances in the new reduced table (Magic
dataset). When the characteristic AVAR window size
is the same for two different datasets, the dataset with
a larger number of instances will have a higher com-
putational cost than the dataset with a lower number
of instances (Letter and Shuttle datasets). From Table
8 it can be concluded that the execution time of our
algorithm is much smaller than the compared algo-
rithms, proving once again that the AVAR approach is
fast when applied on Big data.

6 CONCLUSIONS AND FUTURE
WORK

In this paper we have proposed a computation-
ally efficient granulation algorithm for large tempo-
ral databases using Allan Variance. The proposed
method systematically determines the characteristic
timescale over which data is relevant and calculates
the aggregated information for each time window.
The total time complexity of this approach is O(n),
which is an improvement from existing algorithms
O(n?). Experimental results show that the proposed
technique considerably reduces the query execution
time by reducing the storage requirement, while pre-
serving data integrity. Overall, the presented ap-
proach increases query efficiency due to the decrease
in data volume while preserving the quality of the re-
sult of the queries.

In the future, we plan to incorporate an outlier-
removal filtering algorithm to our method and further
improve this approach for spatio-temporal databases
with respect to both their time domain and spatial

layouts. One interesting challenge is that in multi-
dimensional data, different granularities may exist.
Choosing the appropriate level of detail or granularity
is crucial. To mitigate this challenge, we plan to ex-
tend the AVAR-based approach to represent different
levels of resolution by creating a hierarchical struc-
ture of spatio-temporal data. In addition, we will fo-
cus whether and when to recalculate the characteristic
timescale, as the AVAR estimator would be useful in
an incremental scenario when data keeps coming in.
Furthermore, we intend to construct dynamic AVAR
estimators which can cope with local changes in the
temporal and spatial characteristic sizes.

REFERENCES

Allan, D. W. (1966). Statistics of atomic frequency stan-
dards. Proceedings of the IEEE, 54(2):221-230.

Bezdek, J. C., Ehrlich, R., and Full, W. (1984). FCM:
The fuzzy c-means clustering algorithm. Computers
& Geosciences, 10(2-3):191-203.

Dua, D. and Graff, C. (2019). UCI machine learning repos-
itory, 2017. URL http://archive.ics.uci.edu/ml.

Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Re-
ichart, D., Venkatrao, M., Pellow, F., and Pirahesh, H.
(1997). Data cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub-totals. Data
Mining and Knowledge Discovery, 1(1):29-53.

Haeri, H., Beal, C. E., and Jerath, K. (2021). Near-
optimal moving average estimation at characteristic
timescales: An Allan variance approach. IEEE Con-
trol Systems Letters, 5(5):1531-1536.

Hartigan, J. A. (1975). Clustering algorithms. John Wiley
& Sons, Inc.

Helsen, J., Peeters, C., Doro, P., Ververs, E., and Jordaens,
P. J. (2017). Wind farm operation and maintenance
optimization using big data. In 2017 IEEE Third Inter-
national Conference on Big Data Computing Service
and Applications (BigDataService), pages 179-184.

Henrikson, J. (1999). Completeness and total boundedness
of the hausdorff metric. MIT Undergraduate Journal
of Mathematics, 1:69-80.

IEEE (2019). IEEE standard for floating-point arithmetic.
IEEE Std 754-2019 (Revision of IEEE 754-2008),
pages 1-84.

Januzaj, E., Kriegel, H.-P., and Pfeifle, M. (2004). Dbdc:
Density based distributed clustering. In Inferna-
tional Conference on Extending Database Technol-
ogy, pages 88—105. Springer.

Jerath, K., Brennan, S., and Lagoa, C. (2018). Bridging the
gap between sensor noise modeling and sensor char-
acterization. Measurement, 116:350 — 366.

Johnston, W. (2001). Model Visualization, page 223-227.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

Kaufmann, L. (1987). Clustering by means of medoids. In

Proc. Statistical Data Analysis Based on the L1 Norm
Conference, Neuchatel, 1987, pages 405—416.

Keogh, E. and Mueen, A. (2017). Curse of dimensional-
ity. In Encyclopedia of Machine Learning and Data
Mining, pages 314-315.

Kile, H. and Uhlen, K. (2012). Data reduction via clustering
and averaging for contingency and reliability analysis.
International Journal of Electrical Power & Energy
Systems, 43(1):1435-1442.

Kodinariya, T. M. and Makwana, P. R. (2013). Review on
determining number of cluster in k-means clustering.
International Journal, 1(6):90-95.

Liu, H. and Motoda, H. (2002). On issues of instance selec-
tion. Data Min. Knowl. Discov., 6:115-130.

Lumini, A. and Nanni, L. (2006). A clustering method
for automatic biometric template selection. Pattern
Recognition, 39(3):495-497.

MacQueen, J. et al. (1967). Some methods for classification
and analysis of multivariate observations. In Proceed-
ings of the Fifth Berkeley symposium on mathematical
statistics and probability, volume 1, pages 281-297.
Oakland, CA, USA.

Madigan, D. and Nason, M. (2002). Data reduction: sam-
pling. In Handbook of data mining and knowledge
discovery, pages 205-208.

Mishra, A. D. and Garg, D. (2008). Selection of best sorting
algorithm. International Journal of intelligent infor-
mation Processing, 2(2):363-368.

Olvera-Lopez, J. A., Carrasco-Ochoa, J. A., and Martinez-
Trinidad, J. F. (2010). A new fast prototype selection
method based on clustering. Pattern Analysis and Ap-
plications, 13(2):131-141.

Pedrycz, W. (2001). Granular computing: an introduc-
tion. In Proceedings joint 9th IFSA world congress
and 20th NAFIPS international conference (Cat. No.
0ITH8569), volume 3, pages 1349-1354. IEEE.

Prasad Maddipatla, S., Haeri, H., Jerath, K., and Bren-
nan, S. (To appear in October 2021). Fast Allan vari-
ance (FAVAR) and dynamic fast Allan variance (D-
FAVAR) algorithms for both regularly and irregularly
sampled data. Modeling, Estimation and Control Con-
ference.

Rehman, M. H., Liew, C. S., Abbas, A., Jayaraman, P. P,
Wah, T. Y., and Khan, S. U. (2016). Big data reduction
methods: a survey. Data Science and Engineering,
1(4):265-284.

Sesia, I. and Tavella, P. (2008). Estimating the Allan vari-
ance in the presence of long periods of missing data
and outliers. Metrologia, 45(6):S134.

Sun, X., Liu, L., Geng, C., and Yang, S. (2019). Fast data re-
duction with granulation-based instances importance
labeling. IEEE Access, 7:33587-33597.

Zadeh, L. A. (1997). Toward a theory of fuzzy information
granulation and its centrality in human reasoning and
fuzzy logic. Fuzzy sets and systems, 90(2):111-127.

