
Tight Bounds for Parallel Paging and Green Paging

Kunal Agrawal⇤ Michael A. Bender† Rathish Das† William Kuszmaul‡

Enoch Peserico§ Michele Scquizzato§

Abstract

In the parallel paging problem, there are p processors that share
a cache of size k. The goal is to partition the cache among the
processors over time in order to minimize their average completion
time. For this long-standing open problem, we give tight upper
and lower bounds of ⇥(log p) on the competitive ratio with O(1)
resource augmentation.

A key idea in both our algorithms and lower bounds is to relate
the problem of parallel paging to the seemingly unrelated problem
of green paging. In green paging, there is an energy-optimized
processor that can temporarily turn off one or more of its cache
banks (thereby reducing power consumption), so that the cache size
varies between a maximum size k and a minimum size k/p. The
goal is to minimize the total energy consumed by the computation,
which is proportional to the integral of the cache size over time.

We show that any efficient solution to green paging can be
converted into an efficient solution to parallel paging, and that
any lower bound for green paging can be converted into a lower
bound for parallel paging, in both cases in a black-box fashion.
We then show that, with O(1) resource augmentation, the optimal
competitive ratio for deterministic online green paging is ⇥(log p),
which, in turn, implies the same bounds for deterministic online
parallel paging.

1 Introduction

The problem of managing the contents of a cache (i.e., a
small fast memory) is critical to achieving good performance
on large machines with multi-level memory hierarchies. This
problem is classically known as paging or caching [6].
When a processor accesses a location in fast memory, the
access cost is small (the access is a hit); when it accesses a
location that is not in fast memory, the access cost is large
(the access is a miss or a fault). The paging algorithm
decides which pages (or blocks) remain in fast memory at
any point in time or, in other words, which page(s) to evict
when a new page is brought into fast memory. This problem
is generally formulated as being online, meaning that the
paging algorithm does not know the future requests.

⇤Washington University in St. Louis, USA. Email:
kunal@wustl.edu.

†Stony Brook University, USA. Email:
{bender,radas}@cs.stonybrook.edu.

‡MIT, USA. Email: kuszmaul@mit.edu.
§Università degli Studi di Padova, Italy. Email:

enoch@dei.unipd.it, scquizza@math.unipd.it.

Sequential paging—when there is a single processor
accessing the fast memory—has been studied for decades
and is a very well-understood problem [3,6,23,28], including
several of its extensions.

In this paper, we study the problem of parallel paging
where p processors share the same fast memory of some
size k. Each processor runs its own program, and the set
of pages accessed by different programs are disjoint. At
each point in time, the paging algorithm gets to decide how
much cache goes to each processor, and also gets to dictate
each processor’s eviction strategy. The goal is to share the
small memory among the processors in a way that minimizes
some objective function of processors’ completion times.
We focus on minimizing average completion time, and we
also give bounds on makespan (i.e., maximum completion
time) and median completion time.

The parallel paging problem introduces complexity that
is not seen in the sequential problem. First, multiple proces-
sors compete for the same resource and the paging algorithm
must decide, for each processor and at each time, how many
and which of its pages to keep in cache. The marginal benefit
of having more memory may vary across processors and this
relationship may not have good structure. For instance, it
may be that Processor 1 derives more marginal benefit from
one extra page compared to Processor 2 while at the same
time, Processor 2 derives more benefit from ten extra pages
compared to Processor 1. In addition, this marginal benefit
of extra cache can vary over time and the online paging al-
gorithm must change the number of pages of fast memory
allocated to the processors accordingly. Complicating mat-
ters even further, the actual scheduling of processors mat-
ters. For instance, running a small subset of processors—and
temporarily stalling all others—may allow for better perfor-
mance compared to running all processors. Therefore, how
the different processor’s accesses are interleaved is an im-
portant part of what the parallel paging algorithm must de-
cide, and different interleavings of accesses can lead to vastly
different performances.

Whereas sequential paging has been understood for
decades [3, 6, 23, 28], parallel paging has largely resisted
analysis. The only known upper bounds for parallel paging
[2, 7, 11, 12, 17, 19, 24] consider relaxations of the problem
in which the interleaving of accesses by different processors

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited3022

D
ow

nl
oa

de
d

10
/0

6/
21

 to
 9

8.
11

3.
23

4.
21

9
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

is fixed ahead of time—in particular, this is enforced by
making it so that, whenever any processor blocks on a miss,
all of the processors block, which in turn eliminates a large
amount of the parallelism inherent to the problem. The
known lower bounds [15, 22], on the other hand, focus only
on the offline parallel paging problem, and on analyzing the
performance of traditional paging algorithms such as LRU.
Parallel paging has also been extensively studied within the
systems community, particularly after multicore processors
became mainstream—starting from some pioneering work
on (offline and online) heuristics that dynamically adjust the
sizes of the cache partitions dedicated to each processor (see,
e.g., [8, 20, 29–32]).
This Paper. In this paper, we consider this long-standing
open problem of parallel paging in its general form when the
interleavings are not fixed. As in [15, 22], we analyze this
problem in a timed model where a hit takes unit time and a
miss takes s time units for some parameter s � 1.1 Note that,
in the traditional model used for paging [6, 28], a hit costs 0
and a miss costs 1 — we will call this the 0-1 model. The
timed model is more general and captures the 0-1 model as a
special case (by letting s tend towards infinity).

An important feature of the timed model is that it cap-
tures the passage of time even when a processor experiences
a hit. Modeling this passage of time allows for a more fine-
grained analysis of parallel paging since it allows us to com-
pare the progress of one processor to another even if one
is experiencing hits while the other is experiencing misses.
This avoids the unrealistic assumption in the 0-1 model that
a particular processor can have an infinite number of hits in
the time that another processor has a single miss.

We give tight upper and lower bounds for the deter-
ministic online parallel paging problem in the timed model
showing that the optimal competitive ratio for average com-
pletion time is ⇥(log p), using constant resource augmen-
tation. (Resource augmentation is perhaps the most popu-
lar refinement of competitive analysis that allows bypassing
overly pessimistic worst-case bounds by endowing the on-
line algorithm with more resources than the offline optimum
it is compared to [6].) We also consider makespan, proving
a lower bound of ⌦(log p) and an upper bound of O(log2 p)
for the competitive ratio. This result represents significant
progress on a long-standing open problem—it was first ar-
ticulated by Fiat and Karlin [12] in 1995 and has remained
open even in the 0-1 model. A remarkable feature of our
algorithms is that they are oblivious to s, achieving optimal
competitive ratios for all values of s simultaneously.

A foundational idea in both our algorithms and lower
bounds is to relate the problem of parallel paging to the

1We use the letter s to be consistent with the notation used in the full
access cost model [6], which charges 1 for an access to fast memory and
s � 1 to move a page from slow to fast memory.

(seemingly unrelated) problem of green paging, which fo-
cuses on minimizing the memory usage (hence, e.g., the en-
ergy consumption) of a (single) processor’s cache for a com-
putation, and is a problem of independent interest.
Green Paging. In green paging, the fast memory consists
of memory banks that can be turned on or off over time.
Memory banks that are active (i.e., turned on) can store
pages—and thus requests for those pages result in a hit—but
also consume energy; memory banks that are inactive cannot
store pages, but do not consume energy. The goal in green
paging is to minimize the total energy consumption of a
computation. More formally, there is a single processor that
is running, and the green paging algorithm gets to control
both the page-eviction policy and the size of the processor’s
cache over time, assigning any size between a minimum of
k/p and a maximum of k, where p is a given parameter. The
goal is to service the request sequence while minimizing the
integral of memory capacity over time—a quantity we call
memory impact.2 This is a simple model for studying the
total amount of memory usage over time by a computation.

In this paper, green paging serves both as a problem to
be studied on its own, and as an analytical tool for studying
parallel paging. Indeed, both our upper and lower bounds
hinge on unexpected relationships between the two prob-
lems. We remark that the use of the same variable p for
apparently unrelated quantities in the two problems is inten-
tional, as it plays exactly the same role when “translating”
one model into the other.
Results. We now summarize our results for deterministic
online parallel and green paging. All of the results assume a
constant factor of resource augmentation (which is necessary
even for sequential paging [5, 13, 28]).

• Relating parallel and green paging. We show that green
and parallel paging are tightly related. In particular, any
green paging algorithm with k memory can be translated
“black box” into a parallel paging algorithm with O(k)
memory capacity. If the former is online, so is the latter.
If the former has a competitive ratio of �, then the latter
achieves an average completion time with a competitive
ratio of O(�); additionally, the latter achieves a (1 � ")-
completion time (i.e., the time to complete all but an "

fraction of sequences) that is O(� log("�1))-competitive
with the optimal (1� "/2)-completion time.

2Note that it is not always optimal to keep the cache size at k/p since
this can lead to a larger number of misses, thereby increasing the running
time of the computation. As an example, say a processor accesses 4 pages in
round-robin, accessing each page t times. If we give the processor a cache
of size 4, it will finish in time 4t for a total memory impact of 16t. On
the other hand, if we give it a cache of size 2, at least half of its accesses
will be misses. Therefore, the running time will be at least 2st for a total
memory impact of 4st. For any s > 4, allocating a cache of size 4 results
in a smaller memory impact than allocating a smaller cache of size 2.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited3023

D
ow

nl
oa

de
d

10
/0

6/
21

 to
 9

8.
11

3.
23

4.
21

9
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

We also prove a relationship between lower bounds for
the two problems. If we have an online lower bound
construction against online algorithms for green paging,
achieving a competitive ratio of ⌦(�), then all online
algorithms for parallel paging must also have competitive
ratio ⌦(�) for both mean completion time and maximum
completion time.

• Tight bounds for green paging. For a lower bound,
we show that any online deterministic algorithm has a
competitive ratio of at least ⌦(log p) even with O(1)
resource augmentation. And for an upper bound, we give
a simple memory allocation algorithm that is both online
and memoryless (i.e., it does not depend on future or past
requests) and that can be combined with LRU replacement
to achieve the optimal competitive ratio of O(log p).

• Tight bounds for parallel paging. Using the previous
two results, we obtain tight upper and lower bounds of
⇥(log p) for the parallel paging problem, both when the
objective is to minimize mean completion time, and when
the objective is to minimize the time spent completing a
constant fraction of processes. We also arrive at an upper
bound of O(log2 p) and a lower bound of ⌦(log p) for the
competitive ratio of optimizing makespan.

Bottom line: optimize memory impact. The relationship
between green and parallel paging is powerful. For decades,
little progress has been made on parallel paging partly be-
cause it has been unclear how to handle the interleaving and
interference between different processors. The algorithms in
this paper give a clear lesson: rather than focusing on the
interactions between processors, and rather than greedily fo-
cusing on optimizing the running times of processors, one
should instead focus on minimizing the memory impact of
each processor (the same value that is optimized by green
paging!). This—along with basic load balancing to keep
processors from getting too far ahead or behind—allows the
processors to share the cache with each other in the most
constructive possible way.
Related Work on Sequential Paging. As mentioned above,
sequential paging has been studied for decades for a two-
layer memory heirarchy in the 0-1 model. The simple
algorithm LFD (Longest Forward Distance) that evicts the
page accessed furthest in the future has long been known
to be optimal [3, 23]. In the online setting, where the
algorithm does not know the future, the competitive analysis
framework is typically used to analyze algorithms. In the
0-1 model, an online paging algorithm has a competitive
ratio of (no more than) � if, for every request sequence,
it incurs at most � times as many faults as an optimal
offline algorithm incurs with a memory of capacity h k

(plus an additive constant independent of sequence length).
The ratio ↵ = k/h is called the resource augmentation
factor. Many simple, deterministic algorithms including

LRU, FIFO, FWF, and CLOCK have a competitive ratio of
k

k�h+1 [6, 28]; and the same ratio holds for RAND [6]. This
ratio is optimal for deterministic algorithms, and even for
randomized ones if page requests can depend on previous
choices of the paging algorithm. Since k

k�k/2+1 < 2, this
ratio implies that these algorithms never fare worse than the
optimal offline algorithm would on a memory system with
half the capacity and twice the access cost.
Related Work on Parallel Paging. The theoretical un-
derstanding of the parallel paging problem remains incom-
plete. Most prior positive results assume that the p re-
quest sequences are combined into a single fixed inter-
leaved sequence, to be serviced by selecting which pages
to keep in memory so as to minimize the total number of
faults [2, 7, 12, 17, 19] or other metrics [24]. That is, the
speed at which processors progress relatively to each other
is treated as being independent of the number of page faults
made by each processor, even though in reality a processor
that incurs few faults will progress much faster than one that
incurs many faults. Feuerstein and Strejilevich de Loma [11]
further relax the problem so that they can choose the inter-
leaved sequence rather than assuming that it is given.

An unfortunate consequence of the fixed-interleaving
assumption is that whenever a processor incurs a fault, all
other processes “freeze” until the fault is resolved. This
negates much of the inherent parallelism in the problem
since, when a processor encounters a fault, other processors
should continue working. However, when one doesn’t make
this assumption, the problem becomes much more compli-
cated since processors can advance while other processors
are blocking on faults, and thus the relative rates at which
processors advance is determined by when they hit or miss.
This means that the actual interleaving of request sequences
of different processors depends on the paging algorithm,
since the paging algorithm determines when processors hit
or miss.

Some recent works [10, 15, 16, 22] do not make the
fixed-interleaving assumption; these works investigate the
complexity of the offline problem and show lower bounds
for traditional paging algorithms such as LRU, or consider
restricted models. However, no general upper bounds or
lower bounds are known, and the fully general problem
of how to manage a shared fast memory among multiple
processors has remained open.
Related Work on Green Paging. The last decade has seen a
surge in interest for paging models where memory capacity
is not static, but can instead change over time [2, 4, 5, 9, 14,
21,25,26]. One justification for such models is the increased
popularity of virtualization/cloud services: the amount of
physical memory allotted to a specific virtual machine often
varies considerably over time based on the number and
priority of other virtual machines supported by the same

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited3024

D
ow

nl
oa

de
d

10
/0

6/
21

 to
 9

8.
11

3.
23

4.
21

9
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

hardware. Another justification for dynamic capacity models
lies in the ability of modern hardware to turn off portions
of memory so as to reduce power, often with the goal of
minimizing the overall energy used in a computation—this
is the task we refer to as green paging.

The first work to address green paging was [9], allow-
ing the paging algorithm to determine both the capacity and
the contents of the memory on any given request, with the
goal of minimizing a linear combination of the total num-
ber of faults and of the average capacity over all requests.
This problem has been investigated by López-Ortiz and
Salinger [21] and later, in the more general version where
pages have sizes and weights, by Gupta et al. [14]. Subse-
quent work, and in particular the elastic paging of [25, 26],
showed that one can effectively decouple page replacement
from memory allocation: even if the latter is chosen adver-
sarially, LFD is still optimal, and a number of well-known
paging algorithms like LRU or FIFO are optimally competi-
tive, with a competitive ratio that is extremely close albeit not
quite equal to the classic k/(k � h + 1). A similar line was
taken by adaptive caching [5] with a slightly different cost
model. These results [5, 25, 26] imply that green paging is
a problem of memory allocation: once memory is allocated,
one can simply use LRU for page replacement—as its cost
will be within a factor O(1) of the optimal (for that memory
allocation).

We remark that portions of this work are based on pre-
liminary results contained in the thesis [27]. A preliminary
version of this work was presented as a brief announcement
at SPAA 2020 [1].

2 Technical Overview

This section gives an overview of our main results and of
the techniques that we use to prove them. Recall that we
will use the timed model where cache hits take time 1, and
cache faults take time s for some integer s � 1. A detailed
specification of the models for parallel paging and for green
paging can be found in Section 3.
The relationship between Parallel and Green Paging.

In parallel paging, the fact that processors must share a
cache of size k suggests that the cache-usage per processor
should be treated as a critical resource. Green paging, in
turn, optimizes this resource for an individual processor by
minimizing the total memory impact for that processor.

Green paging does not concern itself with minimizing
running time directly though—for example, a green paging
algorithm might choose to use a very small portion of the
cache for a long time rather than a larger portion for a short
time. Additionally, since green paging focuses on only a
single processor, it does not say anything about the inter-
actions between concurrent processors. These interactions
(i.e., the ways in which the working sets for different proces-

sors change relative to each other over time) play a critical
role in the parallel paging problem.

One of the key contributions of this paper is that, in spite
of these obstacles, memory impact really is the right way
to think about parallel paging. Even though parallel paging
involves complicated interactions between processors, we
show that the problem can be decomposed in a way so
that each individual processor can be optimized separately.
The result is a black-box reduction from the parallel-paging
problem to green paging. Remarkably, the opposite direction
is also true: any online lower-bound construction for green
paging can be transformed in a black-box fashion to obtain
an online lower-bound construction for parallel paging.

By proving a tight relationship between green and par-
allel paging, and then giving tight bounds for green paging,
we immediately obtain tight bounds for parallel paging as a
result.

In the rest of this section, we first describe a series of
simplifications that allow us to think about each individual
processor’s use of cache in terms of a so-called boxed
memory profile. We then explain how to achieve tight
bounds for green and parallel paging.

2.1 A Useful Tool: Box Profiles In the green paging
problem, the paging algorithm sets a memory profile m(i),
which dictates how much cache the processor uses at each
point in time. A key insight, however, is that we need
only consider profiles with a certain nice geometric structure,
called box profiles.
Box profiles. A memory box of height h is a time-interval of
length ⇥(sh) during which a processor is allocated exactly h

memory. We call a memory profile m a box profile if it can
be decomposed into a sequence of memory boxes b1, b2,

Box profiles are without-loss-of-generality in the fol-
lowing sense: If an online algorithm for green paging pro-
duces a memory profile m, then the algorithm can be modi-
fied (online) to instead produce a box profile m

0. Moreover,
the box profile m

0 will incur at most a constant-factor more
memory impact than does m.

The intuition behind this transformation is the follow-
ing: without loss of generality, the profile m never grows at
a rate of more than 1 per s time steps, because fetching a
page from the slow memory to the fast memory takes s time
(although it can shrink arbitrarily fast). Thus, whenever the
memory profile m is at some height h, the profile must have
already been at height ⌦(h) for time at least ⌦(sh). This
naturally allows for one to decompose the profile into (over-
lapping) chunks where each chunk closely resembles a box.
Making these chunks not overlap, and so that the decompo-
sition is online, requires several additional ideas that we give
in Section 4.

Box profiles were previously used as analytical tools
for understanding cache-adaptive algorithms [4, 5], which

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited3025

D
ow

nl
oa

de
d

10
/0

6/
21

 to
 9

8.
11

3.
23

4.
21

9
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

are algorithms that exhibit optimal cache behavior in the
presence of a varying-size cache. An interesting feature of
our work is that box profiles play an important role not just
analytically, but also algorithmically in our treatments of
green and parallel paging.
Simplifying box profiles: compartmentalization, smooth-

growth, and optimal eviction. We can also assume that the
box profile m

0 has additional nice properties, the simplest
of which are that every box has a power-of-two height 2j ,
and that the height-to-width ratio of every box is always the
same.

On top of these, we can assume compartmentalization.
This property says that, at the beginning of each box b’s
lifetime, the cache is flushed (i.e., the cache size briefly dips
to 0). This means that each box of height h must incur
h cache misses just to populate its cache. These cache
misses can be handled by increasing the box’s width by an
additional sh. Since the box already had width ⇥(sh), the
increase does not change the asymptotic memory impact of
the box. Compartmentalization plays an important role in
the design of algorithms for parallel paging, since it means
that consecutive boxes in a processor’s profile need not be
scheduled adjacently in time.

We can also assume the smooth-growth property:
whenever two boxes bi, bi+1 come after one another, the
height of the latter is at most twice that of the former.
This property will be especially useful when proving lower
bounds.

Finally, because each box in a box profile has a fixed
height, LRU in a box of height 2j is guaranteed to perform
2-competitively with the optimal eviction policy OPT in
a box of height 2j�1 [28]. Up to a constant factor of
resource augmentation, we can therefore assume without
loss of generality that the optimal policy OPT is used within
each box.

2.2 Tight Bounds for Green Paging Consider a green
paging instance with maximum memory k and minimum
memory k/p. One can assume without loss of generality
that k, p are powers of 2. In addition, we can assume that
the page replacement strategy is optimal (or LRU) within
each box—therefore, the algorithm needs only decide the
sequence of boxes to be used. Furthermore, as discussed
at the beginning of the section, one can also assume that the
asymptotically optimal solution OPT is a box profile using
boxes with heights k/p, 2k/p, 4k/p, . . . , k.
A Universal Box Profile. In Section 6.2, we present the
BLIND algorithm for green paging (specifically, to decide
the sequence of boxes that the algorithm should use), which
achieves competitive ratio O(log p) using constant resource
augmentation. A remarkable property of this algorithm is
that the sequence of boxes that it uses is oblivious to the input

request sequence �. In particular, the BLIND algorithm
always uses a fixed sequence of boxes that we call the
universal box profile U .

We construct the universal box profile U by performing
repeated traversals of a tree T , where each node in T is
associated with a certain box size. The tree T has 1 + log2 p
levels, and each internal node in the tree has four children.
For each of the levels 0, 1, 2, . . . , log2 p, starting at the
leaves, the nodes in level i are boxes of height 2ik/p. In
particular, the root node is a box of height k, and the leaves
are boxes of height k/p. The key property of this tree is that
each internal node’s memory impact is equal to the sum of
the memory impact of all its children and therefore, the sum
of the memory impacts of the boxes at each level i is the same
for every level.

The universal box profile U is constructed by perform-
ing a postorder traversal of the tree T (i.e., we start in the
bottom left leaf, and we always visit children before visiting
parents). Whenever the postorder traversal completes, it then
restarts.
Analyzing the BLIND Algorithm. In Section 6.2, we prove
the following theorem.

Theorem 1. Using resource augmentation ↵ = 2, the
competitive ratio of BLIND is O(log p).

To analyze the BLIND algorithm, consider the optimal
box profile OPT, which uses boxes x1, x2, . . ., and compare
it to the universal box profile U , which uses boxes y1, y2,
Let Uprefix = hy1, y2, . . . , yji be the smallest prefix of U

that contains OPT as a subsequence, and call a box yi

successfully utilized if it is used in the OPT subsequence.
The challenge is to bound the total memory impact of

Uprefix by O(log p) times the total memory impact of OPT. In
the rest of this overview, let us focus on only the first tree-
traversal in Uprefix.

The key combinatorial property of the BLIND algorithm
is that, for every root-to-leaf path P in the tree T , at least
one box in that path P is guaranteed to be successfully
utilized. In particular, in Section 6.2 we show that if the
path P has nodes p1, p2, . . . , pj where pj is a leaf, then once
BLIND’s postorder traversal reaches pj , the next box that
the algorithm successfully utilizes is guaranteed to be one of
p1, p2, . . . , pj .

The tree T is designed so that each box b has exactly
the same memory impact as the sum of its descendant
leaves. Since every root-to-leaf path contains at least one
successfully utilized box, it follows that: the sum of the
memory impacts of successfully utilized boxes is at least as
large as the sum of memory impacts of all leaves.

By design, the sum of the memory impacts of the leaves
in T is 1/(1 + log p) of the total memory impact of all
boxes in T . The consequence is that, the memory impacts of
successfully utilized boxes must represent at least a 1/(1 +

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited3026

D
ow

nl
oa

de
d

10
/0

6/
21

 to
 9

8.
11

3.
23

4.
21

9
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

log p) fraction of Uprefix’s memory impacts, as desired.
It is interesting that the BLIND algorithm achieves a

competitive ratio of O(log p) while being oblivious to the
input sequence �. On the other hand, the fact that BLIND is
oblivious gives hope that an even smaller competitive ratio
might be achievable by an adaptive algorithm. Remarkably,
this turns out not to be the case.
Lower-Bound Construction: Go Against the Flow. In
Section 6.1, we prove the following:

Theorem 2. Suppose s � p
1/c for some constant c. Con-

sider the green paging problem with maximum box-height k
and minimum box-height k/p. Let ALG be any deterministic
online algorithm for green paging, and let ↵ be the amount of
resource augmentation. Then, the competitive ratio of ALG
is ⌦

⇣
log p

↵

⌘
.

For simplicity, here we focus on the case where the
resource augmentation ↵ = 1, where s � p, and where the
minimum box-height for OPT is normalized to 1 (meaning
that k = p).

Consider an request sequence � for ALG in which, at
every step we request the element i most-recently evicted
from ALG’s cache. (In particular, ALG misses on every
request.) Let cALG be the total memory impact of ALG on
the sequence �.

We now design (offline based on �) an algorithm OFF
that achieves total memory impact cOFF O(cALG/ log p).

The algorithm OFF selects a threshold 2j and always
does the opposite of what ALG does with respect to that
threshold. Namely, whenever ALG has cache-size 2j or
greater (we call these time intervals islands), OFF sets its
cache-size to 1. And whenever ALG has cache-size less than
2j (we call these time intervals seas), OFF sets its cache-size
to 2j .

For now, the only constraint that we will place on the
threshold 2j is that log p 2j k/ log p. Later, however,
we will see that a careful selection of 2j is essential to
complete the proof.
Analyzing the Lower-Bound Construction. In order to
analyze cOFF, we begin by considering the islands. During
these time intervals, both ALG and OFF miss on every
request, but ALG uses a cache of size 2j � log p whereas
OFF uses a cache of size 1. Thus the memory impact of ALG
is at least a factor of log p larger than that of OFF during the
islands.

Next, we consider the seas. Each of these time intervals
has a transition cost for OFF, in which OFF must transition
from a cache of size 1 to a cache of size 2j , and incurs 2j �1
misses in order to fill its cache. If we ignore the transition
costs for a moment, then it turns out that OFF never incurs
any cache misses within a sea. This is because the request
sequence � is designed to only have memory footprint 2j

within a given sea. Since ALG always misses, each request
costs ALG at least s. On the other hand, since OFF never
misses (but uses a cache of size 2j), each request costs OFF
2j k/ log p s/ log p. Again we have that the memory
impact of ALG is at least a factor of log p larger than that of
OFF.

If the threshold size 2j is not selected carefully, then
the transition costs can end up dominating the other costs in
OFF. Indeed, if not for the transition costs, one could select
the threshold 2j to be p

p and force a competitive ratio of
⌦(

p
p) (rather than ⌦(log p)).
In order to minimize the transition costs, one must select

the threshold size 2j in a special way. We select 2j to be the
box-height in the range [log p, k/ log p] that contributes the
least total memory impact to ALG over all such box heights.
That is, for i 2 {0, . . . , log k} define S(2i) to be the total
memory impact incurred by boxes of height 2i in ALG, and
define j = argmink/ log p

2i=log p
S(2i). Since

P
i
S(2i) = cALG,

one can deduce that S(2j) O(cALG/ log p).
To complete the proof, we show that the sum of the tran-

sition costs is O(S(2j)). By the smooth-growth property,
between every sea and island, ALG always has at least one
box of height 2j . The cost of this box for ALG is within
a constant factor of the corresponding transition cost for
OPT. This establishes that the total of the transition costs is
O(S(2j)) cALG/ log p, as desired.

2.3 Using Green Paging to Solve Parallel Paging In
Section 5.1, we prove the following theorem:

Theorem 3. Given an online algorithm for green paging
with competitive ratio �, one can construct an online algo-
rithm for parallel paging with competitive ratio O(�) for av-
erage completion time. Moreover, if the green paging algo-
rithm uses ↵ resource augmentation, then the parallel pag-
ing algorithm uses O(↵) resource augmentation.

We also extend our analysis to show that the same
algorithm achieves guarantees on the completion time for
a given number of processors. This provides a continuous
tradeoff between average-completion-time type guarantees
and makespan-type guarantees, and allows for us to obtain
guarantees for metrics such as median completion time.

Theorem 4. Given an online algorithm for green paging
with competitive ratio �, one can construct an online algo-
rithm for parallel paging that achieves the following guar-
antee: For any i 2 N, the maximum completion time for
all but a fraction 2�i of all sequences is within a factor
of O(i�) of the optimal time to complete all but a fraction
of 2�i�1. Moreover, if the green paging algorithm uses ↵

resource augmentation, then the parallel paging algorithm
uses O(↵) resource augmentation.

Two important special cases of Theorem 4 are: the

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited3027

D
ow

nl
oa

de
d

10
/0

6/
21

 to
 9

8.
11

3.
23

4.
21

9
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

makespan is within a factor of O(� log p) of optimal, and the
median completion is within a factor of O(�) of the optimal
time to complete at least 3/4 of the processors.

In the rest of this section, we give an overview of the
proof of Theorem 3, meaning that our focus is on minimizing
average completion time. For ease of notation, we will do
the reduction in the special case where � = 1 (meaning
we are given an optimal algorithm for green paging) and
↵ = ⇥(1). In the following discussion, let OPT denote
the optimal solution to the parallel paging problem (for
minimizing average-completion time).
A Warmup: The Box-Packing Algorithm. We begin by
describing a simple parallel-paging algorithm which we call
the Box-Packing algorithm. The Box-Packing algorithm
behaves well on a certain special class of inputs (which we
call uniform-impact), but will not guarantee small average
completion times in general. Later in the section, we will
use the algorithm as a building block to construct a different
algorithm that does offer general guarantees.

During the Box-Packing algorithm, each processor runs
an instance of green paging in order to produce a sequence of
boxes with heights between k/p and k/2. The Box-Packing
algorithm then greedily packs these boxes into a memory of
size k over time using the following approach: if at any point
in time, less than k/2 of the memory is being used, then
the Box-Packing algorithm selects a processor q that is not
currently executing (if such a processor exists), and places
the next box for that processor into the cache.

An important feature of the Box-Packing algorithm is
that, when picking which processor q to allocate space for in
the cache, the algorithm performs a form of load balancing.
Rather than giving priority to the processors q that have
run for the least total time (which might seem natural), the
algorithm instead selects the processor q that has incurred the
smallest total memory impact so far, out of the processors
that are idle. We call this the impact-balancing property.
When the Box-Packing Algorithm Does Well: Uniform-

Impact Processors. Despite not being an optimal algorithm
for parallel paging in general, the Box-Packing algorithm
does do well in one important special case: the case where
the processors are uniform-impact.

For each processor q, let Iq denote the total memory
impact used by the green-paging solution for q. We call the
processors 1, 2, . . . , p uniform-impact if I1 = I2 = · · · =
Ip = I for some I .

The fact that the processors are uniform-impact ensures
that the cache is always close to fully utilized. In particular,
a critical failure mode for the Box-Packing algorithm is if
the size-k memory is under-utilized (i.e., less than k/2 of
the memory is allotted to boxes), but there are no remaining
processors to schedule (because too many processors have
already finished). If the processors are uniform-impact,

however, then the Box-Packing algorithm finishes all of the
processors at roughly the same time, avoiding the under-
utilization failure mode.

Because the memory is close to fully utilized, the total
running time is equal to the total memory impact of all
processors divided by k, i.e., ⇥(pI/k).

On the other hand, assuming that the processors are
impact-balanced, we can show that the optimal average
completion time is also ⇥(pI/k). In particular, in OPT,
the p/2 processors that finish first must together incur total
memory impact at least ⌦(pI),3 thereby requiring time at
least ⌦(pI/k). Thus the p/2 processors that finish last in
OPT each incur running times ⌦(pI/k).
The Final Algorithm: The Phased Box-Packing Algo-

rithm. In order to do well when the processors are not
uniform-impact, we introduce the Phased Box-Packing al-
gorithm. This is the algorithm that gives the guarantees in
Theorems 3 and 4.

The algorithm consists of 1 + log p phases
0, 1, 2, . . . , log p, where phase i begins at the first point in
time where only p/2i processors remain. During each phase
i, the Phased Box-Packing algorithm runs an instance of the
Box-Packing algorithm on the p/2i processors that remain,
and then terminates that instance prematurely at the end of
the phase. Let �Ti be the running time of the i-th phase,
and let Si denote the set of processors that finish during the
i-th phase.
Analyzing the Phased Box-Packing Algorithm by Com-

paring Phases. The key to performing a competitive analy-
sis of the algorithm is to analyze each phase based not on the
average completion time of the processors Si that finish in
that phase, but instead based on the average completion time
of the processors Si+1 that finish in the next phase. Note
that the processors Si+1 represent a 1/4 fraction of the pro-
cessors that execute during phase i. By the impact-balancing
property, it follows that the processors Si+1 incur a constant
fraction of the memory impact that is incurred in phase i,
and that all of the processors in Si+1 incur (almost) the same
memory impacts as one-another in phase i. This means that,
by ignoring the other processors that execute during phase i,
one can treat the processors in Si+1 as being uniform-impact,
and conclude that the average completion time in OPT for the
processors in Si+1 is ⌦(�Ti).

Phase i contributes running time at most �Ti to at most

3Without loss of generality, we assume that OPT always allocates at
least ⌦(k/p) space to each processor, since up to a factor of 2 in resource
augmentation we can feel free to spread half of OPT’s memory equally
among the processors and limit OPT’s control to the other half. Note that,
without this minimum-allocation height assumption, the following problem
might arise: OPT could use boxes of height o(k/p), possibly achieving
memory impact less than I for some processor. The minimum-allocation
height assumption fixes this by ensuring that all of OPT’s boxes have height
⌦(k/p).

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited3028

D
ow

nl
oa

de
d

10
/0

6/
21

 to
 9

8.
11

3.
23

4.
21

9
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

2|Si+1| processors. On the other hand, the processors Si+1

require average running time at least ⌦(�Ti). Thus we can
perform a charging argument where we use the running time
of processors Si+1 in OPT to pay for the running times of
all processors in phase i. This proves that the algorithm is
O(1)-competitive with OPT.

2.4 Transforming Green Paging Lower Bounds into

Parallel Paging Lower Bounds We now consider how to
transform an arbitrary lower-bound construction for green
paging into a matching lower-bound construction for parallel
paging. Section 5.2 proves the following theorem.

Theorem 5. Suppose there exists a green paging lower
bound construction L that achieves competitive ratio ⌦(�).
Then all deterministic parallel paging algorithms (that use
↵ O(1) resource augmentation) must incur competitive
ratio ⌦(�) for both average-completion time and makespan.

Consider a deterministic parallel paging algorithm A

that has resource augmentation ↵ = ⇥(1). We can assume
without loss of generality that A always allocates space at
least k/(2p) to every processor. In particular, these mini-
mum allocations combine to only use half of the memory,
which up to a constant factor in resource augmentation can
be ignored.

As A executes the p processors on their request se-
quences �1,�2, . . . ,�p (which we will define in a moment),
each processor’s request sequence �i is executed with some
memory profile mi. Since mi always allocates between
k/(2p) and k memory, one can think of mi as being a green-
paging solution for sequence �i.

To construct adversarial sequences �1,�2, . . . ,�p for A,
we use the lower-bound construction L to construct each
of the sequences in parallel. We terminate each of the
sequences �i once the corresponding memory profile mi

produced by A reaches some large memory impact R.
The fact that each of the profiles mi have the same

memory impacts R allows for us to lower bound the average
completion time for algorithm A. In particular, the first
p/2 processors to complete must incur total memory impact
at least ⌦(pR), thereby incurring total running time at
least ⌦(pR/k). It follows that the final p/2 processors
to complete each take time more than ⌦(pR/k). Thus
⌦(pR/k) is a lower bound for both the average completion
time and the makespan of A.

In order to complete the proof, we construct an alterna-
tive parallel-paging solution B that has makespan (and thus
also average completion time) only O(pR/k�). Note that,
because algorithm A is analyzed with resource augmentation
↵, the maximum memory size for B is k/↵.

Now we consider the optimal green-paging solution for
each request sequence �i, where the optimal solution is re-
stricted to have minimum box height k/(4↵p) and maximum

box height k/(2↵) (i.e., the optimal solution is limited by a
factor-of-2↵ resource augmentation in comparison to the so-
lutions produced by A). Let mOPT

i
be the (boxed) memory

profile produced by the optimal green-paging solution for
�i. By the definition of the lower-bound construction L, we
know that the memory impact of each m

OPT
i

is only O(R/�).
To construct the parallel-paging solution B, we simply

perform the Box-Packing algorithm from Section 2.3 on
the box profiles m

OPT
1 , . . . ,m

OPT
p

. In particular, whenever
the total memory allocated to processors is less than k

2↵ ,
algorithm B selects a processor i out of those not currently
executing (if there is one) and allocates space for the next
box the profile m

OPT
i

. Note that the box is guaranteed to fit
into B’s memory of size k/↵, since the maximum box height
in any profile m

OPT
i

is only k/(2↵).
A simple way to analyze the average running time of

B is to note that (without loss of generality) the request
sequences mOPT

1 ,m
OPT
2 , . . . ,m

OPT
p

are impact balanced, each
having the same memory impact I = ⇥(R/�). By the
analysis in Section 2.3, the total makespan for B is only
O(pI/k) = O (Rp/k�). Since this is a factor of ⌦(�)
smaller than the average completion time and makespan of
A, this completes the lower-bound transformation.

2.5 Putting Pieces Together Combining the upper and
lower bounds for green paging in Section 2.2, we arrive at
the following tight bound on green paging.

Theorem 6. Suppose s � p
1/c for some constant c. Con-

sider the green paging problem with maximum box-height
k and minimum box-height k/p. Then there exists a de-
terministic online algorithm (with O(1) resource augmen-
tation) that achieves competitive ratio O(log p). Moreover,
this competitive ratio is asymptotically optimal for determin-
istic online algorithms.

Note that the assumption in Theorem 6 that s � p
1/c

is natural for the following reason: if any green paging
algorithm ever uses a square of height more than sk/p,
then the algorithm would be better off using a square of
height k/p (and just incurring cache misses everywhere).
Thus the natural parameter regime for green paging is when
the maximum box-height k is less than sk/p, meaning that
p s.

By combining the upper and lower bounds for green
paging with the reductions in Sections 2.3 and 2.4, we arrive
at the following bounds for parallel paging:

Theorem 7. There exists an online deterministic algorithm
for parallel paging that achieves competitive ratio O(log p)
for average completion time, using resource augmentation
O(1). Moreover, for any i 2 N, the maximum completion
time for all but a fraction 2�i of all sequences is within a
factor of O(i log p) of the optimal time to complete all but a

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited3029

D
ow

nl
oa

de
d

10
/0

6/
21

 to
 9

8.
11

3.
23

4.
21

9
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

fraction of 2�i�1. One consequence of this is that a compet-
itive ratio of O(log2 p) is achieved for makespan. Further-
more, any deterministic parallel paging algorithm must have
competitive ratio ⌦(log p) for both average completion time
and makespan, as long as s � p

1/c for some constant c.

3 The Models

Before proceeding with our results, we first take a moment
to discuss the models for green paging and parallel paging in
detail and, in particular, to highlight some of the unintuitive
differences between these problems and classic paging.

3.1 The Green Paging Model Green paging models com-
putations in environments, such as cloud computing or low-
power computing, where the amount of memory resources
allocated to a given task can be changed dynamically, and the
objective is to complete the task minimizing the total amount
of memory resources consumed over time.

Formally, in green paging, like in standard paging, an
algorithm controls a memory system with two layers: a fast
memory that can hold a limited number of pages, and a slow
memory of infinite capacity. Accessing a page takes one time
step if that page is in fast memory. If a requested page is
not currently in fast memory, it can be accessed only after
copying it into fast memory; fetching a page from slow to
fast memory takes s � 1 time steps. During the s time
steps of a fault, the corresponding fast memory page must
be available and not otherwise in use. In practice, s � 1;
we assume for simplicity that s is an integer, allowing us to
work with discrete time steps. Pages can be brought into fast
memory only when requested, but can be discarded at any
time, instantaneously and at no cost. We denote by PALG(i)
the set of pages kept in (or being loaded into) fast memory
throughout the i-th time step by a paging algorithm ALG.

Two main differences set green paging apart from clas-
sic paging. The first is that the fast memory capacity is not
fixed, but in general varies over time under the control of the
paging algorithm, between a maximum of k and a minimum
of k/p pages. We denote by mALG(i) � |PALG(i)| the fast
memory capacity set by ALG throughout the i-th time step.
We call the function m(i) the memory profile.4 The second
difference is that the paging algorithm must access any given
sequence of page requests � = hr1, . . . , rni minimizing not
the total time taken TALG(�) (or, equivalently, the number of
faults) but instead the integral, over that time interval, of the
fast memory capacity, that is,

P
TALG(�)
i=0 mALG(i). We call

this quantity the memory impact of a paging algorithm. As

4This should not be confused with the memory profile function as
defined in [5]. In both cases a memory profile function specifies the quantity
of memory available at any given time, but (1) in [5], this quantity is set
adversarially and not under the control of the algorithm, and (2) in [5] time
advances with the page faults of the algorithm.

mentioned in Section 1, lower capacity does not necessarily
translate into a lower memory impact, if it means more page
faults and thus more processing time—think of a cycle over
four pages serviced with memory capacity m(i) = 4 or with
memory capacity m(i) = 2 for all i.

Solely to simplify the analysis, we also introduce a third,
minor, difference: we allow the possibility of idling on any
given time step following a page access (or another idle time
step). The time step is counted towards the memory integral,
but the request sequence does not advance and the memory
contents do not change (unless |PALG(·)| must decrease as
a consequence of a reduction of mALG(·)). This is justified
by the availability of the No OPeration (NOP) instruction in
most processors.

Denote by rALG(i) the request from � serviced at time
step i by a green paging algorithm ALG. Then ALG

is online if it determines mALG(i) and PALG(i) based
solely on rALG(1), . . . , rALG(i). Informally, we define the
competitive ratio with ↵ � 1 resource augmentation by
comparing the memory impact of the online algorithm with
that of an optimal offline algorithm that runs on a system
with ↵ times less capacity and pays ↵ times as much for
the same capacity, i.e., one whose memory capacity during
the i-th time step mOPT (i) lies between bk/p↵c and bk/↵c,
and that incurs a cost equal to

P
TOPT (�)
i=0 ↵ · mOPT (i). In

other words, the memory impact of the optimal algorithm is
scaled by a factor ↵, so that for all j, it costs the optimal
algorithm the same amount to allocate j/↵ memory as it
does for the online algorithm to allocate j memory (i.e.,
allocating a p-fraction of memory costs the same for both
algorithms). We remark that the main focus of this paper is
the case of ↵ = ⇥(1), however, in which case this distinction
is not important.

Note that in general we do not assume k/p = 1. This
models a number of situations of practical interest. In some
systems, memory can be only allocated in units significantly
larger than a single block. More typically, computing sys-
tems incur other running costs (e.g., the power consumed by
a motherboard or processor) that cannot be reduced below
a certain threshold per unit of time if a computation is run-
ning at all, regardless of how little memory is used; in these
cases k/p represents the memory capacity below which these
other costs become dominant, and thus below which memory
capacity reductions cannot grant significant cost reductions,
per unit of time, to the system as a whole.

3.2 The Parallel Paging Model Parallel paging models
computations where multiple processing units, each operat-
ing concurrently and independently, share nonetheless the
same fast memory—a situation that multicore processors
have made over the last two decades the standard on virtu-
ally all computing systems from supercomputers to mobile
phones. As in classic paging, the goal is to choose at each

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited3030

D
ow

nl
oa

de
d

10
/0

6/
21

 to
 9

8.
11

3.
23

4.
21

9
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

point in time which pages to keep in fast memory so as to
minimize some objective function of processors’ completion
times.

The model we adopt is essentially the one introduced
by López-Ortiz and Salinger [22]. We have p processors
that share the same fast memory of size k. We assume
k � p. Each processor issues a sequence of page re-
quests; hence we have p sequences of page requests �1 =
hr11, . . . , r1n1i, . . . ,�p = hrp1 , . . . , r

p

npi. (Note that the num-
ber of processors is denoted by the same parameter, p, that
denotes the ratio between the maximum and the minimum
memory capacity in the green paging problem. This is inten-
tional since, although the two quantities are drastically dif-
ferent, when showing the equivalence between green paging
and parallel paging we will show that they play exactly the
same role.) We assume that the sets of pages requested by
different processors are disjoint, corresponding to separate
processes.

Accessing a page takes one time step if that page is in
fast memory (i.e., cache). If a requested page is not currently
in fast memory, it can be accessed only after copying it into
fast memory; fetching a page from slow to fast memory
takes s � 1 time steps. During the s time steps of a fault,
the corresponding fast memory page must be available and
not otherwise in use. In practice, s � 1; we assume for
simplicity that s is an integer, allowing us to work with
discrete time steps. The goal of the paging algorithm is to
choose which pages to maintain in fast memory so as to
minimize the maximum, average or median time to service
�1, . . . ,�p. As in green paging, we allow the possibility of
idling on any given time step following a page access (or
another idle time step).

The parallel paging model allows for all of the proces-
sors to make progress in parallel. That is, multiple processors
can experience cache misses and cache hits concurrently.
However, it may sometimes be useful for the algorithm to
temporarily halt some subset of processors (i.e., those pro-
cessors are simply idle) in order to make the best possible
use of the fast memory (e.g., in order to fit the entire work-
ing set for some subset of processors into fast memory).

Note that the only interaction between the p processors
lies in the fact that the fast memory must be partitioned
(dynamically) between them; in particular, we denote by
m

j

ALG
(i) the amount of fast memory allocated by a paging

algorithm ALG throughout the i-th time step to the j-th
processor (so that

P
p

j=1 m
j

ALG
(i) k for all i) and by

P
j

ALG
(i) the set of its pages in, or being loaded into, the

fast memory at that time step. In general, note that mj

ALG
(i)

can be 0 if and only if the j-th processor is idle on the i-th
time step. We also remark that, although the order in which
each processor accesses its own page sequence is fixed, the
sequences will be interleaved in different ways depending on
how much memory and thus “speed” each request sequence

is allocated.
Denote by r

j

ALG
(i) the request from �j serviced on time

step i by a parallel paging algorithm ALG. Then ALG is on-
line if m1

ALG
(i), . . . ,mp

ALG
(i) and P

1
ALG

(i), . . . , P p

ALG
(i)

depend solely on r
1
1, . . . , r

1
ALG

(i), . . . , rp1 , . . . , r
p

ALG
(i). A

factor of ↵ � 1 of resource augmentation simply means that
the optimal offline algorithm is restricted to a memory of size
bk/↵c.

4 A Toolbox for Paging Analysis

The goal of this section is to show how imposing certain con-
straints on the memory allocation does not significantly de-
grade performance. In a nutshell, these involve rounding ca-
pacity to the next power of two, ensuring that capacity does
not change “too often”, and periodically lowering capacity to
0. Operating under these constraints significantly simplifies
subsequent analyses.

4.1 Memory Expansions Let mALG(i) denote the mem-
ory capacity set by algorithm ALG throughout the i-th clock
tick. In our analyses, we shall often compare two algorithms
by allotting to the first “more (memory) space” or “more
time”. A more formal definition of this notion is that of ex-
pansion of a memory profile function m(t)—basically a new
memory profile in which each clock tick with memory m is
replaced by one or more clock ticks with memory at least m.

Definition 1. Consider a memory profile function m(t) :
N ! N . An expansion of m(t) is pair of functions t̄(t) :
N ! N and m̄(t̄) : N ! N , with the following properties:

1. t̄(t+ 1) > t̄(t).

2. for each t̄, either:

(a) there exists t such that t̄ = t̄(t), and then m̄(t̄) �
m(t), or

(b) there exist t� and t
+ = t

� + 1 such that t̄(t�) <
t̄ < t̄(t+), and then m̄(t̄) � min(m(t�),m(t+)).

If 8t we have that t̄(t) and m̄(t̄(t� 1)+1), . . . , m̄(t̄(t)) can
be determined solely on the basis of the page requests up to
time t, then we say that the expansion is online.

If a paging algorithm can service a request sequence
before clocktick T given m(t) memory, then an optimal
offline algorithm can obviously always service the same
request sequence on any expansion of m(t) before (the
image of) T – essentially by “wasting” any extra memory,
and idling through extra clockticks while preserving the
memory contents. Note that it is not true in general, for
all paging algorithms. Indeed, even if m(t) and m̄(t)
are constant, there are online algorithms such as FIFO
that service some sequences faster if given less memory (a
phenomenon known as Belady’s anomaly [6]).

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited3031

D
ow

nl
oa

de
d

10
/0

6/
21

 to
 9

8.
11

3.
23

4.
21

9
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Definition 2. The memory impact of a memory profile
function m(t) is the integral of memory (space) allotted to
the profile over time, that is

P
t
m(t).

For the rest of the paper, we use the memory impact and
cost of a memory profile interchangeably.

4.2 Space and Time Normalization To simplify memory
management, we consider expansions of memory profiles
m(t) with some constraints. More precisely, we show how
any “natural” memory profile can be expanded online into
another memory profile that satisfies some constraints and
incurs a memory impact within a factor of O(1) of the
original profile.

With “natural” we mean having a very simple, specific
property: on any tick in which allocated memory increases,
it increases by at most one page and then remains constant
for (at least) s � 1 more ticks. This reflects the fact that it
is pointless to increase the memory profile unless one needs
to load one or more pages not currently in memory, which
takes s clockticks per page. More formally:

Definition 3. A memory profile function m(t) is natural if,
for any t such that m(t + 1) > m(t), m(t + 1) = · · · =
m(t+ s) = m(t) + 1.

We remark that the expansions of natural memory pro-
files we consider are not, in general, natural. The idea is that
the expanded profiles are actually wasting space, but their
definition makes them easier to handle in proofs. It would
not be difficult, albeit extremely cumbersome, to consider
natural expansions for which all proofs still work.

The first constraint a memory expansion must satisfy
is that the allocated memory should, at any given time,
be a power-of-2 multiple of the minimum allowed memory
capacity kmin.

Definition 4. A memory profile function m(t) is space-
normalized if, for all t, there exists some i 2 Z+

0 such that
m(t) = 2ikmin.

The second constraint imposes that, roughly speaking,
whenever allocated memory changes to a new value m, it
should remain m for a number of clockticks that is an integer
multiple of s ·m. This is formally defined as follows.

Definition 5. A memory profile function m(t) is time-
normalized if any maximal interval during which m(·) main-
tains constant value m lasts a number of clockticks equal to
an integer multiple of s ·m. We call such an interval a box.5

5Recall that in the technical overview (Section 2), for convenience, we
defined boxes to always have fixed width ⇥(sm), rather than having width
equal to an integer multiple of s · m. If one breaks each box (as defined
here) into multiple boxes of the form described in Section 2, then one can
assume without loss of generality that all boxes have the form described in
Section 2.

Figure 1 shows an example of a space- and time-
normalized memory profile function. We now show how to

0 100 200 300 400 500 600

2
4

8

16

32

2(s · 32)

t

m(t)

Figure 1: A space- and time-normalized memory profile.

expand online any natural memory profile function m(t) into
a space- and time-normalized function m̄(t̄) such that the to-
tal memory impact incurred by the latter is within a constant
factor of that incurred by the former, that is,

P
t̄
m̄(t̄) =

O(
P

t
m(t)). Informally, given a memory capacity m(t), we

round m(t) up to the nearest power-of-2 multiple of kmin

(normalizing space) and then maintain memory constant at
this normalized capacity for the minimum interval that guar-
antees time normalization – adding idle cycles if necessary,
i.e. if m(·) would grow above the allotted capacity before
the end of the interval.

More formally, denoting by m̄(t̄) the normalized mem-
ory profile function, we consider a set t̄0, . . . , t̄n of upticks,
which are the only destination ticks in which m̄(t̄) may
change (i.e. m̄(t̄i) = · · · = m̄(¯ti+1 � 1)), so m̄(t̄) is com-
pletely defined by its values on the upticks. We map the orig-
inal clocktick 0 into t̄0 = 0, and denote in general with ti the
original clocktick mapped into t̄i. Then, for any i � 0 we set
m̄(t̄i) to the lowest power-of-2 multiple of kmin no smaller

than m(ti), i.e. m̄(t̄i) = kmin · 2dlog(
m(ti)
kmin

)e, and determine
¯ti+1 as follows. Let t+

i
be the earliest original clocktick, if

any, after ti such that m(t+
i
) > m̄(t̄i). If there is no such

t
+
i

equal to or smaller than ti + s · m̄(t̄i), then either we
are at the very end of the request sequence, or the original
memory profile remains below m̄(t̄i) for at least s · m̄(t̄i)
ticks – in the latter case we simply map ti, . . . , ti + s · m̄(t̄i)
into t̄i, . . . , t̄i + s · m̄(t̄i), and set ¯ti+1 = t̄i + s · m̄(t̄i)
and thus ti+1 = ti + s · m̄(t̄i)). If we are at the very
end of the request sequence, we simply imagine there is a
sharp rise of memory consumption after it, and we set t+

i

to be the first clocktick after the completion of the request

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited3032

D
ow

nl
oa

de
d

10
/0

6/
21

 to
 9

8.
11

3.
23

4.
21

9
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

sequence with m(t+
i
) = 1. Whether this is the case, or

whether t+
i

“occurred naturally”, we map ti, . . . , t
+
i
� 1 into

t̄i, . . . , t̄i+(t+
i
� ti)�1, as above, and map the single clock-

tick t
+
i

into the interval t̄i+(t+
i
� ti), . . . , t̄i+s ·m̄(t̄i), with

all clockticks in the interval save the last having memory
m̄(t̄i) (thus achieving time-normalization). The last clock-
tick becomes the first clocktick ¯ti+1 of the (i+1)-th interval,
and is allotted memory equal to the lowest-power-2 multiple
of kmin that is no smaller than m(t+

i
).

It is easy to prove that space and time normalization
does not increase the memory integral of the original profile
by more than a constant factor. Due to space constraints, we
defer this to the full version of the paper.

4.3 Compartmentalization An additional useful trans-
formation we can apply to a (space- and time-normalized)
memory profile, and implicitly to a generic page replacement
algorithm, is compartmentalization. Compartmentalization
expands the memory profile by adding to each box a prefix
of duration equal to s times the capacity of that box, and a
suffix of identical duration at the end of which all pages are
evicted from memory. Note that compartmentalization can
always be carried out online.

We can easily show that if an optimal page replacement
algorithm services a request sequence over a sequence of
boxes, it does the same even if the boxes are compartmen-
talized. Very simply, one can reload at the beginning of the
box any pages in memory, or being loaded in memory, in the
absence of compartmentalization; at s ticks per page, this
takes no longer than the added prefix. Note that the original
algorithm could have started the box with a pending fault,
terminating after s

0 s ticks. If so, we simply idle for
s
0 ticks, and then reproduce the original page replacement,

ending with the memory exactly in the same state (includ-
ing any pending fault). Then, we allow any pending fault
to terminate (which takes at most s ticks), and idle through
the rest of the suffix. The page replacement strategy above
is not necessarily optimal, but it obviously provides an up-
per bound on the memory impact of the optimal strategy in
the presence of compartmentalization. We then immediately
have:

Proposition 1. Under optimal replacement policy, com-
partmentalization increases the memory impact of a time-
normalized memory profile by a factor of at most three.

We stress that the above holds for the optimal replace-
ment policy, not necessarily for any policy—in fact, it is not
difficult to show that it does not hold for some online algo-
rithms. But ultimately, we only care about bounds under op-
timal page replacement, because we know we can translate
them into bounds under e.g. LRU with only O(1)-overhead
(in terms of memory impact and resource augmentation).

The usefulness of compartmentalization lies in the fact

that we can subsequently add between (expanded) boxes
stretches of arbitrarily little memory without hindrance—
we do so in Section 5.1. Note that such an addition is not
necessarily an expansion, because the added intervals could
sport lower capacity than both the boxes preceding them and
those following them—so they could cause a loss of mem-
ory contents and a degradation of performance if they were
added without compartmentalization. This is not the case
with compartmentalization, since the memory contents are
cleared at the end of each box anyways. Compartmentaliza-
tion is a way to add these extra stretches knowing that they
will at most triple the memory impact of a time-normalized
memory profile. Compartmentalization also plays a crucial
role in circumventing a subtle issue encountered in Sec-
tion 6.2 that arises from the unexpected power of idling
around the discontinuities of a memory profile function.

5 The Tight Relationship between Green Paging and

Parallel Paging

Green paging and parallel paging appear to be two wildly
different variants of paging, both in terms of system model
(sequential processing with variable memory vs. parallel
processing with constant memory) and in terms of goals
(minimizing memory consumption over time vs. minimizing
completion time).

In this section, we describe a black-box approach for
turning online algorithms for green paging into online algo-
rithms for parallel paging with the same competitive ratio.
We then show a relationship in the other direction, which
is that any lower bound construction for online green pag-
ing can be transformed in a black-box fashion into an online
lower-bound construction for (deterministic) parallel paging.

For simplicity, we shall hereafter assume that p is a
power of two. The same results can be obtained, with some
additional complications, assuming that p is just an integer,
substituting dlog pe for log p in all formulas. All logarithms
in this paper are to base 2.

5.1 Transforming Green Paging Algorithms into Paral-

lel Paging Algorithms The key idea to translate an efficient
algorithm for green paging algorithm into an efficient one
for parallel paging is simply to generate independently an
efficient green paging strategy for each of the p parallel se-
quences, and “pack” (expansions of) the memory profiles to-
gether into the shared memory, guaranteeing that (a) as little
memory as possible is wasted in the process, including the
expansion, and (b) at any given time, the integral of the mem-
ory in each profile so far is roughly the same. We remark that
even though the use of normalization results in memory pro-
files that are sequences of “rectangular” boxes of space-time
(to be packed within a large rectangle of space-time, with
height equal to the amount of shared memory k, and width
equal to the time taken to service the sequences), one cannot

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited3033

D
ow

nl
oa

de
d

10
/0

6/
21

 to
 9

8.
11

3.
23

4.
21

9
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

exploit standard 2D packing results: one cannot treat each
profile as a single enveloping rectangle without potentially
wasting ⇥(k) memory, but one cannot treat each profile as
a set of rectangles to be packed independently either, since
the individual boxes of each profile must obviously be placed
after each other in a specific order and cannot overlap tem-
porally.

We now describe this packing process. We assume the
p green paging memory profiles we start with are already
compartmentalized and space- and time-normalized. Effec-
tively, given the partition of each memory profile into boxes,
at any given time step we execute (one box of) one or more
memory profiles in parallel, adding an idle cycle at capac-
ity zero to all the other memory profiles. Note that different
consecutive boxes of the same profile potentially take place
in non-contiguous intervals of time.

At any given time, we assign highest priority to the
profile without any allocated memory—i.e., the processor is
idle or has just completed a box—that has incurred, so far,
the lowest total memory impact (with ties broken arbitrarily);
any memory page that becomes available is then reserved for
that profile, until enough pages become available that its next
box can be scheduled. No other profile with no allocated
memory can be executed before, not even if enough room in
memory is available. Clearly, priorities change dynamically,
so if a processor q that just completed a box has currently the
highest priority, then the space in memory is reserved for q.
(Put another way: at any time step, if two processors p and
q have no allocated memory and q has had a lower memory
impact than p so far, then p does not get to run unless and
until q gets (enough memory) to run.) Note that this process
is online, since each box is scheduled without any knowledge
of future boxes.

We now show that this process completes within
3cmax/kmin clockticks, where cmax is the maximum cost
of any profile.

Lemma 1. Consider p (space- and time-normalized, and
compartmentalized) green paging strategies for p request se-
quences �1, . . . ,�p with memory capacity between k and
kmin = k/p, and let cmax be the maximum memory im-
pact of any profile. Then, they can be packed online to
yield a parallel paging strategy that completes within time
3cmax/kmin.

This immediately yields the following.

Theorem 8. Consider p (space- and time-normalized, and
compartmentalized) green paging strategies for p request
sequences �1, . . . ,�p with memory capacity between k and
kmin = k/p, and assume that each is optimal with ↵

resource augmentation within a factor of �, and that their
respective costs are within a factor of � of each other.
Then they can be packed to yield a parallel paging strategy
that completes, with ↵ resource augmentation, within time

6�� of any parallel paging strategy for the p sequences.
Furthermore, if the green paging is online, so is the parallel
paging.

Proof. Let cmin be the minimum cost of any of the p green
paging strategies, and cmax �cmin be the maximum.
Then, by Lemma 1, the p green paging strategies can be
packed online into a single parallel paging strategy that com-
pletes within time T = 3�cmin/kmin. Suppose there were
a parallel paging strategy that completed all p sequences in
time less than T/6��. This would automatically yield a
green paging strategy for each of the p sequences, with mem-
ory capacity between k and 0 (note, not kmin). The least
expensive of these strategies would then have cost less than
(k/p)·(T/6��); raising the memory capacity to kmin when-
ever lower would increase the cost to less than

k

p
· T

6��
+kmin·

T

6��
=

2kminT

6��
=

2kmin

6��
·3�cmin

kmin

=
cmin

�
,

against the hypothesis that the p strategies were all optimal
within a factor of � for green paging with memory capacity
between k and kmin = k/p.

5.1.1 Analyzing Max, Average, and Median Theorem 8
proves that, if one can come up with a green paging algo-
rithm that is optimal within a factor of c with a certain re-
source augmentation, one can automatically obtain parallel
paging with the same resource augmentation that is opti-
mal within a factor of O(c) provided that the different se-
quences one is servicing incur green paging costs within a
constant factor of each other. In this case every sequence
takes ⇥(1) the time any other sequence takes to complete,
and it is straightforward to prove that the median and aver-
age completion times are also within a factor of O(c) of the
optimal.

It is then also immediate to extend the analysis to
a situation where one has p sequences of infinite length,
and one is seeking a parallel paging algorithm ALG that
minimizes, simultaneously for every memory integral w,
the time necessary to complete all of the prefixes of the p

sequences that could be completed, each in isolation, with a
memory integral equal to at most w. The same strategy also
obviously minimizes, within a constant factor, the average
time for all these prefixes, and the median time.

The situation is different if one has finite sequences of
drastically different cost. In this case, simply packing the
corresponding green paging sequences can be a provably
suboptimal choice for parallel paging, because one might be
left after some time with only a few sequences uncompleted,
whose green paging allocations are consuming only very
little memory and “wasting” the rest—instead of using it
in a way that increases the memory integral (potentially by
poly(p), as it would be easy to prove), but correspondingly

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited3034

D
ow

nl
oa

de
d

10
/0

6/
21

 to
 9

8.
11

3.
23

4.
21

9
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

decreases the total completion time (again potentially by
poly(p), as it would be easy to prove).

In this case, we show that a simple variation on the
scheme above that starts with a green paging algorithm with
resource augmentation ↵ and optimal within a factor of
�, that is still online if the starting scheme is online, and
provides a parallel paging strategy that, still with resource
augmentation ↵, yields:

1. An average completion time that is optimal within a
factor of O(�).

2. For any i 2 N, a maximum completion time for all but
a fraction 2�i of all sequences that is within a factor of
O(i�) of the optimal time to complete all but a fraction
2�i�1; this means:

(a) a maximum completion time within a factor of
O(� log p) of the optimal, and

(b) a median completion time (intended as the time to
complete at least 1

2p schedules) within a factor of
O(�) of the optimal time to complete at least 3

4p

schedules.

It’s not too difficult to show that, in terms of the inverse
of the fraction of uncompleted sequences 2i a) the logarith-
mic loss in time and b) the O(1) “quantile augmentation”
are both fundamentally inevitable in an online setting. So
we can’t do better. More precisely, quantile augmentation is
necessary if you consider a set of sequences of exponentially
growing length 2p, (2p)2, . . . , (2p)p—basically because by
the time you need only one more sequence completed to
meet your quantile target, the work you’ve done so far is
vanishingly small compared to what you still have to do, but
because you do not know which sequence you have to focus
on, you have to split your work evenly among all survivors,
meaning that crucial sequence will receive only little space
and take more time than necessary.

The scheme is simply to pack together the green pag-
ing strategies with memory between k and k/p for the p se-
quences, until p/2 of them have completed; then, pack to-
gether green paging strategies with memory between k and
k

p/2 for the suffixes of the remaining p/2 sequences, until
p/4 have completed; and so on, packing at each stage with
p/2i “survivors” the green paging strategies with memory
between k and k

p/2i for those survivors, until all sequences
have completed. Recall that in each stage, we pack the next
box of a processor that has the highest priority (whose mem-
ory impact is minimum so far). This is obviously an online
strategy as long as the green paging strategies it is based on
are online.

In the scheme above denote by Ti, with i =
0, . . . , log(p) + 1, the first time when no more than p

2i se-
quences remain uncompleted, and by �p+1�j , with 1

j p, the j-th sequence to complete – so that �1 com-
pletes last, �p completes first, and all of �2i , . . . ,�2i�1+1

complete between Tlg(p)�i and Tlg(p)�i+1. The key idea
is that �2i , . . . ,�2i�1+1 remain all uncompleted at time
Tlg(p)�i, but constitute at least one quarter of those se-
quences uncompleted at time Tlg(p)�i�1, so that they “oc-
cupy” at least one quarter of the “memory space” in the
interval [Tlg(p)�i�1, Tlg(p)�i] – and if their memory occu-
pation is optimal within a factor of �, writing for brevity
(Tj � Tj�1) as �Tj , it would then be impossible to com-
plete them all in time less than 1

4��Tlg(p)�i. In fact, �1

also occupies the entire memory space throughout the last
interval [Tlg(k), Tlg(p)+1] (in addition to at least one quar-
ter – in fact, at least one half – of the space in the interval
[Tlg(k)�1, Tlg(p)]), and so it would be impossible to complete
in time less than 1

4��Tlg(p) +
1
�
�Tlg(p)+1.

Then under any algorithm the average completion time
of the p sequences is at least:
(5.1)

Tavg =
1

�
�Tlg(p)+1+

lg(p)X

i=1

1

4�

p

2i
�Ti >

lg(p)X

i=0

1

4�

p

2i+1
�Ti+1

while under the scheme above the average completion time
is no more than:

(5.2)
lg(p)X

i=0

p

2i
�Ti+1 < 8�Tavg.

Thus we have the following theorem:

Theorem 3. Given an online algorithm for green paging
with competitive ratio �, one can construct an online algo-
rithm for parallel paging with competitive ratio O(�) for av-
erage completion time. Moreover, if the green paging algo-
rithm uses ↵ resource augmentation, then the parallel pag-
ing algorithm uses O(↵) resource augmentation.

In a similar fashion, note that to complete all but a
fraction 2�(i+1) of all p sequences, any algorithm must
complete for any j � lg p � i all but at most 2�(i+1)

p of
�1, . . . ,�2j , thus requiring time at least 1

4��Tlg p�j , since
each of the 2j sequences requires at least 1

2j��Tlg p�j space.
Then, the total time T2�(i+1) for any algorithm to complete
all but a fraction 2�(i+1) of all sequences satisfies

(5.3) T2�(i+1) � max
ji

1

4�
�Tlg p�j �

1

4�i

iX

j=0

�Tlg p�j ,

where the last term is no more than 1
4�i the time our scheme

takes to complete all but a fraction 2�i of all sequences.
Thus we arrive at the following theorem:

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited3035

D
ow

nl
oa

de
d

10
/0

6/
21

 to
 9

8.
11

3.
23

4.
21

9
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Theorem 4. Given an online algorithm for green paging
with competitive ratio �, one can construct an online algo-
rithm for parallel paging that achieves the following guar-
antee: For any i 2 N, the maximum completion time for
all but a fraction 2�i of all sequences is within a factor
of O(i�) of the optimal time to complete all but a fraction
of 2�i�1. Moreover, if the green paging algorithm uses ↵

resource augmentation, then the parallel paging algorithm
uses O(↵) resource augmentation.

5.2 Transforming Green Paging Lower Bounds into

Parallel Paging Lower Bounds In this section, we consider
the problem of transforming an arbitrary lower-bound con-
struction for green paging into a matching lower-bound con-
struction for parallel paging. Throughout the rest of the sec-
tion, k denotes the maximum amount of memory that can be
allocated in green paging, and k/(2p) the minimum amount.
We also use k to represent the amount of memory available
in parallel paging, and p to be the number of processors.

Defining the notion of lower-bound construction for

green paging We begin by formally defining the notion of
a green paging lower-bound algorithm L. A lower-bound
algorithm L takes as input a deterministic online green-
paging algorithm A (that uses O(1) resource augmentation),
and produces a request sequence �(A) on which A performs
poorly. The way in which the lower-bound algorithm L and
the green paging algorithm A interact is that the i-th request
in �(A) is determined based on the behavior of algorithm A

while serving the first (i� 1) requests in �(A).
Each lower-bound algorithm L must have a termination

size R. This means that the request sequence �(A) termi-
nates once the total memory impact incurred by A reaches
R. Note that R is independent of the algorithm A.

A lower-bound algorithm L is said to achieve compet-
itive ratio � if every green-paging algorithm A with O(1)
resource augmentation incurs a factor of ⌦(�) more mem-
ory impact on �(A) than does the optimal green-paging al-
gorithm6. That is, the optimal green paging algorithm incurs
memory impact only O(R/�).

We prove the following theorem.

Theorem 5. Suppose there exists a green paging lower
bound construction L that achieves competitive ratio ⌦(�).
Then all deterministic parallel paging algorithms (that use
↵ O(1) resource augmentation) must incur competitive
ratio ⌦(�) for both average-completion time and makespan.

Proof. Let A be a deterministic algorithm for parallel paging
that uses resource augmentation ↵ = O(1). We can
assume without loss of generality that A always allocates
space at least k/(2p) to every processor. In particular,

6Note that ↵ = O(1) resource augmentation means that the optimal
green-paging algorithm has minimum box-size k/(2↵p) and maximum box
size k/(2↵).

these minimum allocations combine to only use half of
the memory, which up to a constant factor in resource
augmentation can be ignored.7

As A executes the p processors on their request se-
quences �1,�2, . . . ,�p, each processor’s request sequence
�i is executed with some memory profile mi. Since mi al-
ways allocates between k/(2p) and k memory, one can think
of mi as being a green-paging solution for sequence �i.

Given a lower-bound algorithm L, we construct each
of the request-sequences �1,�2, . . . ,�p by running parallel
instances of L, with resource augmentation 2↵. The result
is that each memory profile mi incurs total memory impact
R (where R is the termination size of L and is assumed
without loss of generality to be sufficiently large). Moreover,
if mOPT

i
is defined to be the memory profile that the optimal

green-paging solution uses for request-sequence �i, then the
total memory impact incurred by m

OPT
i

is O(R/�). Without
loss of generality, each profile m

OPT
i

is a box profile (i.e.,
it is normalized and compartmentalized). Because we are
considering L with 2↵ resource augmentation (meaning that
the algorithm against which L is competing has 2↵ resource
augmentation), each profile m

OPT
i

consists of boxes with
heights between k

4↵p = ⇥(k/p) and k

2↵ = ⇥(k).
We now consider the average completion time for Al-

gorithm A. Since each processor has memory impact R,
the first p/2 processors to complete must incur total mem-
ory impact at least ⌦(pR), thereby incurring total running
time at least ⌦(pR/k). This means that the final p/2 proces-
sors to complete each take time more than ⌦(pR/k). Thus
⌦(pR/k) is a lower bound for both the average completion
time and the makespan of A.

In order to complete the proof, we construct an alterna-
tive parallel-paging solution B that has makespan (and thus
also average completion time) only O(pR/k�). Because A

has ↵ resource augmentation, the amount of memory avail-
able to the parallel-paging algorithm B is only k/↵.

We can assume without loss of generality that the pro-
files m

OPT
i

are box profiles. The algorithm B performs the
Box-Packing algorithm from Section 2.3 on the box profiles
m

OPT
1 , . . . ,m

OPT
p

. In particular, whenever the total memory
allocated to processors is less than k/2↵, algorithm B selects
a processor i out of those not currently executing (if there is
one) and allocates space for the next box the profile �

OPT
i

.
Note that the box is guaranteed to fit into B’s cache of size
k/↵, since the maximum box height in any profile �

OPT
i

is
only k/(2↵).

Whenever algorithm B is in a state where it has allo-
cated at least k

2↵ memory to boxes, we call B saturated, and

7By allowing for an extra factor of two in resource augmentation, we can
actually think of A as having 2k memory, k of which is pre-allocated evenly
among the processors (note that giving A extra memory can only help it).
By re-normalizing this new size to k, it follows that every processor has at
least k/(2p) memory at all times.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited3036

D
ow

nl
oa

de
d

10
/0

6/
21

 to
 9

8.
11

3.
23

4.
21

9
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

whenever B has not allocated k

2↵ memory to boxes (because
there are no more processors to allocate boxes to) we call
B unsaturated. The makespan (i.e., running time) of B can
be broken into two components, the amount of time T1 dur-
ing which B is saturated, and the amount of time T2 during
which B is unsaturated.

Since the total memory impact of profiles
�

OPT
1 , . . . ,�

OPT
p

is O(pR/�), the amount of time T1

that B can spend saturated is at most O(pR/�k) (recall that
↵ O(1) so ↵ does not appear here).

On the other hand, whenever B is unsaturated, all of
the remaining processors are executing simultaneously. It
follows that T2 is upper-bounded by the makespan of the
processor i 2 {1, 2, . . . , p} with the largest makespan (the
makespan of a processor is the sum of the widths of the
boxes in m

OPT
i

). Each processor i incurs total memory
impact O(R/�) and has has minimum box-height ⌦(k/p).
It follows that the sum of the widths of the boxes in m

OPT
i

is
O(R/�)/⌦(k/p) O(pR/�k).

Combining T1 and T2, the total makespan of algorithm
B is at most O(pR/�k). This is a factor of ⌦(�) smaller
than the average-completion time and the makespan for
algorithm A, as desired.

6 Tight Bounds for Green Paging

This section proves both lower and upper bounds for green
paging. The equivalence results from the previous section
immediately translate them into corresponding bounds for
parallel paging.

6.1 Lower Bounds for Green Paging In this section we
show lower bounds on the competitive ratio of deterministic
algorithms. We start by showing a lower bound for the case
h = k, that is, when we compete with an adversary with a
fast memory as large as ours.

Theorem 9. Let A be any deterministic online algorithm for
the green paging problem where h = k and s is the fetch
time. Then, the competitive ratio of A is at least

min

⇢
k � 1

4
,
s

2k

�
.

To force a high competitive ratio, in this case it is
sufficient for the adversary to allocate all the k memory
locations throughout the execution. Notice that our lower
bound does not follow from the lower bound given for the
special case of green paging studied in [18,21]—whereas the
converse is true. Indeed, even if in both proofs the adversary
runs the same algorithm, the fact that in their model faults
are not “weighted”—that is, they cost the same irrespective
of how many pages are in memory during the fault—prevents
their argument to produce any non-trivial lower bound in the
green paging model. For lack of space, the proof of this
result is deferred to the full version of the paper.

The argument for the case h = k, however, fails when
h < k. In that case, we will need a refined strategy to
prove our lower bound; specifically, we will use a better
approximation to OPT by letting the adversary choose more
cleverly how many memory locations to allocate, rather than
setting the capacity to h for the whole execution.

Theorem 2. Suppose s � p
1/c for some constant c. Con-

sider the green paging problem with maximum box-height k
and minimum box-height k/p. Let ALG be any deterministic
online algorithm for green paging, and let ↵ be the amount of
resource augmentation. Then, the competitive ratio of ALG
is ⌦

⇣
log p

↵

⌘
.

Proof. The proof proceeds as follows. First, we briefly
recap the model parameters and some assumptions we make.
Then, we consider for a generic online algorithm a specific
request sequence, on which it is guaranteed to fault on every
request, and that has some additional properties. Then, we
show how an offline algorithm can service the same sequence
paying, informally, ↵ times the cost on a fraction at most
1/ log p of all requests – and ↵/ log p times the cost on all
remaining requests.

Let us briefly recap the model parameters and assump-
tions. Let k be the maximum memory available to the online
algorithm ALG, and k/p the minimum. ALG is compared
to an offline algorithm OFF with memory between h = k/↵

and k/(↵p), that pays ↵ times as much for the same space:
i.e., ⌧ timesteps at memory size k/↵ cost OFF a total of k⌧ ,
while they would cost ALG only k⌧/↵. Accessing a page
costs ALG 1 timestep if the page is in memory. Otherwise,
s timesteps are required to bring it into memory, and 1 more
to access it.

We can assume without loss of generality that ALG
is normalized and compartmentalized—since normalization
and compartmentalization can be performed online, and
increase the total cost by at most a constant factor. By the
same token we assume for simplicity that k, p and ↵ are
powers of 2. We can also assume without loss of generality
that ALG is “smooth-growing”, in the sense that no box of
capacity c is ever preceded by a box of capacity less than
c/2; again, it is trivial to verify that any online algorithm
can be transformed online into a smooth-growing one by
increasing the total cost by at most a factor O(1) (in fact,
4/3 = 1 + 1/4 + 1/16 + . . .).

Also, we can assume s � p: if s were smaller,
we can simply modify an algorithm to never exceed a
capacity threshold of more than s times the minimum –
by simply substituting boxes of minimum capacity for any
boxes exceeding the threshold. Then servicing the same
requests in these boxes can take no more than s times longer,
with a capacity that is at least s times smaller. Note that, this
implicitly replaces p with s, meaning that the lower bound
that we will get is ⌦(log s). Since s � p

1/c, this is ⌦(log p).

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited3037

D
ow

nl
oa

de
d

10
/0

6/
21

 to
 9

8.
11

3.
23

4.
21

9
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

Given ALG, we construct an evil request sequence � as
follows. First, we request k+1 distinct pages p0, p1, . . . , pk.
Then, every further request is for the most recently evicted
page; we extend the request sequence to include at least (k+
1) log p/↵ requests. It is immediate that ALG faults on every
request (and the cost on the initial k+ 1 is a fraction at most
O(↵/ log p) of the total). Let B(2i) for i = 1, 2, . . . , log k,
be the total cost budget spent by ALG on boxes of capacity
2i (i.e., 2i times their total duration). Obviously, the cost
incurred by ALG cALG equals

P
i
B(2i).

Now, let j = argmini B(2i) for (k/p) log p < 2i <

k/max(↵, log p); note that B(2j) = O(cALG/ log p). We
service � with a normalized and compartmentalized algo-
rithm alternating between capacity 2j and the minimum ca-
pacity k/(↵p). In particular, whenever ALG’s capacity is at
least 2j , we adopt minimum capacity k/(↵p); we refer to any
maximal interval of such requests as an island. Whenever
ALG’s capacity is less than 2j , we adopt the larger capacity
2j ; we refer to any such maximal interval of such requests as
a sea. We refer to the first box of a sea, and of an island, as
its shore.

We show that we can service any one sea with at most
2j faults on its shore. We do so by loading and holding
in our memory a copy of ALG’s memory, and an eviction
stack with the pages not in ALG’s memory that have been
most recently evicted by ALG (in particular, with the most
recently evicted on top). It is immediate that after the initial
setup phase (which takes place on the sea shore and incurs
at most 2j faults), every request will be for the page on the
top of the stack—which is never empty since at sea ALG’s
capacity is strictly less than 2j .

Note that the total number of sea and land shores differs
by at most 1; and that, by the smooth-growth property, all
island shores are boxes of capacity 2j , preceded by a box of
capacity 2j�1 Then, the total cost we incur on sea shores is
at most ↵O(B(2j)), i.e. (by the definition of j) no larger
than O(↵/ log p)cALG. Once offshore, we have capacity
that is at most O(p/ log p) that of ALG, and since we never
fault and ALG always does, we incur a cost that is at most
O(↵/ log p) of ALG’s. Similarly, on land requests, our
capacity is k/(↵p) while ALG’s is at least (k/p) log p. Thus,
as we both fault on each land request, our cost is at most
O(↵/ log p) ALG’s.

Then, we can service the entire request sequence with a
cost that is O(↵/ log p)cALG.

6.2 O(log p)-Competitive Green Paging In this section
we study (deterministic) algorithms for green paging. We
start by showing that a natural algorithm is optimal to within
a factor of two, for a large set of values of parameter s, when
h = k, that is, when we compete with an adversary with a
fast memory as large as ours.

However, such an algorithm seems too naive to perform

well in practice, since it does not adapt enough to the locality
experienced by the request sequence as it unfolds. This is
confirmed by the analysis: the worst-case performance of
this algorithm remains unchanged even if the adversary has
a memory of size 1. Hence, later we design and analyze
a more advanced online algorithm, with nearly optimal
performance when provided with a factor of two of resource
augmentation.

6.2.1 Warm-up: (k, k)-Memory Allocation The most
natural idea for green memory allocation is to “switch off”,
by reducing the memory capacity, cache locations that con-
tain pages whose next occurrence in the request sequence is
very far in the future. This suggests the following online al-
gorithm, which we call Power-Down LRU (PD-LRU).

Algorithm 1 PD-LRU
1. Acts like LRU, but always discards a page whose last

occurrence in � is at least s requests apart from the last
serviced request.

The term Power-Down indicates that reducing capacity
can be seen as powering down cache locations, thus provok-
ing the loss of the pages that were contained in them. This
simple algorithm dates back to the work of López-Ortiz and
Salinger [21], where it is termed LRU↵, and which studies
a special case of green paging. In fact, parameter ↵ in their
model is equivalent to parameter s in green paging; that is,
PD-LRU = LRUs = LRU↵. The analysis, though, will re-
quire significantly more work. The proof that PD-LRU is
min{2k, s}-competitive is deferred to the full version.

6.2.2 (h, k)-Memory Allocation We now present a de-
terministic online algorithm, which we call BLIND, whose
competitive ratio is O(log p) when provided with a factor
of (at least) two of resource augmentation, that is, when
h k/2. According to Theorem 2, this is optimal to within
a constant factor when a constant amount of resource aug-
mentation is given.

Algorithm BLIND is quite simple: it implements the
LRU replacement policy, running with a suitably predeter-
mined sequence of capacities. That is, the maximum amount
of pages that BLIND retains in its cache at a given time step
is independent of �. Hence, not only BLIND does not use
information about future requests in order to adjust its ca-
pacity (because it is an online algorithm): it doesn’t even
look at the past requests (whence the name blind)! The in-
tuition is that, roughly speaking, BLIND, for each suitably
defined period of time, “divides” its incurred cost among ca-
pacities k/p, 2k/p, 4k/p, . . . , k in such a way that at least a
log p-th fraction of its incurred cost is spent at the “right” ca-
pacity, that is, at roughly the same capacity that OPT has on

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited3038

D
ow

nl
oa

de
d

10
/0

6/
21

 to
 9

8.
11

3.
23

4.
21

9
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

the same subsequence of requests.
The road to the specification and the analysis of BLIND

is divided into three parts: first, we design an O(1)-
approximation offline algorithm by building a “quantized”
version of OPT; second, we obtain a simplified version of the
above algorithm which achieves a logarithmic (in p) approxi-
mation; and lastly, we show that a non-clairvoyant version of
the latter algorithm achieves the same approximation factor
when provided with a cache of size at least twice. We begin
with some necessary preliminaries.

Definition 6. For integer i, an i-phase of an algorithm for
the green paging problem is a sequence of 3s2i consecutive
time steps spent at capacity 2i.

Thus, the total memory impact incurred by an algorithm
for an i-phase is 3s4i. We now define an (i, k/p)-universal
box profile, a key concept in the design of our algorithm. Its
definition is recursive.

Definition 7. Let i be an integer and k/p be a power of two.
A (i, k/p)-universal box profile of an algorithm for the green
paging problem is a log k/p-phase if i log k/p, and the
concatenation of four consecutive (i�1, k/p)-universal box
profiles followed by an i-phase otherwise.

The memory impact (cost) of a (i, k/p)-universal box
profile is easily established.

Lemma 2. The memory impact of a (i, k/p)-universal box
profile is 3s4i(log

l
2i

k/p

m
+ 1).

We say that an algorithm A services a subsequence
of consecutive requests �j over an i-phase when �j gets
serviced in 3s2i time steps with A using capacity 2i, but
where each time step t is charged for a cost of exactly
2i, even if P (t), the number of pages in cache at time t,
is smaller. Broadly speaking, its cost is accounted as if
its capacity were exactly 2i for each time step. (This is
reasonable in practice since a paging algorithm works with
boxes of cache locations rather than single locations, and
thus the “cost”—in terms of its energetic costs or in terms
of space taken away from other processors—of a box should
be accounted even when not all the locations of the box are
used). Thus, a subsequence of consecutive requests serviced
over an i-phase comes at a cost of exactly 3s4i. Finally, Let
OPTi, i = 0, 1, . . . , log k be an optimal offline algorithm
running with capacity at most 2i. Obviously, OPTi(�) �
OPTi+1(�), since an offline algorithm does not need to use
all its cache locations.

We now introduce BLOCKi, a recursively-defined of-
fline algorithm which well approximates OPTi. BLOCKi

is defined as an offline algorithm that services an input
sequence � by servicing its longest possible prefix either
over an i-phase (in this case we say that BLOCKi maxi-
mizes) or by simulating BLOCKi�1 for the same cost 3s4i

as an i-phase (in this case we say that BLOCKi simulates),
whichever yields the longest prefix; after having serviced
such a prefix, BLOCKi flushes its memory and services the
remaining suffix of � in the same way. Note that BLOCKi

effectively partitions � into subsequences �1,�2, . . . ,�x

each of them (with the possible exception of �x) serviced in-
curring cost 3s4i. We have the following result, which shows
that BLOCKi does not spend much more than OPTi.

Proposition 2.

BLOCKi(�) 64 · OPTi(�).

Now we give an offline algorithm, IDLE-BLINDi,
which is a O(log p) approximation of BLOCKi. This is an
intermediate step towards both the definition and the analy-
sis of our sought online algorithm, BLIND. IDLE-BLINDi

is an offline algorithm that services each such subsequence
�j over an (i + 1, k/p)-universal box profile (and thus with
capacity 2i+1), as follows. If BLOCKi maximizes over
�j , IDLE-BLINDi idles (that is, it stops servicing requests)
over the four initial (i, k/p)-universal box profiles of the
(i + 1, k/p)-universal box profile, services �j over the last
(i + 1)-phase applying a LRU replacement policy, and then
possibly idles until the end of the (i+1)-phase. Otherwise, if
BLOCKi simulates over �j , IDLE-BLINDi services �j with
IDLE-BLINDi�1 over the four initial (i, k/p)-universal box
profiles, and then possibly idles until the end of the (i + 1)-
phase. Notice that the capacity of IDLE-BLINDi is simply a
sequence of (i + 1, k/p)-universal box profiles, and thus is
independent of the request sequence, and in particular of the
past requests. The next proposition bounds from above the
performance of IDLE-BLINDi.

Proposition 3.

IDLE-BLINDi(�) 4(log

⇠
2i+1

k/p

⇡
+ 1) · BLOCKi(�).

Now observe that IDLE-BLINDi exploits its clairvoy-
ance only to decide when to idle. We define BLINDi sim-
ilarly to IDLE-BLINDi, with the difference that BLINDi

never idles. Notice that BLINDi is an online deterministic
algorithm.

Intuitively, it appears that the use of idle cycles can only
increase the cost incurred by a green paging algorithm, since
to each idle cycle corresponds a cost equal to the capacity of
the memory at that moment, but no progress on the service of
the request sequence. However, this intuition is wrong—in
sharp contrast with classic paging, where idling never helps.
More details on this in the full version of the paper.

The unexpected power of idling around the discontinu-
ities of a memory profile function is neutralized when mem-
ory profiles are compartmentalized. In fact, if capacity never
changes there is clearly no advantage in idling; but when

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited3039

D
ow

nl
oa

de
d

10
/0

6/
21

 to
 9

8.
11

3.
23

4.
21

9
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

it changes, roughly speaking, there is still no advantage in
idling since the memory contents are cleared at the end of
each box anyways. Hence, thanks to compartmentalization,
and leveraging properties of the LRU replacement policy
adopted by both BLINDi and IDLE-BLINDi, we have the
following.

Proposition 4. Assume compartmentalization. Then,

BLINDi(�) IDLE-BLINDi(�).

Define BLIND as BLINDlog k/2. Below we provide its
straightforward pseudocode.

Algorithm 2 BLIND

1. Service � through a sequence of (log k, k/p)-universal
box profiles, evicting the least recently used page(s)
whenever capacity is adjusted downwards or a page fault
occurs.

Putting all pieces together, we obtain the following result.

Theorem 1. Using resource augmentation ↵ = 2, the
competitive ratio of BLIND is O(log p).

Proof. Combining Proposition 1 with the results of [5],8
Proposition 2, Proposition 3, and Proposition 4, we have

BLINDi(�) 3 · IDLE-BLINDi(�)

 12(log

⇠
2i+1

k/p

⇡
+ 1) · BLOCKi(�)

 768(log

⇠
2i+1

k/p

⇡
+ 1) · OPTi(�).

Hence, on a cache of size k = 2i+1, and with resource
augmentation ↵ = 2, the competitive ratio of BLINDi is at
most 768(log

l
2i+1

k/p

m
+ 1), and since BLIND coincides with

BLINDlog k/2, the theorem follows.

7 Conclusions and Open Problems

The fundamental result of this work is that green paging,
with a memory capacity between k and k/p, is essentially
equivalent to parallel paging, with memory capacity k and
p processors; and obtaining almost tight bounds for both.
It is interesting to note that, informally, an optimal parallel
solution must also be “green”; this validates the folklore
principle in “practical parallelism” that extra parallelism
should never be purchased at a(n excessive) cost in work-
efficiency.

8In the full version of the paper we provide a self-contained proof for the
cost of compartmentalization with LRU. When LRU in applied, the prefix
of duration equal to s times the capacity of the box need not be added, and
as a result the overhead is only two rather than three.

A crucial difference from classic paging, or even pure
page replacement with variable memory capacity, is that any
online algorithm is at best ⇥(log p) competitive, even with
O(1) resource augmentation: i.e., informally, online mem-
ory allocation is much harder than online page replacement,
at least in the presence of significant parallelism or signifi-
cant capacity flexibility. Crucially, the source of this log p
factor appears to be the lack of knowledge about future lo-
cality of the computation. In practice, future locality can be
often gauged, whether by profiling or simply because it does
not change too often during the course of a computation. It
would be interesting to incorporate this knowledge into our
model, showing if and to what extent it can rid us of the
log p factor. Also, we strongly believe that the log p factor
can in fact subsume the logarithmic factor in " when trans-
lating an efficient green paging strategy into a parallel paging
algorithm with a low completion time for the all but the "p

slowest processors (and that eliminating one will eliminate
the other); this is also an obvious avenue for future work.

We would also remark that to simplify our analysis we
were not very parsimonious with constant terms. Reducing
constants, both theoretically and experimentally, through
better analysis and more sophisticated algorithms, would
be crucial to the practicality of our (or in fact any) general
scheme for both green and parallel paging.

Last but not least, our model for green paging is a special
case of a more general budget paging one where “memory
costs” and the goal is minimizing a computation’s budget.
The linear dependence (with upper and lower caps at k

and k/p) that we consider is probably the simplest model,
but not necessarily the best in all situations. For example,
in many high-performance systems, a crucial constraint is
that temperature should not climb above a certain threshold;
this translates into a highly non-linear cost model. Leaving
energy considerations aside, a virtualization provider might
also offer extra memory at a premium, or at a discount. In
this sense, we believe that this work is only the tip of a large
iceberg in modelling non-classic paging in many cases of
practical interest.

Acknowledgements

This work was supported in part by NSF grants CCF-
1725543, CSR-1763680, CCF-1716252, CCF-1617618,
CNS-1938709, CCF-1439084, CCF-1733873, CCF-
1527692, CCF-1725647, and XPS-1533644; by the US Air
Force Research Laboratory under cooperative agreement
number FA8750-19-2-1000; and by the University of
Padova under project BIRD197859/19 and project “Internet
of Things” (MIUR grant L.232 “Dipartimenti di Eccel-
lenza”). W. Kuszmaul was also supported in part by an NSF
Graduate Fellowship and a Hertz Foundation Fellowship.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited3040

D
ow

nl
oa

de
d

10
/0

6/
21

 to
 9

8.
11

3.
23

4.
21

9
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

senting the official policies, either expressed or implied, of
the United States Air Force or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any
copyright notation herein.

References

[1] K. Agrawal, M. A. Bender, R. Das, W. Kuszmaul, E. Peserico,
and M. Scquizzato. Brief announcement: Green paging and
parallel paging. In Proceedings of the 32nd ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), pages
493–495, 2020.

[2] R. D. Barve, E. F. Grove, and J. S. Vitter. Application-
controlled paging for a shared cache. SIAM Journal on
Computing, 29(4):1290–1303, 2000.

[3] L. A. Belady. A study of replacement algorithms for a virtual-
storage computer. IBM Systems Journal, 5(2):78–101, 1966.

[4] M. A. Bender, E. D. Demaine, R. Ebrahimi, J. T. Fineman,
R. Johnson, A. Lincoln, J. Lynch, and S. McCauley. Cache-
adaptive analysis. In Proc. 28th ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA), pages 135–
144, 2016.

[5] M. A. Bender, R. Ebrahimi, J. T. Fineman, G. Ghasemiesfeh,
R. Johnson, and S. McCauley. Cache-adaptive algorithms. In
Proceedings of the 25th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 958–971, 2014.

[6] A. Borodin and R. El-Yaniv. Online Computation and Com-
petitive Analysis. Cambridge University Press, 1998.

[7] P. Cao, E. W. Felten, and K. Li. Application-controlled file
caching policies. In Proceedings of the USENIX Summer
1994 Technical Conference (USTC), pages 171–182, 1994.

[8] J. Chang and G. S. Sohi. Cooperative cache partitioning for
chip multiprocessors. In ACM International Conference on
Supercomputing 25th Anniversary Volume, pages 402–412,
2007.

[9] M. Chrobak. SIGACT news online algorithms column 17.
SIGACT News, 41(4):114–121, 2010.

[10] R. Das, K. Agrawal, M. A. Bender, J. Berry, B. Moseley,
and C. A. Phillips. How to manage high-bandwidth memory
automatically. In Proceedings of the 32nd ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), pages
187–199, 2020.

[11] E. Feuerstein and A. Strejilevich de Loma. On-line multi-
threaded paging. Algorithmica, 32(1):36–60, 2002.

[12] A. Fiat and A. R. Karlin. Randomized and multipointer
paging with locality of reference. In Proceedings of the 27th
annual ACM Symposium on Theory of Computing (STOC),
pages 626–634, 1995.

[13] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran.
Cache-oblivious algorithms. ACM Trans. Algorithms, 8(1),
2012.

[14] A. Gupta, R. Krishnaswamy, A. Kumar, and D. Panigrahi.
Elastic caching. In Proceedings of the 30th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages
143–156, 2019.

[15] A. Hassidim. Cache replacement policies for multicore
processors. In Proceedings of 1st Symposium on Innovations
in Computer Science (ICS), pages 501–509, 2010.

[16] S. Kamali and H. Xu. Beyond worst-case analysis of multi-
core caching strategies. In Symposium on Algorithmic Prin-
ciples of Computer Systems (APOCS21). SIAM, 2021.

[17] A. K. Katti and V. Ramachandran. Competitive cache re-
placement strategies for shared cache environments. In Pro-
ceedings of the 26th International Parallel and Distributed
Processing Symposium (IPDPS), pages 215–226, 2012.

[18] M. Khare and N. E. Young. Caching with rental cost and
zapping. CoRR, abs/1208.2724, 2012.

[19] R. Kumar, M. Purohit, Z. Svitkina, and E. Vee. Interleaved
caching with access graphs. In Proceedings of the 31st An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1846–1858, 2020.

[20] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sa-
dayappan. Gaining insights into multicore cache partition-
ing: Bridging the gap between simulation and real systems.
In 2008 IEEE 14th International Symposium on High Perfor-
mance Computer Architecture, pages 367–378. IEEE, 2008.

[21] A. López-Ortiz and A. Salinger. Minimizing cache usage in
paging. In Proceedings of the 10th Workshop on Approxima-
tion and Online Algorithms (WAOA), pages 145–158, 2012.

[22] A. López-Ortiz and A. Salinger. Paging for multi-core shared
caches. In Proceedings of the 3rd Innovations in Theoretical
Computer Science conference (ITCS), pages 113–127, 2012.

[23] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger.
Evaluation techniques for storage hierarchies. IBM Systems
Journal, 9(2):78–117, 1970.

[24] I. Menache and M. Singh. Online caching with convex costs.
In Proceedings of the 27th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 46–54, 2015.

[25] E. Peserico. Elastic paging. In Proceedings of the ACM
SIGMETRICS / International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS), pages
349–350, 2013.

[26] E. Peserico. Paging with dynamic memory capacity. In Pro-
ceedings of the 36th International Symposium on Theoretical
Aspects of Computer Science (STACS), pages 56:1–18, 2019.

[27] M. Scquizzato. Paging on Complex Architectures. PhD
thesis, University of Padova, 2013.

[28] D. D. Sleator and R. E. Tarjan. Amortized efficiency of
list update and paging rules. Communications of the ACM,
28(2):202–208, 1985.

[29] H. S. Stone, J. Turek, and J. L. Wolf. Optimal partitioning of
cache memory. IEEE Transactions on Computers, 41:1054–
1068, 1992.

[30] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning
of shared cache memory. The Journal of Supercomputing,
28(1):7–26, 2004.

[31] D. Thiébaut, H. S. Stone, and J. L. Wolf. Improving disk
cache hit-ratios through cache partitioning. IEEE Transac-
tions on Computers, 41:665–676, 1992.

[32] Y. Xie and G. H. Loh. Pipp: promotion/insertion pseudo-
partitioning of multi-core shared caches. ACM SIGARCH
Computer Architecture News, 37(3):174–183, 2009.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited3041

D
ow

nl
oa

de
d

10
/0

6/
21

 to
 9

8.
11

3.
23

4.
21

9
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

	Introduction
	Technical Overview
	A Useful Tool: Box Profiles
	Tight Bounds for Green Paging
	Using Green Paging to Solve Parallel Paging
	Transforming Green Paging Lower Bounds into Parallel Paging Lower Bounds
	Putting Pieces Together

	The Models
	The Green Paging Model
	The Parallel Paging Model

	A Toolbox for Paging Analysis
	Memory Expansions
	Space and Time Normalization
	Compartmentalization

	The Tight Relationship between Green Paging and Parallel Paging
	Transforming Green Paging Algorithms into Parallel Paging Algorithms
	Analyzing Max, Average, and Median

	Transforming Green Paging Lower Bounds into Parallel Paging Lower Bounds

	Tight Bounds for Green Paging
	Lower Bounds for Green Paging
	O(logp)-Competitive Green Paging
	Warm-up: (k,k)-Memory Allocation
	(h,k)-Memory Allocation

	Conclusions and Open Problems

