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Abstract
A filter is adaptive if it achieves a false positive rate of
" on each query independently of the answers to previous
queries. Many popular filters such as Bloom filters are not
adaptive—an adversary could repeat a false-positive query
many times to drive the false-positive rate to 1. Bender
et al. [4] formalized the definition of adaptivity and gave a
provably adaptive filter, the broom filter. Mitzenmacher et
al. [20] gave a filter that achieves a lower empirical false-
positive rate by exploiting repetitions.

We prove that an adaptive filter has a lower false-
positive rate when the adversary is stochastic. Specifically,
we analyze the broom filter against queries drawn from a
Zipfian distribution. We validate our analysis empirically by
showing that the broom filter achieves a low false-positive
rate on both network traces and synthetic datasets, even when
compared to a regular filter augmented with a cache for
storing frequently queried items.

1 Introduction
A filter is a dictionary data structure that maintains a set
S ✓ U of items under approximate membership queries,
insertions, and sometimes deletions. If |S| = n and
|U| = u, then an error-free dictionary, which always answers
membership queries correctly, requires ⌦(n log u) bits. In
order to save space, a filter is allowed a one-sided false-
positive error probability of ": for any x 2 S , a filter must
answer PRESENT, whereas for any x 2 S = U \ S , a
filter is allowed to answer PRESENT, but with probability
at most " and otherwise answers ABSENT. A filter requires
⌦(n log(1/")) bits and there are filters, such as the Bloom
filter [6, 7], and the quotient filter [5, 22], that match this
space bound,1 and even filters that match it up to low-order
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1The cuckoo filter [20] matches this bound empirically but not asymp-
totically, in that, as n grows, the probability that no hash function will suc-
cessfully build a cuckoo filter of size O(n log (1/")) goes to 1. However,

terms [3, 4, 21].
Bender et al. [4] point out that the false-positive rate

of " only applies to single queries. A sequence of queries
can have a much higher false-positive rate if an adversary
can repeat queries, because, for example, the adversary can
make random queries on items from S until it finds a false
positive, and then it can repeat the false positive to obtain a
false-positive rate of 1. In this case, the adversary does not
have access to the random bits of the filter but knows the
filter’s output. But even this much information may not be
needed, because in many settings, a filter’s output is verified
by querying a (slow) dictionary. Therefore, a timing attack
may be enough for the adversary to drive the false positive
rate to 1.

They define an adaptive filter to be a filter that guaran-
tees a false-positive probability of at most " for every query
regardless of the answers to previous queries. They present
the broom filter, which is an adaptive modification of the
quotient filter. Defining adaptivity requires specifying what
information is made available to the filter so that it can adapt.
After each query response, the filter learns if that query re-
sulted in a false positive, and the filter can change its internal
representation based on this knowledge. Interestingly, after
the filter has answered the query, the system can let the filter
know which elements were false positives without increasing
the asymptotic cost; see Section 2.2

Thus, for any given ", there is a broom filter that main-
tains optimal space (up to lower-order terms) and constant
time per operation. A broom filter adapts by extending fin-
gerprints of items stored in the filter until a false positive
is corrected. A side effect of extending fingerprints is that
other false positives can be serendipitously corrected. An
adversary can minimize the benefits of adaptivity by never
repeating a query, but, as we will see, the effective false pos-
itive rate is below ", even in this case.

before this failure condition—that is, pre-asymptotically—the cuckoo filter
also uses O(n log (1/")) bits.

2In fact, the system detects that an element x is a false positive by finding
an element y 2 S with which it collides in the filter. Providing the filter with
y in order to aid its adaptivity also does not increase the asymptotic cost.
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It’s not clear how a worst-case analysis can illustrate the
benefits that repetition yields, since one worst-case analysis
with repetitions is to have no repetitions at all. Thus, Bender
et al. left open the question of how to quantify the advantage
achievable by an adaptive filter in the presence of repetitions.

Mitzenmacher et al. [20] were the first to propose adapt-
ing a filter based on previous false positives. They observed
that network traces often have repeated IP addresses and pro-
posed a variant of the cuckoo filter that adapts heuristically.
They empirically demonstrate that the adaptive cuckoo filter
improves the observed false positive rate on network traces
by between one and two orders of magnitude.

We note that Bruck et al. [8] also demonstrate the
performance advantage that a filter can obtain when the input
is drawn from a distribution. Specifically, they show that
they can improve the false-positive probability of a filter
by reducing the false-positive probability of queries that are
known to be likely. Thus the construction of their weighted
Bloom filter depends on the input distribution. Bloomier
filters [10] can encode a set of elements from S on which
the filter must answer ABSENT. However, neither weighted
Bloom filters nor Bloomier filters adapt, both because they
are static and because they require foreknowledge of the
likely negative queries. Kopelowitz et al. [14] present an
adaptive filter which optimizes running time by amortizing
the cost of performing updates.

Results. In this paper, we quantify the improvement
in the false-positive rate of an adaptive filter on stochastic
sequences that are likely to include repetitions. Specifically,
we model the query sequence by a Zipfian distribution.
We show that, although repetitions can increase the false-
positive rate of static filters [4], repetitions can reduce the
false positive rate of adaptive filter.

In contrast to weighted bloom filters and Bloomier
filters, we only use the input distribution to model query
sequences with repetitions. Our reliance on Zipfians is
analytical: the broom filter is oblivious to the source of its
queries and retains its strong worst-case guarantees. So, for
example, our results hold if the distribution changes over
time, or if we have a mixture of distributional and adversarial
inputs.

We prove bounds on the false-positive rate of a broom
filter against an adversary that draws its negative queries
from a Zipfian distribution on S . The main characteristic
of a Zipfian is its constant, s, where the ith most frequent
item is drawn with probability proportional to 1/is. Not
surprisingly, when s is small (so the distribution is flat, with
few repetitions), the false-positive rate of an adaptive filter
approaches ", and when s grows large, it approaches 0.

So it seems that adaptive filters deliver performance ben-
efits when compared with a non-adaptive filter on repetitive
sequences—but this conclusion is premature. Certainly our
result implies that the false-positive rate of an adaptive filter

is lower than the false-positive rate of a non-adaptive filter in
highly repetitive query sequences. But this may not transfer
to improved performance. Other parts of the system (such as
OS caches) may reduce the cost of false positives. Suppose,
for example that a dictionary is stored in slow storage and
a filter is used to eliminate most negative queries to the dic-
tionary. When the filter answers PRESENT, the system must
verify the answer (and perhaps return the value associated
with the key). If the pages needed to verify this answer are
still in cache when this false positive-query is repeated, the
verification can happen without accessing slow memory. So,
even though a non-adaptive filter may not decrease its false-
positive rate with repetitions, even in the presence of caches,
the cost of a repeated false positive may be substantially re-
duced in this case, which might reduce the benefit we see of
adaptive filters over non-adaptive ones.

We therefore compare the broom filter with a cache-

augmented filter (CAF), which is a non-adaptive filter that
caches false positives so that they are not repeated as long the
false positive is not evicted from the cache. Since the broom
filter uses n extra bits to adapt, we give the CAF n bits for
its cache, so that it can store n/ log u false positives.

We bound the theoretical performance of CAFs. Our re-
sults show that when the Zipfian constant is at most 1, which
means that the query sequence has very few repetitions, both
the broom filter and the CAF achieve a rate of approximately
".3 When s is much larger than 1, then both broom filters
and CAFs do well because the sequence is so repetitive that
a small cache suffices to handle almost all false positives.
When s is modestly larger than 1, our theorems show that
the performance of a filter is quite sensitive to the effective
cache sizes: broom filters, which can cache n false positives,
have a very low false positive rate, whereas CAFs, which
have small caches, still achieve a substantial improvement
over non-adaptive filters, but do not match the improvement
in false positive rate offered by broom filters.

Our results on synthetic and network trace data strongly
support our theoretical findings. In particular, the effective
Zipfian constant for our network traces is in the 1.2 � 1.3
range, and broom filters have effective false-positive rates
that are 31-73% lower than that of CAFs and 90-97% lower
than that of quotient filters. We also describe how a broom
filter may serendipitously eliminate potential future false
positives while adapting to an observed false positive. We
then demonstrate empirically that this serendipitous correc-
tion effect accounts for 24-55% of all false positives avoided
on network trace data.

We conclude that broom filters offer significant practical
savings in terms of achievable false-positive rates on real-
world data. The implementation of the broom filter is cur-

3We note that our analysis does not take into account the serendipitous
false-positive corrections of a broom filter, so our bound of " is an upper
bound on the broom filter’s false positive rate.
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rently quite slow, and in future work we hope to implement
a broom filter that is as fast as a quotient filter and maintains
its strong false-positive performance.

2 Filters, False Positives, and Zipf
Filters. In the previous literature, analytical results

about the false-positive rates of filters have focused on obliv-
ious adversaries versus static filters [3,5,6,10,21,22] or adap-
tive adversaries versus adaptive filters [4]. Here, we formal-
ize the notion of an adaptive filter against an oblivious adver-
sary and specify the different notions of false-positive rate.
The full definition of the false-positive rate of an adaptive fil-
ter it more complicated than we need here, so our definition
of adaptive filters is streamlined.

Definition 1 (Filter). A filter instance on S is a determinis-

tic function f : U ! {0, 1} such that x 2 S ) f(x) = 1.

A filter on set S is a pair F = (F ,�) where F is a set of

filters instances on set S and � is a probability distribution

on F .

Definition 2 (Adaptive Filter against an Oblivious Adver-
sary). An adaptive filter on set S is an online algorithm

that, on query sequence X = x0, x1, . . . 2 S+
, after see-

ing x0, . . . , xi�1, computes a filter Fi = (Fi,�i) on S that

it uses to answer query xi.

This latter definition is a special case of the full defini-
tion of an adaptive filter [4]. First and importantly, this defi-
nition applies to an oblivious adversary, whereas the full def-
inition of an adaptive filter generalizes to an adaptive adver-
sary, where it takes the form of an interactive game between
the filter and the adaptive adversary. Secondly, this defini-
tion only applies to filters where the set S is static. (This
restriction is for convenience, and is not a substantial sim-
plification.) Third, this filter only adapts based on true and
false positives, and not on negatives. (Again, this restriction
is for convenience and is easily generalized. But it is hardly
a restriction at all since all known adaptive filters only adapt
based on false positives.)

Both of these definitions are orthogonal to a cost model.
To explain what we mean, recall how a filter is used in a
system. In particular, the filter is a compact data structure
that approximately summarizes a larger remote dictionary D
representing S , where by “remote” we mean “expensive to
access”. For a filter instance f and query x, each time that
f(x) = 0, f “filters out” a remote access to D; in contrast, if
f(x) = 1, then D must be accessed to determine whether or
not x 2 S . The main cost to be minimized is the number of
(expensive) remote accesses to D. After the remote access
to D, the filter can learn whether it had a false positive or
a true positive, so that it can adapt. This remote access can
also be used to transfer additional information at no extra
(asymptotic) cost. For example, it costs one remote access

to determine for each x for which f(x) = 1, whether or
not x 2 S . If x 62 S , then for the same cost, the remote
dictionary can return a witness y 2 S that collides with x in
the filter.

Therefore, filters have a variety of costs. The filter must
be small, but this limits the false-positive rate [9, 18]. But
the false-positive rate must be as low as possible, because
the primary objective is to minimize the number of remote
accesses on x 62 S , which happens on false positives. A
secondary objective is to limit the (amortized or worst-case)
CPU cost for all operations, such as answering queries and
adapting. The broom filter is provably optimal in all these
dimensions.

As we sketched in Section 1, the metric of remote
accesses explains why we compare an adaptive filter to a
cache-augmented filter (CAF). The CAF is motivated by the
common practice of the system caching part of D in local
memory, which adaptively filters out remote accesses to D.
Against an adaptive adversary, the CAF can be shown to
perform poorly, but the question is how well it compares to
an adaptive filter when the adversary is oblivious.

False-Positive Rate. In order to define the false-
positive rate of a filter F = (F ,�), for all x 2 U let

F (x) = E
f ⇠�

[f(x)].

For X = x0, . . . , x` 2 U`+1, let

F (X) =
`X

i=0

Fi(xi),

that is, the expected number of (true and false) positives that
F generates on X . A static filter is a special case of an
adaptive filter where F0 = F , and where if f is the filter
instance chosen to answer x0, then Fi = ({f}, {�i(f) =
1}) for all i 2 [0, `]. So F (X) is defined for both static and
adaptive filters.

Definition 3. The false-positive probability of filter F on S
is

max
x2S̄

{F (x)} .

On sequences, we define the false-positive rate of filter F on

S is

max
X2S̄+

⇢
F (X)

|X|

�
.

Definition 4. For any set S , let X be a distribution on S+
.

The distributional false-positive rate of filter F on X is

E
X⇠X


F (X)

|X|

�
.

Let Z be a distribution on S , and let Z`
be the probability

distribution of strings of length ` whose characters are
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drawn independently from Z . The distributional false-

positive rate of filter F on Z is

inf
`>0

⇢
E

X⇠Z`


F (X)

`

��
.

For a static filter, the false-positive rate is the same for
all lengths `, and so, in particular, whatever the false-positive
rate is on characters is the false-positive rate on strings. For
adaptive filters, this condition need not hold, so we take the
maximum false-positive rate over all string lengths.

Zipfian Sequences. We analyze the false-positive rate
of filters on Zipfian sequences, so here we give a definition
of Zipfian distributions and sequences.

Definition 5 (Empirical Zipfian). Let M be a multiset where

the ith most frequent element in M has frequency ci and the

number of distinct items in M is m. Multiset M is Zipfian

of order s if ci = 1/(isHs,m), for i 2 [1,m], and the

normalization constant Hs,m =
P

m

j=1 1/j
s
.

We will characterize sequences based on the multiset of
characters comprising the sequence. In this paper, we con-
sider network traces and compute the best-fit s to model their
frequency distributions. We also analyze algorithms against
Zipfian sources, so we model distributions on multisets as
follows.

Definition 6 (Distributional Zipfian.). Let A =
{a1, . . . , am} sorted in decreasing order by their prob-

ability in Zs,m, the Zipfian distribution of order s on A.

Let M = s1, . . . , s`, where si ⇠ Zs,m, that is, a sequence

of items drawn from a Zipfian. Then M is an i.i.d. Zipfian

sequence and we say that M ⇠ Z`

s,m
.

Zipfian distributions are a standard way to model se-
quences that include repetitions [11–13,15–17,19,23,24,26],
and here we bound the number of samples that need to
be drawn in order to see x distinct items. For multiset
M, let kMk be the number of distinct items in M. Let
Ds,m(`) = EM⇠Z`

s,m
[kMk] be the expected number of dis-

tinct items in a Zipfian sample of size `, and let Ss,m(x) =
argmin

`
{Ds,m(`) � x} be the expected number of samples

needed to see x distinct items.

Lemma 1. For any m > 0 and any constant s > 0, if

x = o(m), then Ss,m(x) = ⇥(xmax{1,s}).

Proof. Call the ith most probable item in the Zipfian ai. Item
ai occurs `Zs,m(ai) = `/(isHs,m) times in M ⇠ Z`

s,m
. Let

v be the rank of the least frequent item that has expectation
at least 1 in a sequence of Ss,m(x) Zipfian samples, that is,

v = max
i

⇢
Ss,m(x)

isHs,m

� 1

�
.

Notice that (v + 1)sHs,m > Ss,m(x) � v
s
Hs,m.

Further, v  x, and any item aw where w > v that occurs

in our sample is expected to be unique. Thus Ss,m(x) is
the sum of the number of times a1 through av appear in
the sample, plus ⇥(x � v), since the remaining items are
all unique in expectation.

The expected number of times we sample the first v

items is
vX

i=1

Ss,m(x)

isHs,m

=
Ss,m(x)Hs,v

Hs,m

2 [vsHs,v, (v + 1)sHs,v).

The number of times we sample items aw, where w > v, is
the number of samples we haven’t used up in frequent items,
which is at most Ss,m(x)�v

s
Hs,v < (v+1)sHs,m�v

s
Hs,v .

Thus, the number of distinct items found in Ss,m(x) samples
is v, plus the number of items with unique occurrences. In
other words,

x  v + (v + 1)sHs,m � v
s
Hs,v.

We now have a case analysis that depends on s. Note
that for all s, Ss,m(x) � x and that Ss,m(x) is monitone
with s, that is, if s1 < s2, then Ss1,m(x)  Ss2,m(x), which
just means that as the distribution gets more concentrated, it
takes more samples to get x distinct items.
• s = 1: For all y, H1,y ⇡ ln y. Therefore x 

v+(v+1) lnm�v ln v = ⇥(v lnm) = ⇥(v1H1,m) =
⇥(S1,m(x)).

• s < 1: Lemma holds for s = 1 and by monotonicity.
• s > 1: x  v+(v+1)sHs,m�v

s
Hs,v  v+(v+1)s ·

v
1�s

s�1 = ⇥(v). So we expect at least a constant fraction
of elements that appear in the sample to appear multiple
times. Such items appear ⇥(vsHs,v) = ⇥(vs) =
⇥(xs) times.

3 Zipfian Adaptation
We analyze the expected behavior of broom filters and CAFs
on Zipfian sequences.

We briefly summarize the aspects of the broom filter
that are important for the purposes of this paper. First of
all, a broom filter is a single-hash-function filter, which
means that for each x 2 S , it maintains a hash h(x) space-
efficiently. (The default is that h(x) hashes to a string of
log n + log(1/") bits, but as we will see, sometimes the
hash function produces longer strings.) A query y 2 S is
a false positive if 9x 2 S such that h(x) = h(y). The broom
filter adapts to false positives by storing more bits from x’s
hash value whenever an element x 2 S is involved in a hash
collision. These extra bits are called adaptivity bits. Thus, if
y 2S is identified as a false positive because it collides with
x 2 S , then the broom filter adds an expected 2 bits to h(x)
until the collision goes away.

In order to avoid the accretion of adaptivity bits to the
hash function, the broom filter proceeds in rounds: the filter
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expires each hash function after it has been involved in ⇥(n)
false positives and replaces it with a new hash function.
When a hash function expires, the adaptivity bits associated
with the hash function are reclaimed. Thus, using only ⇥(n)
adaptivity bits, the broom filter can correct ⇥(n) distinct
false positives in the hash function, and ⇥(n) false positives
later, there is a new round with a new hash function and ⇥(n)
new adaptivity bits.

Theorem 2. Let B be a broom filter on a set S ⇢ U , where

|S| = n, |U| = u, |S̄| = m = u � n, and n = o(u).
If B has false-positive probability ", then, in expectation,

B’s distributional false-positive rate on Zs,m is at most

min
�
",⇥

�
"
s

ns�1

� 
, for any constant s > 0.

Proof. A round has ⇥(n) false positives w.h.p., and each
negative element in a round is a false positive at most
once [4]. B begins each round with false positive probability
" which strictly decreases as B adds adaptivity bits. There-
fore in expectation a round contains at least

P⇥(n)
i=1 1/" =

⇥(n/") distinct negative elements.
By Lemma 1, if 0 < s  1, then in expectation ⇥(n/")

queries are required to observe ⇥(n/") false positives, and
so the false-positive rate is at most ". Similarly, by Lemma 1,
if s > 1, then seeing ⇥(n/") distinct negative elements takes
⇥((n/")s) queries which yields a false-positive rate at most
⇥("s/ns�1).

In the remainder of this section we prove that in expec-
tation the distributional false-positive rate of a broom filter
with ⇥(n) adaptivity bits on a Zipfian distribution Z is less
than the lower bound of the distributional false-positive rate
of a CAF with a ⇥(n)-bit cache on Z .

For any function X : A ! R, let rankX ,A(a) = |L|+1
where L = {b | b 2 A,X (b) < X (a)}.

Lemma 3. Let F = (F ,�) be a (non-adaptive) filter on

S , and let X be a distribution on S . For any f 2 F , let

Mf = {p1, p2, . . .} be the set of false positives for f , sorted

in decreasing order of probability in X . Then

E
f⇠�

[rankX ,S̄(pi)] =
i

"
.

Proof. By linearity of expectation.

The caching problem for CAFs is not exactly the same
as the traditional caching problem [25]. In the traditional
caching problem, a page needs to be in the cache to be
served, that is if the page is not in the cache, it is fetched
into the cache to be served. For a CAF, if a false-positive
item is not in the cache when it is queried, it is the filter’s
choice whether to store the false-positive item in the cache,
evicting an existing false-positive to make room if the cache
is full.

Consider a cache for which page requests are indepen-
dently sampled from some distribution. The TOP-k cache
policy keeps the k requests with the highest observed fre-
quencies in cache.

Lemma 4. Let C be a cache-augmented filter (CAF) with

a cache of size k. The TOP-k cache policy minimizes the

distributional false positive rate of C for any distribution on

S .

Proof. C has non-adaptive filter F = (F ,�) and a cache of
size k. Let f be a filter instance chosen randomly from �.
Let X be a distribution onS , the set of negative queries, and
let X ` be the probability distribution of strings of length `

where each character is drawn independently from X . CAF
C returns a false positive on a negative query if f(x) = 1
and x /2 M where M is the set of false positives in the
cache of CAF C at the time of the query. For simplicity,
assume that at the beginning of the execution, the caching-
policy loads a set M0 of k false-positives into the cache. This
can easily be achieved even if the cache starts empty and then
loads false-positives as it progresses in the query sequence.
The following function minimizes the distributional false-
positive rate of C on X :

max
`>0

C`(M0)

`
,

where C`(M0) minimizes the number of false-positives of C
on a sequence of length ` drawn independently from X .

We recursively define the function C`(M0) that mini-
mizes the number of false-positives of a sequence of length
` drawn independently from X , as follows. Given a negative
query x, if x is a true negative (i.e. f(x) = 0) or x is in
the cache, CAF does nothing and proceeds to the next query.
Otherwise, x becomes a false-positive. The CAF then either
chooses to keep the cache content the same for the next query
or fetch x in cache and evict a false-positive y such that C`�1

is minimized.
If f(x) = 0 or x 2 M0,

C`(M0) = E
x2S̄

[C`�1(M0)] .

Otherwise,

C`(M0) = E
x2S̄

[↵] .

where

↵ = 1 +min

⇢
C`�1(M0),
miny2M0 {C`�1(M0 [ {x} \ {y})}

�
.

We conclude the proof by noting that for two negative
queries x and y such that Pr[x] > Pr[y], C`(M [ {x}) 
C`(M [ {y}). The proof of this claim is very similar to
Lemma 2 in [2], which establishes the lemma.
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We next prove a lower bound on the distributional false-
positive rate of a CAF on a Zipfian sequence. Together
with Theorem 2, these results imply Theorem 6, analytically
establishing the advantage of adaptivity over caching.

Theorem 5. Let C be a CAF with a cache of size k and

a false-positive probability of ". The distributional false-

positive rate of C on Zs,m is at least

"

✓
1�

Hs,k/"

Hs,m

◆
.

Proof. By Lemma 4, we can assume that it uses the Top-
k caching strategy. By Lemma 3, no query of up to an
expected rank of k/" causes a false positive on C. The
probability that any particular query has rank up to k/" is
Hs,k/"/Hs,m. The false positive rate on all other queries,
which have an aggregate probability of 1�Hs,k/"/Hs,m, is
" which concludes the theorem.

Finally, we compare the distributional false-positive rate
of the broom filter with that of the CAF on Zs,m.

Theorem 6. Let B be a broom filter with cn adaptivity

bits and a false-positive probability of ", and let rB be the

distributional false-positive rate of B on Zs,m. Let C be a

CAF with a cn-bit cache and a false-positive probability of

", and let rC be the distributional false-positive rate of C on

Zs,m. E [rB ]  E [rC ] for any s > 0.

Proof. By Theorem 2, E [rB ]  min
�
",⇥

�
"
s

ns�1

� 
. By

Theorem 5, E [rC ] � "

⇣
1� Hs,k/"

Hs,m

⌘
, where k = n/ log u.

When s > 1:

E [rC ] � "

✓
1�

Hk/",s

Hm,s

◆
⇡ "

✓
1� 1� (k/")1�s

1�m1�s

◆

= "

✓
m

s�1 � (k/")s�1

(km/")s�1 � (k/")s�1

◆

⇡ "

✓
m

s�1

(km/")s�1

◆
=

"
s

ks�1

> ⇥

✓
"
s

ns�1

◆
� E [rB ]

When s ⌧ 1,

E [rC ] � "

✓
1�

Hk/",s

Hm,s

◆
⇡ "

✓
1� k

"m

◆

= ⇥(") � E [rB ] .

The theorem follows from monotonicity.

4 Experiment
In this section, we experimentally measure the performance
of broom filters against that of CAFs and non-adaptive

Dataset Number of
unique items

Number of
queries

Zipfian
constant

Chicago A64 605006 14801266 1.19
Chicago B64 1700741 45359990 1.27
Sanjose 64 2193052 37815122 1.19

Table 1: CAIDA network trace datasets.

quotient filters. We show that broom filters offer a 18-74%
reduction in false positive rate on simulated Zipfian data
over CAFs and an even larger improvement over quotient
filters. We also measure the performance of these filters
on the network traces from [1]. For network data, broom
filters continue to offer a 31-73% improvement over CAFs
and more than 90% improvement over quotient filters.

In each experiment, we store a set S in each filter, and
then query elements (not in S) from the data set to each
filter, adapting when required. We characterize the empirical
performance of a filter by the ratio of the number of false
positives to the number of queries on negative items . We
call this the empirical false positive rate (EFPR).

We use the quotient filter as our baseline static filter
because it reliably offers the advertised false positive rate of
" on all types of input, and it is faster than alternatives such
as the cuckoo filter.

4.1 Generated Zipfian Distribution Data. In order to
generate Zipfian data, we set U = {0, 1, 2, ...,

⌅
804.1

⇧
} and

S = {0, 1, 2, ..., 79} so n = 80. We choose the value n4.1 so
that bn/ log |U|c = 3, ensuring the caches for our CAFs can
store some values. In many settings, |U| is larger than 804.1

and a cache might not be able to store any items.
We repeated the experiment for six values of the Zipfian

constant s: 0.05, 0.5, 0.9, 1, 1.1 and 1.2. For larger s,
we observe that the broom filter’s false positive rate drops
to 0, though in theory a long enough query sequence could
generate false positives.

The broom filter is allowed no more than 3n adaptive
bits. The CAF-3/6/9 is equipped with a n/2n/3n-bit cache
respectively, able to hold 3/6/9 items.The CAFs adopt the
least-recently-used cache-eviction policy. We compare the
three types of filters at several values of ": 2i for all values
of i 2 [�10,�6]. As a representative sample of the full
results, the experimental findings for s = 0.5 and s = 1.2
are summarized in Figures 1 and 2.

These experimental findings validate our analysis: the
broom filter outperforms the competition on Zipfian queries.
In all cases the non-adaptive quotient filter has the highest
EFPR, which is close to the false-positive probability (la-
beled as “"”). The CAFs have basically the same EFPR as
the non-adaptive quotient filter when s ⌧ 1. When s > 1,
the CAFs have 52-91% lower EFPR than the non-adaptive
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Figure 1: The EFPR of non-adaptive quotient filters, CAFs
and broom filters with different false-positive probabilities "
on generated query sequences with Zipfian constant s = 0.5.

Figure 2: The EFPR of non-adaptive quotient filters, CAFs
and broom filters with different false-positive probabilities "
on generated query sequences with Zipfian constant s = 1.2.

quotient filter. All CAFs have higher EFPR than the theo-
retical result given by Theorem 5. The broom filter always
achieves the lowest EFPR, offering a 18-74% reduction in
EFPR over CAFs and 19-95% reduction over quotient filters.
The EFPR of the broom filter is lower than the theoretical re-
sult given by Theorem 2.

4.2 Internet Trace Data. We measure the false positive
rate achieved by each filter on network trace datasets. We
use three such datasets from [1], whose characteristics are
shown in Table 1. Note that we use Clauset, Shalizi, and
Newman’s method [11] to estimate the Zipfian constant of
each dataset.

All items in the datasets are interpreted as negative
queries. We generate a pseudo-positive set of size 30,
because 30 is approximately the fourth root of our smallest
negative set, i.e., the Chicago A64 set.

Figure 3: The EFPR of non-adaptive quotient filters, CAFs
and broom filters with different false-positive probabilities "
on the Chicago A64 dataset.

Figure 4: The EFPR of non-adaptive quotient filters, CAFs
and broom filters with different false-positive probabilities "
on the Chicago B64 dataset.

The broom filter is allowed no more than 3n = 90
adaptive bits. The CAF is equipped with a 90-bit cache, and
due to the large number of distinct items in these datasets
this is only sufficient to cache 4 items. We compare the three
types of filters at several values of ": 2i for all values of
i 2 [�10,�6]. The results are shown in Figures 3-5.

Once again, these experimental findings support our
analytic results: the broom filter outperforms CAFs and
quotient filters. The non-adaptive quotient filter has the
highest EFPR, which is close to the false-positive probability
(labeled as “"”). Strikingly, the CAFs have 52-82% lower
EFPR than the non-adaptive quotient filter despite the fact
that the cache can hold no more than 4 items. All CAFs have
higher EFPR than the theoretical result given by Theorem 5.
The broom filter always achieves the lowest EFPR, offering
31-73% reduction in EFPR over CAFs and 90-97% reduction
over quotient filters. The EFPR of the broom filter is lower
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Figure 5: The EFPR of non-adaptive quotient filters, CAFs
and broom filters with different false-positive probabilities "
on the San Jose 64 dataset.

than the theoretical result given by Theorem 2.

4.3 Serendipitous Corrections. A broom filter adapts in
response to a false positive by extending the fingerprint of
the element that collides with it. This may have the side
effect of correcting other false positives that have not yet
been presented to the filter. For example, if 9y, y0 2 S and
x 2 S s.t. h(y) = h(y0) = h(x), then if the filter receives
query y it will return a false positive and adapt, increasing
the length of the x’s fingerprint so that h(y) 6= h(x). As a
result, h(y0) may no longer be equal to h(x), in which case
if the filter receives query y

0 it will have avoided the false
positive for no additional cost. We call the correction of any
such y

0
serendipitous and call the correction of any such y

direct.

" (FP Probability) 2�10 2�9 2�8 2�7 2�6

Average Direct
Corrections / round 1017 677 514 374 197

Avg. Serendipitous
Corrections / round 403 421 361 248 206

Table 2: A comparison of the number of direct and serendip-
itous corrections observed for a broom filter on the Chicago
A64 dataset. We report the average number of corrections
per round for several values of ".

We empirically investigate the prevalence of serendip-
itous corrections made by a broom filter in the network
trace experiments described above. Table 2 summarizes the
false positives corrected by an adaptive filter on the Chicago
A64 dataset, and categorizes these corrections as serendip-
itous or direct. Strikingly, 24-55% of all observed correc-
tions are serendipitous. The proportion of serendipitous cor-
rections increases as false-positive probability " increases,
which is merely an artifact of our amortized implementation

" (FP Probability) 2�10 2�9 2�8 2�7 2�6

Average Direct
Corrections / round 908 570 352 186 172

Avg. Serendipitous
Corrections / round 301 282 255 206 198

Table 3: A comparison of the number of direct and serendip-
itous corrections observed for a broom filter on the Chicago
B64 dataset. We report the average number of corrections
per round for several values of ".

" (FP Probability) 2�10 2�9 2�8 2�7 2�6

Average Direct
Corrections / round 454 323 198 188 107

Avg. Serendipitous
Corrections / round 222 228 182 190 134

Table 4: A comparison of the number of direct and serendip-
itous corrections observed for a broom filter on the San Jose
64 dataset. We report the average number of corrections per
round for several values of ".

of the broom filter (in contrast to the deamortized construc-
tion in [4]). Similar trends can be observed in the other net-
work trace datasets in Tables 3 and 4. This phenomenon is
a significant factor in the broom filter’s excellent empirical
false positive rate.
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