
Fast Stencil Computations
using Fast Fourier Transforms

Zafar Ahmad
Stony Brook University

zafahmad@cs.stonybrook.edu

Rezaul Chowdhury
Stony Brook University

rezaul@cs.stonybrook.edu

Rathish Das
University of Waterloo

rathish.das@uwaterloo.ca

Pramod Ganapathi
Stony Brook University

pramod.ganapathi@cs.stonybrook.edu

Aaron Gregory
Stony Brook University

afgregory@cs.stonybrook.edu

Yimin Zhu
Stony Brook University

yimzhu@cs.stonybrook.edu

ABSTRACT
Stencil computations are widely used to simulate the change of
state of physical systems across a multidimensional grid over mul-
tiple timesteps. The state-of-the-art techniques in this area fall into
three groups: cache-aware tiled looping algorithms, cache-oblivious
divide-and-conquer trapezoidal algorithms, and Krylov subspace
methods.

In this paper, we present two e�cient parallel algorithms for
performing linear stencil computations. Current direct solvers in
this domain are computationally ine�cient, and Krylov methods
require manual labor and mathematical training. We solve these
problems for linear stencils by using DFT preconditioning on a
Krylov method to achieve a direct solver which is both fast and
general. Indeed, while all currently available algorithms for solving
general linear stencils perform ⇥ (#)) work, where # is the size
of the spatial grid and) is the number of timesteps, our algorithms
perform > (#)) work.

To the best of our knowledge, we give the �rst algorithms that
use fast Fourier transforms to compute �nal grid data by evolving
the initial data for many timesteps at once. Our algorithms handle
both periodic and aperiodic boundary conditions, and achieve poly-
nomially better performance bounds (i.e., computational complexity
and parallel runtime) than all other existing solutions.

Initial experimental results show that implementations of our
algorithms that evolve grids of roughly 107 cells for around 105
timesteps run orders of magnitude faster than state-of-the-art im-
plementations for periodic stencil problems, and 1.3⇥ to 8.5⇥ faster
for aperiodic stencil problems.

Code Repository: https://github.com/TEAlab/FFTStencils

1 INTRODUCTION
A stencil is a pattern used to compute the value of a cell in a
spatial grid at some time step from the values of nearby cells at
previous time steps. A stencil computation [49, 130] applies a
given stencil to the cells in a spatial grid for some set number of
timesteps. Stencil computations have applications in a variety of
�elds including �uid dynamics [21, 45, 68], electromagnetics [10,
82, 128, 140], mechanical engineering [111, 113, 127], meteorology
[11, 75, 114, 115], cellular automata [94, 102, 122, 123], and image
processing [107, 117, 142, 146, 147]. In particular, they are widely
used for simulating the change of state of physical systems over
time [14, 105, 134, 143].

Due to the importance of stencil computations in scienti�c com-
puting [41, 59, 108], various methods have been devised to im-
prove their runtime performance on di�erent machine architec-
tures [37, 42, 76, 101, 120]. All currently available stencil compilers
[25, 37, 65, 67, 92, 109, 130] that can accept arbitrary linear1 sten-
cils perform ⇥ (#)) work2, where # is the number of cells in the
spatial grid and) is the number of timesteps.

In this paper, we present the �rst > (#))-work stencil computa-
tion algorithms that support general linear stencils and arbitrary
boundary conditions. Our algorithms have polynomially lower
work than all other known options of equivalent or greater gener-
ality.
Problem Speci�cation. Consider a stencil computation to be per-
formed over) timesteps on a 3-dimensional spatial grid of # cells
with initial data 00 [· · ·]. Cell data at subsequent timesteps are
de�ned via application of the linear stencil (across the grid, for-
malized as 0C+1 = (0C , where 0C is the spatial grid data at timestep
C . The stencil must de�ne the value of a grid cell in terms of a �xed
size neighborhood containing cells from only the prior timestep3.
We will not be able to apply the stencil to some cells near the bound-
aries of the grid; the values of these cells are instead de�ned via
boundary conditions. Our goal is to compute the �nal grid data
0) by evolving the initial data 00 for) timesteps.

There are two types of boundary conditions we can use: periodic
and aperiodic. If the boundary conditions are periodic, it means
that every dimension of the spatial grid wraps around onto itself, so
the entire grid forms a torus. In this case modular arithmetic is used
for all calculations involving spatial indices, and the stencil alone
can be used to update all cells. On the other hand, if the boundary
conditions are aperiodic, then the cells at the boundary of the grid
have to be computed via some method other than straightforward
application of the stencil. In this paper, we consider both types of
boundary conditions.
Existing Algorithms. There are a handful of algorithms com-
monly used for carrying out general stencil computations, and
many more designed for solving problems with speci�c boundary
conditions and stencils. Here wewill give an overview of algorithms

1A linear stencil is one that uses exclusively linear combinations of grid values from
prior timesteps.
2Let)? denote a program’s runtime on a ?-processor machine. Then,)1 and)1 are
called work and span, respectively.
3We will later extend the de�nition of stencils to allow for dependence on multiple
prior timesteps.

ar
X

iv
:2

10
5.

06
67

6v
1

 [c
s.D

S]
 1

4
M

ay
 2

02
1

S�������L���(00,(,# ,))

(1) for C 1 to) do
(2) parallel for 8 0 to # � 1 do
(3) compute 0C [8] by applying either the stencil (

or the boundary conditions as appropriate
(4) return 0) [0, . . . ,# � 1] B �nal spatial grid data

Figure 1: Looping code for 1-D stencil computations.

which can be used for computations with arbitrary boundary con-
ditions and linear stencils. It is worth noting that almost none of
the following algorithms require stencil linearity4.
1. [LoopingAlgorithms.] It is a simplematter to implement stencil
computations using nested loops, as shown in Figure 1. However,
such computations su�er from poor data locality and hence are
ine�cient both in theory and in practice. As can be seen from the
pseudocode listing, looping codes require ⇥ (#)) work to evolve a
grid of # cells forward) timesteps, assuming that the stencil only
uses values from a constant size neighborhood.
2. [Tiled Looping Algorithms.] Adopting a tiling [12, 24] of the
spatial grid is a common way to improve the data locality [23, 150–
153] of looping algorithms. The tiles’ size and shape have a strong
in�uence on the runtime of the algorithm, and generally the best
performance is attained when each tile �ts into the cache. Most
modern multicore machines have a hierarchy of caches; to make
better use of the cache hierarchy, loop nests may need to be tiled
at multiple levels [42, 77].

The most common framework that can be used to derive tiled
looping implementations is the polyhedralmodel, which uses a set
of hyperplanes to partition the grid being solved for. The polyhedral
model is extensively used in several code generators [2–4, 141, 155].
3. [Recursive Divide-and-Conquer Algorithms.] Instead of us-
ing a predetermined tiling of the spatial grid, these algorithms re-
cursively break the region to be solved for into multiple smaller sub-
regions. The trapezoidal decomposition algorithm [50, 51, 131]
is the most well known divide-and-conquer stencil algorithm. Its
recursive approach to tiling allows it to be not only both cache-
oblivious [48] and cache-adaptive [16, 17], but also to achieve as-
ymptotic cache performance matching that of an optimally tiled
stencil code across all levels of the memory hierarchy in a multicore
machine.
4. [Krylov Subspace Methods.] Krylov methods compose a di-
verse set of mathematical techniques which are extensively used
in numerical analysis to �nd successively better approximations
of the exact solution to a stencil problem. Such methods are often
used to solve problems for which there is no known direct (tiled-
loop or divide-and-conquer) solution technique. Discrete Fourier
transforms (DFTs) are frequently used in the analysis [27] and im-
plementations [7, 62, 74] of these methods. Krylov methods that
use DFTs in their implementations are very restricted in their appli-
cability, usually applying only to stencils from speci�c PDEs that
bene�t from spectral analysis.

There are several limitations of Krylov methods as a whole: (8)
their initial design requires nontrivial manual convergence analy-
sis [29, 87, 103], (88) they are mostly applicable only to very small
classes of problems [8, 56, 74], (888) they generally do not produce

4Although some stencil compilers may not be able to apply their low-level optimiza-
tions to nonlinear stencils.

exact solutions in �nite time, but exhibit a trade-o� between run-
time and accuracy. Improving this trade-o� by �nding near-optimal
preconditioners [18, 19, 135] is a hard problem [33, 81] in the gen-
eral case.

These common limitations should not be confused for rules,
however: because of their diversity, Krylov methods can take on a
variety of useful properties when specially designed. For example,
when an optimal preconditioner is selected they can �nd the exact
solution in a �nite number of iterations. The algorithms we present
in this paper will be partially based on an optimally preconditioned
Krylov method that is applicable to a rather large class of stencil
problems.
Our FFT-Based Algorithms. The computation ()00 = 0) (where
() denotes that the stencil (is applied) times) evolves the initial
grid data 00 for) timesteps to produce the �nal data 0) . As will be
seen in Section 4, any method of computing 0C+1 = (0C is mathe-
matically equivalent to a product where (is viewed as a matrix and
0C as a vector. All existing algorithms which �nd 0) exactly do so by
direct computation of 0) = ((((((· · ·00))), where (is applied for
a total of) timesteps, incurring ⇥ (#)) work in the process. The
looping, tiled, and recursive algorithms we have described di�er
only in how they break up this series of matrix-vector products. We
will instead evaluate this product by diagonalization and repeated
squaring of the stencil matrix (.

In this paper, we present two FFT-based stencil algorithms: S������FFT�
P for problems with periodic boundary conditions, and S������FFT�
A for those with aperiodic boundary conditions. Our algorithms are
applicable to arbitrary uniform linear stencils across vector-valued
�elds.
1. [Periodic Stencil Algorithm.] Let the discrete Fourier trans-
form (DFT) matrix be written F [8, 9] = l�8 9# /

p
, where l# =

42c
p
�1/# , and let F �1 be the inverse DFT matrix. We use fast

Fourier transforms to compute 0) as follows:

0) = F
�1
(F(F �1)) F00

where F(F �1 is a diagonal matrix, and) = #timesteps (not a
transposition).

To the best of our knowledge, this is the �rst time that FFT is
being applied directly to the problem of computing integral powers
of the circulant [61] stencil matrix (that appears in linear stencil
computations, even though there is a strong history of using FFT
to improve the e�ciency of matrix computations [43, 58, 136].
2. [Aperiodic Stencil Algorithm.]When given aperiodic bound-
ary conditions, we use a recursive divide-and-conquer strategy to
solve for the boundary of the spatial grid; S������FFT�P is used as
a subroutine to compute cells whose values are independent of the
boundary. This method allows us to compute every timestep of the
boundary in serial, yet to skip over computing most timesteps of
cells near the middle of the grid.

Before we analyze the complexities of our algorithms brie�y
described above, we give the performance metrics that will be used.
Performance Metrics.We use the work-span model [39] to ana-
lyze the performance of dynamic multithreaded parallel programs.
Work)1 (=) of an algorithm, where = is the input parameter, de-
notes the total number of serial computations. Span)1 (=) of an

Algorithm Work ()1) Span ()1) Result
Existing Algorithms
Nested Loop ⇥ (#)) ⇥ () log#)

Tiled Loop ⇥ (#)) ⇥
⇣
) log" +

)
"1/3 log #

"

⌘
[12, 24]

D&C ⇥ (#)) ⇥
⇣
) (# 1/3

)
log (3+2)�1

⌘
[131]

Our Algorithms
S������FFT�P ⇥ (# log(#))) ⇥ (log) + log# log log#) Th. 4.1

S������FFT�A ⇥

)# 1�1/3 log

⇣
)# 1�1/3

⌘
log)

+# log#

! 8>><
>>:
⇥ ()) if 3 = 1

⇥ () log#) if 3 � 2
Th. 5.1

Table 1: Complexity bounds for stencil algorithms, where # = spa-
tial grid size,) = #timesteps, and " = cache size. It is important to
note that the bounds given for our algorithms are for computations
with ⇥ (1)-size stencils on 3 = ⇥ (1) dimensional hypercubic grids,
and that we have simpli�ed the span of S������FFT�A by assuming
) = ⌦ (log# log log#) . The nested loop, tiled loop, and D&C algo-
rithms work for both periodic and aperiodic boundary conditions.
The span for the tiled loop algorithm is ⌦ () log log#) .

Benchmark Parallel runtime in seconds Speedup factor
PLuTo Our algorithm over PLuTo

Stencil #) KNL SKX KNL SKX KNL SKX

Pe
rio

di
c

heat1d 1, 600, 000 106 79 19 0.25 0.03 1754.7 759.6
heat2d 8, 000 ⇥ 8, 000 105 1,437 222 0.48 0.61 3,025.0 367.0
seidel2d 8, 000 ⇥ 8, 000 105 500 808 0.48 0.64 1,032.7 1268.6
jacobi2d 8, 000 ⇥ 8, 000 105 2,905 1017 0.48 0.68 6,084.7 1502.1
heat3d 800 ⇥ 800 ⇥ 800 104 816 1466 4.98 5.48 163.9 267.3
19pt3d 800 ⇥ 800 ⇥ 800 104 141 158 4.84 5.78 29.1 27.3

A
pe
rio

di
c Ex
pe
rim

en
t1

heat1d 1, 600, 000 106 50 35 5.85 6.69 8.5 5.2
heat2d 8, 000 ⇥ 8, 000 105 333 530 143.25 151.37 2.3 3.5
seidel2d 8, 000 ⇥ 8, 000 105 345 601 145.42 132.97 2.4 4.5
jacobi2d 8, 000 ⇥ 8, 000 105 567 456 249.04 273.46 2.3 1.7
heat3d 800 ⇥ 800 ⇥ 800 104 513 763 395.10 605.89 1.3 1.3
19pt3d 800 ⇥ 800 ⇥ 800 104 645 848 425.22 616.71 1.5 1.4

Ex
pe
rim

en
t2

heat1d 1, 600, 000 # 32 23 5.63 6.87 5.7 3.3
heat2d 8, 000 ⇥ 8, 000

p
210 312 92.78 121.70 2.3 2.6

seidel2d 8, 000 ⇥ 8, 000
p
228 375 91.59 121.46 2.5 3.1

jacobi2d 8, 000 ⇥ 8, 000
p
372 281 151.31 198.00 2.5 1.4

heat3d 800 ⇥ 800 ⇥ 800 3p# 45 71 32.29 50.52 1.4 1.4
19pt3d 800 ⇥ 800 ⇥ 800 3p# 61 71 33.82 52.27 1.8 1.4

Table 2: Performance summary of parallel stencil algo-
rithms on a KNL/SKX node.

algorithm, also called critical-path length or depth, denotes the max-
imum number of operations performed on any single processor
when the algorithm is run on amachine with an unbounded number
of processors. Our analysis of span is performed according to the
binary-forking model [22], in which spawning = threads required
⇥ (log=) span. This model is stricter than PRAM, so all bounds we
give hold in the PRAMmodel as well. Parallel running time)? (=) of
an algorithm when run on ? processors under a greedy scheduler is
given by)? (=) = O ()1 (=)/? +)1 (=)). Parallelism of an algorithm
is the average amount of work performed in each step of its critical
path and is computed as)1 (=)/)1 (=).
Performance Analysis of Our Algorithms. The performance
of our periodic and aperiodic stencil algorithms are summarized
in Table 1. We see that: (8) Both work and span of S������FFT�P
have only logarithmic dependence on) compared with the linear
dependence on) in the existing algorithms. (88) For a 3-D problem,
S������FFT�A has work quasilinearly dependent on ()# 1�1/3

+#),
whereas all existing algorithms for general linear stencils perform
⇥ (#)) work – a polynomially greater amount. This asymptotic
improvementmakes possible stencil computations over much larger
spacetime grids.

Althoughwe do not show explicit analysis of cache complexity in
this paper, it is worth noting that our algorithms are cache-oblivious
[48] and cache-adaptive [16, 17].

Our Contributions. Our key contributions are as follows:
1. [Theory.]We present the �rst algorithms for general linear sten-
cil computations (for both periodic and aperiodic boundary con-
ditions) with > (#)) work and low span, achieving polynomial
speedups over the best existing stencil algorithms.
2. [Practice.]We experimentally analyze the numerical accuracy
and runtime of our algorithms as compared to PLuTo [3] code. Im-
plementations of our algorithms for on the order of 107 grid cells
and 105 timesteps su�er no more loss in accuracy from �oating
point arithmetic than PluTo code, yet run orders of magnitude
faster than the best existing implementations of state-of-the-art
algorithms for periodic stencil problems, and 1.3⇥ to 8.5⇥ faster for
aperiodic stencil problems. This is shown in Table 7. Our code is
publicly available at
https://github.com/TEAlab/FFTStencils.

2 RELATEDWORK & ITS LIMITATIONS
There is substantial literature devoted to the applications and anal-
ysis of stencils and Discrete Fourier Transforms (DFTs). Here we
give a background of the relationship between these two areas
and examine some of the limitations which appear in the current
approaches to stencil codes.
Discrete Fourier Transforms.DFTs are widely used in numerical
analysis, with examples including Von Neumann stability analy-
sis [106, 148] to show validity of numerical schemes, DFT-based
preconditioning to optimize Krylov iterations [31, 63, 79], and
time-domain analysis to achieve partial solutions of given PDEs
[36, 69, 97, 104, 121].

A Fast Fourier Transform (FFT) is an algorithm that quickly
computes the DFT of an array. The use of FFTs will be important
for our algorithms, as they represent a particularly e�cient type
of matrix-vector multiplication. Several O (# log#)-work FFT al-
gorithms exist [30, 60, 149], the most famous among which is the
Cooley-Tukey algorithm [38].

T������ 2.1 (C������T���� A��������, [38, 48]). The generic
Cooley-Tukey FFT algorithm computes the DFT of an array of size #
in ⇥ (# log#) work, O (log# log log#) span, and ⇥ (#) space.

Stencil Problems. Stencils are often used in numerical analysis as
discretizations of PDEs, since many simple PDEs have prohibitively
complex analytical solutions [46, 110] but allow good numerical
approximations with a proper choice of stencil.

There are two major types of methods related to stencils: those
for deriving numerical schemes, and those for evolving grid data
via a given stencil. A discretization method is a way of convert-
ing a PDE, which deals with quantities de�ned over a continuum,
into a stencil, which relates quantities de�ned over discrete sets
of variables. A stencil solver is an algorithm that takes stencils,
boundary conditions, and initial data as input and performs sten-
cil computations to output �nal data. This paper presents a pair
of stencil solvers for linear stencils which support, respectively,
periodic and aperiodic boundary conditions.
Stencil Solvers.Numerical results from stencils are obtained through
two primary paths: direct solvers and Krylov methods [70, 118].

Direct solvers are those which �nd the solution to a stencil prob-
lem in a �nite number of steps. They often involve feeding the

stencil into a stencil compiler such as PLuTo [25], Pochoir [130],
or Devito [91], which will output optimized code to compute the
action of the stencil across some prespeci�ed grid of initial data for
multiple timesteps. Cutting-edge stencil code generators feature
many improvements over simple looping algorithms, including bet-
ter cache e�ciency [49, 85], parallelism [83], and low-level compiler
optimizations. These systems all perform the same set of updates on
the stencil grid, although they vary in the order that these updates
are performed. In general they make no use of FFTs.

Krylov subspace methods produce successively better approx-
imations of the exact solution to a given stencil problem. Krylov
solvers are often used to solve problems for which there is no known
direct solution technique. It is common for DFTs to be used either in
the analysis [27] or implementations [7, 62, 74] of Krylov subspace
methods, as Fourier analysis is useful for proving scheme stability
[32, 156] and convergence rates [57], and DFT matrices are good
preconditioners [44] for a large class of matrix equations [26]. In
some instances choosing the DFT matrix as a Krylov preconditioner
can even convert an approximate solver into a direct one [54, 69].
Krylov subspace methods generally do not produce exact solutions
in �nite time, but exhibit a trade-o� between runtime and accuracy.

Limitations of Current Methods for Stencil Problems.
(1)Manual Analysis. Krylov subspace methods are often accom-
panied by a mathematically nontrivial convergence analysis [29, 87,
103]; this requires human labor for every new method developed.
Since this analysis is not automated [53, 64, 99], the quantity of
time it takes varies widely from case to case. Also, the requirement
of mathematical rigour strongly discourages the development of
unnecessarily general Krylov methods, thus those in the litera-
ture usually only apply to speci�c stencils [8, 9, 56, 93] in order to
simplify analysis.
(2) Specialization. The methods [8, 56, 74, 121] published in most
of the existing literature on computation with numerical schemes
are only applicable to very small classes of problems. DFT precon-
ditioning for Krylov iterations has been used for speci�c stencils
before [52, 72, 124]. However, these techniques have not been gen-
eralized to work for higher dimensional grids with general linear
stencils.
(3) Inexact Solution. Krylov methods often cannot produce exact
solutions, even in the absence of �oating-point rounding errors.
Using them optimally and reliably thus requires expertise in nu-
merical analysis [70, 137], as well as for substantial e�ort to be put
into uncertainty quanti�cation [86, 89].
(4) Nonoptimal Computational Complexity. All currently avail-
able code compilers [25, 37, 65, 67, 92, 109, 130] generate code which
has linear work complexity in the number of grid cells and number
of time steps to compute, no matter what stencil they are given.
Improving this bound has not been addressed in the literature, even
when only considering linear stencils.

We show in this paper that when dealing with linear stencils it
is possible to produce code that has signi�cantly better asymptotic
performance.
(5) No Support for Implicit Stencils. Direct solvers for stencil
problems usually do not support implicit stencils; stencil compilers

in particular are weak in this respect. Neither Pochoir, PLuTo, nor
Devito can be used for directly evolving data via an implicit stencil.
This is a signi�cant limitation, as several important stencils are
implicit [6, 40, 80, 100, 115, 138].
Signi�cance of This Paper. Current direct solvers for general
linear stencil computations are ine�cient, and Krylov methods
require manual labor and mathematical training. We solve these
problems for linear stencils by using DFT preconditioning on a
Krylov method to achieve a direct solver which is both fast and
general.

3 APPLICABILITY OF OUR ALGORITHMS
In this section, we describe the classes of stencil problems on which
our FFT-based stencil algorithms do or do not apply.
Supported Stencil Types. Our algorithms are most directly ap-
plicable to homogeneous linear stencils across vector-valued
�elds. A homogeneous stencil is one that does not vary across the
entire spatial grid, and by vector-valued �elds we mean we allow
each cell value across the spatial grid to be treated as a vector.

All homogeneous linear PDEs can be discretized into supported
stencils by using a �nite di�erence approximation [71]. Thus all nu-
merical results for these linear PDEs that were previously reached
via analytically-motivated numerical schemes, including those set
in the Fourier domain [95, 97], can easily be reached computation-
ally by our algorithms.

It is noteworthy that we support both explicit and implicit linear
stencils, and also that vector-valued �elds can be used to enable
stencils that are dependent on more than one previous timestep. In
addition, vector-valued �elds allow us to support certain types of
inhomogeneity, as mentioned at the end of this section.

Linear stencils are quite common in computational numerics. In
fact, the majority of stencils currently used to benchmark [3, 23, 25,
112] stencil compilers are linear.
Unsupported Stencil Types.Our algorithms are not applicable to
nonlinear stencils. This is because introducing nonlinearity of any
sort invalidates our technique of using DFTs to simplify the action
of the stencil. Common examples of nonlinearity in stencils include
conditionals, i.e. max/min/if-else, and quadratic dependence on cell
values. Most discretizations of nonlinear PDEs pass the nonlinearity
on to the stencil, so in general our algorithms cannot be used for
stencils from nonlinear PDEs.

Our algorithms cannot be applied to inhomogeneous stencils
either. There are two ways that a stencil can break homogeneity.
The �rst is spatially, by having the stencil itself be dependent on
local �eld data, such as is used in slope limiter and �ux limiter
methods [55, 88, 126] and in mixed media problems [34, 119, 132,
133, 144, 154]. The second way to break homogeneity is temporally,
i.e. using a stencil that is dependent on time [66, 84], as would
arise from the presence of a forcing term in the original PDE being
discretized.

However, we note that there are some special types of inho-
mogeneity our algorithms can handle, such as those arising from
forcing terms which are low-order polynomials in time. These are
handled by discretizing homogeneous systems of PDEs to mimic
the behaviour of a single inhomogenous PDE.

4 PERIODIC STENCIL ALGORITHM
In this section we present S������FFT�P, an e�cient parallel algo-
rithm for performing stencil computations with periodic boundary
conditions using fast Fourier transforms (FFT). We begin by con-
sidering explicit linear stencils on one-dimensional spatial grids,
after which we give simple extensions to high-dimensional grids,
implicit stencils, and grids where cells are vector-valued.
Mathematical Formulation. Suppose we have a spatial grid of
data that evolves in time according to some �xed stencil: cells in the
grid at time C are updated as a function of some local neighborhood
of cell values at recent times before C . For simplicity’s sake, we will
assume that the spatial grid is one dimensional until Section 4.2.

In this section, we will exclusively consider linear stencils. A
linear stencil S de�nes future array values 0C+1 [0, . . . ,# � 1] as
a linear function of current array values 0C [0, . . . ,# � 1]. We will
later allow array values to be higher dimensional, but for now these
constraints are enough on their own to make a signi�cant statement
about stencils.

An arbitrary linear mapping from arrays of size # to arrays of
size # is, by de�nition, an # ⇥# matrix5, and therefore the update
rule can be written 0C+1 [8] =

Õ
9 ([8, 9]0C [9]. We will usually omit

the indices in formulas like this, writing 0C+1 = (0C . As shown
in Figure 2, on the surface this update rule may look incomplete
– since we require (to use the same neighborhood around each
point for updates, how should we proceed when the neighborhood
extends beyond the bounds of our spatial array? As �lling in these
cells is exactly the purpose of boundary conditions, it should come
as no surprise that in this section the resolution to this di�culty
will come in the form of periodicity.

· · ·

? · · · ? ?

Apply

at : Spatial array at time t

at+1: Spatial array at time t+ 1

. . .
stencil S

Figure 2: Updating data with a stencil that uses a neighbor-
hood extending one cell to the left and two cells to the right.
Cells marked with question marks do not have values de-
�ned by the stencil, as the neighborhood required to update
them lies partially outside the bounds of the spatial array.

Periodic boundary conditions consist of the rule that 0C [8] =
0C [8 + #], for all 8 . This allows the spatial grid to be extended
arbitrarily far in either direction by wrapping around instead of
moving outside of the array bounds; in the presence of periodic
boundary conditions the spatial grid is e�ectively a torus, with no
clearly de�ned boundary.

For a stencil to be uniform across space means that it de�nes
updated cell values only from a set of cells which are selected based
on their relative location to the cell being updated. For example, if
we were to reindex all cells in the spatial array, incrementing them
5Here we are using the word matrix in the strictlymathematical sense, i.e. the object
which is a stencil behaves in all respects identically to the way in which a matrix
behaves. This should not be taken to mean that we will store stencils using the data
structure called a matrix. In fact, we shall show that there are other more e�cient
ways of storing our stencils.

all so the bounds became 1 and # rather than 0 and # � 1, this
change of index ought to be invisible to the stencil. Furthermore,
in the presence of periodic boundary conditions, this reindexing
is equivalent to cyclically shifting the �eld data 0C , since we have
0C [0] = 0C [#].

Wemathematically represent the concept of cyclically permuting
grid data by introducing the right shi�matrix6 [116]- . The array
-0C is de�ned to be the result of taking the rightmost element 0C [0]
o� and appending it to the left side of the array, i.e. its action on
arrays is (-0C) [8] = 0C [8 � 1]. An equivalent de�nition is by - ’s
matrix elements - [8, 9] = X8, 9+1, where the Kronecker delta X8, 9
is de�ned to be 1 if 8 = 9 and 0 otherwise, and the arithmetic is
understood to bemodular with base # in the presence of periodic
boundary conditions.

Rotate with X

Apply stencil S

· · ·

· · ·1

1 2

Rotate with X

Apply stencil S

Array at time t

Array at time t Array at time t+ 1

Array at time t+ 1

2 k

k (k � 1)

· · ·10 20 k0

· · ·10 20k0 (k � 1)0

Figure 3: The stencil (does not care where cells are with re-
spect to the start of the array; it only cares about where they
are with respect to one another. The shift matrix - does not
a�ect cells’ relative locations, so it does not change the val-
ues of the updated cells.

Given that we have periodic boundary conditions and the up-
date rule is �xed across space, the action of our stencils must be
invariant under spatial shifts of the grid values. As shown in Fig-
ure 3, cyclically permuting 0C and then applying (should give the
exact same result as applying (and then cyclically permuting 0C+1.
In symbols, we have (- = -(, which implies that (must be a
circulant matrix [61], satisfying ([8, 9] = ([8 � 9, 0]. If we name
these elements ([8 � 9, 0] = B8�9 , we can write out the full update
equation as follows:

266666664

0C+1 [0]
0C+1 [1]

...
0C+1 [# � 2]
0C+1 [# � 1]

377777775
0C+1

=

26666666664

B0 B#�1 · · · B2 B1
B1 B0 B#�1 B2
... B1 B0

. . .
...

B#�2
. . .

. . . B#�1
B#�1 B#�2 · · · B1 B0

37777777775
(

266666664

0C [0]
0C [1]

...
0C [# � 2]
0C [# � 1]

377777775
0C

.

A example of this matrix with concrete numbers is constructed
in Appendix A.2.

A useful representation of circulant matrices is found through
the right shift matrix. Notice that powers of - have the property
(-:0C) [8] = 0C [8 � :], which means that their matrix elements are
given by (-:

) [8, 9] = X8, 9+: . Thus powers of - allow us to pick
out the individual diagonals that appear in circulant matrices; any
circulant matrix (can be expanded in terms of shift operators as

(=
’
8

([8, 0]- 8 ,

the proof of which is given in Appendix A.6.
6Under periodic boundary conditions, shifting the array is equivalent to rotating the
array.

The above equation shows that circulantmatrices can be uniquely
speci�ed by a single one of their columns or rows. We will make
use of this fact to avoid performing redundant computations: for
all of the algorithms presented in this paper, we will store only the
�rst column of (in memory.
Reformulating the Final Data.We now turn back to the de�ni-
tion of the �nal data 0) = ()00 and the DFT matrix F . Here the
exponent) will always denote a matrix power, not a transposi-
tion. As before, the DFT matrix has elements F [8, 9] = l�8 9# , where

l# = 42c
p
�1/# is a primitive # th root of unity, and F ’s inverse

has elements F �1 [8, 9] = l8 9
/# . Since we know that F �1F is the

identity, it can make no di�erence mathematically to drop it into
our equation for the �nal data:

0) = F
�1
F() F �1F00 .

Continuing to insert identities and regrouping, we �nd that
F() F �1 = F(F �1F(F �1 · · · F(F �1 = (F(F �1)) , so we can
rewrite our equation as

0) = F
�1
(F(F �1)) F00 .

This form of the �nal data equation points to a remarkably
e�cient way of computing 0) . We �rst apply the convolution
theorem [28], which states that if (is a circulant matrix, then
F(F �1 = ⇤ is diagonal. The equation for �nal data can now be
regrouped with F(F �1 = ⇤ and F00 = G :

0) = F
�1⇤) G . (1)

This equation may appear to be more complicated than what
we started with, but really all we have done is made a change of
basis into the frequency domain and performed all actions of the
stencil there. This will now be shown to be computable with only a
couple calls to highly e�cient FFTs and some repeated squarings
of scalars.

4.1 1-D Explicit Stencil Algorithm
Let 00 [0, . . . ,# �1] be the initial 1-D spatial grid data to be acted on
with the stencil (=

Õ
8 ([8, 0]- 8 . We will impose periodic boundary

conditions; these allow us to bene�t from pushing the stencil and
initial data into the frequency domain with F(F �1 = ⇤ and F00 =
G . Our goal is to compute the �nal data

0) = ()00 = F
�1⇤) G .

The prevalent approach to �nding 0) is currently through iter-
ative applications of the stencil to �eld data, grouping ()00 into
((((· · · ((00) · · ·)) and evaluating according to parenthesization.
Here we will instead compute a power of the diagonalized stencil
(F(F �1)) = ⇤) by repeated squaring, after which we will apply
it to F00, giving us F()00, from which we can recover ()00 with
an inverse FFT.

It is shown in Appendix A.8 that we can write the elements of
the diagonal matrix ⇤ as ⇤[8, 8] = (F B) [8], where B is the column
of (that we are storing in memory, i.e. B [8] = ([8, 0]. Since F is the
DFT matrix, this means that ⇤ can be computed with a single FFT.

Blindly using repeated squaring only allows us to compute ⇤)
when) is an exact power of 2; arbitrary positive integer powers are
computed as follows. Let

Õ
8 1828 be the binary representation of) .

As we compute successive squares of ⇤, i.e. ⇤28 , we will multiply
them into a running total only if 18 = 1. Thus the �nal result will be

⇤) =
÷

8 : 18=1
⇤28 .

Since ⇤ is diagonal, elements of the large matrix power ⇤) can
be computed by taking powers of the original elements, ⇤) [8, 8] =
⇤[8, 8]) . Evaluating each of these elements in parallel will improve
the span of our algorithm.

Wrapping up, we evaluate Equation 1 as follows: we �ndG = F00
by applying FFT to the initial data, ⇤) G by elementwise multiplica-
tion, and then 0) with an inverse FFT.

We now present the PS�������1D�FFT algorithm, which e�-
ciently performs stencil computations with periodic boundary con-
ditions by transferring almost all relevant calculations to within
the frequency domain. A diagrammatic outline is shown in Figure
4, and the pseudocode is given in Figure 5.
[Step 1. FFT.] We compute (8) F(F �1 from (, and (88) F00 from
00. Since (is circulant, we know that the FFT of (’s �rst column
contains exactly the same information as F(F �1. Thus for (8)
an FFT is applied to the �rst column of (to get (’s eigenvalues;
this FFT will be computed for # points, irrespective of how many
nonzero coe�cients are present in the stencil. Note that only the
�rst column of (is needed here, which is why the rest of (is never
constructed or stored in memory. Likewise, for (88) an FFT is ap-
plied to 00.
[Step 2. Repeated Squaring.]We computeF() F �1 fromF(F �1.
Since F(F �1 is diagonal, the individual elements of F() F �1 =
(F(F �1)) can be computed in parallel by performing dlog) e se-
quential squarings for each element along the principal diagonal of
F(F �1 according to the decomposition of ⇤) given earlier.
[Step 3. Elementwise Product.] We compute F0) by taking
the product of F() F �1 and F00. As in step 2, every element of
F0) = (F() F �1) (F00) can be computed in parallel, since we are
multiplying a vector by a diagonal matrix.
[Step 4. Inverse FFT.] We now compute 0) by applying an inverse
FFT to F0) .

T������ 4.1. S������FFT�P computes the) th timestep of a stencil
computation on a periodic grid of # cells in ⇥ (# log(#))) work and
⇥ (log) + log# log log#) span.

P����. Theorem follows from bounds given in Table 3. ⇤

4.2 Generalizations
We now give overviews of some straightforward generalizations of
the 1-D algorithm given above. These greatly enhance the scope
of stencil problems our algorithm can handle, yet do not require
signi�cant conceptual work beyond what we have already pre-
sented. There are no changes in the asymptotic complexities of our
algorithm when any of these generalizations are applied.

T
Multi-Dimensional Stencils. The �rst extension of the 1-D ver-
sion of our algorithm is to support arbitrarily high dimensional
grids. The notions involved with solving across a grid of size ✓1 ⇥
· · · ⇥ ✓3 = # di�er from a 1-D grid only in that we now require
indices for every grid dimension; details on the math can be found

Stencil S FSF�1

FFT
Repeated
Squaring

Initial data a0

FFT

FaTFa0

Inverse
FFT

Final data aT

FSTF�1

Matrix
Product

(FSTF�1)(Fa0)

Evolution

Step 1 Step 2 Step 3 Step 4

Figure 4: Block diagram of our FFT-based periodic stencil
algorithm, which works for all grid sizes in all dimensions.

S������FFT�P(B,00, ✓1, . . . , ✓3 ,))

[Step 1. FFT.] From (to ⇤ = F(F�1 , from 00 to G = F00 .
(1) ⇤ M�����FFT(B)
(2) G M�����FFT(00)

[Step 2. Repeated Squaring.] From ⇤ to+ = ⇤) .
(3) + Array of size ✓1 ⇥ · · · ⇥ ✓3 initialized with all 1s
(4) ' Array of size ✓1 ⇥ · · · ⇥ ✓3 initialized with all) s

(5) Squares ⇤ BWe’ll store ⇤2: in Squares
(6) parallel for 91 0 to ✓1 � 1 do

· · ·

(7) parallel for 93 0 to ✓3 � 1 do
(8) for : 0 to log) do
(9) if ' [91 .. 93] is odd then B Picking out binary representation of)
(10) + [91 .. 93] + [91 .. 93] ⇥ Squares[91 .. 93]

(11) ' [91 .. 93] ' [91 .. 93] � 1
(12) ' [91 .. 93] ' [91 .. 93]/2
(13) Squares[91 .. 93] Squares[91 .. 93]

2

[Step 3. Convolution.] From+ = ⇤) and G to ~ = ⇤) G .
(14) ~ Array of size ✓1 ⇥ · · · ⇥ ✓3
(15) parallel for 91 0 to ✓1 � 1 do

· · ·

(16) parallel for 93 0 to ✓3 � 1 do
(17) ~ [91 .. 93] + [91 .. 93] ⇥ G [91 .. 93]

[Step 4. Inverse FFT.] From ~ = F0) to 0) .
(18) 0) I�������M�����FFT(~)

Figure 5: Arbitrary dimensional periodic stencil algorithm. The
M�����FFT algorithm takes FFTs over every index of the array passed
to it. Lines 6-13 compute⇤[91 .. 93]) , where) need not be an exact power
of two.

Step(s))1)1
1,4 ⇥ (# log#) ⇥ (log# log log#)

2 ⇥ (# log)) ⇥ (log# + log))
3 ⇥ (#) ⇥ (log#)

Table 3: Work and span complexity bounds for steps 1-4 of
S������FFT�P. Note that we include thread spawning time
from the Binary Forking model in these bounds.

in Appendix A.1. For our complexity analysis we assume that
3 = ⇥ (1).
Implicit Stencils. The second way we expand the set of problems
our algorithm can handle is by giving amethod for handling implicit
stencils [80]. This is accomplished by mapping them to mathemati-
cally equivalent explicit stencils, as explained in Appendix A.4.

Supporting implicit stencils is a signi�cant capability in a stencil
solver, as implicit stencils can often be designed to be more stable
than explicit ones.
Vector-Valued Fields. The third way we extend our algorithms
is to handle vector-valued �elds, i.e. �elds where the grid data for
each cell is an array of �xed length instead of being just a scalar.
We allow a set of scalar-valued �elds {0 (8)C } to evolve according to

linear stencils as

0 (8)C+1 =
’
9

((8, 9)0 (9)C ,

where ((8, 9) is a circulant stencil matrix describing how 0 (8)C+1 is
dependent on 0 (9)C . The details are given in Appendix A.5. It is
noteworthy that if there are a constant number of scalar �elds 0 (8)C
making up our grid data, then the complexity of �nding the �nal
data is only a constant factor greater than if the �eld were scalar.

Vector-valued grid data allows us to supportmuch larger classes
of stencils, such those that are a�ne or require data from multiple
prior timesteps.

5 APERIODIC STENCIL ALGORITHM
In this section we will �rst consider how introducing aperiodicity
into our boundary conditions leads to changes in the �nal data,
then present an algorithm for computing the values of the speci�c
cells that are a�ected by the aperiodic boundary conditions.

5.1 The E�ect of Aperiodicity
Often numerical computations require boundary conditions that
are not periodic [15, 20, 73, 98, 129], including well-known classes
such as Dirichlet [145] and Von Neumann [90], as well as more
exotic options [125]. Indeed, the set of potential aperiodic boundary
conditions is extremely diverse. Here wewill not attempt to describe
how given aperiodic boundary conditions change the �nal data,
but rather what sections of the �nal data are changed.

The set of cells that are dependent on values from the grid
boundary are called the boundary’s region of influence (ROI)
[13, 35, 96, 139]. It is common for the boundary’s region of in�u-
ence to be smaller than the entire spatial grid, as would be the case
in a simulation of a large spatial region for a small time period.
A cell’s in�uence on its neighbors is mediated by the stencil, so
the larger the stencil is the fewer timesteps it takes for one cell to
in�uence the whole grid.

Consider a stencil with radius f , i.e. one which only uses values
from a neighborhood extending up to f cells away from its center.
After one timestep of a computation based on this stencil, the set of
cells which are in�uenced by aperiodic boundary conditions will be
exactly those that are at distance f or less from the grid boundary.
After) timesteps, all cells within distance f) of the boundary
will be in�uenced. This suggests that we should visualize how the
boundary’s region of in�uence grows by drawing a diagram in two
variables (as in Figure 6), one being time and the other distance
from the boundary. Figures of this type will be of signi�cant use to
us while describing our aperiodic algorithm.

We now move to our aperiodic algorithm S������FFT�A, at the
core of which is R��������B�������, a divide and conquer tech-
nique for correcting the values of the cells in the boundary’s region
of in�uence.

T
im

es
te
p
s

Distance from boundary

Boundary’s Region of Influence

�T0

T

Figure 6: The growth of the boundary’s region of in�uence
over time. Here we assume a stencil that uses f cells in each
direction.

Distance from boundary

T
im

es
te
p
s

A

B

C

Boundary’s Region

C’s Domain of Dependency

boundary

of Influence

Figure 7: The set of cells relevant to our divide and conquer
approach to solving for the boundary’s region of in�uence.
We start with set �, from which we will compute set ⌫ as an
intermediate step, after which we will solve for ⇠.

Distance from boundary

T
im

es
te
p
s

A1

B1

C1 C2

B2 B3

A2

0
0

T/2

T

�T/2 �T 3�T/2 2�T

Figure 8: Additional detail on the regions already speci�ed
in Figure 7. The dark regions show areas that will be dealt
with as R��������B������� subproblems; the light areas
can be handled by S������FFT�P.

5.2 Correcting Final Values in the Boundary’s
Region of In�uence

Our aperiodic algorithm breaks up the �nal data into two regions
which will be computed with di�erent methods. The interior re-
gion consists of cells whose values will not change no matter what
boundary conditions we apply. In particular, periodic boundary
conditions would not change the value of these cells. This region
will thus be dealt with by using our e�cient periodic algorithm.

The exterior region is the boundary’s region of in�uence, made up
of cells that are dependent on boundary values.

Since we already know how to solve for the interior region, let
us turn our attention to the boundary’s region of in�uence, which
we solve for with a recursive divide and conquer approach. The
core idea here will be to perform a time-cut to reduce the number
of cells a�ected by the aperiodic boundary; by splitting one large
step into two smaller steps we will be able to use the periodic solver
on more space, at the cost of having to compute cell values at an
intermediate time.

Figure 7 diagrammatically shows how R��������B�������
solves for the boundary region. First all values in region � are
used to solve for region ⌫, then region ⌫ is used to solve for region
⇠ . These regions can be much smaller than the entire spatial grid,
since even though they wrap around the entirety of the boundary,
they are only a �xed number of cells thick.

Suppose again that we are performing computations with a
stencil of radius f . Then set⇠ is the boundary’s region of in�uence
after) timesteps, which includes all cells within distance f) of the
boundary. Since we want to be able to fully compute ⇠ from ⌫ and
⌫ from �, we must continue to extend our regions as we go) /2
steps back for each; ⌫ includes everything within 3f) /2 cells of
the boundary, and � includes everything out to a distance of 2f) .
We now re�ne our naming of these regions, de�ning subregions
�1,�2,⌫1,⌫2,⌫3,⇠1, and ⇠2, whose sizes and locations are shown
in Figure 8.

The language we have used up to this point has been dimension-
free, in that every statement made has been independent of the
number of dimensions in the spatial grid we are performing com-
putations on. Now, to make clear the regions shown in Figures 7
and 8, we will consider what exactly they look like when we make
a choice of spatial grid dimension.

In 1-D, when the spatial grid 0[0, . . . ,# � 1] is just a linear
array of # cells, the boundary lies to the left of 0[0] and to the
right of 0[# � 1]. The set of all cells within distance 3 of the 1-
D grid’s boundary is given by the union of 0[0, . . . ,3 � 1] and
0[# � 3, . . . ,# � 1]. For example, the region ⇠ is the union of
0[0, . . . ,f) � 1] and 0[# � f) , . . . ,# � 1].

In 2-D things become more complicated, since the boundary of
the=1⇥=2 spatial grid 0[0..(=1�1), 0..(=2�1)] lies on the outside of
the connected set of cells made up of the 1-D subarrays 0[0, 0..(=2�
1)], 0[=1 � 1, 0..(=2 � 1)], 0[0..(=1 � 1), 0], and 0[0..(=1 � 1),=2 � 1].
The set of all cells within distance 3 of the 2-D grid’s boundary is
the union of 0[0..(3�1), 0..(=2�1)], 0[(=1�3)..(=1�1), 0..(=2�1)],
0[0..(=1 � 1), 0..(3 � 1)], and 0[0..(=1 � 1), (=2 �3) ..(=2 � 1)]. Note
that we are listing some cells twice here, speci�cally those in the
corners of the grid.

Nowwe are prepared to describe in detail7 the R��������B�����
��� algorithm for computing the correct values of cells in the
boundary’s region of in�uence. Consider again Figure 8. The R��
�������B������� algorithm solves for two time-slices which are
done sequentially. Each time-slice is divided into two distinct re-
gions: one which is solved for with a periodic solver, and one which
is solved for recursively. These two regions are handled in parallel.
7For brevity here we use the region names as shown in Figure 8. The reader who
would prefer to see these regions speci�ed directly in terms of their distance from the
boundary is referred to Appendix A.7.

(1) Solving for H from G. We will begin by feeding data from
region � = �1 [�2 into our periodic solver to �nd values for
region ⌫2 [⌫3. For a 3-D grid this will take 23 calls to the
periodic solver. At the same time (in parallel), a recursive call is
made to the R��������B������� algorithm with �1 as input,
writing the output to ⌫1. This completes all the values of ⌫.

(2) Solving for I from H. Now ⌫ = ⌫1 [⌫2 [⌫3 is fed into our
periodic algorithm to �nd⇠2, while in parallel we feed ⌫1 [⌫2
into another recursive call to R��������B�������, which will
�nd the values for ⇠1. Thus all cell values in ⇠ = ⇠1 [⇠2 are
computed.

The base cases in recursion occur when the only cells to be com-
puted are within a constant distance of the boundary. In this case a
standard looping algorithm is applied. Theoretically we can set the
cuto� distance to any constant greater than or equal to f , but in
practice the constant is chosen such that the cost of computing the
base case is balanced with the cost of further recursion. See Figure
9 for pseudocode.

Combining our periodic solver for the interior region with this
recursive solver for the boundary region gives our aperiodic algo-
rithm S������FFT�A. A diagrammatic outline of S������FFT�A is
given in Figure 9, and pseudocode is given in Figure 9.

T������ 5.1. The S������FFT�A algorithm can compute the) th
timestep of a stencil computation on a grid of size # with aperiodic
boundary conditions in ⇥ (1) log(1)) log) + # log#) work and
⇥ () log1 + log# log log#) span, where1 is the number of grid cells
de�ned by boundary conditions.

The proof is presented in Appendix A.3.
We believe that the bounds we achieve here for work and span

are near-optimal (within a polylogarithmic factor) for fully gen-
eral aperiodic stencil problems. This is because speci�c choices of
nonlinear boundary conditions in combination with linear stencils
can result in arbitrary cellular automata being embedded into the
boundary of the spatial grid. These automata can be computation-
ally universal (any computation can be mapped to them in a way
that preserves time and space complexity), hence the ⇥

⇣
)# 1�1/3

⌘
(size of the space-time boundary) component in our work complex-
ity and the ⇥ ()) component in our span complexity.

6 EXPERIMENTS
In this section, we present the experimental evaluation of our al-
gorithms as compared with the state-of-the-art stencil codes. Our
experimental setup is shown in Table 4.

Cores 68 cores per socket, 1 socket (total: 68 threads)
Cache sizes L1 32 KB, L2 1 MB, L3 16 GB (shared)KN

L

Memory 96 GB DDR RAM
Cores 24 cores per socket, 2 sockets (total: 48 cores)
Cache sizes L1 32 KB, L2 1 MB, L3 33 MBSK

X

Memory 144GB /tmp partition on a 200GB SSD
Compiler Intel C++ Compiler (ICC) v18.0.2
Compiler �ags -O3 -xhost -ansi-alias -ipo -AVX512

Parallelization OpenMP 5.0
Thread a�nity GOMP_CPU_AFFINITY

Table 4: Experimental setup on the Stampede2 Supercomputer [5]
usingKnights Landing (KNL) Intel XeonPhi 7250 and Skylake (SKX)
Intel Xeon Platinum 8160 nodes.

S������FFT�A(B,f,00, ✓0, . . . , ✓3 ,))

(1) � f) /2
(2) result Array of size ✓1 ⇥ · · · ⇥ ✓3
(3) parallel (1): B Interior
(4) center S������FFT�P(B,00, ✓0, . . . , ✓3 ,))
(5) result[2� < dist] center[2� < dist]
(6) parallel (2): B Boundary
(7) boundary R��������B�������(B,f,00, ✓0, . . . , ✓3 ,))
(8) result[0 < dist 2�] boundary

R��������B�������(B,f,00, ✓0, . . . , ✓3 ,))

(1) � f) /2
[Base Case.]

(2) if) < cuto� then
(3) Iteratively solve for cells within 2� of the boundary at time)
(4) return

[Step 1.]
(5) parallel (1): B Interior
(6) �12 00 [0 < dist 4�]
(7) ⌫23 S������FFT�P(B,�12, ✓1, . . . , ✓3 ,) /2)
(8) result[� < dist 3�] ⌫23 [� < dist 3�]
(9) parallel (2): B Boundary
(10) �1 00 [0 < dist < 2�]
(11) ⌫1 R��������B�������(B,�1, ✓1, . . . , ✓3 ,) /2)
(12) result[0 < dist �] ⌫1
(13) ⌫123 result[0 < dist 3�]

[Step 2.]
(14) parallel (1): B Interior
(15) ⇠2 S������FFT�P(B,⌫123, ✓1, . . . , ✓3 ,) /2)
(16) result[� < dist 2�] ⇠2 [� < dist 2�]
(17) parallel (2): B Boundary
(18) ⌫12 ⌫ [0 < dist 2�]
(19) ⇠1 R��������B�������(B,⌫12, ✓1, . . . , ✓3 ,) /2)
(20) result[0 < dist �] ⇠1
(21) ⇠12 result[0 < dist 2�]

Figure 9: The S������FFT�A algorithm and the R���������
B������� subroutine. The parallel keyword is used here
tomark blocks of code which are run on separate processes.
Throughout both listings we use a dimension-free indexing
notation where �[0 < dist 1] represents the set of cells in
� that have distance to the boundary in the range (0,1].

Benchmarks and Numerical Accuracy. For benchmarks we use
a variety of stencil problems including thosewith periodic and aperi-
odic boundary conditions and across 1, 2, and 3 dimensions. Our test
stencils, primarily drawn from [112] and listed with details in Table
5, are the following: heat1d, heat2d, seidel2d, jacobi2d, heat3d,
and 19pt3d (called poisson3d in [112]). We test two primary as-
pects of our algorithms: numerical accuracy and computational
complexity.

To evaluate numerical accuracy we use max relative error against
analytical solutions for the heat equation in 1, 2, and 3 dimensions.
This is shown in Table 6 against a naïve iterative looping imple-
mentations which is numerically equivalent to PLuTo. We see that
our algorithms show no signi�cant di�erence in loss from �oating
point accuracy when compared against standard looping codes.

Dim Benchmark Stencil points (U) Stencil radius (f)
1D heat1d 3pts 1
2D heat2d 5pts 1

seidel2d 9pts 1
jacobi2d 25pts 2

3D heat3d 7pts 1
19pt3d 19pts 2

Table 5: Benchmark problems with the number of points in
the corresponding stencils.

Stencil Grid size Timesteps Our algorithm Looping code
heat1d 1, 000 106 5.71632 ⇥ 10�6 5.71637 ⇥ 10�6

heat2d 500 ⇥ 500 2.5 ⇥ 105 2.73253 ⇥ 10�5 2.73253 ⇥ 10�5

heat3d 200 ⇥ 200 ⇥ 200 4 ⇥ 104 1.72981 ⇥ 10�4 1.72981 ⇥ 10�4

Table 6: Numerical accuracy comparison between our algorithms
and looping code. Our analytical solutions were chosen so that the
truth values fell within [0.5, 2] everywhere in the solution domain.

Benchmark Parallel runtime in seconds Speedup factor
PLuTo Our algorithm over PLuTo

Stencil #) KNL SKX KNL SKX KNL SKX

Pe
rio

di
c

heat1d 1, 600, 000 106 79 19 0.25 0.03 1754.7 759.6
heat2d 8, 000 ⇥ 8, 000 105 1,437 222 0.48 0.61 3,025.0 367.0
seidel2d 8, 000 ⇥ 8, 000 105 500 808 0.48 0.64 1,032.7 1268.6
jacobi2d 8, 000 ⇥ 8, 000 105 2,905 1017 0.48 0.68 6,084.7 1502.1
heat3d 800 ⇥ 800 ⇥ 800 104 816 1466 4.98 5.48 163.9 267.3
19pt3d 800 ⇥ 800 ⇥ 800 104 141 158 4.84 5.78 29.1 27.3

A
pe
rio

di
c Ex
pe
rim

en
t1

heat1d 1, 600, 000 106 50 35 5.85 6.69 8.5 5.2
heat2d 8, 000 ⇥ 8, 000 105 333 530 143.25 151.37 2.3 3.5
seidel2d 8, 000 ⇥ 8, 000 105 345 601 145.42 132.97 2.4 4.5
jacobi2d 8, 000 ⇥ 8, 000 105 567 456 249.04 273.46 2.3 1.7
heat3d 800 ⇥ 800 ⇥ 800 104 513 763 395.10 605.89 1.3 1.3
19pt3d 800 ⇥ 800 ⇥ 800 104 645 848 425.22 616.71 1.5 1.4

Ex
pe
rim

en
t2

heat1d 1, 600, 000 # 32 23 5.63 6.87 5.7 3.3
heat2d 8, 000 ⇥ 8, 000

p
210 312 92.78 121.70 2.3 2.6

seidel2d 8, 000 ⇥ 8, 000
p
228 375 91.59 121.46 2.5 3.1

jacobi2d 8, 000 ⇥ 8, 000
p
372 281 151.31 198.00 2.5 1.4

heat3d 800 ⇥ 800 ⇥ 800 3p# 45 71 32.29 50.52 1.4 1.4
19pt3d 800 ⇥ 800 ⇥ 800 3p# 61 71 33.82 52.27 1.8 1.4

Table 7: Performance summary of parallel stencil algo-
rithms on a KNL/SKX node.

PLuTo-Generated Stencil Programs. The tiled looping imple-
mentations were generated by PLuTo [3] – the state-of-the-art tiled
looping code generator. The two main types of tiling methods used
for performance comparison are: standard and diamond, whose
tiles have the shapes of parallelograms and diamonds, respectively.
In the plots, we use diamond and square symbols to denote diamond
and standard, respectively. These parallel implementations were
run on 68-core KNL and 48-core SKX nodes. The tile sizes were
selected via an autotuning phase, exploring sizes from {8, 16, 32}
for the outer dimensions and from {64, 128, 512} for the inner-most
dimension to ensure that enough vectorization and multithreaded
parallelism were exposed by PLuTo, while ensuring the tile foot-
print neared the cache size.

Our FFT-Based Stencil Programs. Implementations of our FFT-
based algorithms use FFT implementations available in the Intel
Math Kernel Library (Intel MKL) [1]. In the plots, we use the triangle
symbol to represent our FFT-based implementations. The base case
sizes used for 1d, 2d, 3d are 128, 64 ⇥ 64, 16 ⇥ 16 ⇥ 16, respectively.

6.1 Periodic Stencil Algorithms
Figure 11 shows runtime, speedup (w.r.t. PLuTo), and scaling plots
for our FFT-based periodic stencil algorithm on Intel KNL nodes
with Figure 14 in the Appendix showing additional runtime plots.
Figure 14 also includes the same set of plots for SKX nodes. We iden-
tify the implementations of our algorithms in the plots by pre�xing
the stencil name with “FFT” while PLuTo-generated implementa-
tions are identi�ed by a “PLuTo” pre�x.

For 1D, 2D, and 3D stencils we keep the value of # �xed to
1.6M, 8 ⇥ 8 , and 800⇥ 800⇥ 800, respectively, and vary) , where
1M= 106 and 1K= 103.

In all of our 1D and 2D periodic stencil experiments diamond ran
faster than standard while in case of 3D standard outperformed
diamond. When # is �xed, performance of our algorithm improved

over PLuTo’s as) increased, signi�cantly outperforming PLuTo for
large) , e.g., for seidel2d our algorithm ran around 6000⇥ faster
on KNLwhen) = 105. This increase in speedup with the increase of
) follows from theoretical predictions. Indeed, theoretical speedup
of our algorithm over any existing stencil algorithms is ⇥ () /log))
when # is �xed (see Table 1). Hence, the speedup of our algorithm
w.r.t. PLuTo-generated codes increased almost linearly with) when
was kept �xed.

Figures 11(E) and 14(G8) show the scalability of our algorithm
on KNL and SKX nodes, respectively, when the number of threads
is varied. Our implementations are highly parallel and should scale
accordingly. However, we use FFT computations that are memory
bound – they perform only ⇥ (# log#) work on an input of size
⇥ (#) and thus have very little data reuse8. We believe that as a
result of this issue, our programs do not scale well beyond 32 threads
on KNL and 16 threads on SKX. Indeed, we observe that the FFT
and the inverse FFT computations are the scalability bottlenecks of
our algorithms.

6.2 Aperiodic Stencil Algorithms
We performed two types of experiments for aperiodic stencils: (1)
grid size # was kept �xed while time) was varied, and (2) grid
size was set to # 1/3

⇥ · · · ⇥ # 1/3 and) = # 1/3 for 3 dimensions,
and # was varied.

Figure 12 shows the runtime (w.r.t. PLuTo) plots of our aperiodic
stencil algorithm for both experiments on KNL. Figure 15 in the
Appendix includes additional runtime plots for both experiments
on KNL. Figures 16 and 17 in the Appendix show the corresponding
plots on SKX for Experiments 1 and Experiment 2, respectively.

In Experiment 1, diamond outperformed standard for all sten-
cils except for heat1d on both machines. Our algorithm always
ran faster than PLuTo-generated code, reaching speedup factors
of 8.5, 2.3–2.4, and 1.3–1.5 for 1D, 2D, and 3D stencils, respec-
tively, on KNL (see Table 7 for details). The corresponding �g-
ures on SKX were 5.2, 1.7–4.5, and 1.3–1.4, respectively. Theoret-
ical bounds in Table 1 imply that our algorithm will run around
⇥

⇣
1/3

/(log)# 1�1/3
)

⌘
log) factor faster than PLuTo code for

any given # and) . So, for a �xed # , the speedup factor will not
increase (may even slightly decrease) with the increase of) . The
speedup plots match this prediction.

In Experiment 2, diamond ran faster than standard for all sten-
cils except for heat1d and heat3d on KNL and heat1d on SKX.
Our algorithm ran up to 5.7, 2.3–2.5, and 1.4–1.8 factor faster than
PLuTo-generated code for 1D, 2D, and 3D stencils, respectively, on
KNL (see Table 7). The corresponding speedup factors on SKX were
3.3, 1.4–2.6, and 1.4, respectively. Our theoretical prediction for
rough speedup factor from the previous paragraph implies that our
speedup over PLuTo code will increase with the increase of# which
is con�rmed by the speedup plots for this experiment. However,
the speedup plot of heat2d, seidel2d, and jacobi2d on KNL, as
shown in Figure 12(G8) has speedup drops at # = 9000 ⇥ 9000 and
= 15000⇥ 15000. Similar performance drops are also observed on
SKX nodes (see Figure 17(E888) in the Appendix). We believe that
this happens mainly because of a known phenomenon which is the
8which is evident from their (optimal) O

�
(# /⌫) log" #

�
cache complexity with a

low temporal locality

drastic performance variations MKL su�ers from when the sizes of
the spatial grid dimensions change [78]. This performance drop is
also partly due to the changes in the base case kernel size of our
implementations resulting from the changes in the grid size.

Figure 10 and Appendix Figure 13 show the scalability plots of
our FFT-based aperiodic stencil algorithm on KNL and SKX nodes,
respectively. We used # = 1" , # = 16 ⇥16 , and # = 800⇥800⇥
800 for 1-D, 2-D, and 3-D stencils, respectively, and set) = # 1/3

for our scalability analysis, where 3 is the number of dimensions.
Our implementations show highly scalable performance on KNL
and almost similar scalability for 1D and 2D stencils on SKX.

Figure 10: Scalability of our aperiodic algorithms for Exper-
iment 2 on a KNL node.

7 CONCLUSION
In this paper, we presented a pair of e�cient algorithms based
on fast Fourier transforms for performing linear stencil com-
putations with periodic and aperiodic boundary conditions. These
are the �rst high-performing > (#))-work9 stencil algorithms of
signi�cant generality for computing the spatial grid values at the
�nal timestep from the input grid without explicitly generating
values for most of the intermediate timesteps. Our stencil algo-
rithms improve computational complexity and parallel running
time bounds over the state-of-the-art stencil algorithms by a poly-
nomial factor. Experimental results show that implementations of
our algorithms run orders of magnitude faster than state-of-the-art
implementations for periodic stencils and 1.3⇥ to 8.5⇥ faster for
aperiodic stencils, while exhibiting no signi�cant loss in numerical
accuracy from �oating point arithmetic.

A few interesting problems that one could aim to solve in the fu-
ture include: (1) designing e�cient algorithms for certain classes of
nonlinear stencils and stencils with conditionals, (2) designing low-
span algorithms for aperiodic stencils, and (3) designing algorithms
to approximate inhomogenous stencils.

9# and) are the spatial grid size and the number of timesteps, respectively.

KNL Node (More plots are given in Figure 14)

(8) (88) (888)

(8E) (E)

Figure 11: Performance comparison of our FFT-based periodic algorithms with the existing best stencil programs.

KNL Node, Experiment 1 (More plots are given in Figures 15, 16, 17, 13)

(8) (88) (888)

(8E) (E) (E8)

KNL Node, Experiment 2 (More plots are given in Figures 15, 16, 17, 13)

(E88) (E888) (8G)

(G) (G8) (G88)

Figure 12: Performance comparison of our FFT-based aperiodic algorithms with the existing best stencil programs.

Figure 13: Scalability of our aperiodic algorithms for Exper-
iment 2 on an SKX node.

A APPENDIX
A.1 Supporting 3-D Spatial Grids
Throughout this section we will use arguments identical to those
given for the 1-D version of S������FFT�P, but with the modi-
�cation that whereas the stencil used and grid data used to be
indexed by an integer, they will now be indexed by a 3-D vector i =
[81, . . . , 83]. Let 00 [i] be the initial data for a grid of size ✓1⇥· · ·⇥✓3 =
to be acted on by stencil (=

Õ
i ([i, 0]- i , where- i = - 81

1 · · ·- 83
3

is a shift operator whose action is given by (-k0) [i] = 0[i � k]

and whose matrix elements are -k
[i, j] = Xi,j+k . We have periodic

boundary conditions, so - 9 can be viewed as cyclically permut-
ing the 9th dimension. Future timesteps are de�ned with 0C+1 =
(0C = (C+100, where matrix multiplications are contractions over
the internal vector indices, ((0) [i] =

Õ
j ([i, j]0[j].

As with the 1-D case, (is a circulantmatrix, so we can apply DFTs
over every spatial dimension to diagonalize it. These DFT matrices
together make up an operator with elements given by F [i, j] =
l�81 91✓1

· · ·l�83 93✓3
and F �1 [i, j] = l81 91

✓1
· · ·l83 93

✓3
/(✓1 · · · ✓3). Note of

course that by “diagonal” herewemean that⇤[i, j] = (F(F �1) [i, j] =
0 for all i < j. The proof that ⇤ can be found by applying a single
M�����FFT (see Figure 5) over the �rst column of (is given in Ap-
pendix A.8. Here we only restate the result that ⇤[i, i] = (F B) [i],
where B [i] = ([i, 0].

Switching from 1-D to3-D results in the version of the S������FFT�
P algorithm whose pseudocode given in Figure 5 in the main body
of this paper. Since M�����FFT is of equivalent work, span, and
serial cache complexity to a standard FFT [47], this version of the
S������FFT�P algorithm is of identical complexity to that already
shown in Theorem 4.1.

A.2 Stencil Matrix Example
Suppose we have a 1-D periodic spatial grid of 4 cells, and we want
to act on it with a stencil (that computes the new value of a cell
according to 0C+1 [8] = �20C [8 � 1] +0C [8] + 30C [8 + 1]. We can write
out the update equation in full as

2666664

0C+1 [0]
0C+1 [1]
0C+1 [2]
0C+1 [3]

3777775
0C+1

=
266664
1 3 0 �2
�2 1 3 0
0 �2 1 3
3 0 �2 1

377775
(

2666664

0C [0]
0C [1]
0C [2]
0C [3]

3777775
0C

.

A.3 Proof of Theorem 5.1
P����. The complexities for S������FFT�P have already been

given in Theorem 4.1, so here we need only derive the complexities
for the R��������B������� computation algorithm.

Let the spatial grid be of size ✓1 ⇥ · · · ⇥ ✓3 = # , with 3 = ⇥ (1).
We bound the number of cells in the boundary’s region of interest
by 1f) , where 1 = 2# (✓�11 + · · · + ✓�13) = ⌦

⇣
1�1/3

⌘
is the size of

the spatial grid’s boundary and f = ⇥ (1) is the size of the stencil
being applied.
[Work.] At every stage of the divide and conquer algorithm we
make two recursive calls and apply the periodic solver to ⇥ (1))
grid cells. This gives us the recurrence

)1 ()) =

(
⇥ (1)) < 2,

2)1 () /2) + ⇥ (1) log(1)))) � 2,

for some positive constant 2 . This gives)1 ()) = ⇥ (1) log(1))
log)). Taking into account the ⇥ (# log()#)) work that will be
done by the periodic solver for the interior region gives a �nal work
bound of ⇥ (1) log(1)) log) + # log#).
[Span.] At every level of recursion, both calls to R��������B�����
��� are done in sequence, but in parallel with the ⇥ (1) associated
periodic solver calls. The recurrence for span is thus

)1 ()) = max{2)1 () /2), 2 0 log) log log) } + ⇥ (log1) ,

where 2 0 = ⇥ (1). This gives)1 ()) = ⇥ () log1), and incorporat-
ing the ⇥ (log) + log# log log#) span from the periodic solver
across the interior region gives a �nal bound of⇥ () log1 + log# log log#)).

⇤

A.4 Supporting Implicit Stencils
Here we show how to extend S������FFT�P to handle stencils which
depend implicitly on �eld data from the timestep which is being
computed. This will be done by computing a pseudoinverse after
diagonalizing the implicit part of the stencil.

Let (and & be explicit stencils, and suppose we wish to solve
a stencil problem with update equation &0C+1 = (0C . First we
diagonalize F&F �1 = ⇤& and F(F �1 = ⇤(by pushing them to
the frequency domain, after whichwewill take the pseudoinverse of
⇤& , de�ned as⇤+

& [8, 8] = ⇤& [8, 8]�1 if⇤& [8, 8] < 0, and 0 otherwise.
Now we �nd a new diagonalized stencil ⇤' = ⇤+

&⇤(. This new
stencil ' has the following property: if 0C+1 = '0C , then &0C+1 =
(0C .

Thus we can evolve data according to ', and the evolved data
will satisfy the original implicit stencil equation.

A.5 Supporting Vector Valued Fields
Here we show how to alter our periodic algorithm to handle vector-
valued �elds, i.e. �elds where the grid data for each cell is an array
of �xed length instead of being just a scalar. Consider a set of
scalar-valued �elds {0 (8)C } which evolve according to linear stencils
as

0 (8)C+1 =
’
9

((8, 9)0 (9)C ,

KNL Node

(8) (88) (888)

SKX Node

(8E) (E) (E8)

(E88) (E888) (8G)

(G) (G8)

Figure 14: Performance comparison of our FFT-based periodic algorithms with the existing best stencil programs.

where ((8, 9) is a circulant stencil matrix describing how 0 (8)C+1 is
dependent on 0 (9)C . As in the scalar-�eld case, we can diagonalize
all the stencils ((8, 9) by moving them to the frequency domain.

Since we now have more than one stencil, we have to revisit our
treatment of sequential squaring. Let {' (8, 9) } be a set of stencils
which evolves 0C forward A timesteps to 0C+A ,

0 (8)C+A =
’
9

' (8, 9)0 (9)C .

We can �nd a new set of stencils {& (8, 9)
}which evolve data forward

2A timesteps by reading them o� of
’
9

& (8,:)0 (:)C = 0 (8)C+2A =
’
9

' (8, 9)0 (9)C+A =
’
9

' (8, 9)
’
:

' (9,:)0 (:)C .

This gives the pleasing result that

& (8,:) =
’
9

' (8, 9)' (9,:) ,

KNL Node, Experiment 1

(8) (88) (888)

KNL Node, Experiment 2

(8E) (E) (E8)

Figure 15: Performance comparison of our FFT-based aperiodic algorithms with the existing best stencil programs.

so all we have to do to support vector-valued �elds is to swap out
our sequential squaring of ⇤ with a sequential squaring of a matrix
of stencils.

Furthermore, when there are only a constant number of scalar
�elds {0 (8)C } that make up our grid data, the computational com-
plexity of �nding {& (8, 9)

} di�ers only by a constant factor from
squaring ⇤ in our scalar-�eld version of the algorithm.

As an example of what can be done with vector-valued �elds,
suppose we want to implement an a�ne stencil �0C = (0C + 2 on
some originally scalar �eld, where (is a linear stencil and 2 is a
constant. We could then add a spatial �eld (making the underlying
data consist of vectors with 2 elements each) and de�ne 0 (1)0 = 2 ,
((1,1) = ((0,1) = � , ((1,0) = 0, and ((0,0) = �. This realized the
behavior of the a�ne stencil on 0 (0)C .

A.6 Proof of Shift Matrix Decomposition of
Circulant Matrices

Let (be a circulant matrix, and let - be the right shift matrix. Then
for any vector 0, we have

((0) [8] =
’
9

([8, 9]0[9] =
’
9

([8 � 9, 0]0[9]

=
’
9

([9, 0]0[8 � 9] =
’
9

([9, 0] (- 90) [8]

= ©≠
´
©≠
´
’
9

([9, 0]- 9 ™Æ
¨
0
™Æ
¨
[8],

which shows that (=
Õ
8 ([8, 0]- 8 .

A.7 ✓-shell Spatial Grid Decomposition
In the main body of this paper we assume that stencils with some
radius f use the values of cells at distance f in any particular direc-
tion. However, this is not necessarily the case; one could imagine
a stencil that requires a large number of values along one dimen-
sion and only a few along another. Upwind stencils also break this
pattern, requiring values from very asymmetric neighborhoods of
cells.

The concept of region of in�uence used in our derivation of
R��������B������� is itself a su�cient basis for de�ning the
regions �1,2,⌫1,2,3, and ⇠1,2 shown in Figure 8. Let us de�ne an
✓-shell of the boundary of a spatial grid to be the spatial region
consisting of all cells that enter the boundary’s region of in�uence
after exactly ✓ timesteps. Obviously, there can be only one time ✓
when a cell begins to be in�uenced by the boundary; the set of all
✓-shells thus �ll the spatial grid without overlapping one another.

To generalize the regions shown in Figure 8 to those for arbi-
trary stencils, all we have to do is switch the interpretation of the
horizontal axis from “distance” to “✓” and scale it by setting f = 1.
This yields an algorithm that is more e�cient for upwind schemes
and other biased stencils.

A.8 Proof of Eigenvalue-FFT Relation
Expanding the diagonal matrix of eigenvalues F�F �1 = ⇤ directly
gives us

SKX Node, Experiment 1

(8) (88) (888)

(8E) (E) (E8)

(E88) (E888) (8G)

Figure 16: Performance comparison of our FFT-based aperiodic algorithms with the existing best stencil programs.

⇤[8, 8] = (F�F �1) [8, 8] = ©≠
´
F

©≠
´
’
9

�[9, 0]- 9 ™Æ
¨
F
�1™Æ

¨
[8, 8]

=
’
9

�[9, 0] (F- 9
F
�1
) [8, 8]

=
’
9

�[9, 0]
’
:

’
✓

l�8✓# X✓,:+9l
:8
/#

=
’
9

�[9, 0]
’
:

l�8 (:+9)# l:8
/# =

’
9

l�8 9# �[9, 0]

= (F�) [8, 0] = (F0) [8],

where in the last line 0 is the �rst column of �.

SKX Node, Experiment 2

(8) (88) (888)

(8E) (E) (E8)

(E88) (E888) (8G)

Figure 17: Performance comparison of our FFT-based aperiodic algorithms with the existing best stencil programs.

REFERENCES
[1] Intel math kernel library. https://software.intel.com/content/www/us/en/

develop/tools/math-kernel-library.html, Intel MKL.
[2] Llvm framework for high-level loop and data-locality optimizations. https:

//polly.llvm.org/, LLVM MKL.
[3] An automatic parallelizer and locality optimizer for a�ne loop nests. http:

//pluto-compiler.sourceforge.net/, Pluto.
[4] The polyhedral compiler collection. http://web.cs.ucla.edu/~pouchet/software/

pocc/, PoCC.
[5] The stampede2 supercomputing cluster. https://www.tacc.utexas.edu/systems/

stampede2, Stampede2.
[6] V. Acary and B. Brogliato. Implicit euler numerical scheme and chattering-free

implementation of sliding mode systems. Systems & Control Letters, 59(5):284–
293, 2010.

[7] O. Andreussi, I. Dabo, and N. Marzari. Revised self-consistent continuum
solvation in electronic-structure calculations. The Journal of chemical physics,
136(6):064102, 2012.

[8] H. Asgharzadeh and I. Borazjani. A newton–krylovmethod with an approximate
analytical jacobian for implicit solution of navier–stokes equations on staggered
overset-curvilinear grids with immersed boundaries. Journal of computational
physics, 331:227–256, 2017.

[9] A. Ashra�zadeh, C. Devaud, and N. Aydemir. A jacobian-free newton–krylov
method for thermalhydraulics simulations. International Journal for Numerical
Methods in Fluids, 77(10):590–615, 2015.

[10] A. Atangana and J. J. Nieto. Numerical solution for the model of rlc circuit
via the fractional derivative without singular kernel. Advances in Mechanical
Engineering, 7(10):1687814015613758, 2015.

[11] R. Avissar and R. A. Pielke. A parameterization of heterogeneous land surfaces
for atmospheric numerical models and its impact on regional meteorology.
Monthly Weather Review, 117(10):2113–2136, 1989.

[12] V. Bandishti, I. Pananilath, and U. Bondhugula. Tiling stencil computations to
maximize parallelism. In International Conference on High Performance Comput-
ing, Networking, Storage and Analysis, pages 1–11, 2012.

[13] S. L. Barnes. A technique for maximizing details in numerical weather map
analysis. Journal of Applied Meteorology and Climatology, 3(4):396–409, 1964.

[14] T. J. Barth and H. Deconinck. High-order methods for computational physics,
volume 9. Springer Science & Business Media, 2013.

[15] J. H. Beggs, R. J. Luebbers, K. S. Yee, and K. S. Kunz. Finite-di�erence time-domain
implementation of surface impedance boundary conditions. IEEE Transactions
on Antennas and propagation, 40(1):49–56, 1992.

[16] M. A. Bender, E. D. Demaine, R. Ebrahimi, J. T. Fineman, R. Johnson, A. Lincoln,
J. Lynch, and S. McCauley. Cache-adaptive analysis. In ACM Symposium on
Parallelism in Algorithms and Architectures, pages 135–144, 2016.

[17] M. A. Bender, R. Ebrahimi, J. T. Fineman, G. Ghasemiesfeh, R. Johnson, and
S. McCauley. Cache-adaptive algorithms. In ACM-SIAM Symposium on Discrete
Algorithms, 2014.

[18] M. Benzi and G. H. Golub. A preconditioner for generalized saddle point
problems. SIAM Journal on Matrix Analysis and Applications, 26(1):20–41, 2004.

[19] M. Benzi, M. Ng, Q. Niu, and Z. Wang. A relaxed dimensional factorization
preconditioner for the incompressible navier–stokes equations. Journal of
Computational Physics, 230(16):6185–6202, 2011.

[20] S. Bilbao. Modeling of complex geometries and boundary conditions in �nite dif-
ference/�nite volume time domain room acoustics simulation. IEEE Transactions
on Audio, Speech, and Language Processing, 21(7):1524–1533, 2013.

[21] J. Blazek. Computational �uid dynamics: principles and applications. Butterworth-
Heinemann, 2015.

[22] G. E. Blelloch, J. T. Fineman, Y. Gu, and Y. Sun. Optimal parallel algorithms in
the binary-forking model. arXiv preprint arXiv:1903.04650, 2019.

[23] U. Bondhugula, A. Acharya, and A. Cohen. The pluto+ algorithm: A practical
approach for parallelization and locality optimization of a�ne loop nests. ACM
Transactions on Programming Languages and Systems, 38(3):1–32, 2016.

[24] U. Bondhugula, V. Bandishti, and I. Pananilath. Diamond tiling: Tiling techniques
to maximize parallelism for stencil computations. IEEE Transactions on Parallel
and Distributed Systems, 28(5):1285–1298, 2017.

[25] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. Pluto: A practical
and fully automatic polyhedral program optimization system. In Proceedings
of the ACM SIGPLAN 2008 Conference on Programming Language Design and
Implementation (PLDI 08), Tucson, AZ (June 2008). Citeseer, 2008.

[26] R. Borrell, O. Lehmkuhl, F. X. Trias, and A. Oliva. Parallel direct poisson
solver for discretisations with one fourier diagonalisable direction. Journal
of computational physics, 230(12):4723–4741, 2011.

[27] J. P. Boyd. Chebyshev and Fourier spectral methods. Courier Corporation, 2001.
[28] R. N. Bracewell and R. N. Bracewell. The Fourier transform and its applications,

volume 31999. McGraw-Hill New York, 1986.
[29] P. N. Brown and Y. Saad. Convergence theory of nonlinear newton–krylov

algorithms. SIAM Journal on Optimization, 4(2):297–330, 1994.

[30] G. Bruun. z-transform dft �lters and �t’s. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 26(1):56–63, 1978.

[31] R. H. Chan, J. G. Nagy, and R. J. Plemmons. Fft-based preconditioners for
toeplitz-block least squares problems. SIAM journal on numerical analysis,
30(6):1740–1768, 1993.

[32] T. F. Chan. Stability analysis of �nite di�erence schemes for the advection-
di�usion equation. SIAM journal on numerical analysis, 21(2):272–284, 1984.

[33] T. F. Chan. An optimal circulant preconditioner for toeplitz systems. SIAM
journal on scienti�c and statistical computing, 9(4):766–771, 1988.

[34] B.-F. Chen and R. Nokes. Time-independent �nite di�erence analysis of fully
non-linear and viscous �uid sloshing in a rectangular tank. Journal of Compu-
tational Physics, 209(1):47–81, 2005.

[35] E. V. Chizhonkov and M. A. Olshanskii. On the domain geometry dependence
of the lbb condition. ESAIM: Mathematical Modelling and Numerical Analysis,
34(5):935–951, 2000.

[36] D. H. Choi and W. J. Hoefer. The �nite-di�erence-time-domain method and its
application to eigenvalue problems. IEEE Transactions on Microwave Theory and
Techniques, 34(12):1464–1470, 1986.

[37] M. Christen, O. Schenk, and H. Burkhart. Patus: A code generation and autotun-
ing framework for parallel iterative stencil computations on modern microarchi-
tectures. In 2011 IEEE International Parallel & Distributed Processing Symposium,
pages 676–687. IEEE, 2011.

[38] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of
complex Fourier series. Mathematics of Computation, 19(90):297–301, 1965.

[39] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms.
MIT press, 2009.

[40] J. Crank and P. Nicolson. A practical method for numerical evaluation of
solutions of partial di�erential equations of the heat-conduction type. In Math-
ematical Proceedings of the Cambridge Philosophical Society, volume 43, pages
50–67. Cambridge University Press, 1947.

[41] G. Dahlquist and Å. Björck. Numerical methods in scienti�c computing, volume I.
SIAM, 2008.

[42] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and K. Yelick. Optimization
and performance modeling of stencil computations on modern microprocessors.
SIAM review, 51(1):129–159, 2009.

[43] C. R. Dietrich and G. N. Newsam. Fast and exact simulation of stationary
gaussian processes through circulant embedding of the covariance matrix. SIAM
Journal on Scienti�c Computing, 18(4):1088–1107, 1997.

[44] Y. A. Erlangga, C. W. Oosterlee, and C. Vuik. A novel multigrid based pre-
conditioner for heterogeneous helmholtz problems. SIAM Journal on Scienti�c
Computing, 27(4):1471–1492, 2006.

[45] J. H. Ferziger, M. Perić, and R. L. Street. Computational methods for �uid dynamics,
volume 3. Springer, 2002.

[46] A. Fokas. On the integrability of linear and nonlinear partial di�erential equa-
tions. Journal of Mathematical Physics, 41(6):4188–4237, 2000.

[47] M. Frigo and S. G. Johnson. The design and implementation of �tw3. Proceedings
of the IEEE, 93(2):216–231, 2005.

[48] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious
algorithms. In Foundations of Computer Science, pages 285–297, 1999.

[49] M. Frigo and V. Strumpen. Cache oblivious stencil computations. In Proceedings
of the 19th annual international conference on Supercomputing, pages 361–366,
2005.

[50] M. Frigo and V. Strumpen. Cache oblivious stencil computations. In International
conference on Supercomputing, pages 361–366, 2005.

[51] M. Frigo and V. Strumpen. The cache complexity of multithreaded cache oblivi-
ous algorithms. Theory of Computing Systems, 45(2):203–233, 2009.

[52] J. Fritz, I. Neuweiler, and W. Nowak. Application of �t-based algorithms for
large-scale universal kriging problems. Mathematical Geosciences, 41(5):509–533,
2009.

[53] A. Frommer, K. Lund, D. B. Szyld, et al. Block krylov subspace methods for
functions of matrices. 2017.

[54] V. Fuka. Pois�t–a free parallel fast poisson solver. Applied Mathematics and
Computation, 267:356–364, 2015.

[55] C. F. Gammie, J. C.McKinney, andG. Tóth. Harm: a numerical scheme for general
relativistic magnetohydrodynamics. The Astrophysical Journal, 589(1):444, 2003.

[56] R. Garrappa, I. Moret, and M. Popolizio. Solving the time-fractional schrödinger
equation by krylov projection methods. Journal of Computational Physics,
293:115–134, 2015.

[57] B. Gmeiner, T. Gradl, F. Gaspar, and U. Rüde. Optimization of the multigrid-
convergence rate on semi-structuredmeshes by local fourier analysis. Computers
& Mathematics with Applications, 65(4):694–711, 2013.

[58] I. Gohberg and V. Olshevsky. Fast algorithms with preprocessing for matrix-
vector multiplication problems. Journal of Complexity, 10(4):411–427, 1994.

[59] G. H. Golub, J. M. Ortega, et al. Scienti�c computing and di�erential equations:
an introduction to numerical methods. Academic press, 1992.

[60] I. J. Good. The interaction algorithm and practical fourier analysis. Journal of
the Royal Statistical Society: Series B (Methodological), 20(2):361–372, 1958.

https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html
https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html
https://polly.llvm.org/
https://polly.llvm.org/
http://pluto-compiler.sourceforge.net/
http://pluto-compiler.sourceforge.net/
http://web.cs.ucla.edu/~pouchet/software/pocc/
http://web.cs.ucla.edu/~pouchet/software/pocc/
https://www.tacc.utexas.edu/systems/stampede2
https://www.tacc.utexas.edu/systems/stampede2

[61] R. M. Gray. Toeplitz and circulant matrices: A review. now publishers inc, 2006.
[62] Y. Guan and I. Novosselov. Two relaxation time lattice boltzmann method cou-

pled to fast fourier transform poisson solver: Application to electroconvective
�ow. Journal of computational physics, 397:108830, 2019.

[63] M. H. Gutknecht. A brief introduction to krylov space methods for solving
linear systems. In Frontiers of Computational Science, pages 53–62. Springer,
2007.

[64] S. Guttel, R. Van Beeumen, K. Meerbergen, and W. Michiels. Nleigs: A class of
fully rational krylov methods for nonlinear eigenvalue problems. SIAM Journal
on Scienti�c Computing, 36(6):A2842–A2864, 2014.

[65] B. Hagedorn, L. Stoltzfus, M. Steuwer, S. Gorlatch, and C. Dubach. High perfor-
mance stencil code generation with lift. In Proceedings of the 2018 International
Symposium on Code Generation and Optimization, pages 100–112, 2018.

[66] W. He and S. S. Ge. Robust adaptive boundary control of a vibrating string
under unknown time-varying disturbance. IEEE Transactions on Control Systems
Technology, 20(1):48–58, 2011.

[67] T. Henretty, R. Veras, F. Franchetti, L.-N. Pouchet, J. Ramanujam, and P. Sadayap-
pan. A stencil compiler for short-vector simd architectures. In Proceedings of the
27th international ACM conference on International conference on supercomputing,
pages 13–24, 2013.

[68] C. Hirsch. Numerical computation of internal and external �ows: The fundamen-
tals of computational �uid dynamics. Elsevier, 2007.

[69] R.W. Hockney. A fast direct solution of poisson’s equation using fourier analysis.
Journal of the ACM (JACM), 12(1):95–113, 1965.

[70] I. C. Ipsen and C. D. Meyer. The idea behind krylov methods. The American
mathematical monthly, 105(10):889–899, 1998.

[71] E. Isaacson and H. B. Keller. Analysis of numerical methods. Courier Corporation,
2012.

[72] P. Janpugdee, P. H. Pathak, P. Mahachoklertwattana, and R. J. Burkholder. An
accelerated dft-mom for the analysis of large �nite periodic antenna arrays.
IEEE transactions on antennas and propagation, 54(1):279–283, 2006.

[73] H. Johnston and J.-G. Liu. Finite di�erence schemes for incompressible �ow
based on local pressure boundary conditions. Journal of Computational Physics,
180(1):120–154, 2002.

[74] M. Kabel, T. Böhlke, and M. Schneider. E�cient �xed point and newton–krylov
solvers for �t-based homogenization of elasticity at large deformations. Com-
putational Mechanics, 54(6):1497–1514, 2014.

[75] E. Kalnay, M. Kanamitsu, and W. Baker. Global numerical weather prediction
at the national meteorological center. Bulletin of the American Meteorological
Society, 71(10):1410–1428, 1990.

[76] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams. An auto-tuning framework
for parallel multicore stencil computations. In 2010 IEEE international symposium
on parallel & distributed processing (IPDPS), pages 1–12. IEEE, 2010.

[77] S. Kamil, P. Husbands, L. Oliker, J. Shalf, and K. Yelick. Impact of modernmemory
subsystems on cache optimizations for stencil computations. In Proceedings of
the 2005 workshop on Memory system performance, pages 36–43, 2005.

[78] S. Khokhriakov, R. R. Manumachu, and A. Lastovetsky. Performance optimiza-
tion of multithreaded 2d FFT on multicore processors: Challenges and solution
approaches. In 2018 IEEE 25th International Conference on High Performance
Computing Workshops (HiPCW). IEEE, Dec. 2018.

[79] R. C. Kirby and L. Mitchell. Solver composition across the pde/linear algebra
barrier. SIAM Journal on Scienti�c Computing, 40(1):C76–C98, 2018.

[80] P. E. Kloeden and E. Platen. Higher-order implicit strong numerical schemes
for stochastic di�erential equations. Journal of statistical physics, 66(1):283–314,
1992.

[81] A. V. Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal
block preconditioned conjugate gradient method. SIAM journal on scienti�c
computing, 23(2):517–541, 2001.

[82] S. Komissarov. Time-dependent, force-free, degenerate electrodynamics.
Monthly Notices of the Royal Astronomical Society, 336(3):759–766, 2002.

[83] M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet, and P. Sadayappan.
When polyhedral transformations meet simd code generation. In Proceedings
of the 34th ACM SIGPLAN conference on Programming language design and
implementation, pages 127–138, 2013.

[84] T. Konuk and J. Shragge. Modeling full-wave�eld time-varying sea-surface
e�ects on seismic data: A mimetic �nite-di�erence approach. Geophysics,
85(2):T45–T55, 2020.

[85] M. Korch and T. Werner. An in-depth introduction of multi-workgroup tiling
for improving the locality of explicit one-step methods for ode systems with
limited access distance on gpus. Concurrency and Computation: Practice and
Experience, page e6016, 2020.

[86] P.-S. Koutsourelakis. Accurate uncertainty quanti�cation using inaccurate
computational models. SIAM Journal on Scienti�c Computing, 31(5):3274–3300,
2009.

[87] A. B. Kuijlaars. Convergence analysis of krylov subspace iterationswithmethods
from potential theory. SIAM review, 48(1):3–40, 2006.

[88] D. Kuzmin. A vertex-based hierarchical slope limiter for p-adaptive discon-
tinuous galerkin methods. Journal of computational and applied mathematics,

233(12):3077–3085, 2010.
[89] O. Le Maître and O. M. Knio. Spectral methods for uncertainty quanti�cation:

with applications to computational �uid dynamics. Springer Science & Business
Media, 2010.

[90] W. Liao. A high-order adi �nite di�erence scheme for a 3d reaction-di�usion
equation with neumann boundary condition. Numerical Methods for Partial
Di�erential Equations, 29(3):778–798, 2013.

[91] M. Louboutin, M. Lange, F. Luporini, N. Kukreja, P. A. Witte, F. J. Herrmann,
P. Velesko, and G. J. Gorman. Devito (v3. 1.0): an embedded domain-speci�c
language for �nite di�erences and geophysical exploration. Geoscienti�c Model
Development, 12(3):1165–1187, 2019.

[92] F. Luporini, M. Louboutin, M. Lange, N. Kukreja, P. Witte, J. Hückelheim,
C. Yount, P. H. Kelly, F. J. Herrmann, and G. J. Gorman. Architecture and
performance of devito, a system for automated stencil computation. ACM
Transactions on Mathematical Software (TOMS), 46(1):1–28, 2020.

[93] A. Mang and G. Biros. An inexact newton–krylov algorithm for constrained
di�eomorphic image registration. SIAM journal on imaging sciences, 8(2):1030–
1069, 2015.

[94] G. Mendicino, J. Pedace, and A. Senatore. Stability of an overland �ow scheme
in the framework of a fully coupled eco-hydrological model based on the macro-
scopic cellular automata approach. Communications in Nonlinear Science and
Numerical Simulation, 21(1-3):128–146, 2015.

[95] K. Moaddy, S. Momani, and I. Hashim. The non-standard �nite di�erence
scheme for linear fractional pdes in �uid mechanics. Computers & Mathematics
with Applications, 61(4):1209–1216, 2011.

[96] G. Moretti. The _-scheme. Computers & Fluids, 7(3):191–205, 1979.
[97] D. Mugler and R. Scott. Fast fourier transform method for partial di�erential

equations, case study: The 2-d di�usion equation. Computers & Mathematics
with Applications, 16(3):221–228, 1988.

[98] G. Mur. Absorbing boundary conditions for the �nite-di�erence approxima-
tion of the time-domain electromagnetic-�eld equations. IEEE transactions on
Electromagnetic Compatibility, (4):377–382, 1981.

[99] C. Musco and C. Musco. Randomized block krylov methods for stronger and
faster approximate singular value decomposition. Advances in Neural Informa-
tion Processing Systems, 28:1396–1404, 2015.

[100] H. N. Najm, P. S. Wycko�, and O. M. Knio. A semi-implicit numerical scheme for
reacting �ow: I. sti� chemistry. Journal of Computational Physics, 143(2):381–402,
1998.

[101] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey. 3.5-d blocking optimiza-
tion for stencil computations on modern cpus and gpus. In SC’10: Proceedings
of the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–13. IEEE, 2010.

[102] U. Nkwunonwo, M. Whitworth, and B. Baily. Urban �ood modelling combining
cellular automata framework with semi-implicit �nite di�erence numerical
formulation. Journal of African Earth Sciences, 150:272–281, 2019.

[103] Y. Notay and P. S. Vassilevski. Recursive krylov-based multigrid cycles. Numer-
ical Linear Algebra with Applications, 15(5):473–487, 2008.

[104] V. E. Ostashev, D. K. Wilson, L. Liu, D. F. Aldridge, N. P. Symons, and D. Marlin.
Equations for �nite-di�erence, time-domain simulation of sound propagation
in moving inhomogeneous media and numerical implementation. The Journal
of the Acoustical Society of America, 117(2):503–517, 2005.

[105] T. Pang. An introduction to computational physics, 1999.
[106] A. Pereda, L. A. Vielva, A. Vegas, and A. Prieto. Analyzing the stability of the

fdtd technique by combining the von neumann method with the routh-hurwitz
criterion. IEEE Transactions on Microwave Theory and Techniques, 49(2):377–381,
2001.

[107] G. Peyré. The numerical tours of signal processing-advanced computational sig-
nal and image processing. IEEE Computing in Science and Engineering, 13(4):94–
97, 2011.

[108] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
recipes 3rd edition: The art of scienti�c computing. Cambridge university press,
2007.

[109] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe.
Halide: a language and compiler for optimizing parallelism, locality, and recom-
putation in image processing pipelines. Acm Sigplan Notices, 48(6):519–530,
2013.

[110] A. Ramani, B. Grammaticos, and T. Bountis. The painlevé property and sin-
gularity analysis of integrable and non-integrable systems. Physics Reports,
180(3):159–245, 1989.

[111] M. Rappaz, M. Bellet, and M. Deville. Numerical modeling in materials science
and engineering, volume 32. Springer Science & Business Media, 2010.

[112] P. S. Rawat,M. Vaidya, A. Sukumaran-Rajam,M. Ravishankar, V. Grover, A. Roun-
tev, L.-N. Pouchet, and P. Sadayappan. Domain-speci�c optimization and gener-
ation of high-performance gpu code for stencil computations. Proceedings of
the IEEE, 106(11):1902–1920, 2018.

[113] L. Renson, G. Kerschen, and B. Cochelin. Numerical computation of nonlinear
normal modes in mechanical engineering. Journal of Sound and Vibration,
364:177–206, 2016.

[114] A. Robert. A stable numerical integration scheme for the primitive meteorolog-
ical equations. Atmosphere-Ocean, 19(1):35–46, 1981.

[115] A. Robert. A semi-lagrangian and semi-implicit numerical integration scheme
for the primitive meteorological equations. Journal of the Meteorological Society
of Japan. Ser. II, 60(1):319–325, 1982.

[116] G.-C. Rota, D. Kahaner, and A. Odlyzko. On the foundations of combinatorial
theory. viii. �nite operator calculus. Journal of Mathematical Analysis and
Applications, 42(3):684–760, 1973.

[117] J. C. Russ, J. R. Matey, A. J. Mallinckrodt, and S. McKay. The image processing
handbook. Computers in Physics, 8(2):177–178, 1994.

[118] Y. Saad. Krylov subspace methods on supercomputers. SIAM Journal on Scienti�c
and Statistical Computing, 10(6):1200–1232, 1989.

[119] H. I. Saleheen and K. T. Ng. New �nite di�erence formulations for general inho-
mogeneous anisotropic bioelectric problems. IEEE transactions on biomedical
engineering, 44(9):800–809, 1997.

[120] K. Sano, Y. Hatsuda, and S. Yamamoto. Scalable streaming-array of simple
soft-processors for stencil computations with constant memory-bandwidth. In
2011 IEEE 19th Annual International Symposium on Field-Programmable Custom
Computing Machines, pages 234–241. IEEE, 2011.

[121] U. Schumann and R. A. Sweet. Fast fourier transforms for direct solution of pois-
son’s equation with staggered boundary conditions. Journal of Computational
Physics, 75(1):123–137, 1988.

[122] M. Sitko, M. Pietrzyk, and L. Madej. Time and length scale issues in numer-
ical modelling of dynamic recrystallization based on the multi space cellular
automata method. Journal of computational science, 16:98–113, 2016.

[123] J. Somers. Direct simulation of �uid �ow with cellular automata and the lattice-
boltzmann equation. Applied Scienti�c Research, 51(1-2):127–133, 1993.

[124] M. A. Storti, R. R. Paz, L. D. Dalcin, S. D. Costarelli, and S. R. Idelsohn. A �t
preconditioning technique for the solution of incompressible �ow on gpus.
Computers & Fluids, 74:44–57, 2013.

[125] J. C. Strikwerda. Finite di�erence schemes and partial di�erential equations. SIAM,
2004.

[126] P. K. Sweby. High resolution schemes using �ux limiters for hyperbolic conser-
vation laws. SIAM journal on numerical analysis, 21(5):995–1011, 1984.

[127] R. Szilard. Theories and applications of plate analysis: classical, numerical and
engineering methods. Appl. Mech. Rev., 57(6):B32–B33, 2004.

[128] A. Ta�ove and S. C. Hagness. Computational electrodynamics: the �nite-di�erence
time-domain method. Artech house, 2005.

[129] C. K. Tam and Z. Dong. Wall boundary conditions for high-order �nite-di�erence
schemes in computational aeroacoustics. Theoretical and Computational Fluid
Dynamics, 6(5):303–322, 1994.

[130] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E. Leiserson.
The pochoir stencil compiler. In Proceedings of the twenty-third annual ACM
symposium on Parallelism in algorithms and architectures, pages 117–128, 2011.

[131] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E. Leiserson. The
pochoir stencil compiler. In ACM Symposium on Parallelism in Algorithms and
Architectures, pages 117–128, 2011.

[132] F. L. Teixeira. Time-domain �nite-di�erence and �nite-element methods for
maxwell equations in complex media. IEEE Transactions on Antennas and
Propagation, 56(8):2150–2166, 2008.

[133] F. L. Teixeira, W. C. Chew, M. Straka, M. Oristaglio, and T. Wang. Finite-
di�erence time-domain simulation of ground penetrating radar on dispersive,
inhomogeneous, and conductive soils. IEEE Transactions on Geoscience and
remote sensing, 36(6):1928–1937, 1998.

[134] J. Thijssen. Computational physics. Cambridge university press, 2007.
[135] E. Turkel. Preconditioned methods for solving the incompressible and low speed

compressible equations. Journal of computational physics, 72(2):277–298, 1987.
[136] E. E. Tyrtyshnikov. A unifying approach to some old and new theorems on

distribution and clustering. Linear algebra and its applications, 232:1–43, 1996.
[137] H. A. Van der Vorst. Iterative Krylov methods for large linear systems. Number 13.

Cambridge University Press, 2003.
[138] J. P. Van Doormaal and G. D. Raithby. Enhancements of the simple method for

predicting incompressible �uid �ows. Numerical heat transfer, 7(2):147–163,
1984.

[139] B. Van Leer. Towards the ultimate conservative di�erence scheme. v. a second-
order sequel to godunov’s method. Journal of computational Physics, 32(1):101–
136, 1979.

[140] U. Van Rienen. Numerical methods in computational electrodynamics: linear
systems in practical applications, volume 12. Springer Science & Business Media,
2012.

[141] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gomez, C. Tenllado, and
F. Catthoor. Polyhedral parallel code generation for cuda. ACM Transactions on
Architecture and Code Optimization, 9(4):1–23, 2013.

[142] L. A. Vese and S. J. Osher. Numerical methods for p-harmonic �ows and applica-
tions to image processing. SIAM Journal on Numerical Analysis, 40(6):2085–2104,
2002.

[143] F. J. Vesely. Computational Physics. Springer, 1994.

[144] J. Virieux. P-sv wave propagation in heterogeneous media: Velocity-stress
�nite-di�erence method. Geophysics, 51(4):889–901, 1986.

[145] T. Wang and G. W. Hohmann. A �nite-di�erence, time-domain solution for
three-dimensional electromagnetic modeling. Geophysics, 58(6):797–809, 1993.

[146] J. Weickert. Theoretical foundations of anisotropic di�usion in image processing.
In Theoretical foundations of computer vision, pages 221–236. Springer, 1996.

[147] J. Weickert. Applications of nonlinear di�usion in image processing and com-
puter vision. 2000.

[148] P. Wesseling. von neumann stability conditions for the convection-di�usion
eqation. IMA journal of Numerical Analysis, 16(4):583–598, 1996.

[149] S. Winograd. On computing the discrete fourier transform. Mathematics of
computation, 32(141):175–199, 1978.

[150] M. E.Wolf andM. S. Lam. A data locality optimizing algorithm. InACM SIGPLAN
conference on Programming language design and implementation, pages 30–44,
1991.

[151] M. E. Wolf, D. E. Maydan, and D.-K. Chen. Combining loop transformations
considering caches and scheduling. In IEEE/ACM International Symposium on
Microarchitecture, pages 274–286, 1996.

[152] M. J. Wolfe. Iteration space tiling for memory hierarchies. Parallel Processing
for Scienti�c Computing, 357:361, 1987.

[153] D. Wonnacott. Achieving scalable locality with time skewing. International
Journal of Parallel Programming, 30(3):181–221, 2002.

[154] A. Xu, G. Gonnella, and A. Lamura. Simulations of complex �uids by mixed
lattice boltzmann—�nite di�erence methods. Physica A: Statistical Mechanics
and its Applications, 362(1):42–47, 2006.

[155] T. Yuki and L.-N. Pouchet. Polybench 4.0, 2015.
[156] S. B. Yuste and L. Acedo. An explicit �nite di�erence method and a new von

neumann-type stability analysis for fractional di�usion equations. SIAM Journal
on Numerical Analysis, 42(5):1862–1874, 2005.

	Abstract
	1 Introduction
	2 Related Work & Its Limitations
	3 Applicability of Our Algorithms
	4 Periodic Stencil Algorithm
	4.1 1-D Explicit Stencil Algorithm
	4.2 Generalizations

	5 Aperiodic Stencil Algorithm
	5.1 The Effect of Aperiodicity
	5.2 Correcting Final Values in the Boundary's Region of Influence

	6 Experiments
	6.1 Periodic Stencil Algorithms
	6.2 Aperiodic Stencil Algorithms

	7 Conclusion
	A Appendix
	A.1 Supporting d-D Spatial Grids
	A.2 Stencil Matrix Example
	A.3 Proof of Theorem 5.1
	A.4 Supporting Implicit Stencils
	A.5 Supporting Vector Valued Fields
	A.6 Proof of Shift Matrix Decomposition of Circulant Matrices
	A.7 -shell Spatial Grid Decomposition
	A.8 Proof of Eigenvalue-FFT Relation

	References

