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Making sense of proofs and statements is a fundamental part of advanced mathematics classes; 
however, researchers have established that students have limited approaches to reading proofs 
and may struggle to comprehend them. Converting between representation systems can play an 
essential role in comprehending formal mathematics including proofs and statements. While 
navigating representation systems, students are likely to evoke an array of personal meanings 
that can lead to semiotic conflicts in communication. In this study, we examine what conflicts 
arose as a group of students collectively worked to comprehend the Fundamental 
Homomorphism Theorem. Our results show that the students had conflicts related to functions 
and quotient groups that arose when converting between the formal and other representation 
systems. Although these conflicts can be problematic, we believe that with a productive 
discussion and instructor intervention (when necessary) these conflicts can be resolved. 
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Proof comprehension is a fundamental activity in advanced mathematics classrooms where 
students encounter proofs in lecture and textbooks. However, research points to students' passive 
consumption of proof presentations as inadequate for students’ understanding of them (e.g., Lew, 
et al., 2016). In Mejia-Ramos and Inglis’ (2009) overview of mathematics education literature in 
proof-based settings, they pointed to a lack of studies related to proof comprehension. Since this 
review, researchers have developed an assessment framework for proof comprehension (Mejia-
Ramos, et al., 2012) and suggested and studied productive strategies for proof comprehension 
(Samkof & Weber, 2015; Weber & Mejia-Ramos, 2013). These approaches share the 
commonality of comprehension as multidimensional – focusing both on holistic and local line-
by-line understanding. 

These studies suggest that proof comprehension involves transforming all or some aspects of 
a formally represented proof into other representation systems (such as informally summarizing 
key ideas or illustrating a portion of the proof through an example.) In fact, Mejia-Ramos et al. 
(2012) point to the use of examples (and diagrams) as a key component of their comprehension 
framework. Other studies have pointed to the role of examples and diagrams in developing better 
comprehension of proofs for both students and mathematicians (e.g., Weber & Mejia-Ramos, 
2013, Samkoff & Weber, 2015, Weber, 2015) at both the level of a high-level generic proof 
(Lew, et al., 2020), to make sense of inferences (Weber & Mejia-Ramos, 2013), and even the 
theorem itself (Samkoff & Weber, 2015).  

Because of the significant role of representation systems (and their constituent signs) in proof 
comprehension, theories informed by semiotics can provide a useful lens to analyze proof 
comprehension. In this study, we focus on proof comprehension as a collective activity – 
analyzing a group of four students making sense of the Fundamental Homomorphism Theorem 
(FHT) statement and proof. We identify semiotic conflicts (Godino, et al., 2007) apparent in their 
discourse as they both convert objects between the formal representation system and other 
mathematical registers and treat objects within registers (Duval, 2006). From analyzing these 
episodes, we share both challenges that may be common to understanding a syntactically and 
symbolically dense proof, and ways that students’ disparate meanings may be resolved. 



Theoretical Orientation and Analytic Framing 
In the context of abstract algebra, focal mathematical objects are abstract and general. As 

noted by Presmeg, et al. (2016), engaging with and communicating about such mathematical 
objects requires the use of signs that “are not the mathematical objects themselves but stand for 
them in some way” (p. 9). As a result, theories of semiotics, that is, theories related to study of 
signs, have become a prevalent way to analyze mathematical activity and discourse. In this 
study, we take a view of semiotics influenced by Duval’s (2006) theory of registers of semiotic 
representation and Godino et al.’s (2007) onto semiotics—two theories that can serve a 
complementary role (Pino-Fan, et al., 2017). We focus specifically on Duval’s (2006) notion of 
representation systems (registers). Mathematical meaning is inherently constrained and shaped 
by the available signs and rules of a representation system (natural language, symbolic, 
figures/drawings, and diagrams/graphs.) In our context, we add the representational system of 
proof, which we label formal: “generalized symbolic statements which can be combined into 
permitted configurations via the rules of, for example, predicate calculus, propositional logic and 
acceptable proof frameworks” (Alcock & Inglis, 2008, p. 114). We then consider the activities of 
conversion and treatment, “to substitute one semiotic representation for another, only by 
changing the semiotic system mobilized; and to substitute two semiotics representations within 
the same semiotic system” (Pino-Fan, et al., 2017, p. 101), respectively.  

We then use onto semiotic (Godino, et al., 2007) notions of primary objects – focusing on the 
subset of objects that are not directly observable (concepts/definitions, propositions and 
procedures, Font, et al., 2013). Mathematical objects contain dualities that reflect that there is not 
“one ‘same’ object with different representations.” (Font, et al., p. 7). Rather, meaning and 
representation of an object are subject to dualities including:  the expression (the sign) and 
content (the meaning referent) and correspondingly what is ostensive (observable) and non-
ostensive (imagined). Objects are also understood both personally (to the individual) and 
institutionally (which can refer to the local community of students or a larger community). An 
object can also be treated as unitary (a single thing) or systematic (something to be decomposed 
into a system). Finally, an object can be intensive (general) or extensive (a specific example). 
While these dualities are presented as dichotomies, we argue for a spectrum where something 
like a generic example (Font & Contreras, 2008) can serve as a bridge. These dichotomies can 
lead to semiotic conflicts, “disparity or difference of interpretation between the meanings 
ascribed to an expression by two subjects, being either persons or institutions” (Godino, et al., 
2007, p. 133) as students discuss mathematical objects in different representational systems. 
Such conflicts, while observable by a researcher, are often unnoticed by students. These conflicts 
can serve to limit student communication or progression but can also serve as a space for 
students to negotiate new meaning and make mathematical progress.  

 
Background on the Fundamental Homomorphism Theorem 

The Fundamental Homomorphism Theorem (FHT) describes an essential relationship 
between complex group theory ideas including quotient groups, homomorphisms, kernels, and 
isomorphisms. Each of these topics individually can be quite challenging for students to develop 
robust and normative meanings (see Dubinsky, et al., 1994; Leron, et al., 1995; Melhuish, 2019; 
Melhuish, et al., 2020). As Asiala, et al. (1997) documented, the algorithm for creating cosets 



often supersedes other conceptions. Further, to understand the FHT, students need to conceive of 
cosets as both sets and objects themselves that can be elements within a group structure. Indeed, 
Nardi’s (2000) study of a tutor and student engaging with the FHT points to the struggle 
associated with decontextualized nature of learning quotient groups. This study also suggests a 
fundamental challenge in “co-ordination and understanding of the link between and, as well as 
the clarification about the definition of” (p. 184) the relevant functions: isomorphisms and 
homomorphisms. Research related to isomorphism and homomorphism point to reliance on 
algorithmic processes and the need for a sophisticated understanding of function (Leron, et. al, 
1995). Melhuish, et al. (2020) have further documented that students’ treatment of 
homomorphisms is tied to their coordination with the concept of function and that the meaning 
associated with function can serve as a support or hindrance in productive engagement with 
homomorphisms, kernels, and the FHT. In sum, the literature points to complexity involved in 
understanding the FHT and its constituent parts. In this study, we focus on: 

(1) What meanings do student evoke from different representation systems as they engage 
with the FHT and its proof? (2) What semiotic conflicts arise as students engage in 
comprehension tasks related to the FHT and to what extent are they resolved? 

 
Figure 1. The theorem and beginning lines of the proof.  

 

Methods 
As part of a larger project, we have conducted a series of task-based interviews centered on 

proof in abstract algebra in a large, public university in the United States. In this paper, we focus 
on a group of four undergraduate mathematics majors who had recently completed an abstract 
algebra course. Students were first provided the FHT statement and asked to dissect the 
important terms within the statement. Next, they were given example groups and 
homomorphisms and asked to identify parts of the example that correlate with the statement of 
the FHT. Lastly, the students were given the proof of the FHT and prompted to make sense of 
the theorem globally and locally in conjunction with their prior statement dissection and 
examples. 

The focal transcript (along with video and student work) was analyzed through several 
passes. First, the three members of the research team independently read through the data and 
created a set of memos broadly identifying student activity and representational systems at play. 
From this initial pass, the team arrived at the set of relevant representation systems and initial 
objects. After this holistic pass, the lead researcher chunked the transcript into a series of 16 
episodes. For each episode, the lead researcher created a narrative, first identifying mathematical 
objects, representation systems, and student meanings ascribed to objects. This narrative was 
then expanded to describe conversion, treatments, relevant object dualities, semiotic conflicts, 
and resolution paths for these conflicts. For each episode, other team members read each 



narrative and compared it to the existing transcript with the aim of challenging initial 
interpretations. Disagreements were resolved through discussion. Here, we provide a brief 
overview of pervasive conflicts, and share two illustrative episodes. 
 

Results  
An essential part of understanding in the FHT and its proof is understanding the meaning of 

function and well-defined. Students’ personal meanings for function appeared consistent when 
referencing a procedure from the graphical system (vertical line test), but their meanings were in 
conflict in the diagram representation system (with a subset of students producing 1-1 rather than 
well-defined), and in verbal descriptions where two of the four students focused on everywhere-
defined (“mapped each element to something”). Throughout the tasks, students would bring 
different personal meanings for the properties and often reach resolution (such as coming to an 
agreement over the contradicting diagrams), only for the conflict to reemerge in a different 
representation system (such as identifying well-defined within the proof). 

We also documented consistent conflicts related to quotient groups. Of note, when describing 
what a quotient group is, some students attended to a “list of cosets” whereas others attended to a 
group structure. A second conflict emerged in relation to the meaning of “factor group” with 
students in disagreement as to whether the normal subgroup would be “factored out” evoking a 
meaning of factor related to removal rather than a meaning consistent with factoring as 
partitioning. A third conflict emerged in relation to the meaning of the elements in the quotient 
group where some students treated the elements as sets (H as the identity in G/H) whereas others 
treated the elements as singleton (“e” is the identity G/H). Finally, a related conflict emerged in 
relation to the representative symbolic notation for cosets (aH) and symbolic set notation ({a1, 
a2, a3, . . .}) where the representative notation was personally meaningful to some students (and 
connected with coset formation) but did not appear to have meaning beyond the symbols for 
other students. 

Converting the FHT between the formal and diagrammatic representation system  
 The two pairs of students were each given a homomorphism example (ϕ: ℤ to ℤ4 where 

ϕ(x)=x mod 4 and ϕ: ℤ12 to ℤ3 where ϕ(x)=x mod 3, respectively) and tasked with creating a 
function diagram and identifying where the FHT can be seen in the diagram (a task to convert 
from the formal representation system to the diagrammatic system). Moreover, this task involved 
the duality between intensive (general statement) and extensive (diagram example). Both pairs 
converted between the formal statement and informal symbolic by identifying G and H, 
respectively. However, at this point, several of the students voiced uncertainty about the quotient 
group connection and where the isomorphism can be seen in the diagram.  

In order to address this issue, the teacher-researcher asked the students to put their diagrams 
on the board. Student C explains that they began by listing “dozens of elements” but simplified 
to “just the four unique cases” (a treatment). Student A and D agreed that they had a similar 
process. Student C noted, “at least I’m starting to really see the coset groups forming individual 
elements.” We interpret this comment as reflecting some resolution around the elements of 
quotient group conflict. Although, we acknowledge there is still some language inconsistency 
with the cosets being referenced as groups.  

The teacher-researcher then had the students concretely connect the parts of the formal 
statement with the diagrammatic representation on the board - focusing on the finite example. 



The students converted between the systems, and navigated between the exemplar-type duality to 
identify the kernel, G, and H. They are then prompted, “where is our isomorphism? Where is our 
quotient group?”  There are two viable ways to create the cosets of the quotient group. The 
cosets can be built by identifying the kernel and using the coset formation procedure or through 
creating pre-image subsets. In this case, one pair of students appeared to have used the latter 
version, but voiced uncertainty about whether these created the quotient groups, “We did that 
right? […] We don’t know. We think we could have possibly started” identifying the kernel as 
the identity (further evidencing resolution around the element-set coset conflict.) In contrast, 
Student C used the coset procedure sharing, “So, I just started with what we have here, kernel of 
ϕ […] from the left I added the next operation of our H.”  

The teacher-researcher had previously requested representative notation by asking for a 
“name” for the cosets (a more standard notation in the formal representation system). At this 
point, Student A recognized they have the same cosets, but states “we just didn’t know how to 
name them.”  However, when the teacher-research prompted about the + operation, Student A 
and D identify the operation from ℤ3 (the operation in the image) rather than from ℤ12 (the 
operation in the coset) further evidencing that there is a conflict in the personal meanings 
attribute to the coset formation process. After some discussion, the teacher-researcher advocated 
that the representative elements are from ℤ12, but it is unclear whether this conflict was resolved 
for all the students. However, we do have evidence that the students were all seeing the cosets 
(regardless of formation process) as the quotient group elements as they are easily able to answer 
how many elements are in the quotient group itself (3). 

At this point, the teacher-researcher focuses on where the isomorphism is. Student B notices 
“the order of the image of phi is the same as your quotient group.” With this comment, the 
teacher-researcher prompts the students if the cosets are clear from the original function diagram 
(Figure 2a). To which Student B and D indicate that “If you got all the purple lines” (B) and 
“They would regroup it like that” (D). With the teacher-researcher as the scribe, the students 
produced the following function diagram, a treatment in the diagrammatic representation system 
(Figure 2b - without the red markings). 

 

 
Figure 2. (a) Function diagram of the homomorphism phi from Z12 to Z3. (b) Reorganized function diagram 

After the creation of this diagram, Student B makes the comment that “you see it's one-to-
one and onto” evidencing conversion between the formal meaning of isomorphism and the 
function diagram instantiation. However, Student B took back their suggestion when asked for 
further explain indicating a potential conflict between what they see (ostensive) and 
corresponding non-ostensive mathematical concepts. Student C continues, “we have that 
grouping, if we change the mapping...” suggesting creating “ℤ12 so you divide by zero three six 
nine slash kernel” with Student D suggesting, “bracketed off and that becomes the one element” 



with the teacher-researcher using their suggestions to add the red circles/lines to the diagram. We 
see evidence of resolution around both the quotient groups and isomorphism through the use of 
the diagram instantiation. Student B asked, “so now the red is your factor group?” and student D 
agreed. Student B also commented, “and now it’s 1-1 and onto” with Student D elaborating, “and 
there’s your isomorphism.” At this point, the students seemed to have successfully converted 
from the formal representation to a diagram.  

Converting Between a Line in the Proof and a Symbolic Example 

In this episode, the students were tasked with making sense of the line if g1K = g2K, then for 
some k in K, g1k= g2 in the FHT proof. The teacher-researcher prompted the students to convert 
this line to the symbolic/ diagrammatically illustrated example (Figure 2). Recognizing that these 
objects are cosets, Student B suggested “kernel of phi [as] one of em' and then four plus kernel of 
phi is another one?” Here we see the student using distinct cosets rather than distinct elements 
from the same coset. This conflict is recognized and resolved by Student D who suggested 
changing the second coset, “It’d be 1+ ker ϕ.” to which Student B agreed, “Oh, I'm talking about 
the wrong one. Okay, yeah.” The students continued converting from the formal representation 
to the informal symbolic example with Student C suggesting another coset equivalence, “so 
kernel phi would be equal to three plus kernel phi.”  

The teacher-researcher returned focus to the formal representation asking, “But how do we 
know that g1k= g2 for some k?”  Student B made two suggestions: “because it’s normal” and “I 
thought it was because it was not nonempty, so you have identity in there.” As only one student 
is suggesting, the teacher-researcher prompted for students to explain what “g1K = g2K” means. 
Student B focused on the entire set: “two cosets that are the same” and while Student D attends 
to the elements, “These sets repeat down in a row?” reflecting uncertainty in their personal 
meaning. The teacher-researcher then introduced the use of a symbolic example prompting 
students to create g1K and g2K. The teacher-researcher and students constructed the expanded 
versions (Figure 3) converting between the condensed version of cosets typical of formal proof 
representation into an expanded symbolic representation.  While it was not clear that the 
meaning shared for the equivalence was in conflict for Student B and D originally, the conflict is 
explicated in this new representation. Student B suggested the cosets being the same means “all 
the elements.. They're matching” further explaining “g2, g1 are the same g2𝑘𝑘1, g1𝑘𝑘1.” Student D 
responds, “Not necessarily those... all the elements in g2K there's an element that matches them 
somewhere in g1K.” Student B’s personal meaning focused on the element level, while Student 
D’s personal meaning was at the set level (aligned with the normative meaning for set equality). 

 

  
Figure 3a and 3b. The cosets of K with representative g1 and g2. 

 
To see if other students understand Student D’s reasoning, the teacher-researcher asked 

someone to revoice what Student D said. In response, Student A stated, “that's like continuing? 
So somewhere along the line there would be g2k in the g1k function” Here we see that Student A 
shared their meaning with Student D. However, Student C returned to the formal proof line and 



asked, “But there's only like g2 so what does just g2 look like?” This question may reflect a desire 
to know the exact match. Student D then explains the idea that “g2 has to be somewhere in here” 
because the cosets are equivalent and introduces a “km” such that “g1km = g2.” Student C 
responded that they are finding a “specific one” and Student A suggested “arbitrary.” In the 
expanded cosets, specific ki's are listed and Student D introduces km. In the formal proof, the line 
has just “k.” Student C’s personal meaning attributed km as more specific than k while Student D 
and A are seeing km as representing an equally arbitrary element.  

After some continued conversation, we see an additional layer of complexity and some 
resolution. Student B commented, “I've been thinking that g2 is some like a group.” With Student 
C agreeing, “That's what I was thinking, too.” This may evidence a conflict around the meaning 
for representation notation: when an element is the referent and when a set is the referent. 
Student D commented that “g2 is like another element” with Student B explaining they went 
from “what is that?” and identified “the whole revelation I had was when you put km.” At this 
point, the conflict seemed to be resolved for the students, although this claim relies on weak 
evidence for Student C as they had stopped voicing questions. 

Discussion 
In this paper, a variety of conflicts arose as students conveyed meaning for different objects 

as they converted and treated them across and within representation systems. The students in the 
task had difficulty with functions and converting functions from a formal representation to a 
diagrammatic representation. They had conflicts with quotient groups such as, notational 
representation, set vs groups, and elements as cosets vs elements as singletons. We saw that 
students had conflicts in converting a formal representation of the isomorphism in the FHT 
theorem to a diagrammatic representation of an isomorphism in a given example. We also saw 
students having conflicts when converting between the line of the formal proof and symbolic 
concrete and generic representations.  

From a research and teaching perspective, we found the identification and, in some cases, 
resolution of these conflicts to be a useful lens. The conflicting means students evoke may 
account for some of the disconnect between instructor intentions and students’ comprehension. 
We found students brought different meanings for functions and quotient groups, and different 
notation and representation systems often shaped the meanings involved. Prompts to convert 
between representation systems appeared productive to terms of explicating conflicting meaning 
and allowing for discussion space to resolve conflicts. Further, instructors may find it to useful to 
identify the representation systems in which students’ personal meanings may diverge and 
strengthen the connections between objects symbolized in different systems. 
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