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In recent years, there has a been a push for undergraduate mathematics classrooms to move 
away from purely lecture to a model where students are more actively engaged in their own 
learning. Such a transition is hardly a trivial task and requires robust instructional supports. 
Our recent work endeavors to adapt research-based supports from the K-12 level to the 
undergraduate abstract algebra classroom. In this report, we share preliminary results from a 
design-based research project directly aimed at adapting best practices to this new setting. We 
share several illustrations of how particular teaching routines (Melhuish & Thanheiser, 2017; 
Teachers Development Group, 2013) can productively unfold in a proof-based setting.   
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The teaching of undergraduate mathematics is a largely understudied practice (e.g., 
Speer, Smith, & Horvath, 2010). This is even more so the case for advanced mathematics 
classrooms with proof as their focal practice (see Rasmussen & Wawro, 2017.) From a practical 
standpoint, we have little knowledge of what may be productive instructional supports for this 
level classroom. This is not the case in the K-12 setting where there is a set of research-based 
instructional strategies (colloquially referred to as best practices) that include focusing on 
student thinking, facilitating student discourse, and creating a classroom where students engage 
authentically with mathematics (e.g., Jacobs & Spangler, 2017). Many instructional supports 
have been developed and studied in this setting in order to provide instructors with the tools to 
keep a classroom both student-centered and mathematically productive (e.g., Melhuish & 
Thanheiser, 2017; Stein, Engle, Smith, & Hughes, 2008). 

As we move towards undergraduate classrooms being more student-centered (as 
recommended by Saxe & Braddy, 2015), we are in a position to develop similar instructional 
supports for the undergraduate level. In this preliminary report, we share some initial analysis of 
a design-based research experiment aimed at adapting K-12 supports to the needs of a proof-
based abstract algebra classroom.   

Background and Framing 
If we want students to engage in authentic mathematical activity during classroom 

lessons, the first step is providing opportunities for them to do so (Cai, et al., 2017). As a 
mathematics education field, we have a general consensus that we value student-centered 
classrooms and that noticing student thinking and facilitating meaningful discussion are key 
instructional practices that support such classrooms (Jacobs & Spangler, 2017). At the K-12 
level, there are a number of instructional routines that can serve to support students in engaging 
in authentic mathematics while continuing to move the mathematics forward. These include 
teaching routines such as selecting and sequencing student ideas (Stein, et al., 2008) comparing 
across student strategies (e.g., Durkin, Star, & Rittle-Johnson, 2017), leveraging visual 
representations (e.g., Arcavi, 2003), and providing students the time and space to make sense of 



tasks (e.g., Kelemanick, Lucenta, & Creighton, 2016). Through these and other best practices, 
classrooms can become a place where students do not just engage with open tasks, but their 
thinking can move the mathematical agenda forward. 

Pedagogy at the Undergraduate Level 
At the undergraduate level, we know substantially less about how this type of instruction 

may play out. We have some evidence that active learning (Freeman, et al., 2014) and inquiry-
based learning (Laursen, et al., 2014) may support student learning gains, confidence, and more 
equitable outcomes. However, such analysis has been large-scale, and gives little insight into the 
nature of these classrooms. In fact, we can find other narratives countering that more student-
centered approaches are positively aligned with student outcomes (Sonnert, Sadler, Sadler, & 
Bressoud, 2015) and are more equitable (Johnson, et al., 2019). Yet, another research-line, 
research on inquiry-oriented curricula, provides a series of results indicating with careful 
pedagogy, this type of classroom can be associated with student learning (e.g., Rasmussen & 
Kwon, 2007). Furthermore, beyond course outcomes, if we value students engaging in 
mathematical activity, it is propitious to develop classroom settings that are student-focused. 
This literature raises questions about not whether student-centered classrooms are better, but 
rather under what conditions they work best.  

Answering that question can serve a substantial need for instructors wishing to move 
away from a traditional lecture model. Johnson, Keller, and Fukawa-Connelly (2018) recently 
surveyed instructors of abstract algebra classes to discover the nature of their instruction and why 
they choose to orchestrate their classrooms in particular ways. One important result is that many 
instructors do not think lecture is better for students; however, they identified a lack of resources 
and support in implementing ambitious pedagogy.  

The Math Habits Framework 

The underlying hypothesis of our work is that best instructional practices at the K-12 
level can be adapted to the abstract algebra setting. As such, we developed a series of tasks and 
instructional supports focused on key aspects of mathematically productive classrooms. In this 
study, we are focusing on the Math Habits framework (Melhuish & Thanheiser, 2017), a 
research-informed framework that captures teaching routines (extended routines that can support 

Mathematically Productive Teaching 
Routines 

Generates student engagement in 
mathematically productive discourse by: 
 
(Structure) Structuring mathematically 
worthwhile talk 
(Sequence) Working with selected & 
sequenced student math ideas 
(Public Record) Working with public 
records of student mathematical thinking 
(Confer) Conferring to understand students’ 
mathematical thinking & reasoning 
(Represent) Eliciting reasoning about visual 
representations 
(Meaning) Making meaning of tasks, 
contexts, and/or language 

Catalytic Teaching Habits 
Uses questions/actions to 
elicit students’: 
• Private reasoning time 
• Perceptions of the 

meanings of specific 
math concepts or 
properties 

• Mathematical 
noticings, wonderings, 
or conjectures 

• Metacognition or 
reflection 

• Mathematical 
reasoning on a 
problem or argument 

Orients students to ideas by: 
• Prompting students to 

analyze contradictions or 
misconceptions 

• Prompting students to 
analyze a strategy or 
argument 

• Prompting students to 
compare or connect 
across students’ 
reasoning 

• Exposing mathematical 
content in a non-verbal 
mode 

• Revoicing or recapping 
student ideas 



student engagement in authentic mathematical activity), catalytic teaching habits (the individual 
moves that teachers make to engage students in mathematical activity), and the resulting student 
activity. This framework operationalizes the triangle that occurs between math content, teachers, 
and student interactions (Cohen, Raudenbush, & Ball, 2003). For the scope of this report, we 
focus on the teaching portion to illustrate how particular routines may play out in the abstract 
algebra setting. 

Methods 
The data presented in this report stems from a design-based research project focused on 

developing instructional supports for the abstract algebra classroom. We developed three central 
tasks related to fundamental proof activities: validating, constructing, and comprehending. In this 
report we focus on the validating task (which also includes proof analysis to modify and test 
proofs and statements, c.f. Lakatos, 2015). The task centers on the proof that the Abelian 
property of a group is structural (preserved by isomorphism). We conducted two iterations with 
undergraduates who had recently completed introductory abstract algebra (three and four 
undergraduates, respectively). In the spirit of design-based research, we developed a set of 
conjectures of how students would respond to various instructional moves, then refined and 
altered tasks based on a close analysis of transcript and video data between implementations. We 
share data from the second implementation that incorporates substantial analysis-informed 
changes from the first. This lesson was roughly two hours in duration.  

The focal lesson we share in this preliminary report was videoed and transcribed. This 
data was then analyzed using the Math Habits framework to identify the nature of the 
instructional moves and resulting student activity. Two researchers, who were not involved in the 
planning or implementing the lesson, coded the data independently and reconciled differences 
through discussion.  

Sample Results 
During the course of our focal lesson, 55% of the time was spent with the instructor(s) 

engaged in at least one teaching routine with all six appearing. Additionally, 62 catalytic 
teaching habits occurred covering all ten habits at some point in the lesson.   

Teaching Routine Vignette 1: Making meaning of tasks, contexts, and/or language. 
 The first teaching routine that occurred was focused on making meaning of the theorem 
statement. Students were prompted to read the theorem and “sketch out how you might go about 
proving it.” This incorporated the CTH: private reasoning time, as the students were intentionally 
given time to write out their thoughts before engaging with each other. The instructor-researcher 
then asked, “So what are the types of things that we think about when we're going to prove 
something?” (CTH: metacognition/reflection). From this prompt, the students suggested the 
“givens” and “what we want to prove.” The instructor-researcher then created a public record on 
the board of the students’ suggestions (CTH: exposing content in a non-verbal mode) [Record: G 
and H are isomorphic. G is abelian. G, H groups; What we want to prove: H abelian.] 
 At this point we unpacked various vocabulary terms asking students to provide their 
definitions for abelian and isomorphic (CTH: press for perceptions of the meaning of 
mathematical ideas).  This discussion served both to remind the students of the meaning of 
terms, but also provide a scaffold for the eventual proof by creating a record that included the 
definition of isomorphism (existence of an alpha that’s 1-1, onto, and a homomorphism) and 
abelian (for every a,b ∈H, ab=ba.) 



 
Teaching Routine Vignette 2: Working with public records of students’ thinking. 

 
Figure 1. An invalid (or incomplete) G-first approach. 

 
Figure 2. A valid H-first approach 

 The next vignette we share is focused on the teaching routine of working with public 
records of student thinking. We note the routine is not focused only on students sharing thinking, 
but also having students engage with each other’s mathematical ideas. In this iteration, we 
provided the students with two common approaches1 to this proof (one that argued that the 
images of arbitrary elements of the domain group, G, commute, and one that argued that 
arbitrary elements of the co-domain group, H, commute) as shown in Figures 1 and 2. The two 
sets of partners were provided one of each of the approaches and the following directions as 
presenter and listener roles: 

Be prepared to explain this proof approach to your classmates. This explanation should 
include a function diagram that connects to the proof approaches.  (CTH: non-verbal 
representation) 

What is one thing about this proof approach that makes sense to you? What is something that 
you have a question about? (CTH: make sense of a strategy or argument) 

                                                
1 See Melhuish, Larsen, & Cook, 2019 for the frequency of these approaches and some of the 
underlying proof issues. 



These prompts positioned the students to make sense of a proof approach, including through 
using a visual representation, and to engage meaningfully with each other’s approaches. This 
task was particularly productive as the students successfully outlined the proofs including 
identifying important warrants, asked robust questions (such as identifying when elements are in 
the domain and codomain), and provided revoicings of each others’ ideas. 

The next prompts focused on connecting across ideas: “…the next thing that we're going 
to have you think about... kind of like a series of activities going through... is thinking about 
what's the same and what's different about these approaches, and you're welcome to chat again 
with your partner about this” (CTH: compare and connect across strategies). Through this 
prompt the students identified a number of commonalities including shared warrants 
(homomorphism property and abelian) and differences (beginning with elements in G rather than 
H, the use of 1-1 and onto). The instructors again kept a record of the similarities and differences 
on the board. By comparing and contrasting, the students (who found both arguments 
compelling) were positioned to notice the important differences across the proofs. Exploring 
these differences eventually lead to determining which warrants were essential (onto), which 
were not needed (1-1), and a discussion on how one approach better aligned with the statement 
via attending to the givens and what we want to prove. 

Discussion 
The early iterations of this experiment illustrated substantial promise in adapting teaching 

routines from the K-12 setting to the proof-based setting. First, we provide an existence proof 
that the types of teaching moves and routines from this setting can be adapted to the formal proof 
setting. Furthermore, these moves and routines seemed to be productive in the sense that students 
engaged in authentic mathematical activity (which we defined as proof analysis, construction, 
and comprehension) as a result of the teaching prompts and tasks. We also found that this 
iteration was productive in terms of meeting the underlying instructional goals which included: 
developing an appreciation the role of proof frameworks (Selden & Selden, 1995), deeply 
exploring the impact of a function being 1-1, onto, and a homomorphism, and arriving at 
important statement modifications. Comparing student strategies seemed particularly crucial to 
identifying the important differences between approaches which otherwise may have remained 
hidden. Furthermore, unpacking the statement in terms of givens and want-to-proves placed 
focus on the alignment of proof and the statement to be proven. In particular, the students arrived 
at noting the importance of starting with arbitrary elements from the codomain group, an 
approach rarely taken by students in introductory abstract algebra classes (Melhuish, et al., 
2019). 

Currently, this project is in early stages of analysis and implementation. As such, we 
acknowledge limitations of the generalizability of this work. Currently, we see a great deal of 
promising in adapting instructional supports from the K-12 level. If we want undergraduate 
student-centered classrooms to be productive, we need to develop such supports at this level, and 
then study their impact. Future research will include scaling from small-group lab settings to full 
classroom implementations to further adapt and refine this work. 
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