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ABSTRACT
Today’s �lters, such as quotient, cuckoo, and Morton, have a
trade-o� between space and speed; even when moderately full (e.g.,
50%-75% full), their performance degrades nontrivially. The result is
that today’s systems designers are forced to choose between speed
and space usage.

In this paper, we present the vector quotient �lter (VQF). Locally,
the VQF is based on Robin Hood hashing, like the quotient �lter,
but uses power-of-two-choices hashing to reduce the variance of
runs, and thus o�ers consistent, high throughput across load factors.
Power-of-two-choices hashing also makes it more amenable to
concurrent updates, compared to the cuckoo �lter and variants.
Finally, the vector quotient �lter is designed to exploit SIMD
instructions so that all operations have$ (1) cost, independent of
the size of the �lter or its load factor.

We show that the vector quotient �lter is 2⇥ faster for inserts
compared to the Morton �lter (a cuckoo �lter variant and state-of-
the-art for inserts) and has similar lookup and deletion performance
as the cuckoo �lter (which is fastest for queries and deletes), despite
having a simpler design and implementation. The vector quotient
�lter has minimal performance decline at high load factors, a
problem that has plaguedmodern �lters, including quotient, cuckoo,
and Morton. Furthermore, we give a thread-safe version of the
vector quotient �lter and show that insertion throughput scales 3⇥
with four threads compared to a single thread.

CCS CONCEPTS
• Theory of computation → Data structures design and
analysis; Bloom �lters and hashing.
KEYWORDS
Dictionary data structure; �lters; membership query
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1 INTRODUCTION
Filters, such as Bloom [9], quotient [43], and cuckoo �lters [31],
maintain compact representations of sets. They tolerate a small
false-positive rate Y: a membership query to a �lter for set ( returns
present for any G 2( , and returns absentwith probability at least
1�Y for any G 8( . A �lter for a set of size = uses space that depends
on Y and = but is much smaller than explicitly storing all items of ( .

Filterso�erperformanceadvantageswhen they�t in cachebut the
underlying data does not. Filters are widely used in networks, stor-
age systems, machine learning, computational biology, and other ar-
eas [4, 11, 14, 19, 20, 25, 26, 29, 34, 36, 46, 50, 52–54, 56]. Forexample, in
storage systems,�lters are used to summarize the contents of on-disk
data [5, 16, 21–23, 49, 51, 54]. Innetworks, theyareused to summarize
cachecontents, implementnetwork routing, andmaintainprobabilis-
ticmeasurements [14]. In computational biology, theyareused to rep-
resent huge genomic data sets compactly [2, 3, 19, 40, 42, 44, 46, 52].

In these applications, �lter performance—i.e., space usage, query
speed, and update speed—is often the bottleneck. In fact it is often
the case that most of the working set of an application is from �lters,
and the application is impractically slow unless the �lters �t in
DRAM. Often systems are designed around the constraint that they
do not have enough space for their �lters [23, 49, 55]. For example,
Monkey [23] uses an optimized allocation scheme to minimize the
size of �lters in-memory. PebblesDB [49] uses over 2/3rds of its
working memory for constructing and storing �lters. Furthermore,
storage devices, such as NVMe SSDs, are fast enough that CPU
bottlenecks are common [22].

Modern �lters, such as quotient, cuckoo, and Morton [13] �lters,
are all bumping up against the lower bound on space usage for a
dynamic �lter, which is=log(1/Y)+⌦(=) bits [17]. As Table 1 shows,
these �lters di�er by less than 1 bit per element, which is less than
a 10% di�erence for typical values of Y (e.g. 1%).

These �lters have converged on a common overall design—they
encode �ngerprints into hash tables. Quotient �lters and counting
quotient �lters [43] are based on Robin Hood hashing [18], and
cuckoo andMorton �lters are based on cuckoo hashing [39].

All these �lters slow down as they are �lled, because they
experience more collisions. This shows up clearly in Figure 4a,
which shows instantaneous insertion throughput as a function of
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�8;C4A Num bits for = items
Bloom �lter [9] 1.44=log(1/Y)
Quotient �lter [43] 1.053(=log(1/Y)+2.125=+> (=))
Cuckoo �lter⇤ [31] 1.053(=log(1/Y)+3=+> (=))
Morton �lter [13] 1.053(=log(1/Y)+2.5=+> (=))
Vector quotient �lter 1.0753(=log(1/Y)+2.914=+> (=))

Table 1: The space usage of di�erent �lters in terms of num-
ber of items n and false-positive rate 9. Moderns �lters use
essentially the same space. Quotient, cuckoo, and Morton
�lters support amaximum load factor of 0.95 and hence face
amultiplicative overhead of 1.053. The vector quotient �lter
supports a load factor of 0.93, for a multiplicative overhead
of 1.0753. The di�erent additive overheads (e.g. 2.125 vs. 2.5)
come from the di�erent collision-resolution schemes used
by the �lters. ⇤The cuckoo �lter referred throughout the
paper has 4 slots per block and 3 bits of space overhead. We
picked thestandardversionas ito�ers superiorperformance
compared to the semi-sorting variant.

load factor. Even at moderate load factors (e.g., 50%-75% occupancy),
their performance degrades nontrivially.1 For example, the insertion
throughput in the cuckoo �lter drops 16⇥ when going from 10%
occupancy to 90% occupancy and in the quotient �lter it drops
4⇥. The Morton �lter is arguably the fastest and most robust of
existing �lters, and, impressively, its insert throughout does not
really degrade substantially until 70% occupancy, at which point
it slows down by 2⇥ by the time it reaches 95% occupancy.

As these observations show, the costs of collision resolution have
become one of the main roadblocks to further advances in �lter
performance.

This paper. We present a new �lter, the vector quotient �lter,
that overcomes the collision-resolution roadblock to improving
�lter update performance. The vector quotient �lter shows that
it is possible to build a �lter that o�ers high performance and
does not slow down across load factors. The vector quotient �lter
shows how to combine power-of-two-choice hashing with new
vector-instruction hardware to build a �lter with $ (1) insertion
time, independent of load factor. Furthermore, these improvements
come at no cost to query performance. Empirically,
Insertions: • Insertions in the vector quotient �lter have constant

high performance from empty to full. We also describe an
optimization that further improves insertion performance
at low load factors without sacri�cing performance at higher
load factors. • The vector quotient �lter is 10⇥, 4.5⇥, and 2⇥
faster at insertions than the cuckoo �lter, quotient �lter, and
Morton �lter at 90% load factor. • The vector quotient �lter
supports aggregate insertions (i.e., from empty to full) over
2⇥ faster than the next fastest �lter (the Morton �lter).

Deletions: •Vector quotient�lter deletions are roughly as fast as in
the cuckoo �lter, roughly 2⇥ faster than theMorton �lter, and
4⇥ faster than thequotient�lter.•Athigh load factors, thevec-
tor quotient�lter is the clearwinner for deletion performance.

1All of these �lters de�ne “full” to be somewhat less than 100% occupancy. The quotient
�lter suggests limiting occupancy to 95% in order to limit collision-resolution costs. The
cuckoo andMorton �lter limit occupancy to 95% because their failure probabilty shoots
up above 95%. This is why all these �lters have a 1.053⇥ space overhead, as shown in
Table 1.

Queries: • Queries in the vector quotient �lter are roughly 80%
as fast as in the cuckoo �lter, 50% faster than in the Morton
�lter, and over twice as fast as in the quotient �lter.

Space: The vector quotient �lter is nearly as space-e�cient as other
modern �lters (see Table 1). In practice, the vector quotient
�lter uses around 1 to 2%more space than the cuckoo �lter.

Concurrency: • Insertion throughput on a machine with 4
physical cores scales over 3⇥ with 4 threads compared to
single-threaded insertion performance in the vector quotient
�lter, demonstrating nearly linear scaling.

Limitations. While the vector quotient�lter is substantially faster
than other �lters for insertions, it is slightly slower than the fastest
�lter (i.e. the cuckoo �lter) for queries and deletes. Query-intensive
applications might be better served by the cuckoo �lter. The vector
quotient �lter uses similar space as the cuckoo �lter and is about
10 to 12% larger than the quotient �lter. If space is at an absolute
premium, then applications might consider the quotient �lter. The
vector quotient �lter also lacks some of the advanced features of
the quotient �lter, such as resizability.

The vector quotient �lter uses the same xor trick as the cuckoo
�lter in order to support deletion. Thus, like the cuckoo �lter,
the probability of failure increases as the �lter becomes larger.
However, because the vector quotient �lter never kicks items from
one block to another, it needs the xor trick only in order to support
deletions. The cuckoo �lter, on the other hand, always needs to
use the xor trick, so that it can �nd an item’s alternate block during
kicks. Thus, if deletions are not needed, the vector quotient �lter can
use independent hash functions, and hence the failure probability
can be made independent of the �lter size.

Where performance comes from. Vector quotient �lters achieve
these performance gains in three steps.

First, they use power-of-two-choice hashing instead of cuckooing,
which avoids the need to perform kicking in order to achieve high
load factors.

In power-of-two-choice hashing, items are hashed to two blocks
and placed in the emptier block. However, unlike cuckoo hashing,
blocks are sized so that they never over�ow, so items never need to
be kicked from one block to another. Power-of-two-choice hashing
ensures that the variance in block occupancies is low, so that all
blocksget�lled tohighoccupancybefore anyblockover�ows,which
means we can get good space e�ciency.

Power-of-two-choice hashing makes operations on the vector
quotient �lter cache e�cient. Insertions and lookups access at most
two cache lines, and insertions modify at most a single cache line,
regardless of the load factor. Insertions into cuckoo and Morton
�lters, however, perform kicking, and hence access and modify
multiple cache lines, and this increases as the �lter becomes fuller.
This also compares favorably to standard quotient �lters where, at
high load factors, a single insert may need to touch dozens of cache
lines. See Figure 4a, which shows that most modern �lters exhibit
di�erent amounts of performance degradation as they �ll up; and
this is due, in a largepart, to the increasing cost of collision resolution.
We expect that vector quotient �lters should perform well on
non-volatilememories, wherewrites aremore expensive than reads.

Power-of-two-choice hashing also makes it easy to support con-
current updates, since each updates examines at most two cache
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lines and modi�es at most one. Simple locks on each block or even
hardware transactional memory are all that is needed to support
concurrent updates. Cuckoo andMorton �lters, on the other hand,
are di�cult tomake concurrent, since each updatemay touch a large
number of locations, in essentially random order.

Second, vector quotient �lters use a quotient-�lter-like metadata
scheme to keep the false-positive rate from increasing aswe increase
the block size. (In cuckoo andMorton �lters, the false-positive rate
increases with the block size, which is why they keep blocks small
and use kicking to achieve high load factors.)

2 RELATEDWORK
For decades, the Bloom �lter [9] was essentially the only game in
town, but Bloom �lters are suboptimal in terms of space usage,
running time, and data locality, and they support a bare-bones set
of operations (insert and lookup).

In particular, Bloom �lters consume log(4) = log(1/Y) space,
which is roughly log(4) ⇡ 1.44 times more than the lower bound
of = log(1/Y) + ⌦(=) bits [17]. Bloom �lters also incur log(1/Y)
cache-line misses on inserts and positive queries, giving them poor
insertion and query performance.

The Bloom �lter has inspired numerous vari-
ants [1, 10, 15, 25, 32, 37, 47, 48]. The counting Bloom�lter (CBF) [32]
replaces each bit in the Bloom �lter with a 2-bit saturating counter.
This enables the CBF to support deletes, but increases the space by
a factor of 2 . The blocked Bloom �lter [47] provides better cache
locality than the standard Bloom�lter but does not support deletion.

The quotient�lter (QF) [7, 27, 28, 38] uses a new, non-Bloom-�lter
design. It is built on the idea of storing small �ngerprints via Robin
Hood hashing [18]. It supports insertion, deletion, lookups, resizing,
and merging. The counting quotient �lter (CQF) [43], improves
upon the performance of the quotient �lter and adds variable-sized
counters to count items using asymptotically optimal space, even
in large and skewed datasets.

The quotient �lter uses 1.053(2.125+ log21/Y) bits per element,
which is less than the Bloom �lter whenever Y 1/64, which is the
case in almost all applications. Quotient �lters are also much faster
than Bloom �lters, since most operations access only one or two
cache lines. Geil et al. accelerated the QF by porting it to GPUs [35].

The cuckoo �lter [31] uses the idea from quotient �lters of
hashing small �ngerprints but uses cuckoo hashing instead of Robin
Hood hashing. Cuckoo �lters use 1.053(3+ log21/Y) bits per item,
that is, somewhat more than a quotient �lter.

The Morton �lter [13] is a variant of the cuckoo �lter that is
designed to speed up insertion using optimizations designed for
hierarchical systems. The Morton �lter biases insertions towards
the primary hash slot and uses an over�ow tracking array to
speed up negative queries. In addition, the Morton �lter employs
a compression-based physical representation to store �ngerprints
in blocks and achieves better space utilization than the cuckoo
�lter. The Morton �lter o�ers faster insertion throughput compared
to the cuckoo �lter and also less throughput degradation at high
occupancy. TheMorton �lter o�ers even faster insertion throughput
for bulk insertion scenarios which are often seen in practice.
The Morton �lter space usage depends on several con�guration

parameters, but the version benchmarked in the original Morton
�lter uses approximately 1.053(2.5+log21/Y).

From the above summary, we can see that the quotient, cuckoo,
andMorton �lters all use 1.053( +log21/Y) bits per element, where
 is 2.125, 3, or 2.5, respectively. The main remaining challenge is
speed, especially at higher load factors.

3 VECTORQUOTIENT FILTER
The vector quotient �lter uses three techniques to get good
performance at all load factors:

• Power-of-two-choice hashing to allocate items to blocks.
• Space-e�cient mini-�lters within each block.
• SIMD-optimized encoding of mini-�lters.

The vector quotient �lter uses a power-of-two-choice hashing
scheme to allocate keys to blocks. Items are mapped to two blocks
and placed into the emptier one. Items are never “kicked” from one
block to another, avoiding the complexity and cost of kicking that
cuckoo andMorton �lters incur. Power-of-two-choice hashing also
avoids the long chains of shifted elements in the quotient �lter.

Themainchallenge tousingpower-of-two-choicehashing instead
of cuckooing is that blocksmust have large capacity (e.g.l (loglog=))
in order to be able to achieve high load factor (and hence high space
e�ciency). In contrast, cuckoo andMorton �lters use small blocks,
whichmeans that some blocks �ll much sooner than others, but they
handle this problem by kicking items from one block to another.

Because they use small (i.e. constant-sized) blocks, cuckoo and
Morton �lters can use a relatively simple block structure: each block
is simply an array of �ngerprints, and any query that maps to the
block can match with any �ngerprint in the block. This means that
the false-positive rate is proportional to the block size, which is not a
problem in cuckoo andMorton �lters because they use small blocks.

So we need a block structure that supports large blocks without
blowing up the false-positive rate.

We resolve this dilemma by structuring each block in the vector
quotient �lter as a mini-�lter in its own right. Our mini-�lter struc-
ture is based on ideas from the quotient �lter, and ensures that we
can make each mini-�lter as large as we want without increasing its
false-positive rate. In the VQF, blocks can be as large as a cache line,
or even larger, and do not require rebalancing or cuckooing at all.

Finally, we encode the mini-�lters to take advantage of recent
Intel SIMD instructions for operating on entire cache lines in a single
instruction. As a result, all operations on the VQF take constant
time. This improves upon the cuckoo, quotient, and Morton �lters,
for which the cost of insertions grows as both a function of the �lter
size and its occupancy.

3.1 Power-of-two-choice hashing
As shown in Figure 1, a VQF consists of an array of : blocks, where
each block is a small �lter with capacity B and false-positive rate
Y/2. (In our implementation, B is 48 or 28, see section 6.) Each block
is implemented as a mini-�lter, described in Section 3.2.

To insert an item, G , we compute two block indexes 11 (G) and
12 (G) using independent uniformly random hash functions. We
then insert G into the emptier of blocks 11 (G) and 12 (G), following
the power-of-two-choices hashing paradigm [6]. If both blocks are
full, then the insertion fails.
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The following theorem of Berenbrink, et al. enables us to ensure
that all the blocks are heavily loaded before any insertion fails.

T������ 1 (B���������, �� ��. [8]). If we toss< balls into =
bins using the power-of-two-choices, then, with high probability, the
maximum load of any bin is</=+$ (lnln=).

Furthermore, the constants are quite good—for most practical
purposes, we can treat the bound as</=+lnln=.

Thus, to create a VQF for = items, we allocate an array of
: =$ (=/ln=) blocks, eachwith capacity B ==/:+⇥(lnln=) items and
false-positive rate Y/2. By Theorem 1, we can insert all = items into
the �lter without causing any block to reach its maximum capacity,
and hence all the insertions will succeed with high probability.

Note that this �lter supports a load factor of =
=+⇥(= lnln=

ln= ) . When =

is large, this approaches 1, since lnln=
ln= => (1).When= is small, say=<

248, we can simply pick: ==/48, so that the average block occupancy
=/: will still be substantially larger than the variance$ (lnln=).

To perform a query, we hash G to 11 (G) and 12 (G) and return
“present” if G is present in either block. As long as each block has
a false-positive rate of at most Y/2, then the �lter as a whole will
have a false-positive rate of at most Y.

3.2 Mini-�lters
In the vector quotient �lter, each of the blocks described in
Section 3.1 is itself a small quotient �lter, which we call amini-�lter.
We now describe an e�cient encoding that we use to implement
the mini-�lter. This encoding is both space-e�cent and, as we will
see in Section 3.3 enables insert, lookup and delete operations in
$ (1) time using AVX-512 instructions.

The key di�erence between our mini-�lter and the unstructured
blocks of cuckoo andMorton �lters is that we divide the block into
1 buckets. Each item G inserted into a block is hashed using a hash
function⌘(G).We divide the output⌘(G) into a log1-bit bucket index,
V (G), and an A -bit�ngerprint, 5 (G).We then add 5 (G) to bucket V (G).
Note thatwe can recover⌘(G) from 5 (G) and V (G). Similarly, queries
for an element ~ return yes only if 5 (~) is present in bucket V (~).
The main challenge is to e�ciently encode the bucket structure.

Figure 1 shows how the mini-�lter stores �ngerprints and their
corresponding buckets. Themini-�lter stores a (1+B)-bit bucket-size
vector followed by an array of up to B �ngerprints. The �ngerprints
are stored in bucket order, i.e. all the �ngerprints in bucket 0 are
stored together, followed by all the�ngerprints in bucket 1, and so on.
The number of �ngerprints in each bucket is stored in unary in the
bucket-size vector. The total number of metadata bits is therefore at
most1+B , and the total size required for a block is at most1+(1+A )B .
Figure 1 shows an example of the encoding of a mini-�lter using
colors to distinguish keys across di�erent buckets. For example, in
Figure 1, bucket 3 of block 2 has 1 �ngerprint, indicated in blue.

This mini-�lter encoding improves upon both the cuckoo and
quotient �lters. In the standard quotient �lter, 1=B . In that case, the
mini-�lter has 2 bits of metadata overhead per element, whereas the
quotient �lter has 2.125. The extra bits of overhead in the quotient
�lter are there to enable queries and updates without parsing the
entire �lter, which can be huge. Mini-�lters, however, are never
large, so we can dispense with those extra metadata bits.

Compared to the structure of cuckoo-�lter blocks, the mini-�lter
is even more space e�cient. Since cuckoo �lter blocks have no
structure—just a set of�ngerprints—the false-positive rate of queries
in a cuckoo-�lter block grows roughly linearly in the size of the
block. This is why cuckoo �lters keep blocks small and are forced to
use cuckooing to rebalance blocks. In the mini-�lter, however, the
false-positive rate can be made indepdendent of the number of slots
in a block (see the analysis in Section 5). Thus we can make blocks
large enough to make block-occupancy variance a lower order term,
without the need for cuckooing.

3.3 SIMDMini-�lter operations
The mini-�lter structure described above is speci�cally designed
to be amenable to vector operations. Speci�cally, operations on
metadata can be performed usingword-level rank, select, and similar
operations, and operations in the �ngerprint array can be performed
using vector permutation and comparison operations.

Wecanperformqueries inablockusingbitvector-selectandSIMD-
compare instructions, as follows. Let< be the metadata string and C
thevector of�ngerprints in ablock.De�neB4;42C (<,8) to be the index
of the 8th 1 in<,where thebits of< and theones are counted from the
left, starting at 0. So, for example,B4;42C (001000000,0)=2because the
�rst 1 appears at index 2. Then the �rst �ngerprint for bucket 9 >0 is
stored in slot B4;42C (<, 9�1)� 9 . (The �rst �ngerprint for bucket 9 =0
is stored in slot 0.) Thus all the �ngerprints for keys in bucket 9 >0
can be found in slots [B4;42C (<, 9�1)� 9+1,B4;42C (<, 9)� 9) of C . The
�ngerprints for bucket 9 =0 can be found in the�rst B4;42C (<,0) slots.
Furthermore, bitvector-select is fast on modern CPUs. Since the
mini-�lter metadata vector contains only$ (log=) bits, we can use
word operations, such as the x86 PDEP instruction, to perform select
in constant time (�rst used in the counting quotient �lter [41, 43]).

During an insert, we must �rst choose the emptier of two
blocks. We can compute the occupancy of a block by computing
B4;42C (<,1�1)�1+1.

Once we have identi�ed the range of slots to check, we can use
a SIMD comparison instruction to check all the candidate slots
against the queried �ngerprint in constant time.

To insert a new key :⇤ with bucket 1⇤ and �ngerprint 5 ⇤, we
insert 5 ⇤ into slot B4;42C (<,1⇤)�1⇤ of C , shifting over subsequent
�ngerprints in C , and insert a 0 bit at index B4;42C (<,1⇤) in<. We
can shift the metadata bits and insert the 0 into the metadata using
the x86 PDEP instruction and some lookup tables.

We can shift the �ngerprints by using a SIMD table-lookup
instruction, similar to the AVX-512 VPERMB (Permute Packed Bytes
Elements) instruction. These �ngerprint and metadata shifting
operations can be performed in a small constant number of instruc-
tions irrespective of the load factor and enable the VQF to maintain
a high and consistent insertion throughput even at high load factors.

3.4 Deletes
Naively, we would like to implement deleting an element G by just
�nding an instance of ⌘(G) in either of the blocks 11 (G) or 12 (G)
and removing it.

The only problem this could cause is false negatives. Note that
the only tricky case is when we have inserted two elements G and
~ with ⌘(G) = ⌘(~) and 18 (G) = 1 9 (~) for some 8 and 9 , and we are
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0 0

(1+B) metadata bits B A -bit �ngerprint slots

11 (G)
item G

12 (G)

: blocks10 1 0 1 -0 1 79 5 -2 4

1 0 11 0 0 1 -- - 53 8 -- -

0 0 10 1 0 1 -0 1 79 5 -2 4

0 1 10 1 0 0 -1 - 86 3 -5 -
insert 5 (G)=6

into bucket V (G)=0

0
1
2
3
4
5

0
1
2
3
4
5

Figure1:Avectorquotient�lterandtheprocessof insertinganewitem.Eachrowisamini�lter.Mini�ltershave1 logicalbuckets,
B slots for storing �ngerprints, and 1 + B metadata bits (1 = 4 and B = 6 in the example). The metadata bits encode, in unary the
number of�ngerprints in each bucket. The�ngerprints for each bucket are stored consecutively in the�ngerprint array. So, for
example, bucket 0 in block 2 has three�ngerprints, 9, 5, amd 7 (indicated in green). To insert an item G , we hash it to blocks11 (G)
and 12 (G) and insert it into the emptier block. In the example, we insert G into block 5 since it is emptier than block 2. To insert
G into the block, we add G ’s �ngerprint 5 (G) to its bucket V (G), shifting overmetadata bits and other �ngerprints as necessary.

now trying to delete one of these elements (say G). This is because,
if two elements do not have the same value under hash function
⌘, then there is no way they can be confused, and hence no way that
deleting one of them could cause a false negative in future queries of
the other. Similarly, if two elements have no block in common, then
deleting one cannot a�ect the result of future queries for the other.

The vector quotient �lter supports deletes by using the sameXOR
trick as in the cuckoo�lter.Wehandle these cases by setting theblock
index 12 (G) =11 (G)�⌘(G). Thus, if we insert any two items G and
~ where⌘(G)=⌘(~) and 18 (G)=1 9 (~) for any 8 and 9 , then we must
have that {11 (G),12 (G)}= {11 (~),12 (~)}. Thus we will have at least
twocopiesof⌘(G) acrossblocks11 (G) and12 (G), one forG andone for
~ (and possibly more for other elements). Hence, if we delete G (or~),
we can delete one copy of⌘(G) without causing any false negatives.

The data structure will still guarantee the same false positive be-
havior even after deleting the item. Because ifG (or~) is queried after
deletion then itwouldcausea falsepositivebut that is theexpectedbe-
havior of �lters. Moreover, the secondary hash is computed from the
primary hash using a simple multiply-and-xor technique. Thus, the
total cost to perform an operation is less than 2 hash computations.

One important requirement for safely deleting (without introduc-
ing a false negative) an item is that it must have been inserted. Oth-
erwise, deleting a non-inserted itemmight unintentionally remove a
real, di�erent item that happens to share the same �ngerprint. This
requirement also holds true for all other deletion-supporting �lters.

Using the XOR operation to compute the second hash does
not guarantee independence between the �rst and second hash
functions, which is a requirement for the power-of-two-choice
hashing. In practice, however, the number of bits in the �ngerprints
introduce enough randomness to achieve a very high load factor.
This same idea is used in the cuckoo �lter to support deletion
without introducing false negatives. Empirically, the XOR trick has
marginal impact on the maximum load factor. In our measurements,
it only reduced the maximum load factor from 94.85% to 94.40%.

4 VECTORQUOTIENT FILTEROPERATIONS
This section describes the algorithms used to implement the insert,
lookup and delete operations on a vector quotient �lter.

Insert. Algorithm1 shows the pseudocode for the insert operation.
To perform an insert, the item is �rst hashed to determine the
�ngerprint D that we will store in either the element’s primary or
secondary block. Then, it is hashed again to determine the indices

Algorithm 1 Insert (x)
1: D ⌘ (G) ùD is hash to be inserted in mini-�lter
2: 11 ⌘1 (G) ù Compute primary and secondary block indexes
3: 12 11 �D
4: 8 11 ù Select index 8 of emptier block
5: if S�����(block[12 ] .metadata,1�1) <S�����(block[11 ] .metadata,1�1) then
6: 8 12
7: end if
8: if S�����(block[8 ] .metadata,1�1) =B+1�1 then
9: return False ù Filter is full.
10: end if
11: ~ D/2A ù ~ is bucket index within the block
12: C D mod 2A ù C is �ngerprint
13: < S�����(block[8 ] .metadata,~) ù< is metadata index
14: I <�~ ù I is slot for this �ngerprint
15: = 1+B
16: while=>< do ù Implemented using PDEP
17: block[8 ] .metadata[=] block[8 ] .metadata[=�1]
18: = =�1
19: endwhile
20: = B
21: while=>I do ù Implemented using VPERMB
22: block[8 ] .�ngerprints[=] block[8 ] .�ngerprints[=�1]
23: = =�1
24: endwhile
25: block[8 ] .metadata[<] 0
26: block[8 ] .�ngerprints[B ] C

11 and12 of the primary and secondary blocks and put in whichever
is emptier. We compute occupancy of a block by using S�����, as
described in Section 3.3.

Inside a block, the item must be placed at the end of the run of
elements in its bucket. We �rst compute the target bucket~ for the
element and its �ngerprint C . We then use S����� to compute the po-
sition< of the 1 indicating the endof the runof�ngerprints in bucket
~. From< and~,we compute the correct slotI to store the�ngerprint.
From here, the rest of the algorithm performs simple shifts over the
�ngerprints and metadata bits. The while loop on line 12 shifts over
the metadata bits from position< onwards, inserting a 0 at position
<. In our implementation, the while loop is implemented as two
PDEP instructions and some precomputed tables. The while loop on
line 17 shifts the�ngerprints frompositionI onwards, and inserts the
new �ngerprint at position B . In our implementation, this loop is im-
plemented as a single VPERMB instruction and some lookup tables.

Lookup. Algorithm 2 shows the pseudocode for the lookup opera-
tion. Analoguously to the insertion algorithm, performing a lookup
begins by computing hashes of the key to determine its remainderD
as well as its primary and secondary block indices. Then the primary
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Algorithm 2 Lookup (x)
1: D ⌘ (G) ùD is hash to be queried in mini-�lter
2: 11 ⌘1 (G) ù Compute primary and secondary block indexes
3: 12 11 �D
4: return 0  ����_�����������(11,D)_ 0  ����_�����������(12,D)
5:
6: procedure ����_�����������(8,D)
7: ~ D/2A ù ~ is bucket index within the block
8: C D mod 2A ù C is �ngerprint
9: if ~=0 then ù Compute start of run of elements in bucket ~
10: BC0AC 0
11: else
12: BC0AC S�����(block[8 ] .metadata,~�1)�~+1
13: end if
14: 4=3 S�����(block[8 ] .metadata,~)�~
15: while BC0AC <4=3 do ù Implemented using VPCMPB
16: if block[8 ] .�ngerprints[BC0AC ]=C then
17: return start
18: end if
19: BC0AC BC0AC+1
20: endwhile
21: return -1
22: end procedure

Algorithm 3 Remove (x)
1: D ⌘ (G) ùD is hash to be queried in mini-�lter
2: 11 ⌘1 (G) ù Compute primary and secondary block indexes
3: 12 11 �D
4: if ������_�����������(81,D) then
5: return True
6: else
7: return ������_�����������(82,D)
8: end if
9:
10: procedure ������_�����������(8,D)
11: ~ D/2A ù ~ is bucket index within the block
12: ✓ ����_�����������(8,D) ù ✓ is position of �ngerprint to be removed
13: if ✓ <0 then
14: return False
15: end if
16: < ✓+~ ù< is index of metadata bit to be deleted
17: while<<B+1 do ù Implemented using PEXT
18: block[8 ] .metadata[<] block[8 ] .metadata[<+1]
19: < <+1
20: endwhile
21: while ✓ <B do ù Implemented using VPERMB
22: block[8 ] .�ngerprints[✓ ] block[8 ] .�ngerprints[✓+1]
23: ✓ ✓+1
24: endwhile
25: return True
26: end procedure

and secondary blocks are checked to see if either contains D; if so,
the lookup returns “present,” otherwise it returns “not present.”

Inside a block, we �rst compute the bucket~ for the given item,
and use S����� on the bucket-size bitvector to �nd the start and end
of the run of �ngerprints in bucket~. Then we compare each �nger-
print in the run to the queried �ngerprint C , and return the position
of the match if one exists, and -1 otherwise. The comparison loop
on line 14 is implemented as a single AVX-512 VCMPB instruction.

Remove. Algorithm 3 shows the pseudocode for the remove
operation. The remove operation uses ����_����������� to �nd the
�ngerprint in the item’s primary or secondary block. If it exists, then
it reverses the operations of ������. As with insert, we can replace
all the loops with AVX-512 instructions, PDEP/PEXT instructions,
and lookup tables.

Because the vector quotient �lter uses XOR to link the hash
functions which determine the primary and secondary blocks, it
is safe to remove a remainder found in this way. See section 3.4.

5 SPACEANALYSIS
We now analyze the space usage of the vector quotient �lter and
compare it against the space usage of other �lters. We perform the
analysis on a generalized version of our optimized vector quotient
�lter, parameterized by 1, A , and B , as de�ned in the table below.

The notation used for analysis is:
Y target false positive rate
U maximum allowed load factor
( number of bits per item
A number of bits in the �ngerprint
1 number of buckets per block
B number of slots per block
< number of blocks

We�rst compute the false-positive rate Y as a function of1, B , andA .
Each itemmaps to twoblocks.Withinablock, itmaps tooneof1 buck-
ets. The total number of items in a block is at most B , so the average
number of items in an item’s bucket is B/1. For each item in a query’s
bucket, there is a 2�A probability that its �ngerprint matches that of
the query. Thus, by a union bound, we can upper bound the prob-
ability of a match within one block as B

1 2
�A . Since each query maps

to two blocks, the probability of a match in either block is at most
Y  2 B1 2

�A = B
1 2

1�A . Solving for A gives A  log(1/Y)+log(B/1)+1.
We now compute the bits per item, ( , as a function of 1, B , A , and

the load factor U . Each slot occupies an A -bit �ngerprint in a block.
Each block also has 1+B metadata bits that are shared by the B slots
in the block. So the total bits per slot is A + 1+B

B . If only a fraction U
of slots have items stored in them, then the bits per item is

( =
A+ 1+B

B

U
=
A+1/B+1

U
.

By subtituting A  log(1/Y)+log(B/1)+1 for A in our equation for
( , we get

(  log(1/Y)+log(B/1)+1/B+2
U

.

Thus we can minimize ( by minimizing log(B/1) + 1/B , which is
minimized when B/1= ln2.

Thus the space used by the vector quotient �lter is

(  log(1/Y)+logln24 +2
U

⇡ log(1/Y)+2.914
U

.

Note that space usage and false-positive rate are functions of B/1.
Thus we can make blocks as large as we like (i.e. we can make B
arbitrarily large) without a�ecting the false-positive rate or space
e�ciency, so long aswemaintain the same ratio of B/1. In the cuckoo
andMorton �lters, however, the false-positive rate increases with
the number of slots per block, which is why they keep blocks small
and use kicking.

The additive overhead of 2.914 bits/element is slightly less than
the cuckoo �lter’s 3 bits of overhead. However, as we will see
experimentally in Section 7, the vector quotient �lter supports load
factors only up to 93%. Thus we expect these di�erences to cancel
out, so that the vector quotient �lter uses very close to the same
space as the cuckoo �lter.
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Figure 2: False-positive rate verus the number of bits per
element for the vector quotient �lter, quotient �lter, cuckoo
�lter, and Bloom �lter. The vector quotient �lter requires
similar space as the cuckoo �lter. Y is the false positive rate.
The y-axis shows the negative log of the false-positive rate
for a clearer interpretation. (Higher is better.)

Figure 2 shows the comparison of the false positive rate and
the number of bits per item for the vector quotient �lter, counting
quotient �lter, cuckoo �lter, and Bloom �lter. We assume a 93% load
factor for the vector quotient �lter, 95% for the quotient �lter and
cuckoo �lter, and 100% for the Bloom �lter. The vector quotient
�lter space usage for a given false positive rate is similar to the
cuckoo �lter and slightly higher than the counting quotient �lter.
The Bloom �lter has no additive overhead, so is smaller for large
false-positive rates, but its larger multiplicative overhead means
that it is larger for small false-positive rates.

Note that the optimal vector quotient �lter con�guration con-
strains only the ratio B/1, but says nothing about B or 1 individually.
Thus we can make B and 1 as large or small a we want, as long as we
keep B/1⇡ ln2. In practice, for a given �ngerprint size A , we set B and
1 as large as possible given the constraint that a block, consisting
of B+1+BA bits, �t on a single cache line.

We note that Figure 2 shows the theoretical relationship between
the false-positive rate and the bits-per-element in di�erent �lters.
In practice, only the counting quotient �lter implementation sup-
ports arbitrary �ngerprint sizes with relatively good e�ciency. The
vector quotient �lter, cuckoo, and Morton �lter implementations
evaluated in this paper, on the other hand, support only a few dis-
crete false-positive rates in practice. Our vector quotient �lter proto-
type supports only two false-positive rates—0.004 and 0.000023. The
cuckoo �lter implementation supports more false-positive rates (by
adjusting both the�ngerprint size and the block size), butmany false-
positive rates arenotpractical. This is because the cuckoo�lter imple-
mentation supports only 8, 12, 16, and 32-bit�ngerprints and, given a
�ngerprint size A and block size1, it has a false positive rate of 212�A .
Thus the only way to get a false-positive rate of say, 2�16, would be
to use 32-bit �ngerprints and blocks of size 1 = 215, which would
need to be searched on every query, resulting in very slow queries.

6 IMPLEMENTATIONANDOPTIMIZATION
This section describes details and optimizations of the vector
quotient �lter implementation. We begin by analyzing the optimal

parameters for the vector quotient �lter, then describe a shortcut
optimization that we use to speed up insertions, and also how to
convert single-threaded operations in the vector quotient �lter into
thread-safe operations using lightweight spin locks.
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Figure 3: The relation between B/1 and the overhead bits in a
vector quotient �lter. (Lower is better.)

6.1 Optimizing the vector quotient �lter for x86
We now describe howwe design the vector quotient �lter to �t mini
quotient �lters in a single x86 cache line.

There are several constraints on the design. Ideally, each
mini-�lter should �t in a 512-bit cache line with no wasted bits. In
order to use the VPERM and VCMP instructions to shift and search
�ngerprints (see section 3.3), those �ngerprints should be 8, 16, or
32 bits and aligned. Finally, we want to minimize the false-positive
rate and maximize the capacity.

Therefore, when setting the parameters of the mini-�lter, we
want to choose 1 and B so that the total space of the mini-�lter,
1+(A+1)B , is as close to 512 as possible, without going over. Subject
to this constraint, we want to keep B/1 as close as possible to ln2.

Our prototype supports 8 and 16-bit �ngerprints. For 8-bit �n-
gerprints, we choose B = 48 and 1 = 80. For 16-bit �ngerprints, we
use B =28 and 1=36. We choose these values because they result in
128-bit and 64-bitmetadata, respectively,waste nobits in a block, and
have fast multiply, divide, and mod algorithms. Furthermore, they
both achieve close to the optimal bit overhead. Figure 3 shows the
bit overhead from various choices of B/1, and the two points chosen
in our implementation. As the graph shows, the overhead curve is
relatively �at in the region around itsminimum, so there is notmuch
cost in choosing convenient points near the minimum. For example,
our choices result in 0.93 and 0.923 bits of overhead for 8 and 16 bits
�ngerprints, respectively, compared to the optimal of 0.914 bits.

6.2 Shortcuts during insertion
The insert operation in the vector quotient �lter described in
section 4 must check the occupancy of both the blocks given by the
two block indexes and pick the less loaded block. This causes two
cache-line misses during every insert operation irrespective of the
load factor. Thus, while the power-of-two-choices allocation scheme
balances load extremely well, it can lead to a higher insertion cost
than simply allocating with a single hash function.
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The shortcut optimization balances these two schemes: allocating
to a single block when the occupancy is low and allocating
with power-of-two-choices when the occupancy is high. This is
implemented on insertion by checking the occupancy of the �rst
block �rst and always selecting it if it is less than 75% occupied,
thereby eliding the access to the second block completely. As a result,
the insert operation incurs only a single cache-line miss during low
load factors and speeds up the average insertion throughput.

Empirically, we �nd that this optimization only slightly reduces
the maximum load factor of the vector quotient �lter, and increases
insert performance substantially. We empirically evaluated the
e�ect of shortcut optimization on the maximum load factor for
di�erent thresholds. For the 75% threshold the optimization has only
a marginal e�ect reducing the maximum load factor from 94.40% to
93.56%. However, increasing the threshold higher than 75% did show
a sharp decrease in the maximum load factor. For example, with
87.5% and 95.83% threshold the maximum load was reduced to 90%
and 64.83%. See section 7 for an evaluation of the insert operation
performance with and without the shortcut optimization.

6.3 Multi-threading
We now describe an implementation of thread-safe operations in
the vector quotient �lter. In the vector quotient �lter, each insert,
lookup, and remove operation touches at most two blocks and
each block �ts in a cache line. Therefore, most operations occur
on independent cache lines, so that threads rarely contend for the
same cache lines. As a result, the vector quotient �lter is especially
amenable to highly concurrent thread-safe operations.

In the thread-safe implementation, the rightmost bit in the
metadata bitvector of each block is used as a lock bit. As explained
in section 3.2, 1+B metadata bits are required to store B �ngerprints
belonging to 1 buckets in a block. However, if it isn’t full, it uses
fewer, and if it is full, then the last (rightmost) bit is always 1.
Therefore, we can use it as the lock bit and treat it as though it were
1 in the bucket-size bitvector.

A lock is acquired or released using atomic instructions
(“__sync_fetch_and_or” to lock and “__sync_fetch_and_and” to
release). To acquire the lock on a block, we set the bit to 1 and reset
the bit to release the lock. When multiple locks are held at once,
they are always acquired in increasing order of block index. This
protocol avoids any potential deadlocks.

During an insert operation, the lock is acquired on the primary
block before checking its occupancy. Following the shortcut
optimization, if the occupancy is high enough the secondary block
is checked as well. But in that case, if the secondary block has a
lower index than the primary block, the lock on the primary block
is released and then reobtained after acquired the lock on the
secondary block, as per the locking order protocol.

During the lookup and remove operations, we acquire the lock on
the block only during ����_����������� or ������_�����������.

7 EVALUATION
In this section,weevaluateour implementationof thevectorquotient
�lter (VQF).We compare the vector quotient�lter against three other
�lter data structures: Fanet al.’s cuckoo�lter (CF) [30],Breslowet al.’s
Morton �lter (MF) [13], and Pandey et al.’s quotient �lter (QF) [43].

We evaluate each data structure on three fundamental operations:
insertions, lookups, and removals. We evaluate lookups both for
items that are present and for items that are not present in the �lter.

This section tries to address the following questions about how
�lters perform in RAM and L3 cache:

(1) How does the vector quotient �lter (VQF) compare to the
cuckoo �lter (CF), Morton �lter (MF), and quotient �lter (QF)
when the �lters are in RAM?

(2) How does the vector quotient �lter (VQF) compare to the
cuckoo �lter (CF), Morton �lter (MF), and quotient �lter (QF)
when the �lters �t in L3 cache?

(3) How does the vector quotient �lter (VQF) compare to the
cuckoo �lter (CF) and Morton �lter (MF) when running a
mixed workload at high occupancy?

(4) How does the insertion throughput of the vector quotient
�lter (VQF) scales with multiple threads?

7.1 Experimental setup
In order to see the impact of collision resolution, we report the
performance on all operations as a function of the data structures’
load factor. This also eases comparison with prior work, which uses
the same methodology [7, 13, 31, 43]. We also report the aggregate
throughput performance which is the performance of the �lter
going from scratch to 95% (or 90%) load factor.

One challenge we face is that the �lters do not all support the
same false-positive rates. For example, the cuckoo �lter implemen-
tation [30] supports only 2, 4, 8, 12, 16, and 32-bit �ngerprints. The
false-positive rate can further be tweaked by a small amount by
adjusting the block size, but making the blocks too small increases
the failure probability, and making them too large decreases perfor-
mance. This is why the cuckoo �lter authors recommend a block size
of 4. The Morton �lter implementation [12] has similar limitations.

Thus we pick two target false positive rates and con�gure each
�lter to get as close as possible to those false-positive rates without
sacri�cing performance. Our target false-positive rates are 2�8 and
2�16. We con�gure the vector quotient �lter with 8 and 16-bit �nger-
prints, respectively and slots and buckets as described in Section 6.
We use 8- and 16-bit �ngerprints in the quotient �lter. We use 12-
and 16-bit �ngerprints and blocks of size 4 in the cuckoo �lter. We
use 8- and 16-bit �ngerprints and blocks of size 3 in theMorton �lter.

Table 2 shows the empirical space usage and false-positive rate of
di�erent �lters in these experiments. In the 8-bit experiments, all the
�lters are within roughly a factor of two in terms of false-positive
rate. In the 16-bit experiments, the cuckoo �lter false-positive rate
is signi�cantly higher than the other �lters due to limitations of the
implementation.

To compare these�lters space and false-positive rate, we compute
each �lter’s space e�ciency in Table 2, which is de�ned to be

=log1/Y
(

,

where = is the number of items in a full �lter (i.e. at the maximum
supported occupancy), Y is the false-positive rate achieved by the
�lter, and ( is the total number of bits used by the �lter. As Table 2
shows, the quotient �lter is the most space e�cient, followed by the
Morton�lter. The cuckoo�lter ismore space e�cient than the vector
quotient �lter for our 8-bit experiments, but the vector quotient
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(a) Insertion (Higher is better.)
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(b) Deletion throughput (Higher is better.)
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(c) Successful lookup (Higher is better.)
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(d) Random lookup (Higher is better.)

Figure 4: Insertion, deletion, and lookup performance of di�erent �lters in RAM. All �lters were con�gured with a target
false-positive rate of 2�8, as described in Table 2. Shortcut refers to the optimization described in Section 6.2. Note that in
Figure 4d, the lines for the vector quotient �lters with and without the shortcut optimization nearly coincide. The vector
quotient �lter is shownwith throughput only up to 90% because it reaches full capacity at 93%.

�lter is more e�cient than the cuckoo �lter for 16-bit experiments.
Nonetheless, the di�erences are relatively small across the board.

The con�gurations used in our experiments are consistent with
the author’s recommendations and show these �lters at or near
their best performance. For example, all other con�gurations that
we tried for the Morton �lter were slower. The cuckoo �lter is ⇡20%
faster with 8-bit �ngerprints, but this gives a false-positive rate of
1/32, which is too high for many applications.

We evaluate the performance of the data structures in RAM
as well as in L3 cache. This is because applications use �lters in
multiple di�erent scenarios and �lters are often small enough to
completely �t in L3 cache. We perform two sets of benchmarks.
For the in-RAM benchmark, we create the data structures with 228
(268M) slots which makes all the data structures substantially larger
than the L3 cache. For the in-cache benchmark, we create the data
structures with 222 (4M) slots (and 221 slots for 16-bit �ngerprints)
which keeps themwell smaller than the size of the L3 cache (8MB).

All the experiments were run on an Intel Ice Lake CPU (Intel(R)
Core(TM) i7-1065G7 CPU @ 1.30GHz with 4 cores and 8MB L3
cache) with 15 GB of RAM running Ubuntu 19.10 (Linux kernel
5.3.0-26-generic).

Microbenchmarks.We measure performance on raw inserts,
removals, and lookups which are performed as follows.We generate
64-bit hashvalues fromauniform-randomdistribution to be inserted,
removed or queried in the data structure. Items are inserted into an
empty �lter until it reaches its maximum recommended load factor
(e.g., 95%). The workload is divided into slices, each of which is 5% of
the load factor. The time required to insert each slice is recorded, and
after each slice, the lookup performance for that load factor is mea-
sured.Once the data structure is 95% full, items thatwere inserted are
removed—again in slices of 5% of the load factor—until the data struc-
ture is empty andmeasure the performance after removing each slice.

Wemeasure thequeryperformance for items that exist (successful
lookups) and items that do not exist in the �lter (random lookups).
For successful lookups, we query items that are already inserted and
for random lookups we generate a di�erent set of 64-bit hashes than
the set used for insertion. The random lookup set contains almost
entirely non-existent hashes because the hash space is much bigger
than thenumberof items in the�lter. Empirically, 99.9989%ofhashes
in the random lookup query set were non-existent in the input set.

The vector quotient �lter supports up to only 93% load factor for
in-RAM experiments and was able to support up to 95% load factor
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Target log(FPR) 8 16
Filter log(FPR) Space (MB) E�ciency log(FPR) Space (MB) E�ciency
Quotient �lter 8.16 324.20 0.76 16.44 580.35 0.76
Cuckoo �lter⇤ 9.15 384.00 0.72 13.17 512.00 0.70
Morton �lter 8.50 356.19 0.73 16.96 606.88 0.72
Vector quotient �lter 7.84 341.34 0.68 15.15 585.14 0.72

Table 2: Empirical space usage and false-positive rate of �lters used in the benchmarks. All �lters were created with 228 slots
(in-RAMexperiments). Space is given inMB. ⇤In our 8-bit experiments,we con�gure the cuckoo�lterwith 12-bit�ngerprints so
that its false-positive rate roughlymatches the other�lters. In our 16-bit experiments, there is no practicalway to con�gure the
cuckoo�lter for amatching false-positive rate, so we just use 16-bit�ngerprints, which gives amuch higher false-positive rate.

for in-cache experiments due to the di�erence in the number of items
inserted in the data structure. Therefore, for in-RAM experiments,
the vector quotient �lter plots do not show the throughput at 95%
load factor.

In order to isolate the performance di�erences between the
data structures, we do not count the time required to generate the
random inputs to the �lters.

Application workload. We also measure the performance of
the data structures on workloads consisting of equal portions of
insertions, removals, and lookups when the data structure is main-
tained at a high load factor (90%). This workload is characterized as
awrite heavy (WH) workload [24] because it involves inserting and
removing items from the data structure when it is almost full. This
type of workload is often seen in real-world applications and the
performance of the data structure at a high load factor and under
a write heavy workload is critical for applications to scale.

For the applicationworkload, we�rst�ll up all the data structures
to 90% load factor. We then perform operations from a mixed
workload and compute the aggregate throughput of the data
structure to execute the set of operations.

The Morton �lter supports a batch API for insertions and
queries [13]. Nonetheless, we use the one-at-a-time API for two
reasons. First, this makes an apples-to-apples comparison with
the other �lters. Second, many applications cannot use batching,
and we want our benchmarks to re�ect the performance that such
applications would see.

7.2 In-RAMperformance
Figure 4 shows the in-RAM performance of data structures. The
vector quotient �lter has the highest insertion throughput compared
to other data structures. It is 2⇥ and 2.5⇥ faster than the Morton
�lter and cuckoo �lter, respectively. Aggregate throughput of
di�erent operations are shown in Figure 6a.

The insertion throughput of the vector quotient �lter without the
shortcut optimization stays consistent across di�erent load factors.
With the shortcut optimization, the insertion throughput is ⇡1.25⇥
higher until ⇡ 75% load factor and then becomes similar to the no
shortcut optimization. However, the aggregate insertion throughput
is higher with the shortcut optimization. The shortcut optimization
does not a�ectmaximum load factor for the vector quotient�lter. For
removals and lookups, the vector quotient �lter has similar through-
put to the cuckoo �lter and is 1.5⇥ faster than the Morton �lter.

The quotient �lter has the lowest throughput for all operations.
This is due to the additional overheads of maintaining counters with
unbounded size and support for storing associated valueswith items.

Filter Throughput (Million/sec)
vector quotient �lter 20.268

cuckoo �lter 3.147
Morton �lter 11.958

Table 3: Aggregate throughput for application workload.
Workload includes 100M operations (equally divided into
insertions, deletions, and queries) at 90% load factor of
di�erent �lters in RAM. All �lters were con�gured for a
target false-positive rate of 2�8, as described in Table 2.

Our performance results for the Morton �lter are worse than
the main experimental results from the Morton �lter paper [13].
This is because the Morton �lter implementation is optimized for
AMD CPUs, but we evaluate it on an Intel CPU, where performance
is known to be worse. For example, Figure 17 in the Morton �lter
paper [13] shows that the Morton �lter speed on a Skylake-X CPU
is similar or worse than the CF. Our results are consistent with that.

7.3 In-cache performance
Figure5 shows the in-cacheperformanceofdata structures.Through-
put for all operationswhen the �lters are in-cache operation is much
higher compared to their corresponding throughput in RAM. The
relative performance of di�erent operations in-cache across data
structures shows similar trend as the in-RAM performance. The vec-
tor quotient �lter has the highest insertion and removal throughput
ando�ers lookupperformance similar to the cuckoo�lter.Aggregate
throughput of di�erent operations are shown in Figure 6b.

7.4 Low false-positive rate performance
Figures 6c and 6d show the performance (aggregate throughput) of
the �lters at very low (⇡2�16) false-positive rates. The relative per-
formance of the �lters with 16-bit �ngerprints shows similar trends
as the 8-bit performance. One di�erence from the 8-bit results is that,
with 16-bits the random lookup performance of the vector quotient
�lter is higher than the cuckoo�lter. This is because the false-positive
rate is very low and almost all random lookups are negative queries.
The vector quotient �lter has an early exit condition in this case. The
instantaneous throughput performance of all the data structures for
16-bit �ngerprints shows similar trends as the 8-bit �ngerprint. We
omit the instantaneous throughput plots due to space constraints.

7.5 Write heavy workload
Table 3 shows the throughput of data structures for a write heavy
workload when the �lters are maintained at 90% load factor. We did
not use the quotient �lter for this workload as it was the slowest
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vector quotient �lter vector quotient �lter (shortcut) quotient �lter cuckoo �lter Morton �lter
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(b) Deletion throughput (Higher is better.)

0 20 40 60 80 100
0

20

40

60

80

Load Factor

Th
ro
ug

hp
ut

(M
ill
io
ns
/s
ec
on

d)

(c) Successful lookup (Higher is better.)
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Figure 5: Insertion, deletion, and lookup performance of di�erent �lters in L3 cache. The vector quotient �lter with shortcut
refers to theoptimizationdescribed inSection6.2. All�lterswere con�guredwitha target false-positive rate of 2�8, as described
in Table 2.

Num threads Throughput (Million/sec)
1 16.059
2 31.154
3 43.737
4 54.282

Table 4: Insertion throughput with increasing number of
threads in RAM. All �lters were con�gured for a target
false-positive rate of 2�8, as described in Table 2.
data structure for both in-RAM and in-cache benchmarks. We also
only use the vector quotient �lter with shortcut optimization as
it has higher aggregate throughput compared to no optimization.
All �lters were con�gured for a target false-positive rate of 2�8, as
described in Table 2. The vector quotient �lter is 1.6⇥ faster than
the Morton �lter and 6.4⇥ faster than the cuckoo �lter. It is due to
the slow insertion performance of the cuckoo andMorton �lters at
high load factors that they become really slow to operate for write
heavy workloads at high load factors.

7.6 Scaling withmultiple threads
Table 4 shows the insertion throughput of the vector quotient �lter
with multiple threads. All �lters were con�gured for a target false-
positive rate of 2�8, as described in Table 2. The insertion throughput
increases almost linearly with increasing number of threads with

⇡3⇥ increase from1 thread to4 threads. Wescaleup toonly4 threads
as the machine only had 4 physical cores and we do not have access
to a machine with more than 4 cores that also supports AVX512BW
instructions. The multi-threaded benchmark was performed using
the same con�guration as the In-RAM experiments (Figure 4).

7.7 Impact ofAVX512 intrinsics onperformance
We implemented a variant of the vector quotient �lter using only
AVX2 instruction set and not using any of the AVX512 intrinsics.
In our evaluation (using the same con�guration as experiments
in Figure 6a), the AVX2 variant was between 13% to 46% slower
than AVX512 variant for di�erent operations. The biggest impact
of AVX512 is on the deletion performance. However, even without
AVX512 intrinsics the vector quotient �lter is between 17% to 34%
faster than the Morton �lter for all operations and 48% faster than
the cuckoo �lter for inserts.

8 CONCLUSION
This paper shows that it is possible to build a �lter that is
space-e�cient and o�ers consistently high insertion and deletion
throughput even at very high load factors.

The vector quotient �lter o�ers superior insertion performance
compared to the state-of-the-art�lters, especially athigh load factors,
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vector quotient �lter (AVX512) vector quotient �lter (AVX512, shortcut) vector quotient �lter (AVX2, shortcut)
quotient �lter cuckoo �lter Morton �lter
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(a) Aggregate throughput in RAM. Filters were con�gured with a
target false-positive rate of 2�8, per Table 2.
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(b) Aggregate throughput in L3 cache. Filters were con�gured with a
target false-positive rate of 2�8, per Table 2.
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(c) Aggregate throughput in RAM. Filters were con�gured with a
target false-positive rate of 2�16, per Table 2.
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Figure 6: Aggregate throughput for insertion, deletion, and lookup performance of di�erent �lters in RAM and L3 cache. The
vector quotient �lter with shortcut refers to the optimization in section 6.2. (Higher is better.)

where vector quotient �lter insertions are over 2⇥ faster other mod-
ern �lters. Vector quotient �lter queries are slightly slower than in
the cuckoo �lter, but faster than the other �lters in our experiments.

We attribute the high throughput and space-e�ciency of the
vector quotient �lter to two things, the power-of-two-choice
hashing and SIMD instructions. Power-of-two-choice hashing
reduces themini�lter occupancy variance, enabling high occupancy.
The SIMD instructions enable the vector quotient �lter to perform
constant-time operations in mini �lters.

Like the quotient �lter, the vector quotient �lter also has the
ability to associate a small value with each item. Applications often
use the value bits to store some extra information with each item
in the �lter [21, 33, 45]. We believe the ability to associate a value
with each key makes the vector quotient �lter a go-to data structure
in every application builder’s toolbox.
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