
Paging and the Address-Translation Problem
Michael A. Bender
Stony Brook University

NY, USA
bender@cs.stonybrook.edu

Abhishek Bhattacharjee
Yale University

CT, USA
abhishek.bhattacharjee@yale.edu

Alex Conway
VMWare Research

CA, USA
aconway@vmware.com

Martín Farach-Colton
Rutgers University

NJ, USA
martin@farach-colton.com

Rob Johnson
VMWare Research

CA, USA
robj@vmware.com

Sudarsun Kannan
Rutgers University

NJ, USA
sudarsun.kannan@rutgers.edu

William Kuszmaul
MIT

MA, USA
kuszmaul@mit.edu

Nirjhar Mukherjee
UNC Chapel Hill

NC, USA
nirjhar@unc.edu

Don Porter
UNC Chapel Hill

NC, USA
porter@cs.unc.edu

Guido Tagliavini
Rutgers University

NJ, USA
guido.tag@rutgers.edu

Janet Vorobyeva
Stony Brook University

NY, USA
janet.vorobyeva@stonybrook.edu

Evan West
Stony Brook University

NY, USA
etwest@cs.stonybrook.edu

ABSTRACT
The classical paging problem, introduced by Sleator and Tarjan in
1985, formalizes the problem of caching pages in RAM in order to
minimize IOs. Their online formulation ignores the cost of address
translation: programs refer to data via virtual addresses, and these
must be translated into physical locations in RAM. Although the
cost of an individual address translation is much smaller than that
of an IO, every memory access involves an address translation,
whereas IOs can be infrequent. In practice, one can spend money to
avoid paging by over-provisioning RAM; in contrast, address trans-
lation is e�ectively unavoidable. Thus address-translation costs can
sometimes dominate paging costs, and systems must simultane-
ously optimize both.

To mitigate the cost of address translation, all modern CPUs have
translation lookaside bu�ers (TLBs), which are hardware caches of
common address translations. What makes TLBs interesting is that
a single TLB entry can potentially encode the address translation
for many addresses. This is typically achieved via the use of huge
pages, which translate runs of contiguous virtual addresses to runs
of contiguous physical addresses. Huge pages reduce TLB misses
at the cost of increasing the IOs needed to maintain contiguity in
RAM. This tradeo� between TLB misses and IOs suggests that the
classical paging problem does not tell the full story.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
SPAA ’21, July 6–8, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8070-6/21/07. . . $15.00
https://doi.org/10.1145/3409964.3461814

This paper introduces the Address-Translation Problem, which
formalizes the problem of maintaining a TLB, a page table, and
RAM in order to minimize the total cost of both TLB misses and
IOs. We present an algorithm that achieves the bene�ts of huge
pages for TLB misses without the downsides of huge pages for IOs.

CCS CONCEPTS
• Software and its engineering! Virtual memory; • Theory
of computation ! Caching and paging algorithms; Bloom
�lters and hashing.

KEYWORDS
virtual memory; address translation; TLB; paging; hashing; iceberg
ACM Reference Format:
Michael A. Bender, Abhishek Bhattacharjee, Alex Conway, Martín Farach-
Colton, Rob Johnson, Sudarsun Kannan,William Kuszmaul, Nirjhar Mukher-
jee, Don Porter, Guido Tagliavini, Janet Vorobyeva, and Evan West. 2021.
Paging and the Address-Translation Problem. In Proceedings of the 33rd
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’21),
July 6–8, 2021, Virtual Event, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3409964.3461814

1 INTRODUCTION
In the classical paging problem, a sequence of page requests
?1, ?2, . . . must be serviced using a memory of size % pages [16,
18, 22, 47]. The cost of servicing a page request is 0 if the page
is currently cached in memory. Otherwise there is a page fault
and an IO must be performed, which means that the page must be
fetched from disk to RAM (perhaps evicting another page) at a cost
of 1.

Paging is critical to virtual memory systems, where programs
reference pages by virtual page addresses. When a page is cached
in memory, it also has a physical page address in the range

https://doi.org/10.1145/3409964.3461814
https://doi.org/10.1145/3409964.3461814

{1, 2, . . . , %}, specifying the location where it is actually stored.
Every virtual address referenced by a program must be translated
to a physical address by a process called address translation (AT).
If a virtual page does not have a physical address, the page’s data
must be fetched from external storage, a physical page must be
allocated (and potentially freed �rst), the physical page �lled with
the contents from storage, and assigned to that virtual address.
Address translations are stored in an in-RAM dictionary called the
page table.

AT incurs such a signi�cant cost on real computers that modern
CPUs come with specialized hardware accelerators called trans-
lation lookaside bu�ers (TLBs) that cache part of the page table.
TLB hits, that is, successful lookups in the TLB, are fast, typically
a single or small number of cycles [45]. In contrast, it can take
hundreds or even thousands of CPU cycles to perform an address
translation in the page table, when there is a TLB miss [8, 29].

Although the cost of AT is ignored in the paging problem, the cost
can be high—and can even dominate paging costs—because every
memory reference must undergo address translation, whereas page
fetches may be rare. Moreover, one can avoid paging by purchasing
more RAM, and this is generally considered money well spent. In
contrast, TLBs have hit hard physical and power limits, making AT
costs e�ectively unavoidable.

In this paper, we address the algorithmic problem of how to
organize both the TLB and the physical-address assignment in order
to simultaneously optimize the total cost of address translation and
paging. We show that, by combining ideas from low-associativity
paging, recent advances in hashing, and compression, one can
achieve strong, provable guarantees on the costs incurred by both
the TLB and the page fetches.

Trends in the cost of address translation. AT overheads are be-
coming more signi�cant because of several hardware trends. First,
TLBs are too small to cache the working sets of modern parallel
programs. Second, the access patterns of emerging workloads, such
as machine learning and graph analytics, are irregular and di�cult
to prefetch. The increasing prevalence of parallel programming has
led to recent TLBs allowing multiple threads (and even applications)
to have entries in the TLB simultaneously [28], meaning that the
e�ective size of the TLB is smaller for each thread. Additionally, in
cloud environments, which increase parallelism by using virtual
machines, each memory reference undergoes two translations—
once in the guest and once in the host—which actually squares the
cost of a TLB miss in the worst case [7]. Whereas the aforemen-
tioned trends result in increased pressure on the TLB and higher
TLB-miss costs, trends towards faster storage devices lower the cost
of paging, which further increases the relative overhead of address
translation.

Larger TLBs would have higher hit rates, but the size of TLBs
is limited because it is expensive—in terms of time, transistors,
and power [9]—to perform (parallel) hardware key-value lookups
in tables with many entries. TLBs are so small that some work-
loads spend as much as 83% of their execution time on address
translations [8] (see also [26, 27, 30, 48]).

The ubiquity of TLBs. TLBs, and hence TLB performance bottle-
necks, are also becoming more ubiquitous because of hardware and
software trends. Traditionally, peripherals such as GPUs and net-
work cards accessed RAM via physical addresses, and hence had no
TLBs. Newer devices are beginning to support virtual memory in or-
der to support safe, concurrent access by mutually distrusting users,
as may occur when two virtual machines are sharing a hardware
peripheral. For instance, recent GPUs by both Nvidia and AMD
include page tables and TLBs so that multiple, unrelated kernels can
run concurrently on di�erent compute elements in the GPU. Newer
network cards support remote direct memory access (RDMA), in
which the network card performs memory reads and writes based
on incoming packets without going through the CPU [33, 51]. This
is widely used to support concurrent access to memory in a cluster,
and these cards have page tables and TLBs (albeit, with di�erent
names) in order to ensure the card performs only authorized mem-
ory accesses. And, of course, multi-core and multi-CPU systems
can have per-core and per-CPU TLBs. The results in this paper
apply to all these TLBs in a modern computer.

Huge pages and what makes TLBs interesting. What makes
TLBs interesting is that, rather than caching data, they cache point-
ers to data. Notably, this means that a single pointer can potentially
point to a very large amount of data.

Indeed, the main thrust of increasing the e�ectiveness of TLBs
in systems design has been to use huge pages, which are runs of
pages that are contiguous in the virtual address space [26]. Critically,
existing huge-page methods require the run of pages also be placed
contiguously in RAM (i.e., physical memory), so that a single TLB
entry can translate any address in any page that is included in the
huge page.1 In this case, the TLB is used as a key-value store in
which the keys are virtual addresses of huge pages (rather than of
standard-size pages) and the values are physical addresses of huge
pages (rather than of standard-size pages).

We call the set of page translations that a TLB entry encodes its
coverage. If the coverage of a TLB entry forms a contiguous run
of virtual addresses de�ned by the high-order bits of the virtual
addresses so encoded, we say that that entry encodes a virtual
huge page. If, additionally, the corresponding physical pages are
stored contiguously in physical memory, then we say those pages
form a physical huge page.

Virtual and physical huge pages, the good and the bad. Vir-
tual huge pages are an e�ective technique for reducing TLB
misses [30, 35], not merely because they increase the coverage
of each individual TLB entry, but also because they translate a
contiguous run of virtual addresses. Programs that exhibit spacial
locality in their memory-access patterns bene�t from the large
coverage of each huge page.

On the other hand, physical huge pages increase IO costs for
three reasons:

1In our discussion, we elide many details of huge pages and TLBs, such as that most
systems that implement huge pages use di�erent TLBs for each size [15, 54] and only
between one and three sizes are allowed, depending on the implementation. The
algorithmic problems are the same, whether we are considering TLBs in the wild or
the semi-domesticated TLBs described here.

(1) Page-fault ampli�cation. In order to represent a collection of
pages as a physical huge page, whenever any page within
a huge page is fetched from disk, all the constituent pages
must also be fetched. This turns what would be an IO for a
single block into IOs for many blocks.

(2) Reduced RAM utilization. A physical huge page stores all
the pages in its range, even if some are not accessed. This
wastes RAM on pages that are not frequently referenced,
thus leading to more page faults on pages that are more
frequently referenced.

(3) Fragmentation. To mitigate these drawbacks, systems gen-
erally use a mix of regular and huge pages. Pages in a huge
page are stored contiguously in RAM. To make room for
them, any (non-huge) pages in the way must be evicted to
disk, which can lead to IOs later when those evicted pages
are re-accessed. 2

In summary, huge pages come with a tradeo�: virtual huge pages
enable a reduction in TLB misses, but physical huge pages cause an
increase in IOs. There is a vast architecture and operating systems
literature on optimizing the bene�ts and costs of huge pages [21,
30, 32, 35–37, 42]; for experiments that illustrate this tradeo�, see
Section 6.

The full cost of address translation. In order to fully quantify
the cost of address translation, one must consider TLB misses and
IOs together. We call the software/hardware algorithm that man-
ages the TLB, the page table, and the layout of pages in RAM a
memory-management algorithm.

To measure the cost of a memory-management algorithm we
introduce the address-translation cost model: each IO costs 1,
each TLB miss costs Y 2 (0, 1), and each TLB hit costs 0.

Huge-page decoupling: all the virtual with none of the phys-
ical. In this paper, we are interested in designing memory-
management algorithms that enjoy the TLB advantages of virtual
huge pages without the IO costs of physical huge pages. A natural
approach, which we call huge-page decoupling, is to break up the
value part of every TLB entry into an array of physical addresses:
the 8th entry of the array encodes both whether the 8th page in the
huge page is in RAM, and if so, where the 8th page resides in RAM.
Huge-page decoupling would mitigate or eliminate the disadvan-
tages of physical huge pages: it would increase RAM utilization by
only storing pages that the paging algorithm deems useful; it would
reduce page-fault ampli�cation by reducing the footprint of each
huge page; and it would eliminate fragmentation by obviating the
requirement that the constituent physical pages of a virtual huge
page be contiguous.

A priori, huge-page decoupling is not viable because the TLB
value does not have enough bits to store such an array. Indeed,
current TLBs are designed to store one physical address of log %
bits. In general, we shall useF to denote the number of bits used
for each TLB value, and we shall treatF as being set by hardware.

2Rather than evicting pages to disk, one could also try to defragment those pages
in RAM [30, 32]. The challenge in practice is that the performance overheads of
defragmentation, even in memory, can easily exceed the performance bene�ts of huge
pages.

Better encodings through low associativity. We show that
huge-page decoupling schemes actually are possible by compress-
ing the array of physical addresses as follows. Call a paging algo-
rithm !-associative if each page has ! possible locations where it
can be stored. If ! is small, and we use only$ (log!) bits per physi-
cal page address, we can store multiple physical page addresses per
TLB value.

Intuitively, low associativity may result in all ! locations for a
page being occupied by pages that the paging algorithm would
prefer to keep. If this happens, then the paging algorithm must
evict one of the pages, resulting in extra (and otherwise unecessary)
IOs. Hence, this low-associativity approach also appears at �rst
sight to be a dead end: we replace the IOs needed for physical huge
pages with the IOs needed for low associativity.

This paper. We show how to transform any paging algorithm into
a low-associativity paging algorithm without increasing the IOs,
while using minimal resource augmentation. Using this transforma-
tion, we can implement huge-page decoupling in order to realize
the bene�ts of virtual huge pages without the need for physical
huge pages.

Our main theorem is that we can simultaneously match the TLB
miss rate of any memory-management algorithm (even one that
only cares about minimizing TLB misses) while matching the IOs
of any other memory-management algorithm (even one that only
cares about minimizing IOs).

Section 2 discusses the results in more depth. The results lay
down the theoretical groundwork for huge-page decoupling. In con-
current work, we are prototyping our techniques in cycle-accurate
simulators and actual TLBs.

2 RESULTS AND TECHNICAL OVERVIEW
This section gives a detailed overview of the results and main
technical ideas in the paper.

Section 3: Huge-page decoupling. Section 3 formalizes huge-
page decoupling. Recall that a huge-page decoupling scheme en-
codes in the TLB value for a huge page, all of the information of
which of its constituent physical pages are present in RAM, and
where those pages are located. The guarantee of a huge-page decou-
pling scheme is that the TLB can use virtual huge pages of some
large huge-page size ⌘max pages, and RAM can be allocated at
the granularity of normal-sized pages. That is, the choice of which
normal-size pages are in memory can be made independently of
the choice of which virtual huge pages are in the TLB.

Our approach to implementing huge-page decoupling is to
treat RAM as a low-associative cache; we will avoid increasing
IO cost by making use of a small amount of resource augmen-
tation. That is, we equip a huge-page decoupling scheme with a
resource-augmentation parameter X , and the huge-page decou-
pling scheme may assume that there are never more than (1 � X)%
pages stored in RAM at a time.

The �rst goal of a huge-page decoupling scheme is to achieve a
value of⌘max that is as close as possible to the numberF of bits that
are used for each TLB value. Naturally ⌘max cannot be arbitrarily

large. There is a natural upper bound of

⌘max F , (1)

since each TLB value must use ⌘max bits to encode what subset of
the pages in a huge page are present in memory.

The second goal of a huge-page decoupling scheme is to mini-
mize the resource-augmentation parameter X . If X is small and the
huge-page size ⌘max is large, then huge-page decoupling allows us
to have large virtual huge pages at essentially no cost.

In this paper, we are able to come remarkably close to meeting
the upper bound (1) on ⌘max, achieving(

⌘max = ⇥(F/log log log %)
X = > (1).

(2)

Recall that % is the number of pages that �t in physical memory;
another interpretation of (2) is that, for each of the ⌘max physi-
cal pages that a TLB entry points to, we can encode the physical
location of that page using only ⇥(log log log %) bits.

Section 4: Low-associativity paging and compact TLB encod-
ings. In Section 4, we address the main challenge in designing a
huge-page decoupling scheme, which is how to encode all of the
information that we wish to store in each TLB value using onlyF
bits. Our huge-page decoupling scheme must be able to use just
F/⌘max bits to encode the location of each page in a huge page.

A central technical idea in our TLB encodings is to re-purpose
a classic technique in caching: low associativity. The idea of low
associativity is to break the cache into small bins, hash each cache
entry to a random bin, and then manage each bin individually via
a paging algorithm, such as LRU. The bin size is referred to as
the associativity (or set-associativity) of the cache. Typically,
the purpose of low-associativity caching is to simplify the task of
implementing a cache (especially in hardware caches).

In this paper, we use low-associativity caching in a starkly di�er-
ent way. By limiting the number of options for where each page can
be placed in physical memory, the physical page addresses in the
TLB can also be encoded using very few bits. At the same time, the
associativity must be large enough that, whenever a page is brought
into memory, there is a legal position where it can be placed (i.e., a
free position in the right bin). As a warmup result, we show that by
setting the associativity to be ⇥̃(log %), and using resource augmen-
tation X = > (1), we can construct a simple huge-page decoupling
scheme with virtual huge pages of size ⌘max = ⇥(F/log log %).

A key insight of this paper is that we can use recent advances in
the design and analysis of balls-and-bins games to achieve an even
smaller associativity. By employing the I������[3] balls-in-bins
strategy, we show how to construct a huge-page decoupling scheme
with ⌘max = ⇥(F/log log log %) and X = > (1).

Section 5: Optimizing the cost of address translation. Finally,
we consider the task of optimizing the total TLB and IO cost of a
memory-management algorithm on a sequence of page requests.
For any memory-management algorithm Z and sequence of page
requests f = (?1, ?2, . . . , ?=), let ⇠ (Z,f) denote the total cost of
Z in the address-translation cost model, let ⇠TLB (Z,f) denote the
total cost incurred due to TLB misses, and let ⇠IO (Z,f) denote the

total cost incurred due to IOs. In order to minimize ⇠ (Z,f) we
must simultaneously optimize ⇠TLB (Z,f) and ⇠IO (Z,f).

We prove that the problem of optimizing ⇠TLB (Z,f) can be sep-
arated from the problem of optimizing ⇠IO (Z,f), in the following
sense. Let X and Y be arbitrary memory-management algorithms,
each of which is allowed to use any mixture of huge-page sizes
between 1 and ⌘max. The only constraint on X and Y is that they
operate on a physical memory of size (1 � X)% (rather than the full
physical memory of size %). Using huge-page decoupling, we con-
struct a new memory-management algorithmZ with the following
guarantee. With high probability in % , the total cost ofZ satis�es

⇠ (Z,f) ⇠TLB (X,f) +⇠IO (Y,f) + =

poly(%) . (3)

Importantly, even if X minimizes TLB misses (by using huge pages)
and Y minimizes IOs (by not using huge pages), then Z combines
the best performance features of X and Y. The additive term in (3)
says that a vanishingly small fraction 1/poly(%) of page accesses
are permitted to be page faults inZ despite not being page faults
in Y.

Experiments and related work. Section 6 illustrates experimen-
tally the IO-versus-TLB-miss tradeo� between virtual huge pages
and physical huge pages. Section 7 discusses related work in depth.

3 HUGE-PAGE DECOUPLING
The idea behind huge-page decoupling is to enable the use of huge
pages in the TLB, while letting the paging algorithm operate on nor-
mal pages. This will work by encoding the physical page addresses
in the TLB entry for a given virtual huge page.

More precisely, a huge-page decoupling scheme takes as input
a page replacement policy for RAM (the RAM-replacement pol-
icy) and a huge-page replacement policy for the TLB (the TLB-
replacement policy). It consists of a RAM-allocation scheme that
reduces the associativity of page placements in RAM, and an en-
coding/decoding scheme for translating between TLB values and
physical addresses. All of these components must interact carefully.
For example, the RAM-allocation scheme not only must achieve
low associativity but also must be amenable to fast encoding and
decoding; and unlike a standard TLB, which only covers virtual
addresses that are mapped in physical memory, the encoding/de-
coding scheme must specify if a page is mapped or not. With so
many moving parts, we take this section to carefully de�ne all com-
ponents of the system and their requirements before moving on to
our main theorems.

Recall that the goals of a huge-page decoupling scheme are to
maximize the size ⌘max of huge pages in the TLB, and minimize
the resource-augmentation parameter X 2 (0, 1) for RAM.

The input replacement policies. Let + be the number of pages
in virtual memory and % be the number of pages in physical mem-
ory. A virtual page address is any element of [+] = {1, 2, . . . ,+ }.
A physical page address is any element of [%] = {1, 2, . . . , %}. A
virtual huge-page address is any element of [+ /⌘max] (we as-
sume ⌘max divides +). We use ✓ to denote the number of entries in
the TLB, andF to denote the number of bits in each TLB value.

The RAM-replacement policy determines which virtual page
addresses are in RAM at any given moment; we refer to the set of
such addresses as the active set A ✓ [+]. The only restrictions on
the RAM-replacement policy are that |A| (1 � X)% at all times,
and that it is oblivious to the state and operation of the huge-page
decoupling scheme.

The TLB-replacement policy determines which virtual huge-
page addresses are in the TLB at any given moment; we refer to the
set of such addresses as T ✓ [+ /⌘max]. The only restrictions on
the TLB-replacement policy are that |T | ✓ at all times, and that it
is oblivious to the state and operation of the huge-page decoupling
scheme.

The huge-page decoupling scheme. A huge-page decoupling
scheme is an algorithm with three parts: a RAM-allocation
scheme, a TLB-encoding scheme, and TLB-decoding scheme.

The RAM-allocation scheme determines the physical address for
each page fetched by the RAM-replacement policy. At any given
moment in time, we useq : A ! [%] to denote the physical address
q (E) corresponding to each virtual page address E 2 A. The RAM-
allocation scheme gets to decide the value of q (E) whenever a
new page is added to A by the RAM-replacement policy. The only
restrictions on the RAM-allocation scheme are that q must always
be an injection and that q must be stable—that is, once a virtual
page E 2 A is assigned a physical address q (E), that address cannot
change until E is removed from A.

The TLB-encoding scheme determines theF-bit TLB value for
each virtual huge page in the TLB. At any given moment in time,
we use k : T ! [2F] to denote the current set of TLB values.
The value ofk (E) is set (resp. unset) by the TLB-encoding scheme
when the TLB-replacement policy inserts (resp. removes) E from
T . And the value ofk (E) is updated by the TLB-encoding scheme
whenever any of the constituent virtual page addresses D of E are
added or removed from A by the RAM-replacement policy.

The TLB-decoding scheme translates TLB values into physi-
cal addresses via a TLB-decoding function 5 : ([+] ⇥ [2F]) !
([%] [{�1}). The TLB-decoding function must o�er the following
guarantee: IfD is a virtual huge-page address in T , and E is a virtual
page address contained in D, then

5 (E,k (D)) =
(
q (E) if E 2 A
�1 otherwise.

(4)

In other words, for every virtual page address E that is both con-
tained in D and is in the active page set A, the TLB-decoding func-
tion must be able to recover the physical page address q (E) associ-
ated with E . And for every virtual page address E that is contained
in D but is not in the active page set A, the decoding function must
encode the fact that E is not in A by returning the null address �1.

The TLB-decoding function 5 is determined once at the begin-
ning of time and cannot be subsequently changed. The function 5
is permitted to be randomized (and thus can read the random bits
used by our algorithm).

Constant-time high-probability decoupling schemes. A
huge-page decoupling scheme is said to be constant time if, each

time that the TLB-replacement policy modi�es T or the RAM-
replacement policy modi�es A, the huge-page decoupling scheme
spends time $ (1) updating q andk ; and if the TLB-decoding func-
tion 5 can be evaluated in time $ (1).

In order to establish probability bounds over arbitrarily long
sequences of requests for RAM-allocation schemes that have less
than full associativity, we must deal with what happens when page
E experiences a paging failure, that is, when it is added toA by the
RAM-replacement policy but cannot be assigned a physical address
by the RAM-allocation scheme. The paging failure associated with
E lasts until the RAM-replacement policy evicts E . We use F ✓
A to denote the set of virtual page addresses on which paging
failures are occurring at a given moment. A randomized huge-page
decoupling scheme is said to succeed with high probability in %
if, at every point in time, the probability that |F | > 0 is at most
1/poly(%). Later in the paper, when we use huge-page decoupling
to construct e�cient memory-management algorithms, we will
handle paging failures by temporarily bringing the a�ected page
into RAM whenever it is needed, and then allowing the page to
subsequently be paged back out to disk.

4 LOW-ASSOCIATIVITY PAGING AND
COMPACT TLB ENCODINGS

The key challenge in designing a huge-page decoupling scheme
is to limit the associativity of the RAM-allocation scheme, so that
each page in RAM has only a small number of options for where it
can reside. At the same time, we must support an arbitrary RAM-
replacement policy (i.e., the paging algorithm for managing which
pages are in RAM), whose only constraint is that it never places
more than (1 � X)% pages in RAM at a time.

In order to limit the associativity of the RAM-allocation scheme,
we partition RAM into = buckets, each one comprising ⌫ = %/=
consecutive pages. To place a page in RAM, we randomly choose :
buckets by computing : hash functions of the virtual page address;
we select one of the buckets; and we place the page in some free
slot within the chosen bucket. This yields an associativity of :⌫.

The bucket size ⌫ controls a trade-o� between associativity and
IO complexity: the smaller the ⌫, the more likely it is for a page to
�nd all of its : chosen buckets already full.

We show that, surprisingly, any (oblivious) RAM-replacement
policy can be implemented with a low-associativity RAM-allocation
scheme, using a small amount of resource augmentation. Our main
theorem in this section is that this can be attained using : = 3 hash
functions and buckets of size ⌫ = ⇥̃(log log %), ultimately leading
to a decoupling scheme that achieves ⌘max = ⇥(F/log log log %)
and X = > (1).

We begin the section by showing, as a warmup, how to achieve
⌘max = ⇥(F/log log %) using : = 1 hash functions. We then extend
the result to use : = 3 in order to achieve the stronger bound of
⌘max = ⇥(F/log log log %).

Balls-and-bins games. We model RAM-allocation algorithms
as dynamic balls-and-bins games. In our balls-and-bins game,
there are = bins, and there is an adversary that speci�es an arbitrary
sequence of ball insertions and deletions (and perhaps re-insertions),
such that there are never more than< balls in the system. On each

insertion, a ball is thrown into some bin according to a rule that
randomly chooses: bins and places the ball in one of them. The goal
is to design the placement rule, such that it minimizes the maximum
load across all bins. Importantly, the adversary is oblivious to the
game’s randomness; otherwise it could force all balls to go to the
same bin.

The relationship between RAM-allocation schemes and balls-
and-bins games is as follows. Each bin represents a bucket in
RAM, and each ball represents a page. The adversary is the RAM-
replacement policy (and the sequence of page requests), and the
balls insertions/deletions correspond to page insertions/deletions
in A. Based on this analogy, we can use = and< in both contexts.
We will use _ =</= to denote the (maximum allowable) average
occupancy of the bins.

Observe that not every balls-and-bins game models a RAM-
allocation scheme—it has to be online (i.e., balls are sequentially
placed before seeing future requests) and stable (i.e., balls are not
moved around once inserted). Both of these features are required
in a huge-page decoupling scheme: page requests (and, thus, TLB
and paging operations) are served in an online fashion, and the
physical address of a page must not be changed until the page is
swapped out.

The di�culty of reducing associativity. Suppose that a single
hash function is used (i.e., : = 1) and that buckets have size ⌫ =
1, so that the associativity is 1. Then, physical addresses do not
require any bits at all—virtual addresses are translated simply by
computing their hash value, and thus no translations need to be
cached in the TLB. The problem, of course, is that this con�guration
lends to a prohibitively large number of paging failures (recall that
huge-page decoupling schemes must incur no paging failures with
high probability in % , at any given point in time). To quantify this
statement, consider a sequence of % distinct page accesses, starting
from an empty RAM. By a standard balls-and-bins argument, where
balls represent pages and bins represent page slots in physical
memory (the unit-sized buckets), approximately %/4 slots remain
unused, with high probability in % . Thus, any paging algorithm that
doesn’t evict pages during the �rst (1 � X)% insertions (e.g., LRU,
FIFO, etc.) will incur at least (1/4 � X)% paging failures with high
probability in % . For X = > (1), this is ⌦(%) paging failures with
high probability in % .

Achieving associativity ⇥̃(log V) with k = 1. Let< = (1 � X)%
be the maximum number of pages that the RAM-replacement policy
can cache simultaneously. We specify the bin size ⌫ and X (and,
thus, also< and =) below. For now, we use : = 1, which means that
each ball is simply assigned to a random bin. In order so that no
bins over�ow, we must set the bin size ⌫ to be large enough that the
maximum load of any bin is at most a 1 + X factor larger than the
average load. On the other hand, subject to bins not over�owing,
we want ⌫ as small as possible to obtain a small associativity.

Since : = 1, at any given moment, the maximum load is

8>>><
>>>:

(1 + > (1)) log=
log(log=/_) if 1 _ = > (log=)

⇥(_) if _ = ⇥(log=)
_ +$ (

p
_ log=) if _ = l (log=),

(5)

with high probability in = [44]. Thus, bin sizes ⌫ that allow for a
X = > (1) are in the third case.

Set the number of bins to be = = </(log % log log %), so that
the average load is _ = log % log log % = l (log=). Then, with high
probability in = (and thus %), the maximum load is

_ +$ (
p
_ log=) = _ +$ (log %

p
log log %)

= _(1 + X),

where X = $ (1/
p
log log %).

Note that the bucket size satis�es

⌫ =
%

=
=

%

<
· _ =

%

(1 � X)% · _ =
1

1 � X
· _ > (1 + X)_,

which means that ⌫ is at least as large as the maximum load of
the balls-and-bins game. Thus, every page �ts in RAM at any �xed
point in time, with high probability in % . Since addresses have size
log⌫ = ⇥(log log %), we get a decoupling scheme with huge-page
size ⌘max = ⇥(F/log log %).

T������ 1. There exists a constant-time huge-page decoupling
scheme using resource augmentation X = > (1) that supports huge-
page size ⌘max = ⇥(F/log log %) with high probability in % .

P����. Recall that a huge-page decoupling scheme consists of
three parts: a RAM-allocation scheme, a TLB-encoding scheme, and
a TLB-decoding scheme. By having the RAM-allocation scheme
use the balls-and-bins strategy described above, we ensure that
each page has at most ⌫ positions where it can reside, where ⌫ =
⇥(log % log log %).

The TLB-encoding and decoding schemes can treat each TLB
value as an array of ⇥(log log %)-bit elements 01,02, . . . ,0⌘max . If E
is the 8th page in the huge page represented by the TLB entry, and
E hashes to bin 9 , then 08 indicates the position in bin 9 where E
resides (or �1 if E is not in A). Note that the huge-page decoupling
scheme is easily made constant time by maintaining a hash table
that keeps track of what the current value of k (D) should be for
each virtual huge page D that has at least one constituent page in
RAM.

Our �nal task is to analyze the size of the failure set F . For
the sake of analysis, whenever a ball is inserted into a bin, label
the ball as failed if the ball is inserted into a bin that already has
⌫ other balls (that are not labeled as failed). Note that the ball
retains its failed label even if subsequently the load of the bin falls
below ⌫. From the perspective of the balls-and-bins game, failed
balls are like any other balls. On the other hand, for the huge-page
decoupling scheme, failed balls correspond to paging failures. That
is, |F | is equal to the number of balls in the system that have
the failed label. At any given moment, there are up to< = $ (%)
balls 11, . . . ,1< present. For each 8 , when 18 was inserted it had a
1/poly(%) probability of being labeled as failed. By a union bound, it
follows that Pr[|F | > 0] </poly(%) = 1/poly(%), as desired. ⇤

Achieving associativity ⇥̃(log log V) with k = 3. A natural way
to try to improve the associativity further is to use the balls-and-
bins rule known as G�����[2], in which each ball chooses 2 bins
independently at random, and the ball is placed in the less full bin.

With this rule, the maximum load at any moment is at most

$ (_) + log log= +$ (1), (6)

with high probability in = [49]. This approach fails because the
di�erence between the average load _ and the bound on the maxi-
mum load is ⌦(_), no matter what we choose _ to be.3 Therefore,
this forces the use of X = ⌦(1) resource augmentation. Using
G�����[3] for 3 > 2 doesn’t help the situation, because the maxi-
mum load still grows as $ (_) rather than _.

Until recently, no balls-and-bins strategy was known to be
simultaneously online, stable, and to have a maximum load of
(1+> (1))_+$ (log log=). The authors of this paper have another pa-
per under submission that presents a balls-and-bin rule that has all
of these features [34]. The rule, which is called I������[3], chooses
3 + 1 bins per ball. In the case of 3 = 2, it attains the following
bound.

T������ 2 ([34]). With high probability in =, at any �xed point
in time the maximum load of I������[2] is at most

(1 + > (1))_ + log log= +$ (1),
in the dynamic setting, against any oblivious adversary.

For concreteness, we sketch out I������[2] here. Balls are placed
into bins using three independent hash functions ⌘1,⌘2,⌘3. When
inserting a ball G , we �rst look at bin ⌘1 (G) and insert the ball
there if it is not too full. Otherwise, we use ⌘2 and ⌘3 to insert via
G�����[2].4 Intuitively, the reason that I������[2] works so well
is that even though the vast majority of balls get inserted using ⌘1,
their contribution to the maximum load is capped at (1 + > (1))_
(because, beyond that point, balls are inserted using G�����[2]).
This makes it so that the number of balls managed by G�����[2]
at any given moment is only$ (=); and therefore the known bound
from (6) [49] bounds their contribution to the maximum load as
log log= +$ (1).

We now modify our low-associativity construction to use
I������[2] (with : = 3 hash functions) instead of just a single hash
function. Set the number of bins to be</(log log % log log log %),
so that the average load is _ = log log % log log log % = l (log log=).
Then, with high probability in = (and thus %), the maximum load is

(1 + > (1))_ + log log= +$ (1) = _(1 + X),

with X = > (1).5
Using this value of X as the resource-augmentation parameter, it

follows that the bin size is (with high probability) at least as large
as the maximum load. Since the bin size is ⌫ = ⇥̃(log log %), the
associativity of the scheme is 3⌫ = ⇥̃(log log %). Thus we have a
decoupling scheme with huge-page size ⌘max = ⇥(F/log log log %)
and resource augmentation parameter X = > (1).

3Interestingly, it is unknown whether the asymptotic dependence on _ is an artifact
of the proof. If one could prove a maximum load of _ +$ (log log=) for G�����[2],
then one could use G�����[2] to achieve the results in this section.
4As a minor technical point, the insertions performed using ⌘1 ignore all balls that
were inserted using ⌘2 and ⌘3 , and, similarly, the G�����[2] insertion of balls using
⌘2 and ⌘3 ignores all balls that were inserted using ⌘1 .
5For our purposes here, we do not make an e�ort to optimize X beyond ensuring that
X = > (1) . We point out, however, that if one wanted optimize X further, one could set
the associativity to poly(log log%) (which only changes ⌘max by a constant factor),
and obtain X = 1/poly(log log%) , for a polynomial of our choice.

T������ 3 (T��D��������� T������). There exists a constant-
time huge-page decoupling scheme using resource augmentation X =
> (1) that supports huge-page size ⌘max = ⇥(F/log log log %) with
high probability in % .

P����. The proof follows just as for Theorem 1, but using I���
����[2] instead of a single hash function. ⇤

5 OPTIMIZING THE COST OF ADDRESS
TRANSLATION

Finally, we consider the task of optimizing the total TLB and IO
cost of a memory-management algorithm on a sequence of page
requests. More speci�cally, in this section, we prove that in order to
optimize the cost of a memory-management algorithm, it’s enough
to independently optimize the TLB cost and the paging cost, and
combine the two solutions via huge-page decoupling. Moreover,
these two separate problems are each equivalent to the classic
paging problem [47].

We begin by formalizing the de�nitions of arbitrary memory-
management algorithms and of the address-translation cost model.
These de�nitions must carefully address several subtleties of the
model. First, what is the full range of control that an arbitrary
memory-management algorithm has? This needs to be carefully
speci�ed so that we we can prove competitiveness results. Second,
how do we de�ne the cost of a memory-management algorithm
that sometimes brings pages into RAM even when those pages are
not being accessed (e.g., a memory-management algorithm that
implements virtual huge pages as physical huge pages, and thus
brings entire physical huge pages into RAM at once)? And �nally,
what types of failures are permitted for a memory-management
algorithm? In particular, paging failures (as de�ned in Section 3)
are not acceptable, but we shall see that these types of failures can
be handled at a cost of additional IOs.

What a memory-management algorithm controls. We begin
by extending the de�nitions from Section 3 in order to de�ne what
an arbitrary memory-management algorithm controls. A memory-
management algorithm controls:

• which virtual huge-page addresses T are in the TLB;
• which virtual page addresses are in the active set A;
• what the TLB-decoding function 5 is;
• and what the virtual-to-physical mapping q is.

In other words, a memory-management algorithm controls not
only the features of the system that a huge-page decoupling
scheme controls, but also the TLB-replacement policy and the RAM-
replacement policy.

Whereas a huge-page decoupling scheme treats T as consist-
ing of virtual huge pages of size ⌘max, in general, a memory-
management algorithm is permitted to use virtual huge pages of
any mixture of sizes in {1, 2, 4, 8, . . . ,⌘max} (we assume ⌘max is a
power of two).6 Recall from Section 3 that, if a huge page is of size

6The fact that we allow memory-management algorithms to potentially use many
di�erent huge-page sizes at the same time will only make our results stronger. In
particular, this will allow the memory-management algorithms X and Y that are
used as inputs to Theorem 4 to be more sophisticated; on the other hand, the output
memory-management algorithm Z produced by Theorem 4 uses only a single size
⌘max for huge pages.

2A , then it is associated with an address that is an integer multiple
of 2A .

Servicing page requests. The purpose of a memory-management
algorithm is to service a sequence of virtual-page requests f =
(?1, ?2, . . . , ?=), where each ?8 2 [+].

In order for the memory-management algorithm to be able to
service a page request ?8 , the algorithm must ensure that virtual
page ?8 is in RAM (i.e., if ?8 8 A, then ?8 must be added to A); and
the algorithm must also ensure that a virtual huge page containing
?8 is contained in the TLB. Once the page ?8 is mapped in both
RAM and the TLB, the request ?8 can be serviced.7

The address-translation cost model. The running time of
a memory-management algorithm is evaluated in the address-
translation cost model: the cost of adding a new entry to T is
Y and the cost of adding a new element to the active set A is 1.
Evictions (from either the TLB or RAM) are free; and so is updating
the TLB value k (D) for a virtual huge page address D 2 T when
one of D’s constituent pages is added or removed from A.

In order to allow for a full range of TLB decoding/encoding
schemes, it is necessary to also capture the notion of a decoding
miss, which costs Y. A decoding miss occurs if a virtual huge pageD
is in the TLB, and a virtual page E contained in D is in RAM, but the
decoding function 5 (E,k (D)) incorrectly evaluates to �1 (instead of
q (E)). Imagine, for example, that a memory-management algorithm
chooses to encode for each virtual huge page D in the TLB only
the physical addresses of D’s most commonly accessed constituent
pages; then the pages that do not get encoded would incur decoding
misses when they were accessed. We will use decoding misses in
Theorem 4 to capture what happens if a huge-page decoupling
scheme experiences a paging failure; we will construct a memory-
management algorithm that brings the page experiencing failure
into RAM without giving it a TLB encoding.

Recall that for a given memory-management algorithm X,
⇠ (X,f) denotes the total cost of X (on the request sequence f),
⇠TLB (X,f) denotes the total TLB cost (this does not include decod-
ing misses), and ⇠IO (X,f) denotes the total IO cost. Additionally,
we de�ne⇠D (X,f) as the total cost incurred due to decodingmisses.
Then, ⇠ (X,f) = ⇠TLB (X,f) +⇠IO (X,f) +⇠D (X,f).

Huge-page decoupling as a technique for simultaneously op-
timizing IO costs and TLB costs. Having de�ned the address-
translation cost model and how it applies to memory-management
algorithms, we can now prove Theorem 4.

T������ 4 (T�� S��������� T������). Let + and % be the
number of pages in the virtual and physical address spaces, respec-
tively. Let ✓ be the number of entries in the TLB, andF be the number
of bits in each TLB value.

7Whereas RAM truly requires that pages be present in order to be accessed, the same
requirement isn’t strictly necessary for the TLB (since we can always just �nd the
physical address via the page table). On the other hand, in the address-translation cost
model, adding an element TLB has the same cost as incurring a TLB miss would. Thus
we can assume without loss of generality that every page that is accessed is �rst added
to the TLB’s coverage if necessary.

Let D be a huge-page decoupling scheme that uses resource-
augmentation X = > (1) and supports huge-page size ⌘max with high
probability in % .

Let f = (?1, . . . , ?=) 2 [+]= be a sequence of virtual page ad-
dresses that need to be serviced. Let X be an arbitrary memory-
management algorithm using parameters ✓,F ,+ , % , and using huge
pages with sizes between 1 and ⌘max pages; let Y be an arbitrary
memory-management algorithm using parameters ✓,F ,+ , (1 � X)% ,
and using huge pages with sizes between 1 and ⌘max pages. Using D,
one can construct a new memory-management algorithmZ, using
virtual huge pages of size ⌘max, satisfying

⇠ (Z,f) ⇠TLB (X,f) +⇠IO (Y,f) + =

poly(%) , (7)

with high probability in % . Moreover, ifX andY are online algorithms,
then so isZ.

P����. To design Z, we combine all three of X, Y, and D. The
idea is to use X’s TLB-replacement policy, to use Y’s as the RAM-
replacement policy, and then to use D in order to combine those
two policies into a new memory-management algorithmZ.

We begin by describing how to use X to determine the TLB-
replacement policy for D. Whereas the TLB for X may use huge
pages of many di�erent sizes (up to size ⌘max), the TLB for Z uses
virtual huge pages exclusively of size ⌘max. Let TZ denote the set of
virtual huge-page addresses in Z’s TLB at any given moment and
let TX denote the set of virtual huge-page addresses in X’s TLB at
any given moment. For each virtual address E 2 + , let A (E) = E � (E
(mod ⌘max)) denote the virtual address of the size-⌘max virtual
huge page containing E . We say that an address E 2 + is covered by
a size-⌘max virtual huge-page address D if A (E) = D. Note that, if a
virtual huge-page address E 2 TX is covered by a size-⌘max virtual
huge-page address D, then so are all of the constituent virtual pages
E 0 of E .

We de�ne the TLB-replacement policy for D so that

TZ = {A (E) | E 2 TX}.
Note that, since |TX | ✓ , we also always have |TZ | ✓ . And,
moreover, the TLB-replacement policy only modi�es TZ if it is also
modifying TX .

Next we describe how to use Y to determine the RAM-
replacement policy for D. We simply have the RAM-replacement
policy for D maintain the active set A to always match the active
set for Y. Note that, since Y operates on a physical memory of
size (1 � X)% , the active set A is never of size more than (1 � X)% ,
which in turn meets the resource-augmentation requirement for
the huge-page decoupling scheme D.

Although the RAM-replacement policy for D maintains the
active set to match the active set for Y, the huge-page decoupling
scheme D may sometimes experience a paging failure, causing a
virtual page E that is in the active set for Y to not be present in the
active set forZ. Whenever a page request ?8 is to a page E for which
D is currently experiencing a paging failure, we have the memory-
management algorithm Z handle the page request ?8 as follows:
(1) the algorithmZ spends an IO (of cost 1) to temporarily add E to
Z’s active set; (2) the algorithmZ sets q (E) to be an arbitrary free
physical page address; and (3) the algorithmZ services the page
request to E , incurring an additional cost of Y due to the ensuing

decoding miss (note, in particular, that Z does not make any e�ort
to encode the translation from E to q (E) in the TLB). Thus the total
cost of servicing a page request ?8 to a page E that is experiencing
a paging failure is 1 + Y. Once the request ?8 is serviced, then E may
be removed fromA whenever convenient (i.e., wheneverD wishes
to assign some other virtual page address E 0 < E to the physical
address q (E) that E is currently assigned to).

We have now completely de�ned the memory-management al-
gorithm Z. In summary, Z is constructed via the huge-page de-
coupling scheme D using X as the TLB-replacement policy and Y
as the RAM-replacement policy; and the only time thatZ departs
from the behavior of D is when D is experiencing a paging failure
on a page request ?8 . In this case, Z serves the page request at
a total cost of 1 + Y. Note that, if X and Y are online algorithms,
meaning that at any given moment they only know the value of
the next page ?8 that will be requested, then Z is also online.

We conclude by analyzing the cost⇠ (Z,f). First note that, since
D is a huge-page decoupling scheme that succeeds with high prob-
ability, the probability that there is a paging failure during a given
page request ?8 is at most 1/poly(%) (for a polynomial of our choice).
By linearity of expectation, the expected number of page requests
?8 at which paging failure is being experienced is at most=/poly(%).
Applying Markov’s inequality, it follows that with high probabil-
ity in % , at most =/poly(%) page requests ?8 occur during paging
failures. (Note that the application of Markov’s inequality shrinks
the poly(%) term in the denominator, but it nonetheless remains a
polynomial of our choice.) The total cost incurred byZ due to pag-
ing failures ofD is therefore at most (1+Y)=/poly(%) =/poly(%)
with high probability in % .

To complete the proof, we perform the rest of the analysis ig-
noring costs incurred byZ due to paging failures. By using X as
the TLB-replacement policy, we ensure thatZ only ever adds ele-
ments to TZ when X also adds an element to TX . Thus (ignoring
requests that experience paging failures), the TLB cost ofZ is at
most the TLB cost of X. At the same time, by using Y as the RAM-
replacement policy, we ensure that X only ever adds elements to
its active set when Y adds the same element to its active set (again,
ignoring paging failures). Thus the total IO cost of Z (ignoring
paging failures) is at most the total IO cost for Y. Since Z does
not experience any decoding misses except during paging failures,
the cost incurred byZ due to decoding misses is absorbed by the
paging failure cost. This completes the proof. ⇤

Theorem 4 reduces the optimization problem of minimizing
⇠ (Z,f) to the independent (and separate) optimization problems
of minimizing ⇠TLB (X,f) and ⇠IO (Y,f). We conclude the section
by observing that these two individual optimization problems are
equivalent to the classic paging problem, which counts the number
cache misses incurred by a paging algorithm to service a sequence
of page requests ?1, ?2, . . . , ?= on a cache of some size. The paging
problem does not have a unique optimal online solution (and thus
many algorithms for the problem have been studied [11, 12, 19, 20,
52, 53]). Nonetheless the theoretical and practical properties of the
paging problem are well understood.

Lemma 1. Let X and Y be the memory-management algorithms
from Theorem 4, and let f = (?1, ?2, . . . , ?=) 2 [+]= . For each vir-
tual page E 2 + , let A (E) denote the virtual huge page of size ⌘max
containing E .

The problem of minimizing ⇠TLB (X,f) in Theorem 4 is equivalent
to the paging problem on the request sequence A (?1), A (?2), . . . , A (?=)
using a cache of size ✓ .

The problem of minimizing ⇠IO (Y,f) in Theorem 4 is equivalent
to the paging problem on the request sequence ?1, ?2, . . . , ?= using a
cache of size (1 � X)% .

P����. If we wish to design X to minimize ⇠TLB (X,f), then we
can assume without loss of generality that the TLB for X uses only
huge pages of size ⌘max. In particular, any virtual huge page E of
size smaller than ⌘max in the TLB can be substituted with a larger
huge page A (E) of size ⌘max without any increase in TLB cost. If
we assume that X uses huge pages of size ⌘max, then the page
request sequence accesses virtual huge pages A (?1), A (?2), We
can further assume without loss of generality that X only adds a
virtual huge page E to the TLB when that virtual huge-page is about
to be accessed in the request sequence (since otherwise, X could
hold o� on adding E until E is next accessed). Thus the problem
of minimizing ⇠TLB (X,f) is exactly the problem of servicing the
virtual huge-page requests A (?1), . . . , A (?=) using the TLB as a size-✓
cache. Adding a virtual huge page to the TLB in the former problem
corresponds exactly to incurring a cache miss in the latter problem.

To see the claim about ⇠IO (Y,f), observe that the active set A
forY corresponds directly to the cache in the paging problem. Note
that, without loss of generality,Y only adds a page toA when that
page is about to be accessed. Thus the IOs incurred byY correspond
exactly to the cache misses incurred in the paging problem. ⇤

6 THE IO TLB-MISS TRADE-OFF IN HUGE
PAGES

This section presents experimental data illustrating the trade-o�
between IOs and TLB misses when using huge pages (that are both
virtually and physically contiguous).

We developed a trace-driven simulator for the TLB and RAM and
used it to measure IOs and TLB misses as a function of the huge-
page size ⌘ 2 {1, 2, 4, . . . , 1024}. We use a base page size of 4kB.
Thus, each entry in the TLB represents ⌘ 4kB virtually contiguous
pages, which map to an equal number of physically contiguous
pages. Therefore, each page fault moves ⌘ pages between RAM
and secondary memory, at a cost of ⌘ IOs. For our experiments,
we regard the TLB as a fully associative cache and use LRU as the
replacement policy both for the TLB and RAM. For all experiments,
the TLB is modeled with 1536 entries. The amount of physical
memory modeled varies, as detailed below.

We ran the following workloads:
• Bimodal uniform accesses (Figure 1a):A synthetic stress
test that frequently accesses one “hot” page and infrequently
accesses another “cold” page. The “hot” page is selected at
random from a 1 GB region ofmemory, within a 64 GB virtual
address space; the “cold” page is selected at random from the
entire virtual address space. This workload is designed to be
a worst case for huge pages. Small ⌘ results in frequent TLB

IOs TLB misses

20 25 210
105
106
107
108

105

107

109

Huge-page size

IO
s

TL
B
m
is
se
s

(a) A bimodal distribution in which 99.99%
of accesses are uniformly random in a 1GB
working set, and the remaining accesses
are uniformly random over a 64GB virtual-
address space. Cache was 16GB.

20 25 210
106

108

1010

108.1

108.4

108.7

Huge-page size

IO
s

TL
B
m
is
se
s

(b) A random walk among pages, where
each page has a logarithmic number of
outgoing edges, and edge destinations are
Pareto distributed with Pareto parameter
U = 0.01, i.e. the probability that an edge
goes to the 8th page is proportional to 8�U�1.
Cache was 32GB.

20 25 210
105

107

109

102

104

106

Huge-page size

IO
s

TL
B
m
is
se
s

(c) graph500, a BFS on a large graph with a
520MB cache.

Figure 1: IOs and TLB misses as a function of the huge-page size for a bimodal uniform random workload, a random graph
walk, and for a trace from the graph500 benchmark. All TLBs had 1536 entries. In all workloads, increasing the huge-page size
increases the IO cost by at least three orders of magnitude, but reduces the TLB miss count by up to four orders of magnitude.

misses on accesses to the 1GB virtual region, whereas large
⌘ incurs large IO ampli�cation on the infrequent 64GB space
accesses. The size of RAM is 16GB.We performed 100million
accesses to warm up the cache, then measured IOs and TLB
misses for another 100 million accesses.

• Random walk on a graph (Figure 1b): A synthetic work-
load that performs a randomwalk on a large graph, modeling
a PageRank-like computation. We model each page as a node
in the graph, where each node has a logarithmic number of
outgoing edges. The destination page of each outgoing edge
is chosen from a Pareto distribution over all the pages in the
system, with Pareto constant U = 0.01 (i.e., the probability
of selecting the 8th page is proportional to 8�U�1). The size
of the allocated virtual memory is 64GB and the cache has
size 32GB. We performed 100million warm-up accesses, and
then measured TLB misses and IOs for 100 million more
accesses.

• graph500 (Figure 1c): A well-known data-intensive high-
performance computing benchmark [31] that performs a
BFS traversal on a large graph. We ran the simulator on
a trace that consists of approximately 5 million memory
accesses performed by graph500 during a period of high
memory pressure and high TLB miss rate. The trace was
recorded from an execution on a machine with 64GB of
RAM, and the memory footprint was 60GB. During this trace,
graph500 touches roughly 525MB of RAM. Our simulator’s
RAM was set slightly below this value, at 520MB, to create
some memory contention.

Notice that, in all three workloads, if we don’t use huge pages at
all (i.e., the huge page size is 1), then the TLB miss count is 1 to 4
orders of magnitude larger than the IO count. Thus these are the
type of workloads where huge pages can help TLB performance.

All three workloads exhibit a similar trend: On the one hand,
without huge pages, there are relatively few IOs, but a relatively

large number of TLB misses. On the other hand, if we use large
huge pages, then the TLB misses plummet, but the workloads incur
several orders of magnitude more IOs. There is no good choice for
the huge page size that simultaneously attains low IO cost and low
TLB miss count—huge pages can be a boon for TLBs but a bane in
terms of IO.

These experiments show that physically contiguous huge pages
have an unsavory trade-o� between TLB misses and IO costs. In
contrast, a huge-page decoupling scheme has the potential to realize
both the low TLB miss rates of huge pages while retaining the low
IO costs of regular-sized pages.

7 RELATEDWORK

Limited-associativity paging. Sleator and Tarjan [47] gave com-
petitive analyses of LRU and FIFO paging algorithms, both with and
without resource augmentation. These results were subsequently
generalized by many authors [11, 12, 19, 20, 52, 53].

Due to the importance of limited-associativity caches in hard-
ware, there has also been substantial theoretical work on pag-
ing algorithms in the low-associativity setting. One direction of
work has been to analyze the competitive ratio of low-associativity
paging algorithms, where OPT is also limited in its associativity
[6, 13, 14, 23, 39]. Another direction of work has been to design
cache-aware algorithms that interact well with caches of low asso-
ciativity. Notably, Frigo et al. [24, 25] and Prokop [43] showed how
to take any algorithm in the external-memory model [5] and change
the algorithm’s access patterns in order so that a direct-mapped
cache (i.e., a cache with associativity 1) can be used to simulate a
fully-associative cache up to a constant factor in performance. In
a similar direction, Sen and Chatterjee [46] present cache-aware

algorithms for several basic problems (e.g. sorting, FFT, and permu-
tations) in a variant of the external-memory model [5, 24, 25] in
which cache has limited associativity.

In contrast with past work, our results show how to convert any
fully associative paging scheme into one with limited associativity
at almost no overhead. Thus, rather than designing a paging algo-
rithm (or designing an algorithm whose memory accesses play well
with a paging algorithm), we are interested deciding where pages
should reside in memory. And rather than aiming for a constant
competitive ratio, our application of address translation requires
us to be (1 + > (1))-competitive with the paging algorithm that we
are simulating. On the other hand, whereas past work often treats
the associativity as constant (and possibly even 1), our schemes are
allowed to use super-constant associativity (although, remarkably,
we show that even $̃ (log log %)-associativity su�ces).

Huge pages. Increasing the granularity of address translation is
a standard method to amplify TLB coverage. For instance, Linux
provides software support for huge pages of size larger than the
typical 4kB [26]. Manufacturers typically manage heterogeneity of
page sizes using dedicated TLBs for di�erent sizes. For instance,
Intel’s Cascade Lake microarchitecture allows 2MB and 1GB pages,
and provides a 1536-entry L2 data TLB for 4kB and 2MB pages, and
a 16-entry L2 data TLB for 1GB pages [15]. The actual coverage
gains are limited by the dedicated TLB size, and are thus much less
than the multiplicative blowup in page size.

For some workloads, huge pages are wasteful, creating unneces-
sary memory pressure that is in turn worsened by the increased
swapping cost. Two attempts to overcome this lack of �exibility
are Linux’s transparent huge pages (THP) and superpages [32], that
work by coalescing areas of virtually and physically contiguous
pages into larger blocks (a huge/super page). In these schemes,
the OS must either enforce contiguity of physical huge pages, or
have fallback mechanisms when it cannot allocate a physical huge
page. THP attempts to reserve enough space for a huge page and,
in case of failure, falls back to allocating typical 4kB pages that are
reallocated later on. Page reallocation incurs large performance
penalties, since all applications whose pages are being moved are
paused, and in fact a number of commercial databases and other
products recommend huge pages should be disabled for optimal
performance [1–4]. The superpage system avoids reallocation by
always over-allocating memory, and keeps track of unused pages
within a superpage so they can be reclaimed by other superpages.
The downside is an increased complexity and overhead of OS mem-
ory management. Both approaches su�er from increased swapping
costs, because once a huge or superpage is created, it is treated as
an indivisible mapping unit.

For some workloads huge pages increase page fault latency be-
cause Linux has to clear up much larger pages and consolidates
fragmented pages to create large continuous physical pages syn-
chronously. Ingens [30] points out that workloads that fragment
memory quickly, such as in multi-tenant cloud environments, su�er
signi�cant performance penalty, and implements an adaptive policy
to promote huge pages and asynchronously defragment memory.
HawkEye [35] proposes to synchronously pre-zero freed pages to
further reduce latency. GLUE [42] observes that huge pages hurt

lightweight system memory management and reduce consolidation
in the over-committed cloud deployments which depends on page
sharing to share memory. TEMPO [10], a prefetching optimization
technique to reduce TLB misses, reports in experiments how much
huge pages de-optimize: the more frequent huge pages are used
the less e�ective the optimization becomes.

TLB encodings. Because of the di�culties in maintaining physical
contiguity, a number of research projects have explored practical
TLB optimizations that leverage some contiguity when it is present,
such as coalescing TLB entries for runs of contiguous translations
that are smaller than a huge page [17, 38, 40, 41], or composing a
huge page out of “medium” sized frames [21]. Direct Segments [8]
allow a programmer to map gigabyte- to terabyte-sized primary
segments of memory and making the hardware to represent these
segments using a single TLB translation entry. Proposals such as
COLT [41] and Translation Ranger [50] identify physically con-
tiguous pages mapped in a process address space, and compress
the TLB translation into a single entry. As these examples show,
huge paging schemes that require physical contiguity saddle the
OS developer with solving the di�cult, open problem of e�ciently
maintaining physical contiguity.

To the best of our knowledge, our work is the �rst to completely
remove the requirement that huge pages be stored physically con-
tiguously.

8 CONCLUSION
In addition to showing how to potentially improve address trans-
lation on existing hardware, our results suggest ways that it may
make sense to change hardware in the future to improve address
translation.

Speci�cally, this paper treats F as a �xed parameter. On the
other hand, when designing the hardware of TLBs, there is an op-
portunity to change the value ofF if the payo� is big enough. An
interesting feature of our results is that they change the asymp-
totic relationship between F and the coverage of the TLB: even
small increases inF correspond to potentially large gains in TLB
coverage (and, moreover, these gains do not require the storage of
additional keys!). Thus larger values of F may make sense using
our techniques than was previously the case.

On the other hand, as long asF remains reasonably small, then
a hybrid approach may be sensible: one can use both huge-page
decoupling and physical huge pages of moderate size. So, for exam-
ple, if an optimal virtual huge page size is @ � ⌘max pages, then we
could implement decoupled huge pages where the physical huge
pages would have size only @/⌘max, thus achieving all the coverage
of the very large huge pages while mitigating the adverse e�ects
on I/Os.

9 ACKNOWLEDGEMENTS
This research was supported in part by NSF grants CCF-2106827,
CCF-1725543, CSR-1763680, CCF-1716252, CNS-1938709, CCF-
1617618, CCF-1916817, CCF-2106999, CSR-1938180 and CCF-
1715777, as well as an NSF GRFP fellowship and a Fannie and
John Hertz Fellowship.

This research was also partially sponsored by the United States
Air Force Research Laboratory and was accomplished under Co-
operative Agreement Number FA8750-19-2-1000. The views and
conclusions contained in this document are those of the authors
and should not be interpreted as representing the o�cial policies,
either expressed or implied, of the United States Air Force or the
U.S. Government. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding
any copyright notation herein.

REFERENCES
[1] Couchbase: Disabling transparent huge pages (THP).

https://docs.couchbase.com/server/current/install/thp-disable.html. Accessed:
2/11/2021.

[2] MongoDB: Disable transparent huge pages (THP).
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages/. Accessed:
2/11/2021.

[3] Oracle database: Disabling transparent hugepages.
https://docs.oracle.com/en/database/oracle/oracle-
database/12.2/ladbi/disabling-transparent-hugepages.html. Accessed:
2/11/2021.

[4] Percona: Settling the myth of transparent hugepages for databases.
https://www.percona.com/blog/2019/03/06/settling-the-myth-of-transparent-
hugepages-for-databases/. Accessed:
2/11/2021.

[5] Alok Aggarwal and S. Vitter, Je�rey. The input/output complexity of sorting and
related problems. Commun. ACM, 31(9):1116–1127, September 1988.

[6] Kunal Agrawal, Michael A. Bender, and Jeremy T. Fineman. The worst
page-replacement policy. In Proceedings of the 4th International Conference on
Fun with Algorithms (FUN), page 135–145. Springer-Verlag, 2007.

[7] Inc. AMD. Amd-v nested paging.
[8] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and Michael M.

Swift. E�cient virtual memory for big memory servers. In Proceedings of the
40th Annual International Symposium on Computer Architecture (ISCA). ACM,
2013.

[9] Abhishek Bhattacharjee. Preserving virtual memory by mitigating the address
translation wall. IEEE Micro, 37(5):6–10, 2017.

[10] Abhishek Bhattacharjee. Translation-triggered prefetching. In Proceedings of the
Twenty-Second International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 63–76. ACM, 2017.

[11] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, USA, 1998.

[12] Joan Boyar, Lene M. Favrholdt, and Kim S. Larsen. The relative worst-order ratio
applied to paging. J. Comput. Syst. Sci., 73(5):818–843, August 2007.

[13] Mark Brehob, Richard Enbody, Eric Torng, and Stephen Wagner. On-line
restricted caching. In Proceedings of the Twelfth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 374–383. Society for Industrial and
Applied Mathematics, 2001.

[14] Niv Buchbinder, Shahar Chen, and Joseph (Se�) Naor. Competitive algorithms
for restricted caching and matroid caching. In Proceedings of the 22nd European
Symposium on Algorithms (ESA), pages 209–221. Springer Berlin Heidelberg,
2014.

[15] Intel’s Cascade Lake microarchitecture.
https://en.wikichip.org/wiki/intel/microarchitectures/cascade_lake. Accessed:
02/02/2020.

[16] Fernando J. Corbató. A paging experiment with the Multics system. In MIT
Project MAC Report MAC-M-384, 1969.

[17] Guilherme Cox and Abhishek Bhattacharjee. E�cient address translation for
architectures with multiple page sizes. In Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 435–448. ACM, 2017.

[18] Peter J. Denning. The working set model for program behavior. Commun. ACM,
11(5):323–333, May 1968.

[19] Reza Dorrigiv and Alejandro López-Ortiz. Closing the gap between theory and
practice: New measures for on-line algorithm analysis. In Shin-ichi Nakano and
Md. Saidur Rahman, editors, WALCOM: Algorithms and Computation, pages
13–24. Springer Berlin Heidelberg, 2008.

[20] Reza Dorrigiv, Alejandro López-Ortiz, and J. Ian Munro. On the relative
dominance of paging algorithms. Theor. Comput. Sci., 410(38–40):3694–3701,
September 2009.

[21] Y. Du, M. Zhou, B. R. Childers, D. Mossé, and R. Melhem. Supporting superpages
in non-contiguous physical memory. In 2015 IEEE 21st International Symposium
on High Performance Computer Architecture (HPCA), pages 223–234, Feb 2015.

[22] Amos Fiat, Richard M Karp, Michael Luby, Lyle A McGeoch, Daniel D Sleator,
and Neal E Young. Competitive paging algorithms. Journal of Algorithms,
12(4):685 – 699, 1991.

[23] Amos Fiat, Manor Mendel, and Steven Seiden. Online companion caching.
Theoretical Computer Science, 324:499–511, 09 2002.

[24] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.
Cache-oblivious algorithms. In Proceedings of the 40th Annual Symposium on
Foundations of Computer Science (FOCS), page 285, 1999.

[25] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.
Cache-oblivious algorithms. ACM Transactions on Algorithms, 8(1):4, 2012.

[26] Mel Gorman. Linux huge pages. https://lwn.net/Articles/375096/, 2010.
[27] Mel Gorman. AMD Zen architecture.

https://en.wikichip.org/wiki/amd/microarchitectures/zen, 2018.
[28] Inc. Intel. Intel® 64 and ia-32 architectures software developer’s manual volume

3a: System programming guide, part 1.
[29] V. Karakostas, J. Gandhi, A. Cristal, M. D. Hill, K. S. McKinley, M. Nemirovsky,

M. M. Swift, and O. S. Unsal. Energy-e�cient address translation. In 2016 IEEE
International Symposium on High Performance Computer Architecture (HPCA),
pages 631–643, 2016.

[30] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach, and
Emmett Witchel. Coordinated and e�cient huge page management with ingens.
In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI), pages 705–721. USENIX Association, November 2016.

[31] Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A Ang.
Introducing the graph 500. Cray Users Group (CUG), 19:45–74, 2010.

[32] Juan Navarro, Sitaram Iyer, Peter Druschel, and Alan L. Cox. Practical,
transparent operating system support for superpages. In 5th Symposium on
Operating System Design and Implementation (OSDI), 2002.

[33] Stanko Novakovic, Yizhou Shan, Aasheesh Kolli, Michael Cui, Yiying Zhang,
Haggai Eran, Liran Liss, Michael Wei, Dan Tsafrir, and Marcos K. Aguilera.
Storm: a fast transactional dataplane for remote data structures. CoRR,
abs/1902.02411, 2019.

[34] Omitted for Anonymity. Dynamic balls-and-bins and iceberg hashing. Under
review, 2021. Manuscript available upon request.

[35] Ashish Panwar, Sorav Bansal, and K. Gopinath. Hawkeye: E�cient �ne-grained
os support for huge pages. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 347–360. Association for Computing Machinery, 2019.

[36] Ashish Panwar, Aravinda Prasad, and K. Gopinath. Making huge pages actually
useful. SIGPLAN Not., 53(2):679–692, March 2018.

[37] Chang Hyun Park, Taekyung Heo, Jungi Jeong, and Jaehyuk Huh. Hybrid tlb
coalescing: Improving tlb translation coverage under diverse fragmented
memory allocations. SIGARCH Comput. Archit. News, 45(2):444–456, June 2017.

[38] Chang Hyun Park, Taekyung Heo, Jungi Jeong, and Jaehyuk Huh. Hybrid TLB
coalescing: Improving TLB translation coverage under diverse fragmented
memory allocations. In Proceedings of the 44th Annual International Symposium
on Computer Architecture (ISCA), pages 444–456. Association for Computing
Machinery, 2017.

[39] Enoch Peserico. Online paging with arbitrary associativity. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
555–564. Society for Industrial and Applied Mathematics, 2003.

[40] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh. Increasing TLB reach by
exploiting clustering in page translations. In 2014 IEEE 20th International
Symposium on High Performance Computer Architecture (HPCA), pages 558–567,
Feb 2014.

[41] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee. CoLT: coalesced
large-reach TLBs. In 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 258–269, December 2012.

[42] B. Pham, J. Veselý, G. H. Loh, and A. Bhattacharjee. Large pages and lightweight
memory management in virtualized environments: Can you have it both ways?
In Proceedings of the 2015 48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 1–12, Dec 2015.

[43] H. Prokop. Cache oblivious algorithms. Master’s thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, June 1999.

[44] Martin Raab and Angelika Steger. “balls into bins” — a simple and tight analysis.
In Randomization and Approximation Techniques in Computer Science, pages
159–170. Springer Berlin Heidelberg, 1998.

[45] SandyBridge. https://www.7-cpu.com/cpu/SandyBridge.html.
[46] Sandeep Sen and Siddhartha Chatterjee. Towards a theory of cache-e�cient

algorithms. In Proceedings of the Eleventh Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 829–838, USA, 2000. Society for Industrial and
Applied Mathematics.

[47] Daniel D. Sleator and Robert E. Tarjan. Amortized e�ciency of list update and
paging rules. Commun. ACM, 28(2):202–208, February 1985.

[48] Michael M. Swift. Towards$ (1) memory. In Proceedings of the 16th Workshop
on Hot Topics in Operating Systems (HotOS), pages 7–11, 2017.

https://en.wikichip.org/wiki/intel/microarchitectures/cascade_lake
https://lwn.net/Articles/375096/
https://en.wikichip.org/wiki/amd/microarchitectures/zen

[49] Berthold Vöcking. How asymmetry helps load balancing. J. ACM, 50(4):568–589,
July 2003.

[50] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. Translation
ranger: Operating system support for contiguity-aware TLBs. In Proceedings of
the 46th International Symposium on Computer Architecture (ISCA), pages
698–710, New York, NY, USA, 2019.

[51] Jian Yang, Joseph Izraelevitz, and Steven Swanson. Filemr: Rethinking RDMA
networking for scalable persistent memory. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20), pages 111–125, Santa

Clara, CA, February 2020. USENIX Association.
[52] N. Young. The :-server dual and loose competitiveness for paging. Algorithmica,

11(6):525–541, Jun 1994.
[53] Neal E. Young. On-line �le caching. In Proceedings of the Ninth Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 82–86, USA, 1998.
Society for Industrial and Applied Mathematics.

[54] AMD’s Zen microarchitecture.
https://en.wikichip.org/wiki/amd/microarchitectures/zen. Accessed: 07/15/2020.

https://en.wikichip.org/wiki/amd/microarchitectures/zen

	Abstract
	1 Introduction
	2 Results and Technical Overview
	3 Huge-Page Decoupling
	4 Low-Associativity Paging and compact TLB Encodings
	5 Optimizing the Cost of Address Translation
	6 The IO TLB-Miss Trade-Off in Huge Pages
	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References

