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Abstract
For any forest G = (V, E) it is possible to orient the edges E so that no vertex in V has out-degree
greater than 1. This paper considers the incremental edge-orientation problem, in which the edges
E arrive over time and the algorithm must maintain a low-out-degree edge orientation at all times.
We give an algorithm that maintains a maximum out-degree of 3 while flipping at most O(log log n)
edge orientations per edge insertion, with high probability in n. The algorithm requires worst-case
time O(log n log log n) per insertion, and takes amortized time O(1). The previous state of the art
required up to O(log n/ log log n) edge flips per insertion.

We then apply our edge-orientation results to the problem of dynamic Cuckoo hashing. The
problem of designing simple families H of hash functions that are compatible with Cuckoo hashing
has received extensive attention. These families H are known to satisfy static guarantees, but do
not come typically with dynamic guarantees for the running time of inserts and deletes. We show how
to transform static guarantees (for 1-associativity) into near-state-of-the-art dynamic guarantees (for
O(1)-associativity) in a black-box fashion. Rather than relying on the family H to supply randomness,
as in past work, we instead rely on randomness within our table-maintenance algorithm.
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1 Introduction

The general problem of maintaining low-out-degree edge orientations of graphs has been widely
studied and has found a broad range of applications throughout algorithms (see, e.g., work on
sparse graph representations [9], maximal matchings [6–8,17,19,24], dynamic matrix-by-vector
multiplication [19], etc.). However, some of the most basic and fundamental versions of the
graph-orientation problem have remained unanswered.

This paper considers the problem of incremental edge orientation in forests. Consider a
sequence of edges e1, e2, . . . , en≠1 that arrive over time, collectively forming a tree. As the
edges arrive, one must maintain an orientation of the edges (i.e., to assign a direction to
each edge) so that no vertex ever has out-degree greater than O(1). The orientation can be
updated over time, meaning that orientations of old edges can be flipped in order to make
room for the newly inserted edges. The goal is achieve out-degree O(1) while flipping as few
edges as possible per new edge arrival.

Forests represent the best possible case for edge orientation: it is always possible to
construct an orientation with maximum out-degree 1. But, even in this seemingly simple case, no
algorithms are known that achieve better than O(log / log log n) edge flips per edge insertion [19].
A central result of this paper is that, by using randomized and intentionally non-greedy edge-
flipping one can can do substantially better, achieving O(log log n) edges flips per insertion.

A warmup: two simple algorithms. As a warmup let us consider two simple algorithms
for incremental edge-orientation in forests.

The first algorithm never flips any edges but allows the maximum out-degree of each vertex
to be as high as O(log n). When an edge (u, v) is added to the graph, the algorithm examines
the connected components Tu and Tv that are being connected by the edge, and determines
which component is larger (say, |Tv| Ø |Tu|). The algorithm then orients the edge from u to
v, so that it is directed out of the smaller component. Since the new edge is always added to a
vertex whose connected component at least doubles in size, the maximum out-degree is Álog nË.

The second algorithm guarantees that the out-degree will always be 1, but at the cost of
flipping more edges. As before, when (u, v) is added the algorithm orients the edge from u

to v. If this increments the out-degree of u to 2, then the algorithm follows the directed path
P in Tu starting from u (and such that the edge (u, v) is not part of P ) until a vertex r with
out-degree 0 is reached. The algorithm then flips the edge orientations on P , which increases
the out-degree of r to be 1 and reduces the out-degree of u to be 1. Since every edge that is
flipped is always part of a connected component that has just at least doubled in size, the
number of times each edge is flipped (in total across all insertions) is at most Álog nË and so
the amortized time cost per insertion is O(log n).1

These two algorithms sit on opposite sides of a tradeo� curve. In one case, we have
maximum out-degree O(log n) and at most O(1) edges flipped per insertion, and in the other
we have maximum out-degree O(1) and at most O(log n) (amortized) flips per insertion. This
raises a natural question: what is the optimal tradeo� curve between the maximum out-degree
and the number of edges flipped per insertion?

Our results. We present an algorithm for incremental edge orientation in forests that satisfies
the following guarantees with high probability in n:

1 By allowing for a maximum out-degree of 2, the bound of O(log n) on the number of edges flipped can be
improved from being amortized to worst-case. In particular, for any vertex v there is always a (directed)
path of length O(log n) to another vertex with out-degree 1 or less (going through vertices with out-degree
2); by flipping the edges in such a path, we can insert a new edge at the cost of only O(log n) flips.



XX:2

the maximum out-degree never exceeds 3;
the maximum number of edges flipped per insertion is O(log log n);
the maximum time taken by any insertion is O(log n log log n);
and the amortized time taken (and thus also the amortized number of edges flipped) per
insertion is O(1).
An interesting feature of this result is that the aforementioned tradeo� curve is actually

quite di�erent than it first seems: by increasing the maximum out-degree to 3 (instead of 2 or 1),
we can decrease the maximum number of edges flipped per insertion all the way to O(log log n).

In fact, a similar phenomenon happens on the other side of the tradeo� curve. For any
Á, we show that it is possible to achieve a maximum out-degree of logÁ

n + 1 while only flipping
O(Á≠1) edges per insertion. Notably, this means that, for any positive constant c, one can
can achieve out-degree (log n)1/c with O(1) edges flipped per insertion.

A key idea in achieving the guarantees above is to selectively leave vertices with low
out-degrees “sprinkled” around the graph, thereby achieving an edge orientation that is
amenable to future edges being added. Algorithmically, the main problem that our algorithm
solves is that of high-degree vertices clustering in a “hotspot”, which could then force a single
edge-insertion to invoke a large number of edge flips.

Related work on edge orientations. The general problem of maintaining low-out-degree
orientations of dynamic graphs has served as a fundamental tool for many problems. Brodal
and Fagerberg [9] used low-degree edge orientations to represent dynamic sparse graphs – by
assigning each vertex only O(1) edges for which it is responsible, one can then deterministically
answer adjacency queries in O(1) time. Low-degree edge orientations have also been used
to maintain maximal matchings in dynamic graphs [6,17,19,24], and this technique remains
the state of the art for graphs with low arboricity. Other applications include dynamic
matrix-by-vector multiplication [19], dynamic shortest-path queries in planar graphs [20],
and approximate dynamic maximum matchings [7, 8].

The minimum out-degree attainable by any orientation of a graph is determined by
the graph’s pseudo-arboricity –. As a result, the algorithmic usefulness of low out-degree
orientations is most significant for graphs that have low pseudo-arboricity. This makes forests
and pseudoforests (which are forests with one extra edge per component) especially interesting,
since they represent the case of – = 1 and thus always allow for an orientation with out-degree 1.

Whereas this paper focuses on edge orientation in incremental forests (and thus also
incremental pseudoforests), past work has considered a slightly more general problem [6,9,17,19],
allowing for edge deletions in addition to edge insertions, and also considering dynamic graphs
with pseudo-arboricities – > 1. Brodal and Fagerberg gave an algorithm that achieved out-
degree O(–) with amortized running time that is guaranteed to be constant competitive with that
of any algorithm; they also showed that in the case of – œ O(1), it is possible to achieve constant
out-degree with amortized time O(1) per insertion and O(log n) per deletion [9]. For worst-case
guarantees, on the other hand, the only algorithm known to achieve sub-logarithmic bounds for
both out-degree and edges flipped per insertion is that of Kopelowitz et al. [19], which achieves
O(log n/ log log n) for both, assuming – œ O(

Ô
log n). In the case of incremental forests, our

results allow for us to improve substantially on this, achieving a worst-case bound of O(log log n)
edges flipped per insertion (with high probability) while supporting maximum out-degree O(1).
An interesting feature of our algorithm is that it is substantially di�erent than any of the past
algorithms, suggesting that the fully dynamic graph setting (with – > 1) may warrant revisiting.

Our interest in the incremental forest case stems in part from its importance for a specific ap-
plication: Cuckoo hashing. As we shall now discuss, our results on incremental edge orientation
immediately yield a somewhat surprising result on Cuckoo hashing with dynamic guarantees.
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1.1 An Application to Cuckoo Hashing:
From Static to Dynamic Guarantees via Non-Greedy Eviction

A s-associative Cuckoo hash table [12, 21, 25, 26] consists of n bins, each of which has s

slots, where s is a constant typically between 1 and 8 [21,25]. Records are inserted into the table
using two hash functions h1, h2, each of which maps records to bins. The invariant that makes
Cuckoo hashing special is that, if a record x is in the table, then x must reside in either bin h1(x)
or h2(x). This invariant ensures that query operations deterministically run in time O(1).

When a new record x is inserted into the table, there may not initially be room in either
bin h1(x) or h2(x). In this case, x kicks out some record y1 in either h1(x) or h2(x). This, in
turn, forces y1 to be inserted into the other bin b2 to which y1 is hashed. If bin b2 also does not
have space, then y1 kicks out some record y2 from bin b2, and so on. This causes what is known
as a kickout chain. Formally, a kickout chain takes a sequence of records y1, y2, . . . , yj that
reside in bins b1, b2, . . . , bj , respectively, and relocates those records to instead reside in bins
b2, b3, . . . , bj+1, respectively, where for each record yi the bins bi and bi+1 are the two bins to
which h1 and h2 map yi. The purpose of a kickout chain is to free up a slot in bin b1 so that the
newly inserted record can reside there. Although Cuckoo hashing guarantees constant-time
queries, insertion operations can sometimes incur high latency due to long kickout chains.

The problem of designing simple hash-function families for Cuckoo hashing has received
extensive attention [1,4,5,10,13,14,23,25,28]. Several natural (and widely used) families of hash
functions are known not to work [10,13], and it remains open whether there exists k = o(log n)
for which k-independence su�ces [22]. This has led researchers to design and analyze specific
families of simple hash functions that have low independence but that, nonetheless, work well
with Cuckoo hashing [1,4, 5, 14,23,25,28]. Notably, Cuckoo hashing has served as one of the
main motivations for the intensive study of tabulation hash functions [1, 11,27–29].

Work on hash-function families for cuckoo hashing [1, 4, 5, 14, 23, 25, 28] has focused on
o�ering a static guarantee: for any set X of O(n) records, there exists (with reasonably high
probability) a valid 1-associative hash-table configuration that stores the records X. This
guarantee is static in the sense that it does not say anything about the speed with which
insertion and deletion operations can be performed.

On the other hand, if the hash functions are fully random, then a strong dynamic
guarantee is known. Panigrahy [26] showed that, using bins of size two, insertions can be
implemented to incur at most log log n + O(1) kickouts, and to run in time at most O(log n),
with high probability in n. Moreover, the expected time taken by each insertion is O(1).

The use of bin sizes greater than one is essential here, as it gives the data structure algorithmic
flexibility in choosing which record to evict from a bin. Panigrahy [26] uses breadth-first search
in order to find the shortest possible kickout chain to a bin with a free slot. The fact that
the hash functions h1 and h2 are fully random ensures that, with high probability, the search
terminates within O(log n) steps, thereby finding a kickout chain of length log log n + O(1).

If a family of hash functions has su�ciently strong randomness properties (e.g., the family
of [14]) then one can likely recreate the guarantees of [26] by directly replicating the analysis.
For other families of hash functions [1, 4, 5, 14, 23,25,28], however, it is unclear what sort of
dynamic guarantees are or are not possible.

This raises a natural question: does there exist a similar dynamic guarantee to that of [26]
when the underlying hash functions are not fully random – in particular, if we know only that a
hash family H o�ers a static guarantee, but we know nothing else about the structure or behavior
of hash functions in H, is it possible to transform the static guarantee into a dynamic guarantee?

Our results on Cuckoo hashing: a static-to-dynamic transformation. We answer
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this question in the a�rmative by presenting a new algorithm, the Dancing-Kickout Algorithm,
for selecting kickout chains during insertions in a Cuckoo hash table. Given any hash family
H that o�ers a 1-associative static guarantee, we show that the same hash family can be used
to o�er an O(1)-associative dynamic guarantee. In particular, the Dancing-Kickout Algorithm
supports both insertions and deletions with the following promise: as long as the static
guarantee for H has not failed, then with high probability, each insertion/deletion incurs at
most O(log log n) kickouts, has amortized time (and therefore number of kickouts) O(1), and
takes time at most O(log n log log n). We also extend our results to consider families of hash
functions H that o�er relaxed static guarantees – that is, our results still apply to families either
make assumptions about the input set [23] or require the use of a small auxiliary stash [4,18].

Unlike prior algorithms, the Dancing-Kickout Algorithm takes a non-greedy approach to
record-eviction. The algorithm will sometimes continue a kickout chain past a bin that has a
free slot, in order to avoid “hotspot clusters” of full bins within the hash table. These hotspots
are avoided by ensuring that, whenever a bin surrenders its final free slot, the bin is at the end
of a reasonably long random walk, and is thus itself a “reasonably” random bin. Intuitively,
the random structure that the algorithm instills into the hash table makes it possible for the
hash functions from H to not be fully random.

The problem of low-latency Cuckoo hashing is closely related to the problem of incremental
edge orientation. In particular, the static guarantee for a Cuckoo hash table (with bins of
size one) means that the edges in a certain graph form a pseudoforest. And the problem
of dynamically maintaining a Cuckoo hash table (with bins of size O(1)) can be solved by
dynamically orienting the pseudoforest in order to maintain constant out-degrees. The
Dancing-Kickout algorithm is derived by applying our results for incremental edge orientation
along with several additional ideas to handle deletions.

In addition to maintaining n bins, the Dancing-Kickout Algorithm uses an auxiliary
data structure of size O(n). The data structure incurs at most O(1) modifications per
insertion/deletion. Importantly, the auxiliary data structure is not accessed during queries,
which continue to be implemented as in a standard Cuckoo hash table.

Our results come with an interesting lesson regarding the symbiotic relationship between
Cuckoo hashing and edge orientation. There has been a great deal of past work on Cuckoo
hashing that focuses on parameters such as associativity, number of hash functions, and choice of
hash function. We show that a new dimension that also warrants attention: how to dynamically
maintain the table to ensure that a short kickout chain exists for every insertion. Algorithms that
greedily optimize any given operation (e.g., random walk and BFS) may inadvertently structure
the table in a way that compromises the performance of some later operations. In contrast, the
non-greedy approach explored in this paper is able to o�er strong performance guarantees for all
operations, even if the hash functions being used are far from fully random. The results in this
paper apply only to 1-associative static guarantees, and are therefore innately limited in the
types of dynamic guarantees that they can o�er (for example, we cannot hope to support a load
factor of better than 0.5). An appealing direction for future work is to design and analyze eviction
algorithms that o�er strong dynamic guarantees in hash tables with either a large associativity
or a large number of hash functions—it would be especially interesting if such guarantees could
be used to support a load factor of 1 ≠ q for an arbitrarily small positive constant q.

Related work on low-latency hash tables. Several papers have used ideas from Cuckoo
hashing as a parts of new data structures that achieve stronger guarantees. Arbitman et al. [2]
showed how to achieve a fully constant-time hash table by maintaining a polylogarithmic-size
backyard consisting of the elements whose insertions have not yet completed at any given
moment. Subsequent work then showed that, by storing almost all elements in a balls-in-bins
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system and then storing only a few “overflow” elements in a backyard Cuckoo hash table, one
can construct a succinct constant-time hash table [3].2

Whereas the focus of these papers [2,3] is to design new data structures that build on top of
Cuckoo hashing, the purpose of our results is to consider standard Cuckoo hashing but in the
dynamic setting. In particular, our goal is to show that dynamic guarantees for Cuckoo hashing
do not have to be restricted to fully random hash-functions; by using the Dancing-Kickout
Algorithm for maintaining the Cuckoo hash table, any family of hash functions that enjoys
static guarantees can also enjoy dynamic guarantees.

1.2 Outline
The paper proceeds as follows. In Section 2, we give a technical overview of the algorithms and
analyses in this paper. The overview is written in a way so that all of the major ideas in the paper
are self contained. The full details of the analyses are then given in appendices. Appendix A
shows how to achieve O(1) out-degree with O(log log n) edge flips per edge insertion; Appendix B
shows how to optimize the running time to be O(log n log log n) per operation and O(n) in total;
Appendix C then considers the tradeo� curve between out-degree and number of edges flipped
per insertion; finally, Appendix D gives the full details of our application to Cuckoo hashing.

2 Technical Overview

This section overviews the main technical ideas in the paper. We first describe our results
for incremental edge orientation and then show how to apply those results to Cuckoo hashing.

2.1 Edge Orientation with High-Probability Worst-Case Guarantees
We begin by considering the problem of incremental edge orientation in a forest. Let
e1, . . . , en≠1 be a sequence of edges between vertices in V = {v1, . . . , vn} such that the edges
form a tree on the vertices. As the edges arrive online, they always form a forest on the vertices.
Each edge can be thought of as combining two trees in the forest into one. The goal is to
maintain an orientation of the edges so that no vertex has out-degree more than three.

In Appendix A, we present a simple Monte-Carlo randomized algorithm, called the
Dancing-Walk Algorithm3, which flips at most O(log log n) edges per edge insertion. The
algorithm has worst-case operation time O(log n log log n), and can be modified to take
constant amortized time per edge insertion. In this section, we give an overview of the
algorithm and its analysis.

Augmenting paths. Whenever a new edge et = (v1, v2) is inserted, the algorithm first
selects a source vertex st œ {v1, v2}. The Dancing-Walk Algorithm always selects the source
vertex st to be in the smaller of the two (undirected) trees that are being connected by the
edge et. As a rule, the algorithm will only flip edges within that smaller tree, and never within
the larger tree; as we shall see later, this gives the algorithm certain natural combinatorial
properties that prevent an adversary from significantly manipulating the algorithm’s behavior.

2 It is worth noting, however, that as discussed in [16], the data structure of [3] can be modified to use
any constant-time hash table in place of deamortized Cuckoo hashing.

3 The name “Dancing-Walk” refers to the fact that the algorithm selects a chain of edges to flip by
performing a random walk, but the walk sometimes “dances around” rather than greedily stopping at
the earliest available point.



XX:6

If st’s out-degree is 1 or smaller, then the algorithm simply inserts edge e to face out of st.
Otherwise the algorithm selects edges to reorient in order to decrement st’s out-degree—after
reorienting these edges, the algorithm will then insert edge e facing out of st as before.

In order to decrement st’s out-degree, the algorithm uses a form of path augmentation.
The algorithm finds a directed path Pt of edges from the source vertex st to some destination
vertex d whose out-degree is smaller than 3. The algorithm then flips every edge in the path Pt,
which has the e�ect of decrementing the out-degree of st and incrementing the out-degree of dt.

The challenge: hotspot clusters of dead vertices. A natural approach to constructing
the augmenting path Pt is to simply either (a) perform a breadth-first-search to find the
shortest path to a vertex with out-degree less than 3, or (b) perform a random walk down
out-facing edges in search of a vertex with out-degree less than 3.

The problem with both of these approaches is that they do nothing to mitigate hotspots
of dead vertices (i.e., vertices with the maximum allowable out-degree of 3). Dead vertices
are problematic because they cannot serve as the destination in an augmenting path. If all
of the vertices near the source st are dead (i.e., st is in a hotspot cluster), then the algorithm
will be forced to incur a large number of edge-flips on a single edge-insertion.

In order to avoid the formation of dead-vertex hotspots, the algorithm must be careful to
leave vertices that are alive “sprinkled” around the graph at all times. Our algorithm forces the
augmenting path Pt to sometimes skip over an alive vertex for the sake of maintaining a healthy
structure within the graph. As a rule, the algorithm is only willing to kill a vertex v if v is at
the end of a reasonably long random walk, in which case the vertex v being killed is su�ciently
random that it can be shown not to contribute substantially to the creation of hotspots.

Constructing the augmenting path. In order to construct Pt, the algorithm performs
a random walk beginning at the source vertex st, and stepping along a random outgoing edge
in each step of the walk4.

If the random walk ever encounters a vertex with out-degree less than 2, then that vertex is
selected as the destination vertex. Otherwise, if all of the vertices encountered have out-degrees
2 and 3, then the walk continues for a total of c log log n steps. At this point, the vertex w

at which the random walk resides is asked to volunteer as the destination vertex.
If the volunteer vertex w has out-degree less than 3 (i.e., w is still alive), then it can be

used as the destination vertex for Pt. Otherwise, the random walk is considered a failure and
is restarted from scratch. If �(log n) random walks in a row fail, then the algorithm also fails.

Note that the augmenting path Pt may go through many vertices with out-degrees 2.
The only such vertex that Pt will consider as a possible destination vertex, however, is the
(c log log n)-th vertex w. This ensures that the algorithm avoids killing vertices in any highly
predictable fashion – the only way that the algorithm can kill a vertex is if that vertex is the
consequence of a relatively long random process.

Analyzing candidate volunteers. For the t-th edge insertion et, let Dt denote the set
of candidate volunteer vertices w that can be reached from st by a walk consisting of
exactly c log log n steps. To simplify the discussion for now, we treat Dt as having size at least
2c log log n—that is, we ignore the possibility of a random walk hitting vertices with out-degree

4 One small but important technicality is that if a vertex has out-degree 3, then the random walk only
chooses from the first two of the outgoing edges. Since the random walk terminates when it sees any
vertices with out-degree less than 2 (we will discuss this more shortly), it follows that every step in the
random walk chooses between exactly two edges to travel down. This is important so that every path
that the random walk could take has equal probability of occurring.
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1 or 0. Such vertices can easily be incorporated into the analysis after the fact, since they
only help the random walk terminate.

To analyze the algorithm we wish to show that, with high probability in n, at least a
constant fraction of the vertices in Dt have never yet volunteered. This, in turn, ensures that
each random walk has a constant probability of succeeding.

Two key properties. In order to analyze the fraction of the candidate-volunteer set Dt that
has not yet volunteered, we use two key properties of the algorithm:

The Sparsity Property: During the t-th edge insertion, each element in v œ Dt has
probability at most O(1/ logc≠1

n) of being selected to volunteer, because at most O(log n)
random walks are performed, and each has probability at most 1/ logc

n of volunteering v.
The Load Balancing Property: Each vertex v in the graph is contained in at most
log n candidate-volunteer sets Dt, because, whenever a new edge et combines two trees,
the algorithm performs random walks only in the smaller of the two trees. It follows that
a vertex v can only be contained in Dt if the size of the (undirected) tree containing v at
least doubles during the t-th edge insertion.

These properties imply that each vertex v in the graph has probability at most
O(1/ logc≠2

n) of ever volunteering. The property of volunteering is not independent between
vertices. Nonetheless, by a simple inspection of the moment generating function for the number
of volunteering vertices, one can still prove a Cherno�-style bound on them. In particular,
for any fixed set of k vertices, the probability that more than half of them volunteer is5

1
log�(ck)

n
. (1)

We will be setting k to be |Dt| = logc
n, meaning that (1) evaluates to

1
log�(c logc n)

n
π

1
poly(n) . (2)

A problem: adversarial candidate sets. If Dt were a fixed set of vertices (i.e., a function
only of the edge-insertion sequence e1, . . . , en≠1), then the analysis would be complete by
(2). The problem is that Dt is not a fixed set of vertices, that is, Dt is partially a function
of the algorithm’s random bits and past decisions. Indeed, the decisions of which vertices
have volunteered in the past a�ect the edge-orientations in the present, which a�ects the set
Dt of vertices that can be reached by a directed walk of length c log log n.

In essence, Dt is determined by an adaptive adversary, meaning in the worst case that
Dt could consist entirely of volunteered vertices, despite the fact that the vast majority of
vertices in the graph have not volunteered. The key to completing the analysis is to show that,
although Dt is determined by an adaptive adversary, the power of that adversary is severely
limited by the structure of the algorithm.

The universe of candidate sets. Let Ut denote the universe of possible candidate sets Dt.
That is,

Ut = {X ™ V | Pr[Dt = X] > 0}.

5 The value c is a constant in that it is a parameter of the algorithm that is independent of n. We place
c within Big-O notation here in order to keep track of its impact.
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In order to complete the analysis, we prove that the universe Ut is actually remarkably small.
In particular,

|Ut| Æ logO(logc
n)

n. (3)

By (1), the probability that there is a set S œ Ut such that more than half the elements in
S are volunteers is at most

|Ut|

log�(c logc n)
n

= logO(logc
n)

n

log�(c logc n)
n

.

If c is a su�ciently large constant, then the denominator dominates the numerator. With
high probability, every set in the universe Ut behaves well as an option for Dt. This solves
the problem of Dt being potentially adversarial.

Bounding the universe by pre-setting children. We prove (3) by examining the potential
children of each vertex v. For a vertex v, the children of v are the vertices u to which v has an
outgoing edge. The set of children of v can change over time as edges incident to v are re-oriented.

The structure of the Dancing-Walk Algorithm is designed to severely limit the set of
vertices u that can ever become children of v. During the insertion of an edge et, the only
vertex that can become v’s child is the vertex u that appears directly before v on the path
from st to v. Moreover, as is argued in the Load Balancing Property, there are only O(log n)
values of t for which there even exists a path from st to v (at the time of the edge-insertion
et). Thus we have the following property:

The Preset-Children Property: There exists a (deterministic) set of O(log n) vertices
Cv that contains all of v’s potential children. That is, no matter what random bits the
algorithm uses, the children of v will always come from the set Cv.

The Preset-Children Property can be used to bound the universe size |Ut| in a very simple
way. Recall that the nodes in Dt are the leaves of a c log log n-level search tree Tt rooted at
st. The tree Tt consists of O(logc

n) nodes. By the Preset-Children Property, each node v œ Tt

has only
! |Cv|

O(1)
"

Æ logO(1)
n options for whom its O(1) children can be in Tt. It follows that

the total number of possibilities for Tt is at most

logO(|Tt|)
n Æ logO(logc

n)
n.

Each possibility for Tt corresponds to a possibility for the candidate-volunteer set Dt and
thus to an element of the universe Ut. This yields the desired bound (3) on |Ut|.

Analyzing the running time. So far we have shown that, with high probability, at least half
of the elements in the candidate-volunteer set Dt are eligible to volunteer as a destination vertex.
This implies that each random walk succeeds with constant probability, and thus that the number
of failed random walks during a given edge-insertion is O(log n) with high probability. Thus, with
high probability, the algorithm succeeds on every edge-insertion, the running time of each edge-
insertion is O(log n log log n), and the number of flipped edges per edge-insertion is O(log log n).

The tradeo� between edges flipped and out-degree. Appendix C explores the tradeo�
between out-degree and the maximum number of edges that are flipped per edge insertion.

We consider a modification of the Dancing-Walk Algorithm in which nodes are permitted
to have out-degree as large as logÁ

n + 1 (instead of 3) for some parameter Á. Rather flipping
the edges in a random walk of length c log log n, the new algorithm instead flips the edges
in a random walk of length cÁ

≠1. The length of the random walk is parameterized so that
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the number of potential volunteers |Dt| is still logc
n, which allows for the algorithm to be

analyzed as in the case of out-degree 3. The algorithm ensures that at most O(Á≠1) edges
are flipped per edge-insertion, that each edge-insertion takes time O(Á≠1 log n), and that the
total time by all edge-insertions is O(n), with high probability in n.

2.2 Achieving Constant Amortized Running Time
In Appendix B we modify the Dancing-Walk Algorithm to achieve a total running time of
X = O(n), with high probability in n. To simplify the discussion in this section, we focus
here on the simpler problem of bounding the expected total running time E[X].

Bounding the time taken by random walks. Although each random walk is permitted
to have length as large as �(log log n), one can easily prove that a random walk through a
tree of m nodes expects to hit a node with out-degree less than 2 within O(log m) steps. Recall
that, whenever an edge et combines two (undirected) trees T1 and T2, the ensuing random
walks are performed in the smaller of T1 or T2. The expected contribution to the running
time X is therefore, O(min(log |T1|, log |T2|)). That is, even though a given edge-insertion
et could incur up to �(log n) random walks each of length �(log log n) in the worst case, the
expected time spent performing random walks is no more than O(min(log |T1|, log |T2|)).

Let T denote the set of pairs (T1, T2) that are combined by each of the n ≠ 1 edge insertions.
A simple amortized analysis shows that

ÿ

(T1,T2)œT

min (log |T1|, log |T2|) = O(n). (4)

Thus the time spent performing random walks is O(n) in expectation.

The union-find bottleneck. In addition to performing random walks, however, the
algorithm must also compare |T1| and |T2| on each edge insertion. But maintaining a
union-find data structure to store the sizes of the trees requires �(–(n, n)) amortized time
per operation [15], where –(n, n) is the inverse Ackermann function.

Thus, for the algorithm described so far, the maintenance of a union-find data structure
prevents an amortized constant running time per operation. We now describe how to modify
the algorithm in order to remove this bottleneck.

Replacing size with combination rank. We modify the Dancing-Walk Algorithm so that
the algorithm no longer needs to keep track of the size |T | of each tree in the graph. Instead
the algorithm keeps track of the combination rank R(T ) of each tree T—whenever two
trees T1 and T2 are combined by an edge insertion, the new tree T3 has combination rank,

R(T3) =
I

max(R(T1), R(T2)) if R(T1) ”= R(T2)
R(T1) + 1 if R(T1) = R(T2).

Define the Rank-Based Dancing-Walk Algorithm to be the same as the Dancing-Walk
Algorithm, except that the source vertex st is selected to be in whichever of T1 or T2 has
smaller combination rank (rather than smaller size).

The advantage of combination rank. The advantage of combination rank is that it can
be e�ciently maintained using a simple tree structure. Using this data structure, the time
to merge two trees T1 and T2 (running the Dancing-Walk Algorithm with appropriately chosen
source vertex) becomes simply min(R(T1), R(T2)). This, in turn, can be upperbounded by
O(min(log |T1|, log |T2|)). By (4), the total time spent maintaining combination ranks of trees
is O(n).
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The other important feature of combination rank is that it preserves the properties of the
algorithm that are used to analyze correctness. Importantly, whenever a tree T is used for
path augmentation by an edge-insertion et, the combination rank of T increases due to that
edge insertion. One can further prove that the combination rank never exceeds O(log n), which
allows one to derive both the Load Balancing Property and the Preset Children Property.

The disadvantage: longer random walks. The downside of using combination rank to
select trees is that random walks can now form a running-time bottleneck. Whereas the
expected running time of all random walks was previously bounded by (4), we now claim that
it is bounded by,

ÿ

(T1,T2)œT

AI
log |T1| if R(T1) Æ R(T2)
log |T2| if R(T2) < R(T1)

B
= O(n). (5)

We now justify this claim.
The problem is that a tree T can potentially have very small combination rank (e.g., O(1))

but very large size (e.g., �(n)). As a result, the summation (4) may di�er substantially from
the summation (5).

Rather than bounding (5) directly, we instead examine the smaller quantity,

ÿ

(T1,T2)œT

AI
log |T1| ≠ R(T1) if R(T1) Æ R(T2)
log |T2| ≠ R(T2) if R(T2) < R(T1)

B
= O(n). (6)

The di�erence between (5) and (6) is simply
ÿ

(T1,T2)œT

min (R(T1), R(T2)) = O(n),

meaning that an upper bound on (6) immediately implies an upper bound on (5).
The key feature of (6), however, is that it yields to a simple potential-function based

analysis. In particular, if we treat each vertex v as initially having �(1) tokens, and we treat
each tree combination (T1, T2) as incurring a cost given by the summand in (6), then one can
show that every tree T always has at least

�
3

|T |

2R(T )

4

tokens, which means that the total number of tokens spent is O(n). This allows us to bound (6) by
O(n), which then bounds (5) by O(n), and implies a total expected running time ofE[X] = O(n).

2.3 Dynamic Cuckoo
Hashing: Transforming Static Guarantees into Dynamic Guarantees

In Appendix D, we apply our results on edge-orientation to the problem of maintaining a
dynamic Cuckoo hash table. In particular, given any hash-function family H that achieves a
static guarantee in a 1-associative Cuckoo hash table, we show how to achieve strong dynamic
guarantees in an O(1)-associative table. We consider a wide variety of static guarantees,
including those that use stashes [4, 18] or that make assumptions about the input [23]. In
this section, we give an overview of the main ideas need to achieve these results.

From hash tables to graphs. Say that a set X of records is (h1, h2)-viable if it is possible to
place the records X into a 1-associative n-bin Cuckoo hash table using hash functions h1 and h2.
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The property of being (h1, h2)-viable has a natural interpretation as a graph property. Define
the Cuckoo graph G(X, h) for a set of records X and a for pair of hash functions h = (h1, h2)
to be the graph with vertices [n] and with (undirected) edges {(h1(x), h2(x)) | x œ X}. The
problem of configuring where records should go in the hash table corresponds to an edge-
orientation problem in G. In particular, one can think of each record x that resides in a bin hi(x)
as representing an edge (h1(x), h2(x)) that is oriented to face out of vertex hi(x). A set of records
X is h-viable if and only if the edges in G can be oriented to so that the maximum out-degree is 1.

The fact that G(X, h) can be oriented with maximum out-degree 1 means that G is a
pseudoforest — that is, each connected component of G is a tree with up to one extra
edge. For the sake of simplicity here, we will make the stronger assumption that G forms a
forest; this assumption can easily be removed in any of a number of ways, including by simply
identifying and treating specially any extra edges.

From incremental Cuckoo hashing to incremental edge-orientation. If we assume
that the edges in the Cuckoo graph form a forest, then the problem of implementing insertions
in a Cuckoo hash table (for now we ignore deletions) is exactly the incremental edge-orientation
problem studied in this paper. In particular, the problem of finding a kickout chain corresponds
exactly to the problem of selecting a path of edges to augment. Thus we can use the
Rank-Based Dancing-Walk Algorithm in order to achieve a dynamic guarantee.

Supporting deletions with phased rebuilds. Although our results on edge-orientation
support only edge insertions, we wish to support both insertions an deletions in our hash table.

To support deletions, we first modify the data structure so that it is gradually rebuilt from
scratch every Án insert/delete operations, for some Á œ (0, 1). By doubling the size of each
bin, we show that these rebuilds can be performed without interfering with queries or inducing
any high-latency operations. The e�ect of the these rebuilds is that we can analyze the table
in independent batches of Án operations.

Consider a batch of Án operations, and let X denote the set of all records that are present
during any of those operations. Note that |X| may be as large as (c + Á)n where cn is the
capacity of the table. By setting (c + Á)n (rather than cn) to be the capacity at which H

o�ers static guarantees, we can apply the static guarantee for H to all of the records in X

simultaneously, even though the records X are not necessarily ever logically in the table at the
same time as each other. The fact that X is h-viable in its entirety (including records that are
deleted during the batch of operations!) allows for us to analyze deletions without any trouble.
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28 Mihai Pǎtra�cu and Mikkel Thorup. The power of simple tabulation hashing. Journal of the

ACM (JACM), 59(3):1–50, 2012.
29 Mikkel Thorup. Fast and powerful hashing using tabulation. Communications of the ACM,

60(7):94–101, 2017.

A An Algorithm with High-Probability Worst-Case Guarantees

This section considers the problem of incremental edge orientation in a forest. Let e1, . . . , en≠1
be a sequence of edges between vertices in V = {v1, . . . , vn} such that the edges form a tree
on the vertices.

We now present the Dancing-Walk Algorithm. The Dancing-Walk Algorithm guarantees
out-degree at most 3 for each vertex, and performs at most O(log log n) edge-flips per operation.
Each step of the algorithm takes time at most O(log n log log n) to process. The algorithm is
randomized, and can sometimes declare failure. The main technical di�culty in analyzing the
algorithm is to show that the probability of the algorithm declaring failure is always very small.

The Dancing-Walk Algorithm. At any given moment, the algorithm allows each vertex
v to have up to two primary out-going edges, and one secondary out-going edge. A key
idea in the design of the algorithm is that, once a vertex has two primary out-going edges, the
vertex can volunteer to take on a secondary out-going edge in order to ensure that a chain
of edge flips remains short. But if vertices volunteer too frequently in some part of the graph,
then the supply of potential volunteers will dwindle, which would destroy the algorithm’s
performance. The key is to design the algorithm in a way so that volunteering vertices are
able to be useful but are not overused.

Consider the arrival of a new edge ei. Let v1 and v2 be the two vertices that ei connects,
and let T1 and T2 be the two trees rooted at v1 and v2, respectively. The algorithm first
determines which of T1 or T2 is smaller (for this description we will assume |T1| Æ |T2|). Note
that, by maintaining a simple union-find data structure on the nodes, the algorithm can
recover the sizes of T1 and T2 each in O(log n) time.

The algorithm then performs a random walk through the (primary) directed edges of
T1, beginning at v1. Each step of the random walk travels to a new vertex by going down
a random outgoing primary edge from the current vertex. If the random walk encounters a
vertex u with out-degree less than 2 (note that this vertex u may even be v1), then the walk
terminates at that vertex. Otherwise, the random walk continues for a total of c log log n

steps, terminating at some vertex u with out-degree either 2 or 3. If the final vertex u has
out-degree 2, meaning that the vertex does not yet have a secondary out-going edge, then the
vertex u volunteers to take a secondary out-going edge and have its out-degree incremented
to 3. If, on the other hand, the final vertex u already has out-degree 3, then the random walk
is considered to have failed, and the random walk is repeatedly restarted from scratch until
it succeeds. The algorithm performs up to d log n random-walk attempts for some su�ciently
large constant d; if all of these fail, then the algorithm declares failure.

Once a successful random walk is performed, all of the edges that the random walk traveled
down to get from v1 to u are flipped. This decrements the degree of v1 and increments the degree
of u. The edge ei is then oriented to be out-going from v1. The result is that every vertex in the
graph except for u has unchanged out-degree, and that u has its out-degree incremented by 1.
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Analyzing the Dancing-Walk Algorithm. In the rest of the section, we prove the
following theorem:

I Theorem 1. With high probability in n, the Dancing-Walk Algorithm can process all of
e1, . . . , en≠1 without declaring failure. If the algorithm does not declare failure, then each step
flips O(log log n) edges and takes O(log n log log n) time. Additionally, no vertex’s out-degree
ever exceeds 3.

For each edge et, let Bt be the binary tree in which the random walks are performed during
the operation in which et is inserted. In particular, for each internal node of Bt, its children
are the vertices reachable by primary out-going edges; all of the leaves in Bt are either at depth
c log log n, or are at smaller depth and correspond with a vertex that has out-degree one or
zero. Note that the set of nodes that make up Bt is a function of the random decisions made
by the algorithm in previous steps, since these decisions determine the orientations of edges.
Call the leaves at depth (c log log n) in Bt the potential volunteer leaves. If every leaf in
Bt is a potential volunteer leaf, then Bt can have as many as (log n)c such leaves.

The key to proving Theorem 1 is to show with high probability in n, that for each step
t, the number of potential volunteer leaves in Bt that have already volunteered in previous
steps is at most (log n)c

/2.

I Proposition 2. Consider a step t œ {1, 2, . . . , n ≠ 1}. With high probability in n, the number
of potential volunteer leaves in Bt that have already volunteered in previous steps is at most
(log n)c

/2.

Assuming the high-probability outcome in Proposition 2, it follows that each random walk
performed during the t-th operation has at least a 1/2 chance of success. In particular, the
only way that a random walk can fail is if it terminates at a leaf of depth c log log n and that
leaf has already volunteered in the past. With high probability in n, one of the first O(log n)
random-walk attempts will succeed, preventing the algorithm from declaring failure.

The intuition behind Proposition 2 stems from two observations:
The Load Balancing Property: Each vertex v is contained in at most log n trees Bt.
This is because, whenever two trees T1 and T2 are joined by an edge et, the tree Bt is
defined to be in the smaller of T1 or T2. In other words, for each step t that a vertex v

appears in Bt, the size of the (undirected) tree containing v at least doubles.
The Sparsity Property: During a step t, each potential volunteer leaf in Bt has
probability at most d log n

logc n
of being selected to volunteer.

Assuming that most steps succeed within the first few random-walk attempts, the two
observations combine to imply that most vertices v are never selected to volunteer.

The key technical di�culty comes from the fact that the structure of the tree Bt, as well
as the set of vertices that make up the tree, is partially a function of the random decisions
made by the algorithm in previous steps. This means that the set of vertices in tree Bt can
be partially determined by which vertices have or have not volunteered so far. In this worst
case, this might result in Bt consisting entirely of volunteered vertices, despite the fact that
the vast majority of vertices in the graph have not volunteered yet.

How much flexibility is there in the structure of Bt? One constraint on Bt is that it must
form a subtree of the undirected graph Gt = {e1, . . . , et≠1}. This constraint alone is not very
useful. For example, if Gt is a (logc+1

n)-ary tree of depth c log log n, and if each node in Gt has
volunteered previously with probability 1/ logc

n, then there is a reasonably high probability that
every internal node of Gt contains at least two children that have already volunteered. Thus there
would exist a binary subtree of Gt consisting entirely of nodes that have already volunteered.
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An important property of the Dancing-Walk Algorithm is that the tree Bt cannot, in general,
form an arbitrary subtree of Gt. Lemma 3 bounds the total number of possibilities for Bt:

I Lemma 3. For a given sequence of edge arrivals e1, . . . , en≠1, the number of possibilities
for tree Bt is at most

(log n)2 logc
n
.

Proof. We will show that, for a given node v in Bt, there are only log n options for who each of
v’s children can be in Bt. In other words, Bt is a binary sub-tree of a (log n)-ary tree with depth
c log log n. Once this is shown, the lemma can be proven as follows. One can construct all of
the possibilities for Bt by beginning with the root node v1 and iteratively by adding one node
at a time from the top down. Whenever a node v is added, and is at depth less than c log log n,
one gets to either decide that the node is a leaf, or to select two children for the node. It follows
that for each such node v there are at most

!log n

2
"

+ 1 Æ log2
n options for what v’s set of

children looks like. Because Bt can contain at most logc
n ≠ 1 nodes v with depths less than

c log log n, the total number of options for Bt is at most
!
log2

n
"logc

n, as stated by the lemma.
It remains to bound the number of viable children for each node v in Bt. To do this, we

require a stronger version of the load balancing property. The Strong Load Balancing Property
says that, not only is the number of trees Bt that contain v bounded by log n, but the set of
log n trees Bt that can contain v is a function only of the edge sequence (e1, . . . , en≠1), and
not of the randomness in the algorithm.

The Strong Load Balancing Property: For each vertex v, there is a set Sv ™ [n]
determined by the edge-sequence (e1, . . . , en≠1) such that: (1) the set’s size satisfies
|Sv| Æ log n, and (2) every Bt containing v satisfies t œ Sv.

The Strong Load Balancing Property is a consequence of the fact that, whenever a new edge et

combines two trees T1 and T2, the algorithm focuses only on the smaller of the two trees. It follows
that a vertex v can only be contained in tree Bt if the size of the (undirected) tree containing v at
least doubles during the t-th step of the algorithm. For each vertex v, there can only be log n steps
t in which the tree size containing v doubles, which implies the Strong Load Balancing Property.

Consider a step t, and suppose that step t orients some edge e to be facing out from some
vertex v. Then it must be that the path from edge et to vertex v goes through e as its final
edge. In other words, for a given step t and a given vertex v, there is only one possible edge e

that might be reoriented during step t to be facing out from v. By the Strong Load Balancing
Property, it follows that for a given vertex v, there are only log n possibilities for out-going
edges e. This completes the proof of the lemma. J

Now that we have a bound on the number of options for Bt, the next challenge is to bound the
probability that a given option for Bt has an unacceptably large number of volunteered leaves.

The next lemma proves a concentration bound on the number of volunteered vertices
in a given set. Note that the event of volunteering is not independent between vertices. For
example, if two vertices v and u are potential volunteer leaves during some step, then only
one of v or u can be selected to volunteer during that step.

I Lemma 4. Fix a sequence of edge arrivals e1, . . . , en≠1, and a set S of vertices. The
probability that every vertex in S volunteers by the end of the algorithm is at most,

O

3
1

log(c≠3)|S|
n

4
.
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Proof. For each step t œ {1, 2, . . . , n ≠ 1}, define Ft to be the number of elements of S that
are potential volunteer leaves during step t. Define

pt = Ft · d log n

logc
n

,

where d log n is the number of random-walk attempts that the algorithm is able to perform
in each step before declaring failure. By the Sparsity Property, the value pt is an upper bound
for the probability that any of the elements of S volunteer during step t. In other words, at
the beginning of step t, before any random-walk attempts are performed, the probability that
some element of S volunteers during step t is at most pt.

Note that the values of p1, . . . , pn≠1 are not known at the beginning of the algorithm. Instead,
the value of pt is partially a function of the random decisions made by the algorithm in steps
1, 2, . . . , t ≠ 1. The sum

q
t
pt is deterministically bounded, however. In particular, since each

vertex s œ S can appear as a potential volunteer leaf in at most log n steps (by the Load Balancing
Property), the vertex s can contribute at most d log2

n to the sum
q

t
pt. It follows that

ÿ

t

pt Æ
|S|d log2

n

logc
n

.

Let Xt be the indicator random variable for the event that some vertex in S volunteers during
step t. Each Xt occurs with probability at most pt. The events Xt are not independent, however,
since the value of pt is not known until the end of step t ≠ 1. Nonetheless, the fact that

q
t
pt

is bounded allows for us to prove a concentration bound on
q

t
Xt using the following claim.

B Claim 5. Let µ œ [0, n], and suppose that Alice is allowed to select a sequence of numbers
p1, p2, . . . , pk, pi œ [0, 1], such that

q
i
pi Æ µ. Each time Alice selects a number pi, she wins

1 dollar with probability pi. Alice is an adaptive adversary in that she can take into account
the results of the first i bets when deciding on pi+1. If X is Alice’s profit from the game,

Pr
Ë
X > (1 + ”)µ

È
Æ exp ((” ≠ ln(1 + ”)(1 + ”))µ) ,

for all ” > 0.

The proof of Claim 5 follows by inspection of the moment generating function for X, and
is deferred to Appendix E.

Applying Claim 5 to X =
q

t
Xt, with ” = logc

n

d log2 n
≠ 1 and µ = |S|d log2

n

logc n
(so that

(” + 1)µ = |S|), we get that

Pr[X > |S|] Æ exp
3

|S| ≠ |S| ln logc
n

d log2
n

4

= O
!
exp

!
≠|S| ln logc≠3

n
""

= O

1
log≠(c≠3)|S|

n

2
.

J

Combining Lemmas 3 and 4, we can now prove Proposition 2.

Proof of Proposition 2. Consider a tree Bt. By Lemma 3, the number of options for Bt,
depending on the behavior of the algorithm in steps 1, 2, . . . , t ≠ 1, is at most,

(log n)2 logc
n
.
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For a given choice of Bt, there are at most
! logc

n
1
2 logc n

"
Æ 2logc

n ways to choose a subset S

consisting of logc
n

2 of the potential volunteer leaves. For each such set of leaves S, Lemma
4 bounds the probability that all of the leaves in S have already volunteered by,

O

1
log≠(c≠3)|S|

n

2
= O

1
log≠(logc

n)(c≠3)/2
n

2
.

Summing this probability over all such subsets S of all possibilities for Bt, the probability
that Bt contains logc

n

2 already-volunteered leaves is at most,

O

1
(log n)2 logc

n
· 2logc

n
· log≠(logc

n)(c≠3)/2
n

2

= O

3
(2 log n)2 logc

n

log(logc n)(c≠3)/2
n

4
.

For a su�ciently large constant c, this is at most 1
nÊ(1) . The proposition follows by taking

a union bound over all t œ {1, 2, . . . , n ≠ 1}. J

We conclude the section with a proof of Theorem 1

Proof of Theorem 1. Consider a step t in which the number of potential volunteer leaves in
Bt that have already volunteered is at most 1

2 logc
n. The only way that a random walk in step

t can fail is if it lasts for c log log n steps (without hitting a vertex with out-degree 1 or 0) and it
finishes at a vertex that has already volunteered. It follows that, out of the logc

n possibilities
for a (c log log n)-step random walk, at most half of them can result in failure. Since each
random-walk attempt succeeds with probability at least 1/2, and since the algorithm performs
up to d log n attempts for a large constant d, the probability that the algorithm fails on step
t is at most 1

nd = 1
polyn

.
The above paragraph establishes that, whenever the search tree Bt contains at most 1

2 logc
n

potential volunteer leaves that have already volunteered, then step t will succeed with high
probability in n. It follows by Proposition 2 that every step succeeds with high probability in n.

We complete the theorem by discussing the properties of the algorithm in the event that
it does not declare failure. Each step flips at most O(log log n) edges and maintains maximum
out-degrees of 3. Because each step performs at most O(log n) random-walk attempts, these
attempts take time at most O(log n log log n) in each step. Additionally, a union-find data
structure is used in order to allow for the sizes |T1| and |T2| of the two trees being combined to
be e�ciently computed in each step. Because the union-find data structure can be implemented
to have worst-case operation time O(log n), the running time of each edge-insertion remains
at most O(log n log log n). J

B Achieving Constant Amortized Running Time

Although Theorem 1 bounds the worst-case running time of operations (with high probability),
it does not bound the amortized running time of the Dancing-Walk Algorithm. In this section,
we show how to modify the Dancing-Walk Algorithm so that Theorem 1 continues to hold, and
so that the amortized cost of performing n edge insertions is O(n) with high probability in n.

The Initial Union-Find Bottleneck. Recall that whenever an edge ei is inserted, the
Dancing-Walk Algorithm begins the operation by determining which of the two trees T1 and
T2 that are being combined are smaller. In order to do this, the Dancing-Walk Algorithm
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maintains a union-find data structure, storing the size of each (undirected) tree. Maintaining
such a data structure is not viable if we wish to perform operations in constant amortized
time, however, since performing n unions and n finds with a union-find data structure requires
�(–(n, n)) amortized time per operation [15], where –(n, n) is the inverse Ackermann function.

Replacing Size with Combination Rank. We now modify the Dancing-Walk Algorithm
so that the algorithm no longer needs to keep track of the size |T | of each tree in the graph.
Instead the algorithm keeps track of the combination rank R(T ) of each tree T , which we
define recursively as follows:

The combination rank of a tree T of size 1 is R(T ) = 0.
Whenever two trees T1 and T2 are combined by an edge insertion, the new tree T3 has
combination rank,

R(T3) =
I

max(R(T1), R(T2)) if R(T1) ”= R(T2)
R(T1) + 1 if R(T1) = R(T2).

Define the Rank-Based Dancing-Walk Algorithm to be the same as the Dancing-Walk
Algorithm, except that whenever two trees T1 and T2 are combined by an edge-insertion, the tree
with smaller combination rank (rather than the tree with smaller size) is one in which random-
walk searches are performed. As in the Dancing-Walk Algorithm, ties can be broken arbitrarily.

Correctness of the Rank-Based Dancing-Walk Algorithm. Before describing how to
e�ciently implement the Rank-Based Dancing-Walk Algorithm, we first prove its correctness.

I Lemma 6. With high probability in n, the Rank-Based Dancing-Walk Algorithm can process
all of e1, . . . , en≠1 without declaring failure. If the algorithm does not declare failure, then
each step flips O(log log n) edges and takes O(log n log log n) time. Additionally, no vertex’s
out-degree ever exceeds 3.

Proof. In order for the proof to follow just as in Theorem 1, it su�ces to show that the Strong
Load Balancing Property holds for the Rank-Based Dancing-Walk Algorithm.

Note that the rank R(T ) of a tree T is determined entirely by the edge-sequence
(e1, . . . , en≠1). It therefore su�ces to show that each vertex v appears in at most log n search
trees.

Whenever a vertex v appears in a search tree for some step t, the combination rank of
the tree containing v increases during that step t. Thus it su�ces to bound the maximum
combination rank by log n.

To bound the maximum combination rank, we observe as an invariant that R(T ) never
exceeds log |T | for any tree T . To prove the invariant, consider two trees T1 and T2 that
are combined by an edge-insertion. If R(T1) ”= R(T2), then the new tree T3 will have rank
R(T3) = max(R(T1), R(T2)) Æ max(log |T1|, log |T2|) Æ log |T3|, as desired. On the other
hand, if R(T1) = R(T2), then the new tree T3 will have rank R(T3) = R(T1) + 1 Æ log |T1| + 1.
It we set T1 to be the smaller of the two trees T1 and T2, then it follows that R(T3) Æ log |T3|.
This completes the proof of the invariant, which bounds the maximum combination rank by
log n, thereby establishing the Strong Load Balancing Property, as desired. J

E�cient Computation of Combination Rank. As the edges e1, . . . , en≠1 arrive, the
Rank-Based Dancing-Walk Algorithm maintains a combination rank-maintenance data
structure, which begins with n vertices (i.e., n rank-0 trees), and supports a single operation:
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Combine(v1, v2), where v1, v2 are vertices. If T1 and T2 are the connected components
containing v1 and v2, respectively, then this function determines which of R(T1) or R(T2)
is smaller (breaking ties arbitrarily). If T1 ”= T2 then T1 and T2 are then combined to a
single component, and otherwise the fact that T1 = T2 is reported to the user.

Each time that an edge ei = (v1, v2) is inserted, the function Combine(v1, v2) is invoked
by the Rank-Based Dancing-Walk Algorithm in order to determine which tree to perform
random-walk searches in.

Lemma 7 gives a simple data structure for e�ciently implementing combination
rank-maintenance.

I Lemma 7. The combination rank-maintenance data structure can be implemented in space
O(n) so that Combine(v1, v2) takes time O(min(R(T1), R(T2))) and incurs at most O(1) writes.

Proof. The combination rank-maintenance data structure stores all of the vertices in each
connected component T in what we call a rank tree. For a given connected component T ,
all of the vertices in T are leaves in T ’s rank tree, and all of the leaves appear the same depth
R(T ). This means that, given a vertex v œ T , one can compute R(T ) in time O(R(T )) by
following a leaf-to-root path in the rank tree.

In order to combine two components T1 and T2 such that R(T1) < R(T2), we simply add
a pointer from the root of the rank-tree for T1 to any node in T2 at height R(T1) + 1 above the
leaves. In order to combine two components T1 and T2 such that R(T1) = R(T2), we simply
add a new root node r and add pointers from the roots of the rank trees for T1 and T2 to r.
In both cases, the rank tree for T1 fi T2 can be computed in time min(R(T1), R(T2)) from the
rank trees for T1 and T2. It follows that, given two vertices v1 and v2 appearing in connected
components T1 and T2, we can perform Combine(v1, v2) in time min(R(T1), R(T2)).

Each call to Combine(v1, v2) adds at most O(1) new pointers to the data structure,
requiring at most O(1) writes. Since the leaves of the rank trees are the n vertices in the graph,
the sum of the sizes of the rank trees is O(n). Thus the combination rank-maintenance data
structure takes space O(n), as desired. J

An Amortized Running-Time Analysis. In the rest of this section, we give an amortized
analysis of the Rank-Based Dancing-Walk Algorithm. The first step in the analysis is to
bound the total time needed for all of the operations in the combination rank-maintenance
data structure.

Let T be the set of pairs (T1, T2) such that for some step t, trees T1 and T2 are connected com-
ponents in the graph (V, {e1, . . . , et≠1}) and are combined by edge ei into a single tree. The order
of each pair (i.e., (T1, T2) vs (T2, T1)) is selected so that |T1| Æ |T2|, with ties broken arbitrarily.

Each combination (T1, T2) results in a rank-maintenance operation that costs
O(min(R(T1), R(T2)). Lemma 8 shows that the sum of these costs is O(n).

I Lemma 8.
ÿ

(T1,T2)œT

min(R(T1), R(T2)) = O(n).

Proof. Recall from the proof of Lemma 6 that R(T1) Æ log |T1| and R(T2) Æ log |T2|. It
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follows that,
ÿ

(T1,T2)œT

min(R(T1), R(T2)) Æ

ÿ

(T1,T2)œT

min(log |T1|, log |T2|)

=
ÿ

(T1,T2)œT

log |T1|.

Rearranging the above sum to be from the perspective of vertices gives,
ÿ

vœV

ÿ

(T1,T2)œT s.t. vœT1

log |T1|

|T1|
. (7)

Each time that vertex v appears in T1 for some pair (T1, T2) œ T , the combined tree T1 fi T2
has size at least twice as large as |T1|. It follows that for each power of two 2k, v appears in
at most one pair (T1, T2) where |T1| œ [2k≠1

, 2k). Thus (7) is at most,

ÿ

vœV

Álog nËÿ

k=1

k

2k≠1 =
ÿ

vœV

O(1)

= O(n).

J

Next we bound the total time required for all of the the random-walk attempts to be per-
formed by the algorithm. Since every edge-insertion results in at least one random-walk attempt,
it does not su�ce to simply bound the time for each random-walk attempt by O(log log n).

Consider the tree Bt in which a random-walk attempt is performed. Intuitively, if the tree
Bt is very small, then the first random-walk attempt should terminate in o(log log n) steps,
having arrived at a leaf of the tree. Lemma 9 captures this formally, bounding the length
of the random-walk attempt by a geometric random variable with expected value O(log |Bt|).

I Lemma 9. Consider a random-walk attempt performed in tree Bt. For any k œ N, the
probability that the random walk lasts for more than 4k log |Bt| steps is at most 1

2k .

Proof. Define s1, s2, . . . so that if the random walk is at vertex v at the beginning of its i-th
step, then si is the size of the subtree rooted at v in Bt. Each step in the random walk has
at least a 1

2 probability of reducing the size of the subtree in which it resides by at least a factor
of two. In other words, each si has at least a 1

2 probability of satisfying si Æ
1
2 si≠1. After

4k log |Bt| steps, the expected number of steps si for which si Æ
1
2 si≠1 is at least 2k log |Bt|. In

order for the random walk to have not terminated, the number of steps si for which si Æ
1
2 si≠1

must be at most log |Bt|. By a (very loosely applied) Cherno� bound, the probability that
a sum R of independent indicator random variables with total mean E[R] = 2k log |Bt| has
value R Æ log |Bt|, is at most 1

2k . J

By Lemma 9, the random-walk attempts for each edge insertion et will take time at most
O(log |Bt|) in expectation. This, in turn, is at most O(log |T |), where T is the connected
component of (V, {e1, . . . , et≠1}) containing Bt.

In order to bound the total time required by the random walks, we wish to prove that,
Q

a
ÿ

(T1,T2)œT

I
log |T1| if R(T1) Æ R(T2)
log |T2| if R(T2) < R(T1)

R

b = O(n). (8)
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Recall from the proof of Lemma 6 that R(T ) Æ log |T | for each tree T . Thus (8) is a stronger
inequality than the one proven in Lemma 8.

In some cases, the combination rank of the tree T could be significantly smaller than log |T |.
For example, if tree T has combination rank 1, and �(n) trees with combination ranks 0 are
combined with T , then T could be of size �(n) while still having combination rank only 1. One
consequence of this is that, for a pair (T1, T2) œ T , it may be that R(T2) π R(T1) but that
log |T2| ∫ log |T1|, meaning that the algorithm selects the tree T2 to perform random-walk
attempts in, even though T1 would have been a better choice.

Lemma 10 uses a potential-function argument to prove (8).

I Lemma 10. Q

a
ÿ

(T1,T2)œT

I
log |T1| if R(T1) Æ R(T2)
log |T2| if R(T2) < R(T1)

R

b = O(n).

Proof. By Lemma 8, it su�ces to show that,
Q

a
ÿ

(T1,T2)œT

I
log |T1| ≠ R(T1) if R(T1) Æ R(T2)
log |T2| ≠ R(T2) if R(T2) < R(T1)

R

b = O(n). (9)

We prove (9) by an amortization argument. We begin by assigning some large positive
constant number fl of tokens to each vertex v. Whenever two trees T1 and T2 are combined,
the new tree T3 = T1 fi T2 is given the tokens from each of T1 and T2, and then pays

I
log |T1| ≠ R(T1) if R(T1) Æ R(T2)
log |T2| ≠ R(T2) if R(T2) < R(T1).

tokens to the algorithm.
In order to prove (9), we wish to prove that the final tree consisting of all edges

{e1, . . . , en≠1} has a non-negative number of tokens. This means that the total token
expenditure due to all combinations is at most fln = O(n).

We prove as an invariant that whenever a new tree T is created, it has at least fl
|T |

2R(T )

tokens. As a base case, this is true for trees T consisting of a singleton node v, since each such
tree initially has fl tokens.

Consider a pair of trees T1, T2 that are combined by some edge-insertion et, and let T3 be
the tree that combines them. Let Ri = R(Ti) and Si = |Ti| for i œ {1, 2, 3}. We are given as
an inductive hypothesis that T1 has at least fl

S1
2R1 tokens and that T2 has at least fl

S2
2R2 tokens.

We wish to show that T3 has at least fl
S3

2R3 tokens.
We begin by considering the case where R1 ”= R2, and we assume without loss of generality

that R1 < R2. This means that R3 = R2 and S3 = S1 + S2. By the inductive hypotheses,
the number of tokens that T3 has is at least

fl
S1
2R1

+ fl
S2
2R2

≠ log
!
S1/2R1

"
= fl2R2≠R1 S1

2R2
+ fl

S2
2R2

≠ log
!
S1/2R1

"

= fl
S1 + S2

2R2
+ fl

!
2R2≠R1 ≠ 1

" S1
2R2

≠ log
!
S1/2R1

"

= fl
S3
2R3

+ fl
!
2R2≠R1 ≠ 1

" S1
2R2

≠ log
!
S1/2R1

"
.
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In order to complete the argument, we wish to show that

fl
!
2R2≠R1 ≠ 1

" S1
2R2

Ø log
!
S1/2R1

"
. (10)

To prove this, note that

fl
!
2R2≠R1 ≠ 1

" S1
2R2

= fl
!
1 ≠ 2R1≠R2

" S1
2R1

Ø
1
2fl

S1
2R1

.

Assuming fl is a su�ciently large constant, 1
2 flx Ø log x for any x Ø 1. Thus (10) holds,

implying that T3 has at least fl
S3

2R3 tokens, as desired.
Next we consider the case where R1 = R2 = R for some R. Then the new tree T3 has rank

R3 = R + 1 and size S3 = S1 + S2. The number of tokens that T3 has is at least,

fl
S1
2R

+ fl
S2
2R

≠ log(S1/2R) = fl
S1 + S2

2R
≠ log(S1/2R)

= fl
S3
2R3

+ fl
S1 + S2

2R+1 ≠ log(S1/2R).

As long as fl is a su�ciently large constant, then fl
S1+S2
2R+1 Ø log(S1/2R). Thus S3 has at least

fl
S3

2R3 tokens, as desired.
This completes the proof that every tree T has at least fl

|T |
2R(T ) tokens. Since the system

begins with O(n) tokens, and ends with a non-negative number of tokens, the total number
of tokens spent must be O(n). Thus the lemma is proven. J

Combining the preceding lemmas, we can now analyze the total time for algorithm to
perform all of the edge insertions e1, . . . , en≠1.

I Theorem 11. To perform n ≠ 1 edge insertions, the total time required by the Rank-Based
Dancing-Walk Algorithm is at most O(n) with high probability in n.

Proof. By Lemma 7, the combination rank-maintenance data structure takes time
O(min(R(T1), R(T2))) to combine two tree T1 and T2. By Lemma 8, the total time taken by
the data structure across all operations is O(n).

Let qt be the sum of the lengths of the random-walk attempts for each edge-insertion t.
Lemma 9 bounds qt by a geometric random variable with mean O(log |T |), where T is the
connected component of (V, {e1, . . . , et≠1}) in which the random-walk attempt is performed.
It follows by Lemma 10 that

E[
ÿ

t

qt] = O(n).

Moreover, regardless of the values of q1, . . . , qt≠1, qt+1, . . . , qn≠1, the value of qt is guaranteed
by Lemma 9 to be bounded above by a geometric random variable with expected value
O(log |T |), and qt is also guaranteed to be deterministically at most O(log n log log n).
Applying Hoe�ding’s Inequality, it follows that the probability of

q
t
qt deviating from its

mean by more than �(n) is at most exp
!
≠�̃(n)

"
, completing the proof of the theorem.

J

I Remark 12. We remark that, in order to simplify the amortized analysis above, one can
instead make the Rank-Based Dancing-Walk Algorithm slightly more complicated, and allow
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for a larger maximum out-degree, in order that the time to combine two trees T1 and T2 is
at most O(min(log |T1|, log |T2|)) in expectation.

A first attempt at doing this might be to perform two random walks in parallel in each
of T1 and T2. This would ensure that the expected time for the edge-insertion would be at
most O(min(log |T1|, log |T2|)). This modification to the algorithm breaks the Load Balancing
Property, however, eliminating the proof of algorithm correctness.

In order to rescue algorithm correctness, one can further modify the algorithm to allow
for maximum out-degree 5. One can then maintain two edge-orientations, one of maximum
out-degree 3 (that is maintained by the Rank-Based Dancing-Walk Algorithm), and one of
maximum out-degree 2 (which is maintained by performing random walks in both directions
until a vertex with out-degree 1 or smaller is found). Whenever an edge is inserted, it is
inserted into both edge-orientations in parallel, and whichever edge-orientation completes
first is the one that keeps the edge. This allows for an expected running time of at most
O(min(log |T1|, log |T2|)) for an operation that combines two trees T1 and T2, while also
maintaining the Strong Load Balancing Property in the edge-orientation with out-degree 3.

C A Tradeo� Curve Between Out-Degree and Number of Edges Flipped

In this section, we consider a variant of the Rank-Based Dancing-Walk Algorithm in which
the maximum out-degree is permitted to be a larger value k + 1. In particular, each vertex
is now permitted up to k primary out-going edges, and 1 secondary out-going edge. Each
step of each random-walk search now selects one of k edges to travel down. If a random-walk
search reaches a vertex with fewer than k primary out-going edges, then the random walk
succeeds and can stop at that vertex. Otherwise, random walks last for c logk log n steps, and
succeed if they terminate at a vertex that has not yet volunteered (i.e., a vertex that does
not yet have a secondary out-going edge).

Note that the search tree Bt is now a k-ary tree. The number of potential volunteer leaves,
however, remains as it was before, since

k
c logk log n = logc

n.

In order to analyze the new algorithm, the key observation that one must make is that
Lemma 3, which bounds the number of options for Bt, continues to hold exactly as stated. In
particular, Bt is now a k-ary subtree of a (log n)-ary tree with depth c logk log n. This means
that each node in Bt that has depth less than c logk log n has up to

!log n

k

"
+ 1 Æ logk

n options
for what its set of children can look like (with the set either being empty or being of size k).
Since the number of nodes in Bt with depth less than c logk log n is at most 2 logc

n

k
, the total

number of options for Bt is at most,
1

logk
n

22 logc n
k

Æ log2 logc
n

n,

which is precisely the bound shown by Lemma 3 in the special case of k = 2.
Besides the proof of Lemma 3, the analysis of the Rank-Based Dancing-Walk Algorithm

generalizes without modification to apply to the new algorithm. Thus we arrive at the
following theorem:

I Theorem 13. Consider the Rank-Based Dancing-Walk Algorithm with maximum out-degree
k + 1. With high probability in n, the algorithm can process all of e1, . . . , en≠1 without declaring
failure. If the algorithm does not declare failure, then each step flips O(logk log n) edges and
takes O(log n logk log n) time. Additionally, no vertex’s out-degree ever exceeds k + 1.
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Additionally, the total running time of the algorithm to perform all edge insertions is at
most O(n), with high probability in n.

One interesting case of Theorem 13 is when k = log1/q
n for some value q. In this case,

the algorithm achieves maximum out-degree log1/q
n + 1 while flipping only O(q) edges per

edge-insertion.

D Dynamic Cuckoo
Hashing: Transforming Static Guarantees into Dynamic Guarantees

In this section we present the Dancing-Kickout Algorithm for maintaining a Cuckoo hash
table. For any family of hash functions H that provides a 1-associative static guarantee,
the Dancing-Kickout Algorithm o�ers a O(1)-associative dynamic guarantee using the same
hash-function family H.

Allowing for a stash. We will state our results so that they also apply to Cuckoo hashing
with a stash [4,18]. A Cuckoo hash table with a stash of size s is permitted to store s elements
outside of the table in a separate list. Having a small stash has been shown by past work to
significantly simplify the problem of achieving high-probability static guarantees [4] – our
results can be used to make these guarantees dynamic.

What static guarantees promise: viability. Let h = (h1, h2) be a pair of hash functions
mapping records to [n]. A set X of records is h-viable if it is possible to place the records
X into a 1-associative n-bin Cuckoo hash table using hash functions h1 and h2.

Even if a set of records X is not h-viable, it may be that there is a set of s elements Y for
which X \ Y is h-viable. In this case, we say X is h-viable with a stash of size s.

Past static guarantees. Past static guarantees [1,4,5,14,23,25,28] for a hash family H, have
taken the following form, where c œ (0, 1), p(n) œ poly(n), s œ O(1) are parameters: Every
set of records X of size cn has probability at least 1 ≠ 1/p(n) of being h-viable with a stash
of size s, where h = (h1, h2) is drawn from H. In addition to considering guarantees of this
type, a fruitful line of work [23] has also placed additional restrictions on the set X of records
(namely, that X exhibits high entropy). In this section, we will state our results in such a way
so that they are applicable to all of the past variants of static guarantees that we are aware of.

Viability as a graph property. Define the Cuckoo graph G(X, h) for a set of records
X and for a pair of hash functions h = (h1, h2) to be the graph with vertices [n] and with
(undirected) edges {(h1(x), h2(x)) | x œ X}. The problem of configuring where records should
go in the hash table corresponds to an edge-orientation problem in G. In particular, one can
think of each record x that resides in a bin hi(x) as representing an edge (h1(x), h2(x)) that
is oriented to face out of vertex hi(x). A set of records X is h-viable if and only if the edges
in G(X, h) can be oriented to so that the maximum out-degree is 1.

Similarly, a set of records X is h-viable with a stash of size s if and only if there are s (or
fewer) edges that can be removed from the Cuckoo graph G(X, h) so that the new graph G

Õ

can be oriented to have maximum out-degree 1.

Applying static guarantees to dynamic settings. In order to apply static guarantees
in a dynamic setting, we define the notion of a sequence of insert/delete operations satisfying
a static guarantee.

For Á œ (0, 1) and for a hash-function pair h = (h1, h2), we say that a se-
quence � = ÈÂ1, Â2, . . .Í of insert/delete operations is (Á, h)-viable with a stash
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of size s if the following holds: for every subsequence of operations of the form
Pi = ÈÂiÁn+1, ÂiÁn+2, . . . , Â(i+1)ÁnÍ, the set X of records that are present (at any point) during
the operations Pi has the property that X is h-viable with a stash of size s.

The dynamic guarantees in this section will assume only that the sequence of operations
� is (Á, h)-viable (with a stash of size s) for some known parameter Á œ (0, 1), and will make
no other assumptions about � or the hash-function pair h = (h1, h2).

Note that the property of being (Á, h)-viable is a statement about the sets of records X

that are present during windows of Án operations. If the table is always filled to capacity
cn, for some c œ (0, 1), then the property of being (Á, h)-viable is a statement about sets of
(c + Á)n records. Thus dynamic guarantees for tables on cn records can be derived from static
guarantees that apply to tables of (c + Á)n records. By making Á smaller, one can close the
gap between the capacities for the static and dynamic guarantees – but as we shall see, this
also increases the constant in the algorithm’s running time.

Our dynamic guarantee. Formally, we say that an implementation of a k-associative
Cuckoo hash table with a stash of size s is an algorithm that maintains a Cuckoo hash
table with n bins, each of size k, and with a stash of size up to s. The implementation is given
two hash functions h1, h2, and every record x in the table must either be stored in one of the
bins h1(x), h2(x) or in the stash. The implementation is permitted to maintain an additional
O(n)-space data structure D for additional bookkeeping, as long as D is not modified by
queries, and as long as each insert/delete incurs at most O(1) writes to D.

We say that a Cuckoo hash table implementation satisfies the dynamic guarantee on
a sequence of operations �, if:

Each insert/delete operation incurs O(log log n) kickouts and takes time O(log n log log n).
The amortized cost of each insert/delete operation is O(1).

The goal of this section will be to describe an implementation of Cuckoo hashing that o�ers
the dynamic guarantee (with high probability) as long as the underlying sequence of operations
� is (Á, h)-viable. We call our implementation of Cuckoo hashing the Dancing-Kickout
Algorithm.

The main result of the section is the following theorem.

I Theorem 14. Let Á œ (0, 1) and s be constants (s may be 0). Let h = (h1, h2) be a pair of
hash functions. Let � be a sequence of poly(n) insert/delete operations that is (Á, h)-viable
with a stash of size s.

Then, with high probability in n, the Dancing-Kickout Algorithm implements an
8-associative Cuckoo hash table with a stash of size s that satisfies the dynamic guarantee on �.

Proof. We take the approach of starting with a weaker version of the theorem and then working
our way towards the full version. Initially we will consider only inserts, but no deletes or stash.
Then we will consider only inserts and a stash, but no deletes. Then we will consider all of
inserts, deletes, and a stash, but we will make what we call the full-viability assumption,
which is that the set X of all of records inserted and deleted by � is h-viable. Finally, we
will show how to remove the full-viability assumption, thereby obtaining the full theorem.

We begin by describing the Dancing-Kickout Algorithm in the case where � consists of
only insertions (and no deletions). In this case, the algorithm only uses the first 4 slots in
each bin. We also begin with the simplifying assumption that the stash size s is 0.

The algorithm thinks of each record x as representing an edge (h1(x), h2(x)) in the Cuckoo
graph G. Since the set of records X being inserted is h-viable, it must be that G can be
oriented with out-degree 1. This means that each connected component in G is a pseudotree
(i.e., a tree with up to one additional edge added).
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In this case, the Dancing-Kickout Algorithm works as follows. Whenever an edge-insertion
connects two vertices from di�erent connected components, the Dancing-Kickout Algorithm
simply uses the Rank-Based Dancing-Walk Algorithm to maintain an edge-orientation with
maximum out-degree 3. On the other hand, when an edge-insertion connects two vertices
v, u that are already in the same tree as one another (we call the edge (v, u) a bad edge), the
Dancing-Kickout Algorithm orients the edge arbitrarily and then disregards that edge in all steps
(i.e., the edge cannot be used as part of a random walk). Since G is a pseudoforest, each vertex v

is incident to at most one bad edge; it follows that the maximum out-degree in the graph never
exceeds 4. This, in turn, means that no bin in the Cuckoo hash table stores more than 4 items.

Lemma 6 and Theorem 11 ensure that the edge-insertions involving good edges satisfy
the dynamic guarantee with high probability in n (that is, each operation takes time
O(log n log log n), incurs O(log log n) edge flips, and takes amortized time O(1)). The
edge-insertions involving bad edges can be analyzed as follows. Note that the time for the
Rank-Based Dancing-Walk Algorithm to identify that an edge e = (v, u) is bad is just the
height of the rank tree containing v and u. Since combination ranks never exceed O(log n),
the time to identify a bad edge is never more than O(log n). Since each rank-tree will have
at most one bad edge identified in it (because each connected component contains at most
1 bad edge), the total time spent identifying bad edges is at most the sum of the depths of
the rank trees (at the end of all edge insertions); this, in turn, is O(n) since the depth of each
rank tree is never more than the number of elements it contains. Thus the operations in which
bad edges are inserted do not cause the dynamic guarantee to be broken.

Now we describe what happens if � still consists only of insertions, but a stash of size s > 0
is used. In this case, the Dancing-Kickout Algorithm places an edge e = (v, u) in the stash
(i.e., the algorithm places the record x for which h1(x) = v and h2(x) = u in the stash) if e

is a bad edge and if both of the vertices v and u are already incident to bad edges. On the
other hand, if one of v or u is not already incident to a bad edge, then the edge can be oriented
out-going from that vertex (just as was the case without a stash). Call an edge e super bad if,
when e is inserted, there is already a bad edge in the connected component containing e. Since
� is h-viable with a stash of size s, the number of super bad edges is at most s.6 Because the
Random-Walk Algorithm only stashes super bad edges, the algorithm is guaranteed to never
stash more than s records at a time. The running time of the algorithm on non-super-bad
edges is the same as in the case of no stash; on the other hand, the s super bad edges can
contribute s · O(log n) = O(log n) in total to the running time of the algorithm. Thus, with
high probability, the Random-Walk Algorithm still satisfies the dynamic guarantee.

Now we consider what happens if � contains deletes in addition to inserts. To begin,
consider the special case where the set X of all records that � ever inserts (including those
that are subsequently deleted) has the property that X is h-viable – we call this the full-
viability assumption. Under the full-viability assumption, deletes can be implemented with
tombstones, meaning that when a record is deleted it is simply marked as deleted without
actually being removed. In fact, the use of tombstones is not actually necessary. This is because
the analysis of the Rank-Based Dancing-Walk Algorithm for edge-orientation continues to
work without modification even if edges in the graph disappear arbitrarily over time, as long
as all of the edges (including those that disappear) form a forest. Thus, in the case where the

6 To see this formally, note that there must be a set of at most s edges Y such that X \ Y is a pseudoforest.
That is, without the edges Y there would be no super bad edges. On the other hand, one can verify that
placing each of the edges from Y back into the sequence of edges X \ Y adds at most |Y | super bad edges,
since each edge that is placed in can increase the number of super bad edges by at most 1.
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full-viability assumption holds, we can simply implement deletes by removing the appropriate
record from the table, and then we can use the Dancing-Kickout algorithm exactly as described
so far. Since the Rank-Based Dancing-Walk Algorithm can handle edges disappearing, it follows
that the Dancing-Kickout algorithm still satisfies the dynamic guarantee with high probability.

Finally, we consider what happens if � contains both inserts and deletes, but without
making the full-viability assumption. So far, we have only used the first 4 slots of each bin. We
now incorporate into the algorithm slots 5, 6, 7, 8, and we modify the algorithm to gradually
rebuild the table in phases, where consecutive phases toggle between using only slots 1, 2, 3, 4
or using only slots 5, 6, 7, 8; as we shall see, each phase is individually designed so that the
running-time of its operations can be treated as meeting the full-viability assumption.

In more detail, the algorithm performs gradual rebuilds as follows. The operations �
are broken into phases P1, P2, . . . each consisting of Án operations. At the beginning of each
phase Pi where i is even (resp. i is odd), the hash table uses only the slots 1, 2, 3, 4 (resp.
5, 6, 7, 8) in each bin. During the phase of operations Pi, any new insertions are performed
with the Dancing-Kickout Algorithm using slots 5, 6, 7, 8 (resp. 1, 2, 3, 4). Also, during the j-th
operation in the phase Pi, the algorithm looks at bin j, takes any records in slots 1, 2, 3, 4 (resp.
5, 6, 7, 8), and reinserts those records into the hash table using slots 5, 6, 7, 8 (resp. 1, 2, 3, 4).7
Finally, deletes are implemented simply by removing the appropriate record x, regardless
of what slot that record may be in.

During a given phase Pi, the algorithm can be thought of as starting with a new empty
Cuckoo hash table (consisting in each bin of either the slots 1, 2, 3, 4 if i is odd or 5, 6, 7, 8 if
i is even). Then over the course of Pi, one can think of the algorithm as performing not only
the operations in Pi, but also populating the new hash table with any elements that were
present at the beginning of the phase Pi (unless those elements are deleted before they have
a chance to be re-populated). Let X be the set of all records x that are placed into the new
hash table at some point during Pi (this includes both elements that operations in Pi act on,
as well as elements that are re-inserted due to the gradual rebuild during the phase). By the
(Á, h)-viability of �, we know that X is h-viable. This means that phase Pi can be analyzed as
satisfying the full-viability assumption. Thus, with high probability in n, the algorithm does
not violate the dynamic guarantee during phase Pi. Since there are poly(n) phases, it follows
that, with high probability in n, the algorithm never violates the dynamic guarantee. J

E Proof of Claim 5

Proof of Claim 5. Consider any (possibly randomized) adaptive algorithm for Alice, and let
X be the random variable denoting Alice’s profit in the game.

For ⁄ > 0, define
Mk,µ(⁄) = E[e⁄X ]

to be the moment generating function of X. The key claim is that

Mk,µ(⁄) Æ e
(e

⁄≠1)µ
. (11)

We prove (11) by induction on k. Suppose that (11) holds for MkÕ,µ(⁄Õ) for all k
Õ
< k, any

⁄
Õ
> 0, and any adaptive algorithm for Alice; as a base case, (11) is immediate for k = 0. Let

7 Additionally, if a stash of size s > 0 is used, then the first operation of each phase Pi reinserts all of the
elements in the stash, using only slots 5, 6, 7, 8 if i is even and only slots 1, 2, 3, 4 if i is odd.
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X1 be a random variable for the profit Alice makes from her first bet and X
Õ = X ≠ X1. For

any value p Æ µ that Alice may select for p1,

E
Ë
e

⁄X
| p1 = p

È
= pe

⁄
· E

Ë
e

⁄X
Õ

| X1 = 1, p1 = p

È
+ (1 ≠ p) · E

Ë
e

⁄X
Õ

| X1 = 0, p1 = p

È
.

By the inductive hypothesis,

E
Ë
e

⁄X
Õ

| X1 = 1, p1 = p

È
, E

Ë
e

⁄X
Õ

| X1 = 0, p1 = p

È
Æ e

(e
⁄≠1)(µ≠p)

.

Thus
E

Ë
e

⁄x
| p1 = p

È
Æ

!
p · e

⁄ + (1 ≠ p)
"

e
(e

⁄≠1)(µ≠p)
.

Using the identity, 1 + x Æ e
x with x = p · (e⁄

≠ 1), it follows that

E
Ë
e

⁄x
| p1 = p

È
Æ e

p(e
⁄≠1)

e
(e

⁄≠1)(µ≠p) = e
(e

⁄≠1)µ
.

Since this holds for all p, (11) follows.
Using (11), we can complete the proof of the lemma as follows. By Markov’s inequality,

Pr
Ë
X > (1 + ”)µ

È
Æ Pr

Ë
e

⁄X
> e

⁄(1+”)µ

È
Æ

E
Ë
e

⁄X

È

e⁄(1+”)µ
.

By (11), it follows that

Pr
Ë
X > (1 + ”)µ

È
Æ exp

!!
e

⁄
≠ 1 ≠ ⁄(1 + ”)

"
µ

"
.

Plugging in ⁄ = ln(1 + ”), which one can show by the derivative test minimizes the expression
on the right side, yields

Pr
Ë
X > (1 + ”)µ

È
Æ exp ((” ≠ ln(1 + ”)(1 + ”))µ) .

J
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