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Abstract

We consider dimensionality reduction for
data sets with two or more independent de-
grees of freedom. For example, measure-
ments of deformable shapes with several
parts that move independently fall under
this characterization. Mathematically, if the
space of each continuous independent motion
is a manifold, then their combination forms a
product manifold. In this paper, we present
an algorithm for manifold factorization given
a sample of points from the product manifold.
Our algorithm is based on spectral graph
methods for manifold learning and the sep-
arability of the Laplacian operator on prod-
uct spaces. Recovering the factors of a mani-
fold yields meaningful lower-dimensional rep-
resentations, allowing one to focus on partic-
ular aspects of the data space while ignoring
others. We demonstrate the potential use of
our method for an important and challenging
problem in structural biology: mapping the
motions of proteins and other large molecules
using cryo-electron microscopy data sets.

1 Introduction

Consider a data-generating process T which maps vec-
tors of latent (unobserved) variables to observations,

(θ1, . . . , θm)
T7−−→ x ∈ RD. (1)

Our focus is on the case in which the latent variables
are low-dimensional and the observations are high-
dimensional vectors. As an illustrative example, con-
sider an industrial articulated robot where the latent
variables θ1, . . . , θm correspond to the angles of its m
rotary joints, and the observed vector x is a set of mea-
surements recorded by an external monitoring system.
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When T is deterministic (i.e. without noise), smooth
and injective, then the space of observations is a sub-
manifold of RD (Lee, 2012, Theorem 4.14). This obser-
vation underlies the field of manifold learning (Tenen-
baum et al., 2000; Belkin and Niyogi, 2003; Coifman
and Lafon, 2006; Talmon et al., 2013). A key prob-
lem in this field is dimensionality reduction, where a
set of high-dimensional observations x1, . . . ,xn ∈ RD
is mapped to a low-dimensional space, hopefully one
whose dimension is not much larger than the dimen-
sion of the latent space.

In this work, we explore the idea of manifold learning
when the latent space is a product manifold. If each
latent variable θi lies on a manifold Mi of dimension
di then the latent space is the Cartesian product

M =M1 × · · · ×Mm , (2)

which is a manifold of dimension d = d1 + · · · + dm.
We refer to the decomposition (2) as a manifold fac-
torization of M and to each of the manifolds Mi as
factors. In this paper, we present a data-dependent
algorithm for manifold factorization based on spectral
graph-based methods for manifold learning (Belkin
and Niyogi, 2003; Coifman and Lafon, 2006). These
methods output a set of graph Laplacian eigenvectors
which approximate the eigenfunctions of the Lapla-
cian differential operator on the manifold. By mapping
the observations to their eigenvector coordinates one
can obtain a low-dimensional embedding of the data
space (Bates, 2014). On a product manifold, it is well-
known that the Laplacian eigenfunctions are nothing
but pointwise products of eigenfunctions on the fac-
tor manifolds, one eigenfunction from each factor (see
Section 2). The eigenfunctions are typically not ob-
servable; however, they can be approximated by the
eigenvectors of a data-dependent graph Laplacian. All
that is left is to find an approximate factorization of
the set of Laplacian eigenvectors. We describe our par-
ticular approach for this factorization in Section 3.

In traditional methods for dimensionality reduction,
each data point is mapped to a point in a low-
dimensional vector space. In contrast to this, after
running our algorithm, each point is mapped to a low-
dimensional product space, where each factor encodes
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a different aspect of the data. This opens the door
to exciting new methods for data visualization and
representation. One can, for instance, use it to vi-
sualize observations that come from a 5-dimensional
latent space as pairs of points on a 3-dimensional and
a 2-dimensional manifold, associate different interpre-
tations to the different factors, and ignore factors that
correspond to nuisance variables.

In this paper, we mainly focus on products of two man-
ifolds. However, extensions to more than two mani-
folds are briefly discussed in Section 5.

1.1 Related Work

One work that is closely related to ours is the spectral
method of Singer (2006a) for linear independent com-
ponent analysis (ICA), as it is also based on the sepa-
rability of the Laplacian on a product space. This was
later extended to a method for non-linear ICA that as-
sumes a product latent space and that the Jacobian of
the mapping (θ1, . . . , θm) 7→ x is either known or can
be estimated in some way (Singer and Coifman, 2008).
Recently, Rodolà et al. (2019) used product manifold
eigenfunctions for representing maps between shapes.

In the neural-network literature, learning disentan-
gled representations has drawn interest in recent years
(Reed et al., 2014; Locatello et al., 2019; Tran et al.,
2017; Siddharth et al., 2017; Kim and Mnih, 2018; Sor-
renson et al., 2020; Khemakhem et al., 2020). Most of
the disentanglement literature treats broader classes of
data-generating processes without a formal notion of
what constitutes a disentangled representation. One
notable exception is a paper by Fumero et al. (2021)
that assumes an explicit product manifold. However,
their method relies on the availability of pairs of inputs
for which one of the latent factors is fixed.

2 Theoretical background

In this section, we briefly review basic properties of
the Laplacian operator over product manifolds and
then make the connection to manifold learning meth-
ods based on graph Laplacians.

2.1 The Laplace-Beltrami operator

We now recall some results from the spectral theory
of the Laplace-Beltrami operator, which is the natural
generalization of the classic Euclidean Laplacian oper-
ator to the manifold setting. For a proper introduc-
tion, see the book by Grigor’yan (2009) or the lecture
notes by Canzani (2013). Let M be a compact Rie-
mannian manifold with associated gradient ∇M and
Laplace-Beltrami operator (or simply, Laplacian) ∆M.
Laplacian eigenfunctions are scalar functions on M

that satisfy the Helmholtz equation,

∆Mf(x) = −λf(x), ∀x ∈M. (3)

In the cases whereM is a manifold with boundary, we
will specify Neumann boundary conditions,

∇Mf(x) · ν(x) = 0, ∀x ∈ ∂M (4)

where ν is a vector normal to the boundary. Neumann
boundary conditions arise naturally in Laplacian-
based manifold learning (Belkin et al., 2012). The fol-
lowing summarizes some known results from the spec-
tral theory of Riemannian manifolds.
Theorem 1. LetM be a compact Riemannian mani-
fold, either without boundary or with Neumann bound-
ary conditions. The solutions to the Helmholtz equa-
tion (3) satisfy the following:

(i) The eigenvalues are real, non-negative, and tend
to infinity, 0 = λ1 ≤ λ2 ≤ λ3 ≤ · · · → ∞.

(ii) There exists a complete orthonormal basis for
L2(M) of real eigenfunctions {fk}∞k=1.

2.2 The Laplacian over product manifolds

We now describe the behavior of the Laplacian opera-
tor on a product space. We begin with an example.
Example 1 (2D rectangle). Consider the rectangular
domain [0, a] × [0, b] ⊂ R2. Its eigenfunctions, with
Neumann boundary conditions, are

fm,n(x, y) = cos
(mπ
a
x
)

cos
(nπ
b
y
)
, (5)

m,n ∈ {0, 1, 2, . . .}. (6)

The corresponding eigenvalues are

λm,n = λm + λn = π2

(
m2

a2
+
n2

b2

)
. (7)

The eigenfunctions are precisely the products of eigen-
functions on the closed intervals [0, a] and [0, b], which
are cos(mπa x) and cos(nπb y) and the eigenvalues of the
product space are sums of the corresponding eigenval-
ues on the intervals. See Figure 1.

This example generalizes to any product manifold.
Theorem 2. Let M1,M2 be compact Rieman-
nian manifolds where the eigenfunctions of Mi

are {f (i)
k }∞k=1 and the corresponding eigenvalues are

{λ(i)
k }∞k=1. Let π(i) : M → Mi denote the canonical

projection ofM ontoMi. Then the eigenfunctions of
M =M1 ×M2 are given by the pointwise products

fm,n = (f (1)
m ◦ π(1))(f (2)

n ◦ π(2)). (8)

The corresponding eigenvalues are the sums,

λm,n = λ(1)
m + λ(2)

n . (9)
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Figure 1: The first 15 Neumann eigenvectors of a rect-
angular domain, in order of increasing eigenvalue from
top to bottom, left to right.

For a proof, see (Canzani, 2013, Section 4.6).

By repeated factorization, Theorem 2 extends to prod-
ucts of more than two manifolds. The eigenfunctions
ofM1 × . . .×Mm are

fk1,...,km =
m∏
i=1

(
f

(i)
ki
◦ π(i)

)
, (10)

where ki is an index to the eigenfunctions ofMi. The
corresponding eigenvalues are

λk1,...,km =

m∑
i=1

λ
(i)
ki
. (11)

2.3 Graph Laplacians and diffusion maps

The results of the previous sections hold for the Lapla-
cian operator on a manifold. However, in typical data
analysis settings we know neither the geometry of the
manifold nor its Laplacian, but only have a sample of
observations x1, . . .xn ∈ M ⊂ RD. To estimate the
eigenfunctions, we turn to the discrete graph Lapla-
cian. Consider the sample to be the vertex set of a
weighted graph V = {x1, . . . ,xn} and let W ∈ Rn×n
be the matrix of edge weights. Gaussian affinities are
often used for the weights,

Wij = exp
(
−‖xi − xj‖2/(2σ2)

)
. (12)

Let D be the diagonal degree matrix that satisfies
Dii =

∑
jWij . The (unweighted) graph Laplacian is

L := D −W. (13)

Several variants of the graph Laplacian were proposed,
including the symmetric-normalized graph Laplacian
and the random-walk Laplacian

Lsym := D−1/2LD−1/2 (14)

Lrw := D−1L = I −D−1W. (15)

Both Lsym and Lrw are positive semi-definite and have
the same spectrum (Von Luxburg, 2007),

0 = ν1 ≤ ν2 ≤ . . . ≤ νn. (16)

Defining A = D−1/2WD−1/2, the limit At/σσ as σ → 0
is the heat operator Ht = e−t∆M for all t ∈ R. Thus,
the eigenvalues λi of the continuous Laplace operator
∆M and the eigenvalues νi of Lrw and Lsym satisfy

lim
σ→0

ν
t/σ
i = e−tλi .

So to compute the spectrum of ∆M, we simply log-
transform ν2, . . . νn (Lafon, 2004, Section 2.3).

Denote the eigenvectors (which can be chosen to be
real) that correspond to ν1, . . . , νn by φ1, . . . , φn ∈ Rn.
We view them as real functions on the set of input
points φi : {x1, . . . ,xn} → R. Viewed in this way,
Laplacian eigenvectors define an orthogonal Fourier-
like basis of oscillating functions (Lee and Izbicki,
2016). Laplacian eigenvectors can be used for dimen-
sionality reduction by the following map,

xi 7−→ [φ2(xi), φ3(xi), . . . , φ`(xi)]. (17)

This approach was pioneered by Belkin and Niyogi
(2003) under the name Laplacian eigenmaps and later
analyzed and extended by Coifman and Lafon (2006)
under the diffusion maps framework.

2.4 Asymptotics of graph Laplacians

A graph Laplacian constructed from an i.i.d. sample of
points on a manifold converges to a linear differential
operator. For affinities that use the Euclidean distance
in combination with a decay kernel (as in Eq. (12))
and when the points are drawn uniformly, the limiting
operator is the Laplace-Beltrami operator ∆M (Hein
et al., 2005; Giné and Koltchinskii, 2006; Singer, 2006b;
Belkin and Niyogi, 2008). In the more general case,
when the data has a non-uniform density p(x) then
the graph Laplacian converges to a Fokker-Planck op-
erator that has an additional drift term given by the
log-density U(x) = −2 log p(x) (Nadler et al., 2005;
Coifman and Lafon, 2006),

∆Mf −∇U · ∇f. (18)

In addition to the pointwise convergence, several works
have proved the spectral convergence of graph Lapla-
cians. i.e. the convergence of their eigenvalues and
eigenvectors (von Luxburg et al., 2008; Rosasco et al.,
2010; García Trillos and Slepčev, 2018; García Trillos
et al., 2020). The convergence of the eigenvectors is
the key to our approach.

Alternative graph constructions, such as the Euclidean
k-nearest-neighbor graph also converge to a Fokker-
Planck operator (Ting et al., 2010). If a non-Euclidean
norm is used to define affinities then the graph Lapla-
cian does not converge to a Fokker-Planck operator,
but to some non-intrinsic second-order differential op-
erator (Kileel et al., 2020).
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3 Method

As discussed in Section 2.2, eigenfunctions ϕk on the
product space M1 × M2 are pointwise products of
an eigenfunction ϕi on M1 and an eigenfunction ϕj
on M2. Combining this fact with the convergence of
graph Laplacians (discussed in Section 2.4), we con-
clude the following: if we construct a graph Laplacian
from a large sample of points onM, then each Lapla-
cian eigenvector ϕk should be approximately equal (up
to normalization) to an element-wise product ϕiϕj
where ϕi and ϕj are vectors that approximate eigen-
functions onM1 andM2 respectively. Recall that the
multiplicity of the eigenvalue λ = 0 is the number of
connected components. It follows that for manifolds
with a single connected component, the only eigen-
functions with λ = 0 are the constant functions. If
either ϕi or ϕj correspond to a constant eigenfunction
with eigenvalue λ = 0 we call ϕk a factor eigenvector.
Otherwise, we call ϕk ≈ ϕiϕj a product eigenvector.

The main idea behind our method is to first differen-
tiate between the factor eigenvectors and the product
eigenvectors and then to divide the factor eigenvectors
into two sets that correspond to the eigenspaces ofM1

andM2. The division scheme is based on the observa-
tion that if ϕk ≈ ϕiϕj then this suggests that ϕi and
ϕj belong to different factor manifolds. Mathemati-
cally, our method is based on two assumptions:

Assumption 1. The mapping of the latent space to
the observations (θ1, . . . , θm) 7→ x ∈ RD is an isomet-
ric embedding into RD.
Remark 1. As isometric embeddings preserve the Rie-
mannian metric, the spectral properties are not af-
fected by the particular embedding.

Assumption 2. The latent variables θ1, . . . , θm are
drawn independently of each other.

Remark 2. The last assumption may be relaxed by
using the diffusion map normalization for the graph
Laplacian (Coifman and Lafon, 2006). This graph
Laplacian converges to the Laplace-Beltrami operator
on the manifold regardless of the sampling density.

3.1 Factorizing product eigenvectors

Suppose we have the first N non-trivial eigenvectors
ϕ1, ϕ2, . . . , ϕN of Lrw, sorted by the corresponding
log-transformed eigenvalues 0 < λ1 ≤ λ2 ≤ . . . ≤ λN
which approximate the spectrum of ∆. First, for
each eigenvector ϕk, we find the pair (ϕi, ϕj) whose
element-wise product is closest. This “closeness" is
measured by the absolute cosine similarity,

S(ϕk, ϕiϕj) :=

∣∣〈ϕk, ϕiϕj〉∣∣
‖ϕk‖‖ϕiϕj‖

∈ [0, 1]. (19)

We take the absolute value of the dot product to ac-
count for the sign ambiguity of eigenvectors. For each
k, we find the combination (i, j) with the maximal
similarity. To avoid computing the element-wise prod-
uct for all k(k − 1)/2 combinations, we skip triplets
(i, j, k) for which |λi +λj −λk| > δ for some threshold
δ > 0. This eigenvalue criterion is based on the results
of Theorem 2. We additionally apply an eigenvector
criterion that filters out triplets whose similarity is
less than γ. This is summarized in Algorithm 1.

Algorithm 1: Identification of individual factors
Data: Non-trivial eigenvectors {ϕ1, . . . , ϕN} of

Lrw, sorted increasingly by their
log-transformed eigenvalues λ1, . . . , λN .

Result: List of triplets (i, j, k) where ϕk ≈ ϕiϕj
and the corresponding similarity scores.

for k ← 1 . . . N do
maxS ← 0;
for i, j < k do

if |λi + λj − λk| < δ and
S(ϕk, ϕiϕj) > maxS then

maxS ← S(ϕk, ϕiϕj);
imax ← i;
jmax ← j;

end
end
if maxS > γ then

add (imax, jmax, k) to triplets;
end

end

The result of the algorithm is a list of index triplets
(i, j, k), which indicate that the best factorization we
could find for ϕk is ϕiϕj . Next, we use the triplets to
divide the factor eigenvectors into two sets that corre-
spond to the manifoldsM1 andM2.

3.2 Assigning the factor eigenvectors to
factor manifolds

Let T be the set of triplets returned by Algorithm 1.
We will use T to split the candidate factor eigenvectors
into two separate subsets via an approximate Max-
Cut algorithm. To do so, we define a weighted graph
H = (V,E,W ) where V is the set of unique factor
eigenvectors in our list of triplets produced by Algo-
rithm 1. The undirected edge set is defined as

E = {(i, j) | ∃k s.t. (i, j, k) ∈ T } (20)

with edge weights given by the highest similarity score,

Wij = max
(i,j,k)∈T

S(ϕk, ϕiϕj). (21)
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Figure 2: Rectangle with noise. The algorithm was run on 10,000 samples with parameters δ = 0.5, γ = 0.85.
The eigenvectors are plotted on the ground truth x and y coordinate plane. Left. The original data, with
noise in the z-direction indicated by color. Middle. First five factor eigenvectors associated with the y axis as
determined by the algorithm. Right. First five factor eigenvectors associated with the x axis.

The idea here is that a high score suggests that ϕi and
ϕj are the true factors of ϕk and thus must belong
to different factor manifolds. Using a Max-Cut SDP
solver with H as the input, we sort our eigenvectors
into two bins that correspond toM1 andM2.

3.3 Implementation details and runtime

The algorithm was implemented in Python, and the
Max-Cut SDP was implemented using CVXPY (Di-
amond and Boyd, 2016). The first part of the algo-
rithm computes the diffusion map of the data. The
eigenvectors are computed using the Scikit-learn ran-
domized SVD implementation (Pedregosa et al., 2011;
Martinsson et al., 2011). In the subsequent step,
we search through

(
N
3

)
triplets. Taking into account

the element-wise vector multiplication at each step,
this takes O(nN3) time. In practice, however, the
eigenvalue criterion quickly discards of the vast ma-
jority of triplets. The last part of the algorithm iter-
ates through the list of triplets to form an undirected
weighted graph and then runs a Max-Cut SDP solver.

4 Simulations

We tested our algorithm on three different datasets:
noisy samples from a 2D rectangle in 3D space, a torus,
and a synthetic set of cryo-electron microscopy images.

4.1 2D noisy rectangle

First, we ran our algorithm on points sampled from
an axis-aligned 2D rectangle [0,

√
π+ 1]× [0, 1.5] ∈ R2

embedded in R3. The data was generated by tak-
ing 10,000 random points and adding noise in the z-
direction. We used the parameters γ = 0.85, δ = 0.5.
The results, shown in Figure 2, show cosines along the

Table 1: Running times for each step of the algorithm
on the 2D noisy rectangle dataset. The number of
eigenvectors varied over N ∈ {50, 100, 200, 400}. The
diffusion map step includes computing the affinity ma-
trix and the Laplacian eigenvectors. The third column
refers to Algorithm 1 described in Section 3.1 and the
fourth column refers to the Max-Cut SDP and graph
construction described in Section 3.2.

N Diffusion map Alg. 1 Sorting
50 5.59 s 0.454 s 0.022 s
100 6.07 s 3.32 s 0.020 s
200 8.18 s 20.3 s 0.020 s
400 12.3 s 141 s 0.020 s

x and y directions, as expected (see Example 1).

Table 1 lists running times, averaged over 5 trials, on
this dataset. A single core of a 2.9 GHz 2017 Intel
Core i7 processor was used for these benchmarks.

4.2 Analysis of threshold parameters

Our algorithm has two threshold parameters: δ for
the eigenvalue criterion and γ for the eigenvector crite-
rion. A question one might have is: for a given product
eigenvector ϕk, how much of an outlier will the similar-
ity of the true combination of factor eigenvectors ϕiϕj
be compared to the similarities of all other pairs? To
investigate this, for each product eigenvector ϕk we
plot the eigenvector criterion S(ϕk, ϕiϕj) against the
eigenvalue criterion |λi+λj−λk| over all 1 ≤ i < j < k,
shown in Figure 4. We see that in most cases the sim-
ilarity score for the chosen triplet is indeed an outlier.
For product eigenvectors with lower eigenvalues, the
highest similarity stands out more clearly, as this part
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Figure 3: Two-factor noisy cryo-EM data. The algorithm was run on 10,000 images with the parameters
δ = 1.0, γ = 0.80. The eigenvectors are plotted on the ground-truth values of the rotation angles [0, 360] and
the x-stretch [−20, 20]. Left. A synthetic cryo-EM image of a potassium ion channel with two independently
deformable subunits is shown in the top-left. The red portion rotates uniformly around the z-axis, and the
blue portion stretches independently along the x-axis. Three simulated cryo-EM projection images are shown.
Middle. Factor eigenvectors associated with x-stretch. Right. Factor eigenvectors associated with the rotation.

of the spectrum is more stable. As the eigenvalue of
the product eigenvector increases, the best pair, which
has the highest similarity score, is less well separated.
However, this ambiguity tends to be between relatively
few candidates. One can also see that the highest
scoring triplet has a small eigenvalue criterion. This
demonstrates that the eigenvalue criterion can speed
up the triplet search without sacrificing performance.

A sensitivity analysis of both parameters is included in
Figure 5. Each figure shows the manifold assignments
obtained with 100 eigenvectors on the noisy rectangle
dataset. The figure demonstrates the stability of the
algorithm, since the assignments are consistent across
a large range of parameter values.

4.3 Single-particle cryo-EM data

We present an application of manifold factorization
for cryo-electron microscopy (cryo-EM). Cryo-EM is a
technique used for imaging proteins and other macro-
molecules that has fostered major advances in struc-
tural biology (Kühlbrandt, 2014; Cressey and Call-
away, 2017). Recently, it played a key role in unravel-
ing the structural properties of the novel coronavirus
SARS-CoV-2 (Zimmer, 2020). In cryo-EM, molecular
samples are rapidly frozen in a thin layer of ice, thus
capturing them in their native states (Dubochet et al.,
1988). Once frozen, a transmission electron micro-
scope is used to capture 2D tomographic projections
of their electrostatic potential (Vulović et al., 2013).
These 2D images are then used to reconstruct, through
a series of computational steps, a 3D reconstruction of
the molecule. (Zhou et al., 2020, Fig. 1).

The classical cryo-EM reconstruction problem is posed

as follows: given n tomographic projection images
I1, . . . , In of a particular molecule at random (un-
known) orientations, how can we recover the three-
dimensional structure of the molecule? A core obsta-
cle to this problem is handling the low signal-to-noise
ratio present in the micrographs (Singer and Sigworth,
2020; Bendory et al., 2020). This task is made even
more difficult if we consider the heterogeneity problem,
which has been the subject of recent literature (Frank,
2018; Nakane et al., 2018; Andén and Singer, 2018;
Sorzano et al., 2019; Lederman et al., 2020; Zhong
et al., 2020). Here, due to natural variations, each
image Ii captures a different spatial conformation of
the same molecule. Several works have applied diffu-
sion maps for the analysis of cryo-EM datasets with
continuous heterogeneity (Dashti et al., 2014; Schwan-
der et al., 2014; Moscovich et al., 2020; Zelesko et al.,
2020; Kileel et al., 2020; Dashti et al., 2020).

For molecules that exhibit two or more independent
continuous motions, the manifold of 3D electrostatic
densities is a product space. For our experiments,
we use the potassium ion channel model of Moscovich
et al. (2020) with two independently deformable parts:
a spinning subunit with 360◦ of rotation, and a sub-
unit that stretches in the xy-plane (see Figure 3). To
create the images, we sampled 10,000 conformations
of the molecule with uniformly drawn angles and x-
axis stretches ranging from [−20, 20]. All the images
were projected from a single view. This models the
approach of Dashti et al. (2020), which computes a
diffusion map for each viewing direction separately. Fi-
nally, we use PCA with four components to preprocess
the raw images and transform them so that they are
zero-centered with unit variance.
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Figure 4: Analysis of eigenvalue and eigenvector criteria for the rectangle dataset. We picked six
product eigenvectors ϕk at random. For each one, we plotted the eigenvalue criteria error (y axis) and similarity
scores (x axis) for all triplets (ϕi, ϕj , ϕk), 1 ≤ i < j < k. Numbers at the top of the scatter plots are the index k.
The point that corresponds to the eigenvector with maximum similarity is marked by a red arrow.

Figure 5: Sensitivity analysis for δ and γ. Each column corresponds to a different eigenvector and the colors
denote assignment of the eigenvector to either M1 (red), M2 (blue) or to M1 ×M2 (white). Hence each row
shows all the assignments our algorithm makes for a particular choice of the parameters. The base values of each
parameter are γ = 0.75 (when varying δ) and δ = 0.4 (when varying γ).

We ran three different simulations: first, a dataset of
molecules with rotations and stretches in the x direc-
tion only and low noise; then, a dataset of molecules
with rotations and stretches in the x-direction only and
high noise; and finally, a dataset of molecules with ro-
tations and stretches in both the x and y directions
and low noise. The parameters γ = 0.80 and δ = 1.0
were used in all simulations. The results for the sec-
ond simulation are shown in Figure 3. The eigenvec-
tors corresponding to the x-stretch manifold exhibit
the ground truth cosine waves, and the eigenvectors
corresponding to the rotation manifold (a circle) ex-
hibit the ground truth sinusoidal waves.

Note that even though the latent space is a prod-
uct space, Assumption 1 does not strictly hold due to

the additive Gaussian noise. Nonetheless, our method
works nicely on this dataset.

4.4 Visualizing manifold factors

We can visualize the manifold factors by plotting their
diffusion map embeddings. Recall from Equation (17)
that given data samples x1, . . . ,xn and Laplacian
eigenvectors ϕ1, ϕ2, . . . , ϕN , the embedding map is

xi 7→ [ϕ2(xi), ϕ3(xi), . . . , ϕ`(xi)].

For our visualizations, we use ` = 3 and plot ϕ2(xi)
against ϕ3(xi). In the cases where our algorithm is
applied first, we can visualize the diffusion map em-
bedding of each manifold factor. We need not perform
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Figure 6: Visualizing manifold factorizations. We visualize three different datasets. The left two columns
show the diffusion map embeddings of each manifold factor as determined by our algorithm. The middle column
shows a standard diffusion map of the points from the product manifold and the rightmost column shows a
three-dimensional linear ICA. The colors represent the ground truth data in a single dimension of the parameter
space. Top row. Cryo-EM images (see Section 4.3). Middle row. 10,000 points uniformly drawn from a torus
S1 × S1 embedded in R4 where the factor circle radiuses are 2 and

√
π + 1. Bottom row. 10,000 points drawn

from a 2D rectangular domain with noise in the z-direction (see Section 4.1).

an additional diffusion map computation since our al-
gorithm has already produced the eigenvectors for each
manifold factorMi. Colors indicate the ground truth
coordinate of the point xi on the respective manifold
factor. The left two columns of Figure 6 show the dif-
fusion map embeddings of manifold factors computed
using our algorithm for three different experiments. In
all three cases, the embeddings are in agreement with
the factors of the data manifold.

While we are not aware of other dimensionality reduc-
tion methods that aim to accomplish the same goal
as our method, the two most immediately comparable
methods are standard diffusion maps, which our algo-
rithm builds upon, and linear independent component
analysis techniques (Linear ICA). Though these meth-
ods do not directly apply to the specific task of product
manifold factorization, we can use them to visualize
the entire product manifold (also shown in Figure 6).

Our algorithm can be used to accomplish several ob-
jectives. First, we can use representative factor eigen-
vectors from each manifold factor’s eigenspace to com-
press the data representation. This is a complemen-
tary approach to other methods for parsimonious rep-
resentations of manifolds (Blau and Michaeli, 2017;

Dsilva et al., 2018; Meila et al., 2018; Chen and Meilă,
2019). Additionally, by separating the factor eigen-
vectors according to their respective manifolds, we
also disentangle the diffusion map coordinates into sets
that correspond to independent latent factors.

5 Hierarchical factorization

Extending the algorithm to m > 2 manifolds is possi-
ble by using a Max k-Cut SDP (Newman, 2018) in
place of the Max-Cut solver and adjusting the triplet
search to an m + 1-tuple search. This approach re-
quires additional evaluation and we leave it for future
work. Another possibility is to run the two-factor al-
gorithm in a hierarchical fashion, i.e. apply it again
on the product eigenvectors assigned to one of the two
manifolds. As an example, we ran the two-factor al-
gorithm twice on 10,000 points drawn uniformly from
the box [0, 1.0 +

√
π]× [0, 1.5]× [0, 7.0]. The results of

the first iteration are shown in bins #1 and #2 of Fig-
ure 7. For the second iteration, we ran our algorithm
on the eigenvectors of bin #2, and the resulting factor
eigenvectors were sorted into bins #3 and #4. To-
gether, the eigenvectors in bins #1, #3 and #4 form
our m = 3 factorization.
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Figure 7: Hierarchical factorization. Manifold factor eigenvector bins obtained by running our algorithm
hierarchically on points from a 3D box (see Section 5). Bin #1 and bin #2 are obtained from the first iteration.
Rerunning the factorization on the eigenvectors in bin #2 resulted in bins #3 and #4.

6 Conclusion

In this paper, we presented a spectral method for non-
linear dimensionality reduction and data representa-
tion. Our method is based on manifold factorization
and applies to data sets with two or more indepen-
dent degrees of freedom. We tested our algorithm on
several synthetic datasets, including simulated trans-
mission electron-microscope images of a protein with
two independently moving subunits.

One direction for future work is the extension of the
method to products of more than two manifolds (see
Section 5). Another interesting direction is to test our
approach on broader classes of spaces, other than prod-
uct spaces, but for which the Laplacian operator sep-
arates nonetheless.

Reproducibility

Code for reproducing the figures in this paper
can be found at: https://github.com/sxzhang25/
product-manifold-learning

Acknowledgements

This work was supported in part by AFOSR
Awards FA9550-17-1-0291 and FA9550-20-1-0266,
ARO W911NF-17-1-0512, the Simons Founda-
tion Math+X Investigator Award, NSF BIGDATA
Award IIS1837992, NSF Award DMS-2009753, and
NIH/NIGMS Award R01GM136780-01. We thank
Nicolas Boumal and the anonymous referees for their
helpful suggestions.

References

Joakim Andén and Amit Singer. Structural Variability
from Noisy Tomographic Projections. SIAM Jour-
nal on Imaging Sciences, 11(2):1441–1492, 2018.
doi:10.1137/17M1153509.

Jonathan Bates. The embedding dimension of Lapla-
cian eigenfunction maps. Applied and Compu-
tational Harmonic Analysis, 37(3):516–530, 2014.
doi:10.1016/j.acha.2014.03.002.

Mikhail Belkin and Partha Niyogi. Laplacian Eigen-
maps for Dimensionality Reduction and Data Rep-
resentation. Neural Computation, 15(6):1373–1396,
2003. doi:10.1162/089976603321780317.

Mikhail Belkin and Partha Niyogi. Towards a theoret-
ical foundation for Laplacian-based manifold meth-
ods. Journal of Computer and System Sciences, 74
(8):1289–1308, 2008. doi:10.1016/j.jcss.2007.08.006.

Mikhail Belkin, Qichao Que, Yusu Wang and Xueyuan
Zhou. Graph Laplacians on Singular Manifolds: To-
ward understanding complex spaces: graph Lapla-
cians on manifolds with singularities and bound-
aries. In Conference on Learning Theory (COLT),
volume 23, pages 1–26, 2012.

Tamir Bendory, Alberto Bartesaghi and Amit Singer.
Single-Particle Cryo-Electron Microscopy: Math-
ematical Theory, Computational Challenges, and
Opportunities. IEEE Signal Processing Magazine,
37(2):58–76, 2020. doi:10.1109/MSP.2019.2957822.

Yochai Blau and Tomer Michaeli. Non-redundant
Spectral Dimensionality Reduction. In Joint Euro-

https://github.com/sxzhang25/product-manifold-learning
https://github.com/sxzhang25/product-manifold-learning
https://doi.org/10.1137/17M1153509
https://doi.org/10.1016/j.acha.2014.03.002
https://doi.org/10.1162/089976603321780317
https://doi.org/10.1016/j.jcss.2007.08.006
https://doi.org/10.1109/MSP.2019.2957822


Product Manifold Learning

pean Conference on Machine Learning and Knowl-
edge Discovery in Databases (ECML PKDD), 2017.
doi:10.1007/978-3-319-71249-9_16.

Yaiza Canzani. Analysis on Manifolds via the Lapla-
cian (lecture notes), 2013.

Yu Chia Chen and Marina Meilă. Selecting the inde-
pendent coordinates of manifolds with large aspect
ratios. In Neural Information Processing Systems
(NeurIPS), 2019.

Ronald R. Coifman and Stéphane Lafon.
Diffusion maps. Applied and Computa-
tional Harmonic Analysis, 21(1):5–30, 2006.
doi:10.1016/j.acha.2006.04.006.

Daniel Cressey and Ewen Callaway. Cryo-electron mi-
croscopy wins chemistry Nobel. Nature, 550(7675):
167–167, 2017. doi:10.1038/nature.2017.22738.

Ali Dashti et al. Trajectories of the ribosome as a
Brownian nanomachine. Proceedings of the National
Academy of Sciences, 111(49):17492–17497, 2014.
doi:10.1073/pnas.1419276111.

Ali Dashti et al. Retrieving functional path-
ways of biomolecules from single-particle snap-
shots. Nature Communications, 11(1):4734, 2020.
doi:10.1038/s41467-020-18403-x.

Steven Diamond and Stephen Boyd. CVXPY: A
Python-embedded modeling language for convex op-
timization. Journal of Machine Learning Research,
17:1–5, 2016.

Carmeline J. Dsilva, Ronen Talmon, Ronald R. Coif-
man and Ioannis G. Kevrekidis. Parsimonious rep-
resentation of nonlinear dynamical systems through
manifold learning: A chemotaxis case study. Ap-
plied and Computational Harmonic Analysis, 44(3):
759–773, 2018. doi:10.1016/j.acha.2015.06.008.

Jacques Dubochet et al. Cryo-electron mi-
croscopy of vitrified specimens. Quarterly
Reviews of Biophysics, 21(2):129–228, 1988.
doi:10.1017/S0033583500004297.

Joachim Frank. New Opportunities Created by
Single-Particle Cryo-EM: The Mapping of Confor-
mational Space. Biochemistry, 57(6):888–888, 2018.
doi:10.1021/acs.biochem.8b00064.

Marco Fumero, Luca Cosmo, Simone Melzi and
Emanuele Rodolà. Learning disentangled represen-
tations via product manifold projection. Technical
report, 2021. arXiv:2103.01638

Nicolás García Trillos and Dejan Slepčev. A
variational approach to the consistency of
spectral clustering. Applied and Computa-
tional Harmonic Analysis, 45(2):239–281, 2018.
doi:10.1016/j.acha.2016.09.003.

Nicolás García Trillos, Moritz Gerlach, Matthias Hein
and Dejan Slepčev. Error Estimates for Spectral
Convergence of the Graph Laplacian on Random
Geometric Graphs Toward the Laplace–Beltrami
Operator. Foundations of Computational Mathe-
matics, 20(4):827–887, 2020. doi:10.1007/s10208-
019-09436-w.

Evarist Giné and Vladimir Koltchinskii. Empirical
graph Laplacian approximation of Laplace-Beltrami
operators: Large sample results. In High Dimen-
sional Probability, volume 51, pages 238–259. 2006.
doi:10.1214/074921706000000888.

Alexander Grigor’yan. Heat Kernel and Analysis on
Manifolds. American Mathematical Society, 2009.
ISBN 978-0-8218-9393-7.

Matthias Hein, Jean-Yves Audibert and Ulrike von
Luxburg. From Graphs to Manifolds – Weak
and Strong Pointwise Consistency of Graph Lapla-
cians. In International Conference on Computa-
tional Learning Theory (COLT), pages 470–485,
2005. doi:10.1007/11503415_32.

Ilyes Khemakhem, Diederik P. Kingma and Aapo
Hyvärinen. Variational autoencoders and nonlin-
ear ICA: A unifying framework. In International
Conference on Artificial Intelligence and Statistics
(AISTATS), 2020.

Joe Kileel, Amit Moscovich, Nathan Zelesko and Amit
Singer. Manifold learning with arbitrary norms.
Technical report, 2020. arXiv:2012.14172

Hyunjik Kim and Andriy Mnih. Disentangling by fac-
torising. In International Conference on Machine
Learning (ICML), 2018.

W. Kühlbrandt. The Resolution Revolu-
tion. Science, 343(6178):1443–1444, 2014.
doi:10.1126/science.1251652.

Stephane S. Lafon. Diffusion Maps and Geometric
Harmonics. PhD thesis, Yale University, 2004.

Roy R. Lederman, Joakim Andén and Amit Singer.
Hyper-molecules: on the representation and recov-
ery of dynamical structures for applications in flexi-
ble macro-molecules in cryo-EM. Inverse Problems,
36(4):044005, 2020. doi:10.1088/1361-6420/ab5ede.

Ann B. Lee and Rafael Izbicki. A spectral series ap-
proach to high-dimensional nonparametric regres-
sion. Electronic Journal of Statistics, 10(1):423–463,
2016. doi:10.1214/16-EJS1112.

John M. Lee. Introduction to Smooth Manifolds,
volume 218 of Graduate Texts in Mathematics.
Springer New York, 2012. ISBN 978-1-4419-9981-
8. doi:10.1007/978-1-4419-9982-5.

Francesco Locatello et al. Challenging Common As-
sumptions in the Unsupervised Learning of Disen-

https://doi.org/10.1007/978-3-319-71249-9_16
https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.1038/nature.2017.22738
https://doi.org/10.1073/pnas.1419276111
https://doi.org/10.1038/s41467-020-18403-x
https://doi.org/10.1016/j.acha.2015.06.008
https://doi.org/10.1017/S0033583500004297
https://doi.org/10.1021/acs.biochem.8b00064
http://arxiv.org/abs/2103.01638
https://doi.org/10.1016/j.acha.2016.09.003
https://doi.org/10.1007/s10208-019-09436-w
https://doi.org/10.1007/s10208-019-09436-w
https://doi.org/10.1214/074921706000000888
https://doi.org/10.1007/11503415_32
http://arxiv.org/abs/2012.14172
https://doi.org/10.1126/science.1251652
https://doi.org/10.1088/1361-6420/ab5ede
https://doi.org/10.1214/16-EJS1112
https://doi.org/10.1007/978-1-4419-9982-5


Sharon Zhang, Amit Moscovich, Amit Singer

tangled Representations. In International Confer-
ence on Machine Learning (ICML), 2019.

Per Gunnar Martinsson, Vladimir Rokhlin and Mark
Tygert. A randomized algorithm for the de-
composition of matrices. Applied and Compu-
tational Harmonic Analysis, 30(1):47–68, 2011.
doi:10.1016/j.acha.2010.02.003.

Marina Meila, Samson Koelle and Hanyu Zhang. A
regression approach for explaining manifold em-
bedding coordinates. Technical report, 2018.
arXiv:1811.11891

Amit Moscovich, Amit Halevi, Joakim Andén and
Amit Singer. Cryo-EM reconstruction of con-
tinuous heterogeneity by Laplacian spectral vol-
umes. Inverse Problems, 36(2):024003, 2020.
doi:10.1088/1361-6420/ab4f55.

Boaz Nadler, Stephane Lafon, Ronald R. Coifman and
Ioannis G. Kevrekidis. Diffusion Maps, Spectral
Clustering and Eigenfunctions of Fokker-Planck op-
erators. In Advances in Neural Information Process-
ing Systems (NIPS), 2005.

Takanori Nakane, Dari Kimanius, Erik Lindahl and
Sjors HW Scheres. Characterisation of molecular
motions in cryo-EM single-particle data by multi-
body refinement in RELION. eLife, 7:1–18, 2018.
doi:10.7554/eLife.36861.

Alantha Newman. Complex semidefinite programming
and max-k-cut. In Symposium on Simplicity in Algo-
rithms (SOSA), volume 61, pages 13:1–13:11, 2018.
doi:10.4230/OASIcs.SOSA.2018.13.

Fabian Pedregosa et al. Scikit-learn: Machine Learn-
ing in Python. Journal of Machine Learning Re-
search, 12:2825–2830, 2011.

Scott Reed, Kihyuk Sohn, Yuting Zhang and Honglak
Lee. Learning to disentangle factors of variation
with manifold interaction. In International Confer-
ence on Machine Learning (ICML), 2014.

Emanuele Rodolà, Zorah Lähner, Alex M. Bronstein,
Michael M. Bronstein and Justin Solomon. Func-
tional Maps Representation On Product Manifolds.
Computer Graphics Forum, 38(1):678–689, 2019.
doi:10.1111/cgf.13598.

Lorenzo Rosasco, Mikhail Belkin and Ernesto De Vito.
On Learning with Integral Operators. Journal of
Machine Learning Research, 11(30):905–934, 2010.

Peter Schwander, Russell Fung and Abbas Our-
mazd. Conformations of macromolecules and
their complexes from heterogeneous datasets.
Philosophical Transactions of the Royal Soci-
ety B: Biological Sciences, 369(1647):1–8, 2014.
doi:10.1098/rstb.2013.0567.

N Siddharth et al. Learning Disentangled Representa-
tions with Semi-Supervised Deep Generative Mod-
els. In Conference on Neural Information Processing
Systems (NIPS), 2017.

A. Singer. From graph to manifold Laplacian:
The convergence rate. Applied and Computa-
tional Harmonic Analysis, 21(1):128–134, 2006a.
doi:10.1016/j.acha.2006.03.004.

A. Singer. Spectral independent component analysis.
Applied and Computational Harmonic Analysis, 21
(1):135–144, 2006b. doi:10.1016/j.acha.2006.03.003.

Amit Singer and Ronald R. Coifman. Non-linear in-
dependent component analysis with diffusion maps.
Applied and Computational Harmonic Analysis, 25
(2):226–239, 2008. doi:10.1016/j.acha.2007.11.001.

Amit Singer and Fred J. Sigworth. Computa-
tional Methods for Single-Particle Electron Cry-
omicroscopy. Annual Review of Biomedical Data
Science, 3(1):163–190, 2020. doi:10.1146/annurev-
biodatasci-021020-093826.

Peter Sorrenson, Carsten Rother and Ullrich Köthe.
Disentanglement By Nonlinear ICA With General
Incompressible-Flow Networks (Gin). In Inter-
national Conference on Learning Representations
(ICLR), 2020.

Carlos Oscar S. Sorzano et al. Survey of the
analysis of continuous conformational variabil-
ity of biological macromolecules by electron mi-
croscopy. Acta Crystallographica Section F Struc-
tural Biology Communications, 75(1):19–32, 2019.
doi:10.1107/S2053230X18015108.

Ronen Talmon, Israel Cohen, Sharon Gannot and
Ronald R. Coifman. Diffusion Maps for Signal
Processing: A Deeper Look at Manifold-Learning
Techniques Based on Kernels and Graphs. IEEE
Signal Processing Magazine, 30(4):75–86, 2013.
doi:10.1109/MSP.2013.2250353.

Joshua B. Tenenbaum, Vin de Silva and John C.
Langford. A Global Geometric Frame-
work for Nonlinear Dimensionality Reduc-
tion. Science, 290(5500):2319–2323, 2000.
doi:10.1126/science.290.5500.2319.

Daniel Ting, Ling Huang and Michael Jordan. An
Analysis of the Convergence of Graph Laplacians.
In International Conference on Machine Learning
(ICML), 2010.

Luan Tran, Xi Yin and Xiaoming Liu. Disentangled
Representation Learning GAN for Pose-Invariant
Face Recognition. In Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 1283–
1292, 2017. doi:10.1109/CVPR.2017.141.

https://doi.org/10.1016/j.acha.2010.02.003
http://arxiv.org/abs/1811.11891
https://doi.org/10.1088/1361-6420/ab4f55
https://doi.org/10.7554/eLife.36861
https://doi.org/10.4230/OASIcs.SOSA.2018.13
https://doi.org/10.1111/cgf.13598
https://doi.org/10.1098/rstb.2013.0567
https://doi.org/10.1016/j.acha.2006.03.004
https://doi.org/10.1016/j.acha.2006.03.003
https://doi.org/10.1016/j.acha.2007.11.001
https://doi.org/10.1146/annurev-biodatasci-021020-093826
https://doi.org/10.1146/annurev-biodatasci-021020-093826
https://doi.org/10.1107/S2053230X18015108
https://doi.org/10.1109/MSP.2013.2250353
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1109/CVPR.2017.141


Product Manifold Learning

Ulrike Von Luxburg. A tutorial on spectral cluster-
ing. Statistics and Computing, 17(4):395–416, 2007.
doi:10.1007/s11222-007-9033-z.

Ulrike von Luxburg, Mikhail Belkin and Olivier
Bousquet. Consistency of spectral clustering.
The Annals of Statistics, 36(2):555–586, 2008.
doi:10.1214/009053607000000640.

Miloš Vulović et al. Image formation modeling in cryo-
electron microscopy. Journal of Structural Biology,
183(1):19–32, 2013. doi:10.1016/j.jsb.2013.05.008.

Nathan Zelesko, Amit Moscovich, Joe Kileel and Amit
Singer. Earthmover-Based Manifold Learning for
Analyzing Molecular Conformation Spaces. In Inter-
national Symposium on Biomedical Imaging (ISBI),
2020. doi:10.1109/ISBI45749.2020.9098723.

Ellen D. Zhong, Tristan Bepler, Joseph H. Davis and
Bonnie Berger. Reconstructing continuous distribu-
tions of 3D protein structure from cryo-EM images.
In International Conference on Learning Represen-
tations (ICLR), 2020.

Ye Zhou, Amit Moscovich, Tamir Bendory and Al-
berto Bartesaghi. Unsupervised particle sorting
for high-resolution single-particle cryo-EM. Inverse
Problems, 36(4):044002, 2020. doi:10.1088/1361-
6420/ab5ec8.

Carl Zimmer. The Coronavirus Unveiled, oct 2020,
The New York Times. http://nyti.ms/2GO6PDV.

https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1214/009053607000000640
https://doi.org/10.1016/j.jsb.2013.05.008
https://doi.org/10.1109/ISBI45749.2020.9098723
https://doi.org/10.1088/1361-6420/ab5ec8
https://doi.org/10.1088/1361-6420/ab5ec8
http://nyti.ms/2GO6PDV

	Introduction
	Related Work

	Theoretical background
	The Laplace-Beltrami operator
	The Laplacian over product manifolds
	Graph Laplacians and diffusion maps
	Asymptotics of graph Laplacians

	Method
	Factorizing product eigenvectors
	Assigning the factor eigenvectors to factor manifolds
	Implementation details and runtime

	Simulations
	2D noisy rectangle
	Analysis of threshold parameters
	Single-particle cryo-EM data
	Visualizing manifold factors

	Hierarchical factorization
	Conclusion
	References

