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1 Introduction

Functional data analysis is a contemporary statistical methodology that has a

wide range of applications such as brain imaging [11,22], medical research [23],

pharmaceutics [13,25], and econometrics [16,19]. However, having a precise

analysis of functional data can be challenging. This is partly because the true

underlying function is defined over a continuous domain, but the observations

contaminated by measurement errors are almost always collected over a dis-

cretized domain. In some cases, only very few measurements can be acquired

to study the underlying function due to limited resources (e.g., time and/or

money), and other practical reasons. For such a situation, a judiciously selected

sampling plan for collecting informative data to yield a precise analysis result

is crucial. There have been several studies on this direction. For example, Li

[14], and Li and Xiao [15] discussed the design issues for classification of func-

tional data. Wu et al. [26] considered the D-optimal design for capturing the

between-subject variability of the underlying trajectories. Ji and Müller [10],

and Park et al. [17] obtained optimal sampling schedules for functional lin-

ear regression to yield a high precision in recovering the predictor function,

and in predicting a scalar response. Rha et al. [21] put forward a probabilistic

subset search (PSS) algorithm to identify optimal sampling schedules for both

scalar-on-function, and function-on-function regression models.

The previous works on selecting designs for functional regression mainly

focused on models that only allow a ‘simple linear’ relationship between the

response and the predictor function. Throughout this paper, we refer to these

models as functional simple linear regression (FSLR) models; see also [20].

In many real applications, a complex association between the response and

the predictor may exist, and the FSLR model can underfit the data, result-

ing in, e.g., an inaccurate prediction of the response. To address this issue,
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Yao and Müller [29] extended the FSLR models to the functional quadratic

regression (FQR) models. The FQR is demonstrated to be useful. However,

to our knowledge, the selection of optimal sampling schedules for this rather

complex setting has not been investigated so far. To address this lack, our first

contribution here is on extending the optimal design methods to FQR models.

We derive an optimality criterion for comparing sampling schedules under the

FQR model, and present some important properties of this criterion. This new

criterion contains the one for FSLR as a special case, and can be considered

for both types of models.

However, the optimality criterion for functional regression depends on sev-

eral unknown parameters of the model, such as the pairs of the eigenfunction

and eigenvalue, and the variances and covariances of the noisy observations of

the predictor function, X(t). With this issue, the previously mentioned stud-

ies considered a locally optimal design approach similar to that of [7]. Specif-

ically, the unknown parameters are replaced by their estimates from, e.g., a

pilot study. The resulting locally optimal designs thus rely much on one single

estimation of the parameters. These designs may perform well (or is optimal)

when all the parameter estimates are close to (or the same as) the true values.

But, they unfortunately can suffer an efficiency loss, especially when a large

pilot study for rendering reliable parameter estimates is unavailable (e.g., due

to limited resources). To alleviate this design dependence problem, we propose

here an easy-to-implement strategy that combines the PSS algorithm with the

bagging (bootstrap aggregating) technique to obtain bagging-enhanced sam-

pling schedule (BESS) designs for functional regression. Through simulations,

we show that, without much computing time, the BESS approach can generate

designs that outperform locally optimal designs. A significant improvement is

achieved by the BESS designs when the unknown parameters are estimated

from small- to medium-sized pilot data. For cases where locally optimal de-



4 Hyungmin Rha et al.

signs perform well, the BESS designs still attain a comparable or slightly better

performance.

This paper is organized as follows. In Section 2, we introduce our nota-

tion and the functional regression models that we consider. We also derive

the optimality criterion for evaluating competing designs for the FQR model,

and provide some important properties of the optimality criterion. We then

describe the BESS approach in Section 3, and present some simulation studies

in Section 4. Some real applications can be found in Section 5, and a discussion

is in Section 6.

2 Model and Optimality Criterion

Let X(·) be a square integrable stochastic process defined over a continu-

ous compact domain T with mean function E{X(t)} = µX(t) and covari-

ance function Cov{X(s), X(t)} = Γ (s, t). By Mercer’s Theorem, Γ (s, t) =∑∞
k=1 ρkψk(s)ψk(t), where ψk(·) and ρk, with ρ1 ≥ ρ2 ≥ ... ≥ 0, are the

kth eigenfunction and eigenvalue of the covariance operator of X(t), respec-

tively. With some mild conditions [8], X(t) can be decomposed as X(t) =

µX(t)+
∑∞
k=1 ζkψk(t), where the functional principal component (FPC) scores,

ζk =
∫
T {X(t)− µX(t)}ψk(t)dt, k = 1, 2, ..., are uncorrelated with mean 0 and

variance ρk. We denote the noisy observation of X(t) at t = tj as Uj =

X(tj) + εj , where tj ∈ T and εj ’s are independent random noise with mean

0 and variance σ2
X , j = 1, ..., L. In addition, we assume that ζk and εj are

independent and normally distributed. We also consider a scalar response Y

paired with the functional predictor X(t), and the following FQR model [29],

E(Y |X) = α+

∫
T
β(t)Xc(t)dt+

∫
T

∫
T
γ(s, t)Xc(s)Xc(t)dsdt, (1)
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where Xc(t) = X(t)− µX(t), α is an unknown intercept, and β(t) and γ(s, t)

are square integrable coefficient functions for the linear and quadratic terms,

respectively. Since ψk(·)’s form a basis of L2-space on a compact continuous

domain T , we write

β(t) =
∞∑
k=1

βkψk(t); γ(s, t) =
∞∑
k=1

∞∑
l=1

γklψk(s)ψl(t), (2)

where
∑∞
k=1 β

2
k < ∞ and

∑∞
k=1

∑∞
l=1 γ

2
kl < ∞. With (1) and (2), and the

orthonormality of eigenfunctions, we then have

E(Y |X) = α+
K∑
k=1

βkζk +
K∑
k=1

K∑
l=1

γklζkζl, (3)

where K is possibly infinite. In our case studies, we choose K so that 99% of

variability of X(t) is captured. For a new subject with p observations, we will

observe U = (U1, ..., Up)
T at t = {t1, ..., tp}, t1 < . . . < tp. A prediction of Y

for this subject is

E(E(Y |X)|U) = α+
K∑
k=1

βk ζ̃k +
K∑
k=1

K∑
l=1

γklζ̃kζl, (4)

where ζ̃k = E(ζk|U) and ζ̃kζl = E(ζkζl|U). As in [30], the best linear un-

biased predictor for ζk is ζ̃k = ρkψ
T
k (t)Γ−1∗ (t)(U − µX(t)), where ψk(t) =

(ψk(t1), ..., ψk(tp))
T , Γ∗(t) = Cov(U), and µX(t) = (µX(t1), ..., µX(tp))

T . For

simplicity, we omit t from Γ∗(t), ψk(t) and µX(t), and denote them as Γ∗,

ψk and µX , respectively. Our aim is to find the sampling schedule t∗ that

minimizes the mean squared error for predicting Y ; i.e.,

E
(
E(Y |X)− E(E(Y |X)|U)

)2
= Var

(
E(Y |X)− E(E(Y |X)|U)

)
= tr

[
bbTR+ 2(GR)2

]
− tr

[
bbTHΓ−1∗ HT + 2(GHΓ−1∗ HT )2

]
≥ 0,

(5)
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where R is a K × K diagonal matrix whose kth diagonal element is ρk, b =

(β1, ..., βK)T , G is a K×K matrix whose (i, j)th element is γij , and H = RΨT

with Ψ = (ψ1, ...,ψK). The detailed derivation of (5) can be found in Appendix

A. Since tr
[
bbTR + 2(GR)2

]
does not depend on the sampling schedule, the

larger-the-better criterion for finding optimal t∗ can be set to:

FY (t) = tr
[
bbTHΓ−1∗ HT + 2(GHΓ−1∗ HT )2

]
. (6)

We note that the criterion FY (t) in (6) is reduced to the optimality criterion

for the FSLR model when G is zero; see, e.g., [17]. But when the quadratic

relationship is present, FY (t) includes an additional term tr
[
2(GHΓ−1∗ HT )2

]
.

With this observation, the approach that we proposed here for FQR models

can thus be easily applied to cases with FSLR models. In addition, we see

from (5) that tr
[
bbTR+2(GR)2

]
gives an upper bound of FY (t). We thus can

define the relative efficiency of a design as follows:

REY (t) =
FY (t)

tr
[
bbTR+ 2(GR)2

] . (7)

Following [17], we now provide some useful properties of our optimality

criterion in the next two theorems. Their proofs can be found in Appendix B.

Theorem 1 Suppose t ⊆ t̃ where t and t̃ are p- and (p + c)-point designs

(sampling schedules), respectively, for some positive integer c. Then, FY (t) ≤

FY (t̃).

Theorem 1 supports the statement that acquiring additional observations from

X(t) can improve the response prediction precision. The next theorem suggests

that FY (t) approaches to its theoretical upper bound when the number of

observations p goes to infinity.
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Theorem 2 Let tp = {0, 1/p, ..., (p− 1)/p}. Then

lim
p→∞

FY (tp) = tr
[
bbTR+ 2(GR)2

]
.

In practice, the unknown parameters involved in the optimality criteria (6)

and (7) need to be estimated from, e.g., a pilot study. There exist several

discussions on estimating these parameters from data [9,18,27,30,31,29]. For

demonstration purposes, we use the FPCA function of ‘fdapace’ package [6]

in R to estimate the matrices R, H and Γ∗, and the FPCQuadReg function of

‘PACE’ package [28] in MATLAB, which is converted into R in our implemen-

tation, to estimate the vector b and the matrix G of coefficients. Some other

estimation methods can be considered. The parameter estimates give an es-

timated optimality criterion, F̂Y , and an estimated relative efficiency R̂EY .

Similarly to the previous works, one may then consider a discretized domain

of T that has N (> p) equally-spaced points, and select an optimal p-point

sampling schedule out of the N points to maximize F̂Y (or R̂EY ).

To find an optimal design, an approach considered by Park et al. [17]

is the exhaustive search algorithm that evaluates all the
(
N
p

)
designs. This

algorithm guarantees the best design within the discretized domain, but is

computationally expensive. It can easily become infeasible for realistic prob-

lems. Ji and Müller [10] suggested a greedy search algorithm that sequentially

adds the time point yielding the greatest improvement in the value of the op-

timality criterion at each iteration. However, the greedy search can sometimes

be trapped in a poor local solution. Recently, Rha et al. [21] proposed the

Probabilistic Subset Search (PSS) algorithm for generating (nearly-)optimal

designs for FSLR models. Here, we adapt the PSS algorithm with its default

settings to obtain sampling schedule for the FQR model. A pseudo code for

this algorithm is provided in Appendix C.
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A major drawback of the previously mentioned approaches is that the

quality of the obtained design depends heavily on the quality of the estimated

criterion F̂Y , and it does not take the estimation uncertainty into account.

Consequently, the obtained designs might not be as efficient, especially when

the prior information about the unknown parameters in FY is vague, and/or

the pilot study for estimating these parameters does not have a large sample

size. To address this issue, we consider to enhance the quality of the obtained

designs by incorporating a bagging strategy into our design approach. To the

best of our knowledge, this strategy has not previously been utilized in optimal

design problems as the one we consider here. In the next section, we introduce

our proposed Bagging-Enhanced Sampling Schedule (BESS) approach for ob-

taining optimal designs for functional regression models.

3 Bagging-Enhanced Sampling Schedule

As previously described, our aim is at an optimal sampling plan that maximizes

the optimality criterion FY . Since FY involves unknown parameters, we follow

previous works to consider a surrogate criterion, namely the estimated F̂Y . The

obtained design can then be viewed as a locally optimal design [7]. Clearly,

the quality of the estimated F̂Y is crucial to the ‘true’ performance of a locally

optimal sampling schedule. However, it is not always possible to obtain a good

estimate, and as a result, the sampling schedule t̂ obtained by maximizing the

surrogate F̂Y (t) may not render data that are as informative as we expect.

Here, we propose an approach that borrows the strengths of the bagging

technique to enhance the quality of the obtained sampling schedule. Bagging

is known as a powerful computational approach for improving unstable esti-

mations [2,3]. We utilize this strategy to give an improved estimate of FY to

generate high quality designs. The detailed steps of our proposed BESS ap-
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proach are provided below. There, we consider situations where a pilot data

set of n subjects is available for estimating the unknown parameters in FY of

(6).

Step 1. From the pilot data, generate a bootstrap sample of n subjects through

subject-wise re-sampling with replacement; repeat this step B times to

obtain B bootstrap samples.

Step 2. With the bth bootstrap sample in Step 1, obtain estimates of the unknown

parameters in FY (t) to give F̂Y,b(t), an estimate of FY (t) for the given

design t; b = 1, ..., B.

Step 3. Find t̂B that maximizes

F̂BY (t) =
1

B

B∑
b=1

F̂Y,b(t). (8)

In contrast to the previously proposed methods, the BESS approach does

not fully rely on the single F̂Y (t) estimated from the pilot data set. It instead

uses the ‘bagging estimate’ F̂BY of FY as the surrogate criterion for selecting

optimal sampling schedule. To search for the optimal schedule t̂B in Step 3 of

the BESS approach, we adapt the PSS algorithm of [21], which was developed

for obtaining locally optimal designs for FSLR models. We note that the BESS

approach can be easily applied to some other situations, such as recovering the

trajectory of X(t), and predicting a functional or scalar response in FSLR as

considered in the previous works [10,17,21]. To demonstrate the applicabil-

ity of our proposed approach, we present below some simulation studies on

obtaining optimal sampling schedules for having a precise recovery of the pre-

dictor function X(t), and a precise prediction of the response Y . Additional

simulation results can also be found in the supplementary material.
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4 Simulation Study

For demonstration purposes, we consider here two types of eigenfunctions for

the predictor function X(t), which are polynomial basis functions and Fourier

basis functions. We assume that there are three eigenfunctions paired with

non-zero eigenvalues. Results for two other types of eigenfunctions are pre-

sented in the supplementary material, and they convey similar information

on demonstrating the usefulness of our proposed approach. Without loss of

generality, we assume that µX(t) = 0 for all t ∈ T = [0, 1] and α = 0. The

measurement errors are assumed to follow the standard Normal distribution.

For the first scenario, we set the three eigenfunctions of X(t) to

ψ1(t) =
√

3(1− 2t), ψ2(t) =
√

5(1− 6t+ 6t2), and

ψ3(t) =
√

7(1− 12t+ 30t2 − 20t3),

and the eigenvalues are ρk = 5, 3, and 1, respectively. The b vector and G

matrix are assumed to be

b = (1,−0.5, 0.5)T and G =


0.20 −0.05 0.25

−0.05 0.35 −0.05

0.25 −0.05 0.40

 .

For the second scenario, the eigenfunctions of X(t) are

ψ1(t) =
√

2 sin(2πt), ψ2(t) =
√

2 cos(4πt), and ψ3(t) =
√

2 sin(6πt),

and the corresponding eigenvalues are ρk = 8, 2, 1, respectively. In addition,

b = (1,−0.5,−1)T and G =


0.25 −0.05 0.10

−0.05 0.30 −0.02

0.10 −0.02 0.30

 .
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We also write Var
(
E(Y |X)

)
= tr

[
bbTR+2(GR)2

]
= wltr(bb

TR)+wqtr[2(GR)2]

with (wl, wq) = (1, 1). The values of tr
[
bbTR

]
and tr

[
2(GR)2

]
reflect the pro-

portion of variability due to the linear term and the quadratic term, respec-

tively, in the FQR model, and wl and wq can be viewed as the corresponding

weights. To study the effects of these two components on the obtained designs,

we vary τ = wq/(wl+wq), i.e., the ‘relative importance’ of the quadratic term,

by considering different values for (wl, wq).

In the following simulation studies, we first use the PSS algorithm to search

for a design maximizing the true FY of each scenario described previously.

We demonstrate that the obtained ‘true’ optimal design t∗ outperforms ran-

dom design, equally-spaced design, and the optimal design obtained under the

FSLR model when the quadratic term is ignored. We then obtain the locally

optimal designs, t̂, by optimizing the F̂Y estimated from simulated pilot data,

and the BESS designs, t̂B , by the BESS approach described in Section 3. We

show that t̂B outperforms t̂ in the sense that it reduces the absolute relative

error (ARE) to be defined later. We also investigate the performance of designs

obtained under a situation where the Gaussian assumption is violated.

4.1 Designs optimizing the true FY

Here, we compare the performance of the design that maximizes FY with

random designs, equally-spaced designs, and the optimal designs obtained in

[21] for the FSLR model. Our designs are obtained with the PSS algorithm

over the discretized T = [0, 1] with grid size 0.01. With the simulation settings

described above, the FPC score ζk of X(t) is assumed to follow a Normal

distribution with mean 0 and variance ρk, for k = 1, 2, 3. For this comparison,

we generate 1, 000 ‘true’ responses Y by using Eq.(3) under the settings for

each scenario. For each true response, we then generate 100 sets of p noisy



12 Hyungmin Rha et al.

observations U for each p-point design being compared; p = 3, ..., 7. Each set

of p observations is then used to predict Y with E(E(Y |X)|U) as introduced

in Section 2. We then calculate the root mean squared error (RMSE) of the

100 predicted responses for each true response. This gives 1000× 100 RMSEs

for each design, and the average of these RMSEs is compared.

Fig. 1 Average RMSEs with τ = 50%; opt.quad and opt.linear represent the designs for
FQR and FSLR models, respectively.

Fig. 2 Average RMSEs with τ = 1%. opt.quad and opt.linear represent the designs for
FQR and FSLR models, respectively.

As shown in Figure 1 where we set (wl, wq) = (1, 1), and τ = 50%, the

optimal design for the FQR model clearly outperforms the other designs in
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minimizing the RMSE. In Figure 2, we set (wl, wq) = (2, 0.02) to give a small

τ = 1%. As expected, the optimal sampling schedules for FSLR and those for

FQR perform similarly.

4.2 BESS vs. locally optimal designs

We now consider a more practical situation where pilot data are used to give

the estimated criterion F̂Y . We compare the BESS design t̂B , which max-

imizes F̂BY in (8), and the locally optimal design t̂ that optimizes F̂Y . For

each scenario, we simulate 200 pilot data sets with Uij = Xi(tj) + εij as

the jth observation of the ith subject; j = 1, ..., Ji, i = 1, ..., n. We consider

pilot data sets of different sizes, including n = 25, 50, and 100. The num-

ber of observations for the ith subject in a data set is randomly generated

with Ji ∼ Uniform{2, ..., 10}. The random errors εij ’s are i.i.d. N(0, 1). For

each simulated data set, we obtain F̂Y and F̂BY with B = 50, and use the

PSS algorithm to obtain t̂ and t̂B that maximize F̂Y and F̂BY , respectively,

with p = 3, . . . , 7. In addition, we demonstrate the applicability of the BESS

approach in finding optimal designs for having a precise recovery of the pre-

dictor function X(t), another optimal design issue of interest for functional

regression. Following [21], we set the optimality criterion for recovering X(t)

to FX(t) = tr(HΓ−1∗ HT ), and aim at a design maximizing this criterion.

For comparison purposes, we consider the ARE of a design t to the ‘true’

optimal design t∗ that is obtained by using the PSS algorithm to maximize the

true criterion F . Depending on the study objective (predicting Y or recovering

X(t)), F can be FY or FX .

ARE(t) =
| F (t)− F (t∗) |

F (t∗)
.
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Table 1 Average (standard deviation) of 200 AREs (×100%) for predicting the scalar
response Y under Scenarios 1 and 2; t̂ and t̂B represent the locally optimal, and BESS
designs, respectively.

Scenario 1 Scenario 2

t̂ t̂B t̂ t̂B

p = 3
n = 25 6.576 (10.37) 3.381 (6.008) 12.26 (12.07) 11.97 (10.03)
n = 50 3.605 (6.544) 2.254 (5.043) 9.256 (6.512) 8.616 (5.551)
n = 100 1.362 (1.257) 1.024 (1.129) 7.198 (5.061) 6.843 (4.595)

p = 4
n = 25 5.736 (9.799) 1.542 (2.402) 10.84 (11.01) 9.764 (6.376)
n = 50 1.857 (4.219) 1.048 (1.164) 6.617 (5.226) 5.318 (3.958)
n = 100 0.826 (1.332) 0.771 (1.071) 6.161 (4.641) 5.016 (3.544)

p = 5
n = 25 4.094 (7.141) 1.094 (0.968) 8.614 (8.097) 6.599 (5.477)
n = 50 1.330 (2.124) 0.848 (0.874) 5.713 (5.219) 4.105 (3.066)
n = 100 0.543 (1.377) 0.492 (0.555) 4.465 (3.846) 3.522 (3.242)

p = 6
n = 25 2.952 (4.769) 1.069 (0.583) 6.913 (6.882) 4.709 (3.284)
n = 50 1.242 (1.965) 0.820 (0.758) 4.725 (4.157) 3.315 (2.631)
n = 100 0.480 (0.866) 0.437 (0.348) 3.526 (2.946) 2.792 (2.314)

p = 7
n = 25 3.681 (6.783) 1.156 (0.534) 5.588 (5.780) 4.012 (2.609)
n = 50 1.069 (2.088) 0.825 (0.468) 4.154 (3.676) 2.832 (1.769)
n = 100 0.190 (0.398) 0.283 (0.300) 3.229 (2.668) 2.343 (1.728)

A comparison of the ARE of the BESS designs t̂B with that of the locally

optimal designs t̂ is presented in Tables 1 and 2. We consider the prediction of

Y in Table 1, and the recovery of X(t) in Table 2. For most cases, the BESS

method significantly reduces both the average ARE, and the uncertainty of

the achieved design performance; the latter is reflected in the much smaller

standard deviation of the AREs of the BESS designs than that of the locally

optimal designs. A greater improvement is seen in the cases with a smaller

sample size n. This might be because of the improved estimation quality of F̂Y

and F̂X with an increased sample size. Nevertheless, we still observe obvious

improvements in many cases even when the sample size is as large as n = 100.

In addition, as the number of subjects increases, ARE decreases across all

cases, which again might be due to an improved quality of estimation.
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Table 2 Average (standard deviation) of 200 AREs (×100%) for recovering the predictor
function X(t) under Scenarios 1 and 2; t̂ and t̂B represent the locally optimal, and BESS
designs, respectively.

Scenario 1 Scenario 2

t̂ t̂B t̂ t̂B

p = 3
n = 25 4.223 (5.880) 2.840 (4.606) 8.247 (6.477) 7.248 (5.526)
n = 50 2.424 (3.887) 1.792 (2.793) 5.475 (4.714) 4.827 (3.960)
n = 100 0.941 (1.941) 0.806 (1.536) 4.134 (3.328) 4.080 (3.381)

p = 4
n = 25 3.630 (5.224) 1.808 (2.445) 6.641 (5.696) 4.885 (4.304)
n = 50 1.249 (2.741) 0.886 (1.220) 4.823 (3.736) 3.331 (2.941)
n = 100 0.607 (1.187) 0.526 (0.602) 3.798 (2.776) 3.384 (2.445)

p = 5
n = 25 2.590 (4.198) 0.484 (0.987) 5.637 (5.081) 3.392 (3.291)
n = 50 1.287 (2.309) 0.514 (0.634) 4.003 (3.346) 2.569 (2.323)
n = 100 0.487 (1.185) 0.282 (0.402) 2.834 (2.616) 2.042 (1.822)

p = 6
n = 25 1.991 (3.449) 0.783 (0.962) 4.700 (4.374) 3.016 (3.196)
n = 50 1.043 (1.770) 0.569 (0.476) 3.344 (2.931) 2.284 (1.937)
n = 100 0.665 (1.374) 0.468 (0.431) 2.744 (2.183) 2.053 (1.554)

p = 7
n = 25 1.747 (2.880) 0.618 (0.423) 4.430 (4.509) 2.723 (2.498)
n = 50 0.852 (1.515) 0.461 (0.393) 2.761 (2.415) 2.141 (1.900)
n = 100 0.519 (1.301) 0.383 (0.371) 2.610 (2.170) 1.976 (1.598)

4.3 Robustness to Gaussian assumption

The optimality criterion in (6) is derived under the Gaussian assumption of

the FPC scores. In this subsection, we show that the designs obtained from

our method consistently outperform other designs even when the Gaussian

assumption of the FPC scores is violated. To demonstrate the robustness of

our method to a violation of the Gaussian assumption, we assume that the kth

FPC score ζk, k = 1, 2, 3 now follows a mixture of two Gaussian distributions,

namely N(−
√

1.8ρk, 0.1ρk) with probability 1/3, and N(
√

0.45ρk, 0.1ρk) with

probability 2/3. This mixture distribution has mean 0 and variance ρk, and is

asymmetric and bimodal. We then follow the same comparison procedure as

in Subsection 4.1 to obtain Table 3; we again consider (wl, wq) = (1, 1), and
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Table 3 Average RMSEs under a violation of Gaussian assumption. opt.quad and opt.linear
represent the designs for FQR and FSLR, respectively.

p = 3 p = 4 p = 5 p = 6 p = 7

Scenario 1

opt.quad 0.6762 0.5896 0.5309 0.4923 0.4541
opt.lin 0.9936 0.9035 0.7879 0.6962 0.7746
random 1.6660 1.4719 1.3465 1.1889 1.0967
equal 0.9754 0.6648 0.6204 0.5924 0.5744

Scenario 2

opt.quad 1.0825 0.9379 0.8546 0.7863 0.7219
opt.lin 1.6229 1.5910 1.1927 1.1423 1.1241
random 1.6994 1.4847 1.3000 1.1456 1.0396
equal 3.2124 1.8304 1.9360 1.4593 1.3358

thus τ = 50%. It can be seen that the results in Table 3 render consistent

information as Figure 1, even when the Gaussian assumption is violated.

5 Application

In this section, we consider two real data sets, including the Alzheimer’s disease

neuroimaging data, and the Berkeley growth data set. Treating these as pilot

data sets, we apply our proposed method to find a sampling schedule for

predicting the scalar response of interest in each of these two applications.

5.1 Alzheimer’s Disease Neuroimaging Data

The data used here are from the data sheet “148-n3355-FDG-ALL-Info” in the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database for Alzheimer’s

disease (AD). The AD is a progressive, degenerative brain disorder that is

currently known to be irreversible. For this data set, we treat the Alzheimer’s

Disease Assessment Scale-Cognitive Subscale (ADAS-cog) collected over some

years as the predictor function X(t), and the hypometabolic convergence in-

dex (HCI) score of each AD patient obtained from her/his last magnetic res-

onance imaging (MRI) scan as the scalar response Y . The HCI is a single
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Fig. 3 Alzheimer’s disease assessment scale-cognitive subscale of 269 patients. Red thick
curve represents the mean function.

metric that measures the extent to which the pattern and magnitude of cere-

bral hypometabolism in the fluorodeoxyglucose positron emission tomography

(FDG-PET) image correspond to ADAS-cog of a patient. The ADAS-cog is a

clinical rating for evaluating the level of cognitive impairment in AD patients,

and consists of 11 tasks to measure cognitive abilities that are often referred

to as the core symptoms of AD; see, e.g., [12].

Most of the measurements in the data set are collected between age 63 and

88. We thus focus on the data obtained from patients over this compact domain

T . A total of 269 patients have ADAS-cog ratings within this age range, and

the number of measurements of each patient varies from 1 to 8 with a median

of 2; see Figure 3 for the Spaghetti plot of the predictor functions over T

of these patients, and their mean function. All these 269 patients have the

corresponding HCI scores.

For the previously described data, we fit both the FSLR and FQR models.

Following [29], we calculate the corresponding quasi-R2 for the two models

to demonstrate that the FQR model provides a better fit to the data than
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Table 4 Optimal sampling schedules and relative efficiencies for predicting HCI through
ADAS-cog curve when the number of observations p = 2, ..., 6.

Optimal Sampling Schedule Relative Efficiency

p = 2 69.5, 87.0 0.6221
p = 3 63.0, 69.0, 88.0 0.7779
p = 4 63.0, 69.0, 69.5, 88.0 0.8171
p = 5 63.0, 69.0, 69.5, 87.5, 88.0 0.8522
p = 6 63.0, 69.0, 69.5, 70.0, 87.5, 88.0 0.8685

the FSLR model. As noted in [29], the quasi-R2 can give a straightforward

model comparison, and its value is not automatically improved by including

additional predictors in the model. This is in contrast to the R2 for the ordinary

linear regression (with scalar predictors). We present below the formula of the

quasi-R2.

R̂2
M = 1−

∑n
i=1(Yi − ŶMi )2∑n
i=1(Yi − Ȳ )2

. (9)

Here, the subscript M of R̂2 is used to indicate the model that is being eval-

uated. In particular, for the FSLR model, we set M = L; and M = Q corre-

sponds to the FQR model. Similarly, ŶMi is the predicted value of Y under

Model M . Specifically, Ŷ Q is obtained with the method described in Section

2; see also [29]. With the FSLR model, Ŷ L = α̂ +
∑K
k=1 β̂k ζ̂k as described

in, e.g., [21] and the references therein; K is defined as in Section 2, and is

selected so that 99% of the variability of X(t) is captured. For this data set,

we have R̂2
L = 0.0694, and R̂2

Q = 0.2139; the latter model has a significantly

improved value for the quasi-R2.

With the FQR model, we form the optimality criterion F̂Y by estimating

the involved unknown parameters with the previously described (pilot) data.

To identify the optimal sampling schedule for this case, we discretize the do-

main T with a regular grid of size 0.5 years. Over the discretized domain, we

use the BESS approach with the PSS algorithm to find BESS designs. The
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algorithmic parameters of the PSS algorithm are set to their default values

described in [21].

Our obtained optimal sampling plans, and their approximated relative ef-

ficiencies R̂EY are reported in Table 4. For instance, with p = 3, the BESS

design suggests to measure the ADAS-cog rating at age 63, 69 and 88 for

predicting the HCI score. This design has R̂EY = 0.7779. Moreover, as we

increase the number of observations p for each patient, the relative efficiency

also increases. This result can be expected from the previous discussions, such

as those in Section 2. But, we also note here that the increment in the rela-

tive efficiency decreases with p. For example, the achieved relative efficiency

of the design with p = 3 is about 0.15 higher than that of the optimal 2-point

design. However, this improvement becomes less than 0.02 when moving from

p = 5 to p = 6. Similar observations are also reported in the literature, and

are utilized in selecting p. Some discussions and methods for the selection of

p can be found in [17] and [21].

5.2 Berkeley Growth Data

Berkeley growth data consist of 54 girls and 39 boys, and the height of each

individual was measured 31 times between age 1 and 18 [24]. We consider the

heights from age 1 to 11 as predictor functions to predict the height at age

18. This data set is also used in other studies such as [15], in which optimal

designs with a different study objective are obtained. For the purpose of our

study, we only use part of the data. The collected data from age 1 to 11 are

shown in Figure 4.

For each of the two gender groups, we compare the R̂2
M in Eq.(9) for the

FSLR and FQR models. For the female group, R̂2
Q and R̂2

L are 0.8304 and

0.6337, respectively, whereas the male group has R̂2
Q = 0.8549 and R̂2

L =
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Fig. 4 Berkeley growth data with mean functions. Dashed vertical lines represent the op-
timal sampling schedules with p = 5 observations.

0.8062. Clearly, the FQR models fit better to the data than the FSLR model,

especially for the female group. For both groups, the association between the

predictor function and the scalar response tends to be strong.

We use the BESS approach to obtain the optimal sampling schedules under

the FSLR and the FQR models for p = 2 to 6. Table 5 presents the achieved rel-

ative efficiencies R̂EY , evaluated under the FQR model. The designs obtained

under FQR clearly have higher relative efficiencies than those found under

FSLR. This is especially true for the female group, which in part, reflects the

observations we made previously about the model fitting. There is again an

improvement in the relative efficiency when p increases. This improvement is

observed for both FQR and FSLR designs, but we see a greater improvement

for the FQR designs than the FSLR designs. Partly because of this, the dif-

ference in R̂EY between the FQR and FSLR designs tends to increase with

p.
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Table 5 Relative efficiencies of optimal designs under quadratic and linear models when
the number of observations p = 2, ..., 6. opt.quad and opt.lin represent the quadratic and
linear models, respectively.

Female Male

FQR FSLR FQR FSLR

p = 2 0.8938 0.8632 0.9186 0.8998
p = 3 0.9180 0.8666 0.9302 0.9302
p = 4 0.9317 0.8832 0.9399 0.9336
p = 5 0.9377 0.8846 0.9517 0.9349
p = 6 0.9434 0.8861 0.9564 0.9409

6 Discussion

We propose methods for selecting optimal sampling schedule design for func-

tional regression. We derive a new optimality criterion for evaluating compet-

ing designs under the FQR models, and provide some important properties of

this criterion. Our criterion is reduced to the one for the FSLR model used in

the previous studies when the quadratic term is not needed in the model. But

for cases where a quadratic relationship between Y and X(t) is present, the

designs obtained with our criterion outperform those for FSLR. This observa-

tion is consistent across all the scenarios that we had studied, even when the

Gaussian assumption is violated.

The derived criterion involves some unknown parameters, such as the eigen-

functions, eigenvalues, and the needed number of these eigenpairs for captur-

ing a sufficiently large portion (e.g., 99%) of the variability of X(t). Previous

studies mainly focused on the locally optimal design approach by using the

available pilot data to estimate the needed parameters. When the parame-

ter estimates equal their true values, the obtained designs are truly optimal.

However, in many realistic situations, the performance of the locally optimal

designs may be rather unstable (see also Subsection 4.2). To alleviate this de-

sign dependence issue, our second contribution in this paper is the proposed
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BESS algorithm for countering the parameter estimation uncertainty in func-

tional regression. As demonstrated in Subsection 4.2, the BESS method can

make a better use of the available pilot data to generate designs that yield a

higher and more robust performance than the locally optimal design approach.

The improvement is significant with small-/medium-sized pilot data sets. The

proposed design approach is thus expected to be especially useful for cases

where data collection is expensive and/or difficult, as the situation consid-

ered in this and previous works. Nevertheless, the performance of the BESS

designs also tends to be comparable to, or slightly better than the locally opti-

mal designs when the latter designs are expected to perform well (e.g., with a

large pilot data set). We also note that the proposed BESS approach does not

require much additional computing time. Obtaining one BESS design in our

simulation studies requires no more than one minute on a computer with a 2.8

GHz Quad-Core Intel Core i7 processor. In addition, this approach can also be

easily applied to finding high-quality designs for various objectives such as for

recovering a predictor function, predicting a scalar/functional response, and a

mixture of such objectives.

We also note that the optimality criterion (8) for the BESS approach does

not assume a fixed number, K, of eigenpairs. Instead, K is estimated from each

bootstrap sample, and is allowed to vary across these samples. This criterion

thus also takes the uncertainty of estimating K into account. Nevertheless,

the proportion of the variability of X(t) to be captured by the K eigenpairs is

fixed. In our simulations, we set this proportion to 99%, but a different value

may be considered.

Much research remains to be done in the design of experiments for func-

tional data analysis. A future research of interest is to extend the proposed

method to other functional regression models with rather complex structures,

such as polynomial regression, multiple regression involving two or more pre-
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dictor functions, and function-on-function regression. In addition, a finite K

is typically used in (4) for pragmatic reasons, which can lead to a potential

bias in predicting Y . Having a design approach to help to reduce this bias

should be of interest. Moreover, we assume that the data collected from the

pilot study allow the estimation of the underlying model. It is known that the

bagging strategy, while useful for improving unstable estimations, does not

remedy the problem when the data give serious estimation biases. Selecting a

good design to allow the collection of high quality pilot data is thus another

important issue to address.
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Appendix A. Derivation of Optimality Criterion

From Equations (3) and (4),

E(Y |X) = α+
K∑

k=1

βkζk +
K∑

k=1

K∑
l=1

γklζkζl = α+ bT ζ + ζT Gζ, and

E(E(Y |X)|U) = α+

K∑
k=1

βk ζ̃k +

K∑
k=1

K∑
l=1

γklζ̃kζl = α+ bT ζ̃ + tr(Gζ̃ζT ),

where ζ = (ζ1, ..., ζK)T , ζ̃ = (ζ̃1, ..., ζ̃K)T and ζ̃ζT = ζ̃ζ̃
T − Cov(ζ) + Cov(ζ̃); see also [29].
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E
(
E(Y |X)− E(E(Y |X)|U)

)2
= Var

(
E(Y |X)− E(E(Y |X)|U)

)
= Var

(
E(Y |X)

)
+ Var

(
E(E(Y |X)|U)

)
− 2Cov

(
E(Y |X), E(E(Y |X)|U)

)
Each term is obtained below. We note that the third central moment of a normal distribution

is 0 and ζ follows a multivariate normal distribution with mean 0 and variance-covariance

matrix R. We then have:

Var
(
E(Y |X)

)
= Var(α+ bT ζ + ζT Gζ)

= tr
[
bbTR+ 2(GR)2

]
.

We note that ζ̃ = RΨTΓ−1
∗ (U − µX) = HΓ−1

∗ (U − µX) follows a multivariate normal

distribution with mean 0 and variance-covariance matrix HΓ−1
∗ HT .

Var
(
E(E(Y |X)|U)

)
= Var

(
α+ bT ζ̃ + tr

[
Gζ̃ζT

])
= Var

(
bT ζ̃ + tr

[
G(ζ̃ζ̃

T
+R−HΓ−1

∗ HT )
])

= Var(bT ζ̃) + Var(ζ̃
T

Gζ̃) + 2Cov(bT ζ̃, ζ̃
T

Gζ̃)

= tr
[
bbTHΓ−1

∗ HT + 2(GHΓ−1
∗ HT )2

]
We also note that U = µX +Ψζ+ ε, where ε is independent of ζ and follows a multivariate

normal distribution with mean 0 and variance-covariance matrix σ2
XIp. According to [1],

Cov
(
E(Y |X), E(E(Y |X)|U)

)
= Cov

(
bT ζ + ζT Gζ, bT ζ̃ + ζ̃

T
Gζ̃
)

= Cov
(
bT ζ, bTHΓ−1

∗ Ψζ
)

+ Cov
(
ζT Gζ, ζTΨTΓ−1

∗ HT GHΓ−1
∗ Ψζ

)
= tr

[
bbTHΓ−1

∗ HT + 2(GHΓ−1
∗ HT )2

]

Appendix B. Proofs of Theorems

We denote H and Γ∗ are observed at time points t, and H̃ and Γ̃∗ are observed at time

points t̃. Park et al. [17] have proved theorems under the regularity conditions in [4] when

the functional linear regression is considered. Moreover, without loss of generality, we assume

that T = [0, 1].
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Proof of Theorem 1

For any positive semidefinite matrix B, tr
[
BHΓ−1

∗ HT
]
≤ tr

[
BH̃Γ̃−1

∗ H̃T
]
, and H̃Γ̃−1

∗ H̃T −

HΓ−1
∗ HT is a positive semidefinite matrix [17]. Therefore, it suffices to show that tr

[
(GHΓ−1

∗ HT )2
]
≤

tr
[
(GH̃Γ̃−1

∗ H̃T )2
]
. Since G(H̃Γ̃−1

∗ H̃T +HΓ−1
∗ HT )G and H̃Γ̃−1

∗ H̃T−HΓ−1
∗ HT are positive

semidefinite matrices, there exist matrices P and Q such that G(H̃Γ̃−1
∗ H̃T +HΓ−1

∗ HT )G =

PPT and H̃Γ̃−1
∗ H̃T −HΓ−1

∗ HT = QQT .

tr
[
(GH̃Γ̃−1

∗ H̃T )2
]
− tr

[
(GHΓ−1

∗ HT )2
]

= tr
[
(GH̃Γ̃−1

∗ H̃T )2 − (GHΓ−1
∗ HT )2

]
= tr

[
(GH̃Γ̃−1

∗ H̃T + GHΓ−1
∗ HT )(GH̃Γ̃−1

∗ H̃T −GHΓ−1
∗ HT )

]
= tr

[
G(H̃Γ̃−1

∗ H̃T +HΓ−1
∗ HT )G(H̃Γ̃−1

∗ H̃T −HΓ−1
∗ HT )

]
= tr

(
PPTQQT

)
= ||PTQ||2F ≥ 0.

Lemma 1 Let A,B ∈ RN×N be symmetric and positive semidefinite matrices for any

positive integer N . Then, tr(AB) ≤ tr(A)tr(B).

Proof of Lemma 1

Since A and B are positive semidefinite matrices, there exist matrices P and Q such that

A = PPT and B = QQT . Then,

tr(AB) = tr(PPTQQT ) = tr(PTQ(PTQ)T ) = ||PTQ||2F

≤ ||PT ||2F ||Q||
2
F = tr(PPT )tr(QQT ) = tr(A)tr(B).

Proof of Theorem 2

Park et al. [17] have shown that limp→∞ tr(BHΓ−1
∗ HT ) = tr(BR), for any positive semidef-

inite matrix B. Thus, it suffices to show that limp→∞ tr
[
(GHΓ−1

∗ HT )2
]

= tr
[
(GR)2

]
.

Since limp→∞ tr(HΓ−1
∗ HT ) = tr(R), for any ε > 0, there exists N ∈ N such that tr(R −
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HΓ−1
∗ HT ) < ε/(tr(G2)2ρ1K) when p ≥ N . For given ε > 0, if p ≥ N , then by Lemma 1,

tr[(GR)2]− tr[(GHΓ−1
∗ HT )2] = tr

[
(GR)2 − (GHΓ−1

∗ HT )2
]

= tr
[
(GR+ GHΓ−1

∗ HT )(GR−GHΓ−1
∗ HT )

]
= tr

[
G(R+HΓ−1

∗ HT )G(R−HΓ−1
∗ HT )

]
≤ tr

[
G(R+HΓ−1

∗ HT )G
]

tr(R−HΓ−1
∗ HT )

≤ tr(G2) 2tr(R) tr(R−HΓ−1
∗ HT )

≤ tr(G2) 2ρ1K tr(R−HΓ−1
∗ HT ) < ε.
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Appendix C. Pseudo Code for PSS Algorithm

Algorithm: Probabilistic subset search algorithm

INPUT: Candidate points X ; initial design d0p; subset size l
OUTPUT: Optimal sampling schedule dp

Set k ← 1
Calculate weights πsi
while dk−1p does not satisfy the stopping rule do

Choose a subset Sk whose elements are randomly selected without re-
placement from X − dk−1p with probability proportional to πsi
Xk = Sk ∪ dk−1p and Ξk = {dp : dp(j) ∈ Xk, j = 1, ..., p}
Compute FY (·) for the

(
p+l
p

)
designs in Ξk

Find d∗p = arg maxdp∈Ξk
FY (dp)

dkp ← d∗p
k ← k + 1

end while
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