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Abstract

The problem of Offline Policy Evaluation
(OPE) in Reinforcement Learning (RL) is a
critical step towards applying RL in real life
applications. Existing work on OPE mostly
focus on evaluating a fixed target policy π,
which does not provide useful bounds for of-
fline policy learning as π will then be data-
dependent. We address this problem by si-
multaneously evaluating all policies in a policy
class Π — uniform convergence in OPE — and
obtain nearly optimal error bounds for a num-
ber of global / local policy classes. Our results
imply that the model-based planning achieves
an optimal episode complexity of Õ(H3/dmε

2)
in identifying an ε-optimal policy under the
time-inhomogeneous episodic MDP model (H
is the planning horizon, dm is a quantity that
reflects the exploration of the logging policy
µ). To the best of our knowledge, this is the
first time the optimal rate is shown to be pos-
sible for the offline RL setting and the paper
is the first that systematically investigates the
uniform convergence in OPE.

1 INTRODUCTION

In offline reinforcement learning (offline RL), there
are mainly two fundamental problems: offline policy
evaluation (OPE) and offline learning (also known as
batch RL) (Sutton and Barto, 2018). OPE addresses
to the statistical estimation problem of predicting the
performance of a fixed target policy π with only data

Proceedings of the 24th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

collected by a logging/behavioral policy µ. On the
other hand, offline learning is a statistical learning
problem that aims at learning a near-optimal policy
using an offline dataset alone (Lange et al., 2012).

As offline RL methods do not require interacting with
the task environments or having access to a simulator,
they are more suitable for real-world applications of
RL such as those in marketing (Thomas et al., 2017),
targeted advertising (Bottou et al., 2013; Tang et al.,
2013), finance (Bertoluzzo and Corazza, 2012), robotics
(Quillen et al., 2018; Dasari et al., 2020), language
(Jaques et al., 2019) and health care (Ernst et al., 2006;
Raghu et al., 2017, 2018; Gottesman et al., 2019). In
these tasks, it is usually not feasible to deploy an online
RL algorithm to trials-and-error with the environment.
Instead, we are given a large offline dataset of histor-
ical interaction to come up with a new policy π and
to demonstrate that this new policy π will perform
better using the same dataset without actually testing
it online.

In this paper, we present our solution via a statistical
learning perspective by studying the uniform conver-
gence in OPE under the non-stationary transition, fi-
nite horizon, episodic Markov decision process (MDP)
model with finite states and actions. Informally, given
a policy class Π and a logging policy µ, uniform con-
vergence problem in OPE (Uniform OPE for short)
focuses on coming up with OPE estimator v̂π and char-
acterizing the number of episodes n we need (from µ)
in order for v̂π to satisfies that with high probability

sup
π∈Π
|v̂π − vπ| ≤ ε.

The focus of research would be to characterizing the
episode complexity : the number of episodes n needed
as a function of ε, failure probability δ, the parameters
of the MDP as well as the logging policy µ.

We highlight that even though uniform convergence is
the main workhorse in statistical learning theory (see,
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e.g., Vapnik, 2013), few analogous results have been es-
tablished for the offline reinforcement learning problem.
The overarching theme of this work is to understand
what a natural complexity measure is for policy classes
in reinforcement learning and its dependence in the
size of the state-space and planning horizon.

In addition, uniform OPE has two major consequences
(which we elaborate in detail in the following moti-
vation section): (1) allowing any accurate planning
algorithm to work as sample efficient offline learning
algorithm with our model-based method; (2) providing
finite sample guarantee for offline evaluation uniformly
for all policies in the policy class.

The Motivation. Existing research in offline RL usu-
ally focuses on designing specific algorithms that learn
the optimal policy π? := argmaxπ v

π with given static
offline data D. In the rich literature of statistical learn-
ing theory, however, learning bounds are often obtained
via a stronger uniform convergence argument which
ensures an arbitrary learner to output a model that
generalizes. Specifically, the empirical risk minimizer
(ERM) that outputs the empirical optimal policy has
been shown to be sufficient and necessary for efficiently
learning almost all learnable problems (Vapnik, 2013;
Shalev-Shwartz et al., 2010).

The natural analogy of ERM in the RL setting would be
to find the empirical optimal policy π̂? := argmaxπ v̂

π

for some OPE estimator v̂π. If we could establish a
uniform convergence bound for v̂π, then it implies that
π̂? is nearly optimal too via

0 ≤ vπ
?

− vπ̂
?

= vπ
?

− v̂π̂
?

+ v̂π̂
?

− vπ̂
?

≤ |vπ
?

− v̂π
?

|+ |v̂π̂
?

− vπ̂
?

| ≤ 2 sup
π
|vπ − v̂π|.

Thus, uniform OPE is a stronger setting than offline
learning with the additional benefit of accurately evalu-
ating any other (possibly heuristic) policy optimization
algorithms that are used in practice.

From the OPE perspective, there is often a need to
evaluate the performance of a data-dependent policy,
and uniform OPE becomes useful. For example, when
combined with existing methods, it will allow us to
evaluate policies selected by safe-policy improvements,
proximal policy optimization, UCB-style exploration-
bonus as well as any heuristic exploration criteria such
as curiosity, diversity and reward-shaping techniques.

Model-based Estimator For OPE. The OPE esti-
mator we consider in this paper is the standard model-
based estimator, i.e., estimating the transition dynam-
ics and immediate rewards, then simply plug in the
parameters of empirically estimated MDP M̂ to obtain
v̂π for any π. This model-based approach has several
benefits. 1. It enables flexible choice of policy search

methods since it converts the problem to planning over
the estimated MDP M̂ . 2. Uniform OPE with model-
based estimator avoids the use of data-splitting that
leads to inefficient data use. For example, Sidford et al.
(2018) learns the ε-optimal policy with the optimal
rate in the generative model setting, where in each

subroutine new independent data s
(1)
s,a, ..., s

(m)
s,a need to

be sampled to estimate Ps,a and samples from previ-
ous rounds cannot be reused. A uniform convergence
result could completely avoid data splitting during the
learning procedure.

Our Contribution. Our main contributions are sum-
marized as follows.

• For the global policy class (deterministic or
stochastic), we use fully model-based OPEMA es-
timator to obtain an ε-uniform OPE with episode
complexity Õ(H4S/dmε

2) (Theorem 3.3) and in

some cases this can be reduced to Õ(H4/dmε
2),

where dm is minimal marginal state-action occu-
pancy probability depending on logging policy µ.

• For the global deterministic policy class, we ob-
tain an ε-uniform OPE with episode complexity
Õ(H3S/dmε

2) with an optimal dependence on H
(Theorem 3.5).

• For a (data-dependent) local policy class that cover
all policies are in the O(

√
H/S)-neighborhood of

the empirical optimal policy (see the definition
in Section 2.1), we obtain ε-uniform OPE with

Õ(H3/dmε
2) episodes (Theorem 3.7).

• We prove a information-theoretical lower bound
of Ω(H3/dmε

2) for OPE (Theorem 3.8) which cer-
tifies that results for local policy class is optimal.

• Our uniform OPE over the local policy class im-
plies that ERM (VI or PI with empirically esti-
mated MDP), as well as any sufficiently accurate
model-based planning algorithm, has an optimal
episode complexity of Õ(H3/dmε

2) (Theorem 4.1).
To the best of our knowledge, this is the first rate-
optimal algorithm in the offline RL setting.

• Last but not least, our result can be viewed as an
improved analysis of the simulation lemma; which
demystifies the common misconception that purely
model plug-in estimator is inefficient, comparing
to their model-free counterpart.

To the best of our knowledge, these results are new and
this is the first work that derives uniform convergence
analogous to those in the statistical learning theories
for offline RL.
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Related Work. Before formally stating our results,
we briefly discuss the related literature in three cate-
gories.

1. OPE: Most existing work on OPE focuses on the
Importance Sampling (IS) methods (Li et al., 2011;
Dud́ık et al., 2011; Li et al., 2015; Thomas and Brun-
skill, 2016) or their doubly robust variants (Jiang and
Li, 2016; Farajtabar et al., 2018). These methods are
more generally applicable even if the the Markovian
assumption is violated or the states are not observ-
able, but has an error (or sample complexity) that de-
pends exponential dependence in horizon H. Recently,
a family of estimators based on marginalized impor-
tance sampling (MIS) (Liu et al., 2018; Xie et al., 2019;
Kallus and Uehara, 2020, 2019; Yin and Wang, 2020)
have been proposed in order to overcome the “curse of
horizon” under the additional assumption of state ob-
servability. In the tabular setting, Yin and Wang (2020)
design the Tabular-MIS estimator which matches the
Cramer-Rao lower bound constructed by Jiang and Li
(2016) up to a low order term for every instance (π, µ
and the MDP), which translates into an O(H2/dmε

2)
episode complexity in the (pointwise) OPE problem we
consider for all π. Tabular-MIS, however, is identical
to the model-based plug-in estimator we use, off-policy
empirical model approximator (OPEMA), as we discuss
further in Section 2.3. These methods do not address
the uniform convergence problem. The only exception
is (Yin and Wang, 2020), which has a result analogous
to Theorem 3.7, but for a data-splitting-type estimator.

2. Offline Learning: For the offline learning, most
theoretical work consider the infinite horizon discounted
setting with function approximation. Chen and Jiang
(2019); Le et al. (2019) first raises the information-
theoretic considerations for offline learning and uses
Fitted Q-Iteration (FQI) to obtain εVmax-optimal pol-

icy using sample complexity Õ((1− γ)−4Cµ/ε
2) where

Cµ is concentration coefficient (Munos, 2003) that is
similar to our 1/dm. More recently, (Xie and Jiang,
2020b) improves the result to Õ((1−γ)−2Cµ/ε

2). How-
ever, these bounds are not tight in terms of the depen-
dence on the effective horizon1 (1−γ)−1. More recently,
Xie and Jiang (2020a); Liu et al. (2020) explore weaker
settings for batch learning but with suboptimal sample
complexity dependences. Our result is the first that
achieves the optimal rate (despite focusing on the finite
horizon episodic setting).

3. Uniform Convergence In RL: There are few
existing work that deals with uniform convergence in

1The optimal rate should be (1− γ)−1C/ε2, analogous
to our H3/dmε

2 bound. The additional H2 is due to scaling
— we are obtaining ε-optimal policy and they obtain εVmax-
optimal policy (Vmax = H in our case). See Table 1 for a
consistent comparison.

OPE. However, we notice that the celebrated simulation
lemma (Kearns and Singh, 2002) is actually an uniform
bound with an episode complexity of O(H4S2/dmε

2).
Several existing work uses uniform-convergence argu-
ments over value function classes for online RL (see,
e.g., Jin et al., 2020, and the references therein). The
closest to our work is perhaps (Agarwal et al., 2020b),
which studies model-based planning in the generative
model setting. We are different in that we are in the
offline learning setting. In addition, our local policy
class is optimal for a larger region of εopt (indepen-
dent to n), while their results (Lemma 10) imply op-
timal OPE only for empirically optimal policy with
εopt ≤

√
(1− γ)−5SA/n. Lastly, we discovered the

thesis of Tewari (2007, Ch.3 Theorem 1), which dis-
cusses the pseudo-dimension of policy classes. The
setting is not compatible to ours, and does not imply
a uniform OPE bound in our setting.

2 PROBLEM SETUP AND
METHOD

RL environment is usually modeled as a Markov De-
cision Process (MDP) which is denoted by M =
(S,A, r, P, d1, H). The MDP consists of a state space
S, an action space A and a transition kernel Pt :
S × A × S 7→ [0, 1] with Pt(s

′|s, a) representing the
probability transition from state s, action a to next
state s′ at time t. In particular here we consider non-
stationary transition dynamics so Pt varies over time t.
Besides, rt : S×A 7→ R is the expected reward function
and given (st, at), rt(st, at) specifies the average reward
obtained at time t. d1 is the initial state distribution
and H is the horizon. Moreover, we focus on the case
where state space S and the action space A are finite,
i.e. S := |S| < ∞, A := |A| < ∞. A (non-stationary)
policy is formulated by π := (π1, π2, ..., πH), where πt
assigns each state st ∈ S a probability distribution over
actions at each time t. Any fixed policy π together
with MDP M induce a distribution over trajectories
of the form (s1, a1, r1, s2, ..., sH , aH , rH , sH+1) where
s1 ∼ d1, at ∼ πt(·|st), st+1 ∼ Pt(·|st, at) and rt has
mean rt(st, at) for t = 1, ...,H.2

In addition, we denote dπt (st, at) the induced marginal
state-action distribution and dπt (st) the marginal state
distribution, satisfying dπt (st, at) = dπt (st) · π(at|st).
Moreover, dπ1 = d1 ∀π. We use the notation
Pπt ∈ RS·A×S·A to represent the state-action tran-
sition (Pπt )(s,a),(s′,a′) := Pt(s

′|s, a)πt(a
′|s′), then the

marginal state-action vector dπt (·, ·) ∈ RS×A satis-
fies the expression dπt+1 = Pπt+1d

π
t . We define the

quantity V πt (s) = Eπ[
∑H
t′=t rt′ |st = s] and the Q-

2Here rt without any argument is random reward and
E[rt|st, at] = rt(st, at).
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function Qπt (s, a) = Eπ[
∑H
t′=t rt′ |st = s, at = a] for

all t = 1, ...,H. The ultimate measure of the perfor-
mance of policy π is the value function:

vπ = Eπ

[
H∑
t=1

rt

]
.

Lastly, for the standard OPE problem, the goal is to
estimate vπ for a given π while assuming that n episodic

data D =
{

(s
(i)
t , a

(i)
t , r

(i)
t , s

(i)
t+1)

}t∈[H]

i∈[n]
are rolling from

a different behavior policy µ.

2.1 Uniform Convergence Problems

Uniform OPE extends the pointwise OPE to a family
of policies. Specifically, for an policy class Π of interest,
we aim at showing that supπ∈Π |v̂π − vπ| < ε with high
probability with optimal dependence in all parameters.
In this paper, we consider three policy classes.

The Global Policy Class. The policy class Π we
considered here consists of all the non-stationary poli-
cies, deterministic or stochastic. This is the largest
possible class we can consider and hence the hardest
one.

The Global Deterministic Policy Class. Here
class consists of all the non-stationary deterministic
policies. By the standard results in reinforcement learn-
ing, there exists at least one deterministic policy that
is optimal (Sutton and Barto, 2018). Therefore, the
deterministic policy class is rich enough for evaluating
any learning algorithm (e.g. Q-value iteration in Sid-
ford et al. (2018)) that wants to learn to the optimal
policy.

The Local Policy Class: in the neighborhood
of empirical optimal policy. Given empirical
MDP M̂ (i.e. the transition kernel is replaced by

P̂t(st+1|st, at) := nst+1,st,at/nst,at if nst,at > 0 and 0
otherwise, where nst,at is the number of visitations to
(st, at) among all n episodes3), it is convenient to learn
the empirical optimal policy π̂? := argmaxπ v̂

π since

the full empirical transition P̂ is known. Standard
methods like Policy Iteration (PI) and Value Iteration
(VI) can be leveraged for finding π̂?. This observation
allows us to consider the following interesting policy
class: Π1 := {π : s.t. ||V̂ πt − V̂ π̂

?

t ||∞ ≤ εopt, ∀t =
1, ...,H} with εopt ≥ 0 a parameter. Here we consider
π̂? (instead of π?) since by defining with empirical op-
timal policy, we can use data D to really check class
Π1, therefore this definition is more practical.

3Similar definition holds for nst+1,st,at .

2.2 Assumptions

Next we present some mild necessary regularity as-
sumptions for uniform convergence OPE problem.

Assumption 2.1 (Bounded rewards). ∀ t = 1, ...,H

and i = 1, ..., n, 0 ≤ r(i)
t ≤ 1.

Assumption 2.2 (Exploration requirement). Logging
policy µ obeys that mint,st d

µ
t (st) > 0, for any state

st that is “accessible”. Moreover, we define quantity
dm := min{dµt (st, at) : dµt (st, at) > 0}.

State st is “accessible” means there exists a policy π
so that dπt (st) > 0. If for any policy π we always have
dπt (st) = 0, then state st can never be visited in the
given MDP. Assumption 2.2 simply says µ have the
right to explore all “accessible” states. This assumption
is required for the consistency of uniform convergence
estimator since we have “supπ∈Π” and is similar to the
standard concentration coefficient assumption made by
Munos (2003); Le et al. (2019). As a short comparison,
offline learning problems (e.g. offline policy optimiza-
tion in Liu et al. (2019)) only require dµt (st) > 0 for
any state st satisfies dπ

?

t (st) > 0. Last but not least,
even though our target policy class is deterministic, by
above assumptions µ is always stochastic.

2.3 Method: Offline Policy Empirical Model
Approximator

The method we use for doing OPE in uniform conver-
gence is the offline policy empirical model approximator
(OPEMA). OPEMA uses off-policy data to build the
empirical estimators for both the transition dynamic
and the expected reward and then substitute the related
components in real value function by its empirical coun-
terparts. First recall for any target policy π, by defini-
tion: vπ =

∑H
t=1

∑
st,at

dπt (st, at)rt(st, at), where the
marginal state-action transitions satisfy dπt+1 = Pπt+1d

π
t .

OPEMA then directly construct empirical estimates
for P̂t+1(st+1|st, at) and r̂t(st, at) as:

P̂t+1(st+1|st, at) =

∑n
i=1 1[(s

(i)
t+1, a

(i)
t , s

(i)
t ) = (st+1, st, at)]

nst,at
,

r̂t(st, at) =

∑n
i=1 r

(i)
t 1[(s

(i)
t , a

(i)
t ) = (st, at)]

nst,at
,

and P̂t+1(st+1|st, at) = 0 and r̂t(st, at) = 0 if nst,at = 0
(recall nst,at is the visitation frequency to (st, at)
at time t), and then the estimates for state-action

transition P̂πt is defined as: P̂πt (st+1, at+1|st, at) =

P̂t(st+1|st, at)π(at+1|st+1). The initial distribution is

also constructed using empirical estimator d̂π1 (s1) =
ns1/n. Based on the construction, the empirical

marginal state-action transition follows d̂πt+1 = P̂πt+1d̂
π
t



Yin, Bai, Wang

and the final estimator for vπ is:

v̂πOPEMA =

H∑
t=1

∑
st,at

d̂πt (st, at)r̂t(st, at). (1)

OPEMA is model-based method as it uses plug-in
estimators (d̂πt and r̂t) for each model components (dπt
and rt). Traditionally, the error of OPEMA is obtained
via the simulation lemma (Kearns and Singh, 2002),
with O(H4S2/dmε

2)-episode complexity. Recent work
(Xie et al., 2019; Yin and Wang, 2020; Duan et al.,
2020) reveals that there is an importance sampling
interpretation of OPEMA

v̂πOPEMA =
1

n

n∑
i=1

H∑
t=1

d̂π(s
(i)
t )

d̂µt (s
(i)
t )

r̂πt (s(i)), (2)

and the effectiveness of MIS of recent work partially
explains why OPEMA could work, even for the uniform
OPE problem.

3 MAIN RESULTS FOR UNIFORM
OPE

In this section, we present our results for uniform OPE
problems from Section 2.1. For brevity, we use v̂π

to denote v̂πOPEMA in the rest of paper. Proofs of all
technical results are deferred to the appendix. We start
with the following Lemma:

Lemma 3.1 (martingale decomposition). For fixed π:

H∑
t=1

〈d̂πt −dπt , rt〉 =

H∑
h=2

〈V πh , (T̂h − Th)d̂πh−1〉+〈V π1 , d̂π1 − dπ1 〉,

where Th+1 ∈ RS×(SA) be the one step transition ma-
trix, i.e. Tsh+1,(sh,ah) = Ph+1(sh+1|sh, ah). the inner
product on the left hand side is taken w.r.t state-action
and the inner product on the left hand side is taken
w.r.t state only. Proof can be found in appendix (Theo-
rem C.5).

Remark 3.2. Note when the reward is deterministic,
the left hand side is simply v̂π − vπ, and the right
hand side has a martingale structure which enables the
applicability of concentration analysis that gives rise to
the following theorems. Moreover, this decomposition
is essentially “primal-dual” formulation since the LHS
can be viewed as the primal form through marginal
distribution representation and RHS is the dual form
with value function representation.

3.1 Uniform OPE For Global Policy Class

We present the following result Theorem 3.3 for global
policy class.

Theorem 3.3. Let Π consists of all policies, then there
exists an absolute constant c, C such that if n > c·1/dm·
log(HSA/δ), then with probability 1− δ, we have:

sup
π∈Π
|v̂π − vπ| ≤ C

√H4 log(HSA
δ

)

dm · n
+

√
H4S log(nHSA)

dm · n


Moreover, if failure probability δ < e−S, then above can

be further bounded by 2c
√

H4

dm·n log(nHSAδ ).

The first term in the bound reflects the concentra-
tion of supπ∈Π |v̂π − vπ| around its mean, via McDi-
armid inequality. The second term is a bound of
E[supπ∈Π |v̂π − vπ|]. The analysis of both terms rely
on the Martingale decomposition from Lemma 3.1.

Our result improves over the simulation lemma by a
factor of HS but is suboptimal by another factor HS
comparing to the lower bound (Theorem 3.8). In the
small failure probability regime (δ < e−S) we can get
rid of the dependence on S except for the implicit
dependence through dm. This is meaningful since we
usually consider deriving results with high confidence.

3.2 Uniform OPE For Deterministic Policies

The Martingale decomposition also allows us to derive
a high-probability OPE bound via a concentration
argument, which complements the optimal bounds on
mean square error from (Yin and Wang, 2020).

Lemma 3.4 (Convergence for fixed policy). Fix any
policy π. Then there exists absolute constants c, c1, c2
such that if n > c · 1/dm · log(HSA/δ), then with prob-
ability 1− δ, we have:

|v̂π − vπ| ≤ c1

√
H2 log( c2HSAδ )

n · dm
+ Õ

(
H2
√
SA

n · dm

)
.

Note if we absorb the higher order term, our result
implies sample complexity of Õ(H2/dmε

2) for evalu-
ating any fixed target policy π. Notice that the total
number of deterministic policies is AHS in our problem,
a standard union bound over all deterministic policies
yields the following result.

Theorem 3.5. Let Π consist of all deterministic poli-
cies, then there exists absolute constants c, c1, c2 such
that if n > c · 1/dm · log(HSA/δ), then with probability
1− δ, we have:

sup
π∈Π
|v̂π − vπ| ≤ c1

√
H3S log( c2HSA

δ
)

n · dm
+ Õ

[
H3S1.5A0.5

n · dm

]
.

Theorem 3.5 implies an episode complexity of
Õ(H3S/dmε

2), which is optimal in H but suboptimal
by a factor of S. While the deterministic policy class
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seems restrictive, it could be useful in many cases be-
cause the optimal policy is deterministic, and many
exploration-bonus based exploration methods use de-
terministic policy throughout.

Remark 3.6. The similar high-probability OPE bound
in Lemma 3.4 was proven before by (Yin and Wang,
2020) through the data-splitting type estimator. How-
ever their theory does not imply efficient offline learn-
ing, see Section K in appendix for discussion.

3.3 Uniform OPE For The Local (near
empirically optimal) Policy Class

For the local (near empirically optimal) policy class we
described in Section 2.1, the following theorem obtains
the optimal episode complexity.

Theorem 3.7. Suppose εopt ≤
√
H/S and Π1 := {π :

s.t. ||V̂ πt − V̂ π̂
?

t ||∞ ≤ εopt, ∀t = 1, ...,H}. Then there
exists constant c1, c2 such that for any 0 < δ < 1, when
n > c1H

2 log(HSA/δ)/dm, we have with probability
1− δ,

sup
π∈Π1

∥∥∥Q̂π1 −Qπ1∥∥∥∞ ≤ c2
√
H3 log(HSA/δ)

n · dm
.

This uniform convergence result is presented with
l∞ norm over (s, a). A direct corollary is

supπ∈Π1

∥∥∥V̂ π1 − V π1 ∥∥∥∞ achieves the same rate. The-

orem 3.7 provides the sample complexity of
O(H3 log(HSA/δ)/dmε

2) and the dependence of all
parameters are optimal up to the logarithmic term.
Note that our bound does not explicitly depend on
εopt, which is an improvement over (Agarwal et al.,
2020b) as they have an additional O(εopt/(1−γ)) error
in the infinite horizon setting. Besides, our assump-
tion on εopt is mild since the required upper bound

is proportional to
√
H. Lastly, this result implies a

O(ε + εopt)-optimal policy for offline/batch learning
of the optimal order O(H3 log(HSA/δ)/dmε

2) (Theo-
rem 4.1), which means statistical learning result enables
offline learning.

3.4 Information-theoretical Lower Bound

Finally, we present a fine-grained sample complexity
lower bound of the uniform OPE problem that captures
the dependence of all parameters including dm.

Theorem 3.8 (Minimax lower bound for uniform
OPE). For all 0 < dm ≤ 1

SA . Let the class of problems
be

Mdm :=
{

(µ,M)
∣∣ min
t,st,at

dµt (st, at) ≥ dm
}
.

There exist universal constants c1, c2, c3, p (with
H,S,A ≥ c1 and 0 < ε < c2) such that

inf
v̂

sup
(µ,M)∈Mdm

Pµ,M
(

sup
π∈Π
|v̂π − vπ| ≥ ε

)
≥ p

if n ≤ c3H3/dmε
2. Here Π consists of all deterministic

policies.

The proof uses a reduction argument that shows if a
stronger uniform OPE bound exists, then it implies an
algorithm that breaks an offline learning lower bound
(Theorem G.2), which itself is proven by embedding
many stochastic multi-armed bandits problems in a
family of hard MDPs. Our construction is inspired
by the MDPs in (Jiang et al., 2017) and a personal
communication with Christopher Dann but involve
substantial modifications to account for the differences
in the assumption about rewards. The part in which
we obtain explicit dependence on dm is new and it
certifies that the offline learning (and thus uniform
OPE) problem strictly more difficult than their online
counterpart.

On Optimality. The above result provides the min-
imax lower bound of complexity Ω(H3/dmε

2). As a

comparison, Theorem 3.5 gives Õ(H3S/dmε
2) is a fac-

tor of S away from the lower bound and Theorem 3.7
has the same rate of the lower bound up to logarithmic
factor.

4 MAIN RESULTS FOR OFFLINE
LEARNING

In this section we discuss the implication of our results
on offline learning. As we discussed earlier in the intro-
duction, a uniform OPE bound of ε implies that the
corresponding ERM algorithm finds a 2ε-suboptimal
policy. But it also implies that all other offline policy-
learning algorithms that are not ERM, we could grace-
fully decompose their error into optimization error and
statistical (generalization) error.

Theorem 4.1. Let π̂∗ = argmaxπ v̂
π — the empiri-

cally optimal policy. Let π̂ be any data-dependent choice
of policy such that v̂π̂

∗ − v̂π̂ ≤ εopt, then. There is a
universal constant c such that w.p. ≥ 1− δ

1. vπ
∗ − vπ̂ ≤ c

√
H4S log(HSA/δ)

dm·n + εopt.

2. If δ < e−S, the bound improves to

c
√

H4S log(HSA/δ)
dm·n + εopt. And if in addition

π̂ is deterministic, the bound further improves to

c
√

H3 min{H,S} log(HSA/δ)
dm·n + εopt.

3. If εopt ≤
√
H/S and that ||V̂ π̂t − V̂ π̂

?

t ||∞ ≤
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εopt, ∀t = 1, ...,H , then vπ
∗ − vπ̂ ≤

c
√

H3 log(HSA/δ)
dm·n + εopt.

The third statement implies that all sufficiently ac-
curate planning algorithms based on the empirically
estimated MDP are optimal. For example, we can run
value iteration or policy iteration to the point that
εopt ≤ O(H3/ndm).

Comparing To Existing Work. Previously no al-
gorithm is known to achieve the optimal sample com-
plexity in the offline setting. Our result also applies
to the related generative model setting by replacing
1/dm with SA, which avoids the data-splitting pro-
cedure usually encountered by specific algorithm de-
sign (e.g., Sidford et al., 2018). The analogous policy-
learning results In the generative model setting (Agar-
wal et al., 2020b, Theorem 1) , achieves a suboptimality
of Õ((1−γ)−3SA/n+(1−γ)−1εopt) with no additional
assumption on εopt. Informally, if we replace (1− γ)−1

with H, then our result improves the bound from Hεopt

to just εopt for εopt ≤
√
H/S. These results are sum-

marized in Table 1.

Sparse MDP Estimate. We highlight that the re-
sult does not require the estimated MDP to be an
accurate approximation in any sense. Recall that the
true MDP has O(S2) parameters (ignoring the depen-
dence on H,A and logarithmic terms), but our result is
valid provided that n = Ω̃(1/dm) which is Ω(S). This
suggests that we may not even exhaustively visit all
pairs to state-transitions and that the estimator of P̂t
is allowed to be zero in many coordinates.

Optimal Computational Complexity. Lastly,
from the computational perspective, we can leverage
the best existing solutions for solving optimization
π̂? := argmaxπ∈Πv̂

π. For example, with εopt > 0, as ex-
plained by Agarwal et al. (2020b), value iteration ends
in O(H log ε−1

opt) iteration and takes at most O(HSA)
time after the model has been estimated with one pass
of the data (O(nH) time). We have a total computa-
tional complexity of O(H4/(dmε

2) + H2SA log(1/ε))
time algorithm for obtaining the ε-suboptimal policy
using n = O(H4/(dmε

2) episodes. This is essentially
optimal because the leading term H4SA/ε2 is required
even to just process the data needed for the result to
be information-theoretically possible. In comparison,
the algorithm that obtains an exact empirical optimal
policy π̂?, the SIMPLEX policy iteration runs in time
O(poly(H,S,A, n)) (Ye, 2011).

5 PROOF OVERVIEW

Our uniform convergence analysis in Section 3.1, re-
lies on creating an unbiased version of v̂OPEMA (which

we call it ṽOPEMA) artificially and use concentration
(Lemma C.1) to guarantee v̂OPEMA is identical to
ṽOPEMA in most situations. By doing so we can reduce
our analysis from supπ∈Π |v̂π − vπ| to supπ∈Π |ṽπ − vπ|.
Specifically, ṽπ replaces P̂t, r̂t in v̂π by its fictitious
counterparts P̃t, r̃t, defined as:

r̃t(st, at) = r̂t(st, at)1(Et) + rt(st, at)1(Ect ),

P̃t+1(·|st, at) = P̂t+1(·|st, at)1(Et) + Pt+1(·|st, at)1(Ect ).

where Et denotes the event {nst,at ≥ ndµt (st, at)/2}.
This is saying, if observation nst,at is large enough

(Et is true), we use P̂ ; otherwise we directly use P
instead. This track helps dealing with out-of-sample
state-action pairs. The next key is the martingale
decomposition (Lemma 3.1). On one hand, by using
the structure of supπ∈Π〈V πh , (T̃h − Th)d̃πh−1〉 we can relax
it into a “Rademacher-type complexity” which corre-
sponds to Õ(

√
H4S/dmn) term in Theorem 3.3. On

the other hand, this decomposition has a natural mar-
tingale structure so martingale concentration inequal-
ities can be appropriately applied, i.e. Theorem 3.4.
In addition, each term 〈V πh , (T̃h − Th)d̃πh−1〉 separates
the non-stationary policy into two parts with empirical
distribution only depends on π1:h−1 that governs how
the data “roll in” and the long term value function
V πh only depends on πh:H that governs how the reward
“roll out”.

For local uniform convergence, by Bellman equations
we can obtain a similar decomposition on Q-function:

Q̂πt −Qπt =

H∑
h=t+1

Γπt+1:h−1(P̂h − Ph)V̂ πh ,

where Γπt:h =
∏h
i=t P

π
i is the multi-step state-action

transition and Γπt+1:t := I. Since π is any policy in Π1

which may dependent on D′ so we cannot directly apply
concentration inequalities on (P̂h − Ph)V̂ πh . Instead,
we overcome this hurdle by doing concentration on
(P̂h − Ph)V̂ π̂

∗

h since V̂ π̂
∗

h and P̂h are independent, and

we connect V̂ π̂
∗

h back to V̂ πh by using they are εopt close
(Theorem 3.7). This idea helps avoiding the technicality
of absorbing MDP used in Agarwal et al. (2020b) for in-
finite horizon case because of our non-stationary transi-
tion setting. For the uniform convergence lower bound,
our analysis relies on reducing the problem to identi-
fying ε-optimal policy and proving any algorithm that
learns a ε-optimal policy requires at least Ω(H3/dmε

2)
episodes in the non-stationary episodic setting. Previ-
ously, Jiang et al. (2017) proves the Ω(HSA/ε2) lower

bound with assumption
∑H
i=1 ri ≤ 1. Our proof uses a

modified version of their hard-to-learn MDP instance
to achieve the desired result. To produce extra H2 de-
pendence, we leverage the Assumption 2.1 that

∑H
i=1 ri

may be of order O(H). We only present the high-level
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Table 1: A comparison of related offline policy learning results. Results shown in this color are new to this paper.

Method/Analysis Setting Guarantee Sample complexityb

Agarwal et al. (2020b) Generative model ε+O(εopt/(1− γ))-optimal Õ(SA/(1− γ)3ε2)

Le et al. (2019); Chen and Jiang (2019) ∞-horizon offline ε-optimal policy Õ((1− γ)−6Cµ/ε
2)

Xie and Jiang (2020b) ∞-horizon offline ε-optimal policy Õ((1− γ)−4Cµ/ε
2)

SIMPLEX for exact empirical optimala H-horizon offline ε-optimal policy Õ(H3/dmε
2)

PI/VI for εopt-empirical optimal H-horizon offline (ε+ εopt)-optimal policy Õ(H3/dmε
2)

Minimax lower bound (Theorem G.2) H-horizon offline over class Mdm Ω(H3/dmε
2)

a PI/VI or SIMPLEX is not essential and can be replaced by any efficient empirical MDP solver.
b Episode complexity in H-horizon setting is comparable to step complexity in ∞-horizon setting because our

finite-horizon MDP is time-inhomogeneous. Informally, we can just take (1− γ)−1 � H and Cµ � 1/dm.

ideas here due the space constraint, detailed proofs are
explicated in order in Appendix D, E, F, G.

6 NUMERICAL SIMULATION

In this section we use a simple simulated environment
to empirically demonstrate the correct scaling in H. Di-
rect evaluating supπ∈Π |v̂π−vπ| empirically is computa-
tionally infeasible since the policy classes we considered
here contains either AHS or ∞ many policies. Instead,
in the experiment we will plot the sub-optimality gap
|v?− vπ̂? | with π̂? being the outputs of policy planning
algorithms. The sub-optimality gap is considered as
a surrogate for the lower bound of supπ∈Π |v̂π − vπ|.
Concretely, the non-stationary MDP has 2 states s0, s1

and 2 actions a1, a2 where action a1 has probability 1
going back the current state and for action a2, there is
one state s.t. after choosing a2 the dynamic transitions
to both states with equal probability 1

2 and the other
one has asymmetric probability assignment (1

4 and 3
4 ).

The transition after choosing a2 is changing over dif-
ferent time steps therefore the MDP is non-stationary
and the change is decided by a sequence of pseudo-
random numbers (Figure 1(c) shows the transition
kernel at a particular time step). Moreover, to make
the learning problem non-trivial we use non-stationary
rewards with 4 categories, i.e. rt(s, a) ∈ { 1

4 ,
2
4 ,

3
4 , 1}

and assignment of rt(s, a) for each value is changing
over time (see Section I in appendix for more details).
Lastly, the logging policy in Figure 1(a) is uniform with
µt(a1|s) = µt(a2|s) = 1

2 for both states.

Figure 1(a) use a fixed number of episodes n = 2048
while varying H to examine the horizon dependence for
uniform OPE. We can see for fixed pointwise OPE with
OPEMA (blue line), |vπ − v̂π| scales as O(

√
H2) which

reflects the bound of Lemma 3.4; for the model-based
planning, we ran both VI and PI until they converge to
the empirical optimal policy π̂?. The figure shows that
for this MDP example |v?−vπ̂? | scales as O(

√
H3/dm)

for fixed n since it is parallel to the reference magenta
line. This fact empirically shows O(

√
H3/dm) bound is

required confirms the scaling of our theoretical results.

Figure 1(b) show the comparison between |v̂π̂? − vπ̂? |
and |v̂π − vπ| for some fixed policy π. The trend of
|v̂π̂? − vπ̂? | shares a similar pattern as |v? − vπ̂? | in
Figure 1(a). More detailed discussions can be found in
Section I in appendix.

7 DISCUSSION

The Efficiency Of Model-based Methods. There
had been a long-lasting debate about model-based vs
model-free methods in RL. The model-based methods
were considered inefficient in both space and sample
complexity, due to the need to represents the transition
kernel in O(HS2A). Most sample-efficient methods
with the right dependence in S are model-free methods
that directly represents and updates the Q-function.
Our analysis reveals that direct model-based plug-in
estimator is optimal in both pointwise and uniform
prediction problems, which helps to correct the com-
monly held misunderstanding that purely model plug-in
estimator is loose due to simulation lemma.

Uniform OPE Depends On π. In this paper, we
primarily consider obtaining uniform bound indepen-
dent to π, however, given a logging policy µ, it is often
easier to evaluate some policies than others, as is re-
vealed in the pointwise OPE bound of (Yin and Wang,
2020). Specifically, obtaining a high probability bound

of the form supπ
√
n|v̂π−vπ|

γ(π,µ,M,δ) ≤ C for some function γ

and constant C would be of great interest. We could
already get such a bound by applying union bound to
the data-dependent high probability pointwise conver-
gence of either (Yin and Wang, 2020) or (Duan et al.,
2020) but it comes with an additional O(S) factor.
Characterizing the optimal per-instance OPE bound is
an interesting future direction.

Simulation Lemma.4 Our result can be viewed as a

4There are different folklores for Simulation Lemma
Agarwal et al. (2020a). We focus on the analyzing perspec-
tive, see Jiang (2018).
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Figure 1: Log-log plot showing the dependence on horizon of uniform OPE and pointwise OPE via learning
(|v? − vπ̂? |) over a non-stationary MDP example.

strengthened version of the simulation lemma (Kearns
and Singh, 2002) (see also the exposition in (Jiang,
2018), which uses similar notations to us). The OPE
bound that can be obtained by applying the simulation
lemma is

|v̂π − vπ| ≤ H2 sup
t,st,at

∥∥∥P̂ (·|st, at)− P (·|st, at)
∥∥∥

1

≤ Õ
[√

H4S2

ndm

]

which implies an episode complexity5 of
Õ(H4S2/dmε

2). The main limitation of the simulation
lemma is that it does not distinguish between pointwise
/ uniform convergence (and their bound is in fact a
uniform OPE bound), thus will suffer from a loose
bound when applied to fixed policies or data-dependent
policies that qualify for the smaller policy classes that
we considered. For example, our Lemma 3.4 shows that
for the same plug-in estimator, the bound improves
to Õ(H2/dmε

2) for pointwise OPE and Theorem 3.7
shows that we can knock out a factor of HS2 in
the uniform convergence of near empirically optimal
policies. Finally, there is a factor of Simprovement in
the global policy class unconditionally. These savings
can be used as drop-in replacements to many instances
where the simulation lemma is applied to improve the
parameters of the analysis therein.

5See Section J for more calculation details.

8 CONCLUSION

This work represents the first systematic study of uni-
form convergence in offline policy evaluation. We de-
rive near optimal results for three representative policy
classes. By viewing offline policy evaluation from the
uniform convergence perspective, we are able to unify
two central topics in offline RL, OPE and offline learn-
ing while establishing optimal rates in a subset of these
settings including the first rate-optimal offline rein-
forcement learning method. The work focuses on the
episodic tabular MDP with nonstationary transitions.
Carrying out the same analysis for the stationary tran-
sition case, infinite horizon case, as well as the linear
MDP setting is highly tractable with the techniques
presented. Formalizing these is left as a future work.
More generally, a natural complexity measure for the
policy class of RL remains elusive. We hope the work
could inspire a more general statistical learning theory
for RL in the near future.
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