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Abstract

We study the problem of inferring communication structures that can solve coop-
erative multi-agent planning problems while minimizing the amount of commu-
nication. We quantify the amount of communication as the maximum degree of
the communication graph; this metric captures settings where agents have limited
bandwidth. Minimizing communication is challenging due to the combinatorial na-
ture of both the decision space and the objective; for instance, we cannot solve this
problem by training neural networks using gradient descent. We propose a novel
algorithm that synthesizes a control policy that combines a programmatic com-
munication policy used to generate the communication graph with a transformer
policy network used to choose actions. Our algorithm first trains the transformer
policy, which implicitly generates a “soft” communication graph; then, it synthe-
sizes a programmatic communication policy that “hardens” this graph, forming
a neurosymbolic transformer. Our experiments demonstrate how our approach
can synthesize policies that generate low-degree communication graphs while
maintaining near-optimal performance.

1 Introduction

Many real-world robotics systems are distributed, with teams of agents needing to coordinate to
share information and solve problems. Reinforcement learning has recently been demonstrated as a
promising approach to automatically solve such multi-agent planning problems [28, 16, 8, 18, 9, 13].

A key challenge in (cooperative) multi-agent planning is how to coordinate with other agents, both
deciding whom to communicate with and what information to share. One approach is to let agents
communicate with all other agents; however, letting agents communicate arbitrarily can lead to
poor generalization [12, 21]; furthermore, it cannot account for physical constraints such as limited
bandwidth. A second approach is to manually impose a communication graph on the agents, typically
based on distance [12, 29, 21, 26]. However, this manual structure may not reflect the optimal
communication structure—for instance, one agent may prefer to communicate with another one that
is farther away but in its desired path. A third approach is to use a transformer [31] as the policy
network [4], which uses attention to choose which other agents to focus on. However, since the
attention is soft, each agent still communicates with every other agent.

∗Equal contribution.
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We study the problem of learning a communication policy that solves a multi-agent planning task
while minimizing the amount of communication required. We measure the amount of communication
on a given step as the maximum degree (in both directions) of the communication graph on that step;
this metric captures the maximum amount of communication any single agent must perform at that
step. While we focus on this metric, our approach easily extends to handling other metrics—e.g.,
the total number of edges in the communication graph, the maximum in-degree, and the maximum
out-degree, as well as general combinations of these metrics.

A key question is how to represent the communication policy; in particular, it must be sufficiently
expressive to capture communication structures that both achieve high reward and has low com-
munication degree, while simultaneously being easy to train. Neural network policies can likely
capture good communication structures, but they are hard to train since the maximum degree of
the communication graph is a discrete objective that cannot be optimized using gradient descent.
An alternative is to use a structured model such as a decision tree [3] or rule list [34] and train
using combinatorial optimization. However, these models perform poorly since choosing whom to
communicate with requires reasoning over sets of other agents—e.g., to avoid collisions, an agent
must communicate with its nearest neighbor in its direction of travel.

We propose to use programs to represent communication policies. In contrast to rule lists, our
programmatic polices include components such as filter and map that operate over sets of inputs.
Furthermore, programmatic policies are discrete in nature, making them amenable to combinatorial
optimization; in particular, we can compute a programmatic policy that minimizes the communication
graph degree using a stochastic synthesis algorithm [25] based on MCMC sampling [19, 10].

A key aspect of our programs is that they can include a random choice operator. Intuitively, random
choice is a key ingredient needed to minimize the communication graph degree without global
coordination. For example, suppose there are two groups of agents, and each agent in group A needs
to communicate with an agent in group B, but the specific one does not matter. Using a deterministic
communication policy, since the same policy is shared among all agents, each agent in group A might
choose to communicate with the same agent j in group B (e.g., if agents in the same group have
similar states). Then, agent j will have a very high degree in the communication graph, which is
undesirable. In contrast, having each agent in group A communicate with a uniformly random agent
in group B provides a near-optimal solution to this problem, without requiring the agents to explicitly
coordinate their decisions.

While we can minimize the communication graph degree using stochastic search, we still need to
choose actions based on the communicated information. Thus, we propose a learning algorithm that
integrates our programmatic communication policy with a transformer policy for selecting actions.
We refer to the combination of the transformer and the programmatic communication policy as a
neurosymbolic transformer. This algorithm learns the two policies jointly. At a high level, our
algorithm first trains a transformer policy for solving the multi-agent task; as described above, the
soft attention weights capture the extent to which an edge in the communication graph is useful. Next,
our algorithm trains a programmatic communication policy that optimizes both goals: (i) match the
transformer as closely as possible, and (ii) minimize the maximum degree of the communication
graph at each step. In contrast to the transformer policy, this communication policy makes hard
decisions about which other agents to communicate with. Finally, our algorithm re-trains the weights
of the transformer policy, except where the (hard) attention weights are chosen by the communication
policy.

We evaluate our approach on several multi-agent planning tasks that require agents to coordinate to
achieve their goals. We demonstrate that our algorithm learns communication policies that achieve
task performance similar to the original transformer policy (i.e., where each agent communicates
with every other agent), while significantly reducing the amount of communication. Our results
demonstrate that our algorithm is a promising approach for training policies for multi-agent systems
that additionally optimize combinatorial properties of the communication graph 2

Example. Consider the example in Figure 1, where agents in group 1 (blue) are navigating from the
left to their goal on the right, while agents in group 2 (red) are navigating from the right to their goal
on the left. In this example, agents have noisy observations of the positions of other agents (e.g.,

2The code and a video illustrating the different tasks are available at https://github.com/jinala/
multi-agent-neurosym-transformers.
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Figure 1: Left: Two groups of agents (red vs. blue) at their initial positions (circles) trying to reach
their goal positions (crosses). Agents must communicate both within group and across groups to
choose a collision free path to take (solid line shows a path for a single agent in each group). Middle:
The soft attention weights of the transformer policy computed by the agent along the y-axis for the
message received from the agent along the x-axis for the initial step. Right: The hard attentions
learned by the programmatic communication policy to imitate the transformer.

based on cameras or LIDAR); however, they do not have access to internal information such as their
planned trajectories or even their goals. Thus, to solve this task, each agent must communicate both
with its closest neighbor in the same group (to avoid colliding with them), as well as with any agent
in the opposite group (to coordinate so their trajectories do not collide). The communication graph of
the transformer policy (in terms of soft attention weights) is shown in Figure 1 (middle); every agent
needs to communicate with all other agents. The programmatic communication policy synthesized
by our algorithm is

argmax(map(−di,j , filter(θi,j ≥ −1.85, l))), random(filter(di,j ≥ 3.41, l)).

Agent i uses this program to choose two other agents j from the list of agents ` from whom to request
information; di,j is the distance between them and θi,j is the angle between them. The first rule
chooses the nearest agent j (besides itself) such that θi,j ∈ [−1.85, π], and the second chooses a
random agent in the other group. The communication graph is visualized in Figure 1 (right).

Related work. There has been a great deal of recent interest in using reinforcement learning to
automatically infer good communication structures for solving multi-agent planning problems [12,
29, 21, 4, 26]. Much of this work focuses on inferring what to communicate rather than whom to
communicate with; they handcraft the communication structure to be a graph (typically based on
distance) [12, 29, 21], and then use a graph neural network [24, 14] as the policy network. There has
been some prior work using transformer network to infer the communication graph [4]; however,
they rely on soft attention, so the communication graph remains fully connected. Prior work [27]
frames the multi-agent communication problem as a MDP problem where the decisions of when to
communicate are part of the action space. However, in our case, we want to learn who to communicate
with in-addition to when to communicate. This results in a large discrete action space and we found
that RL algorithms perform poorly on this space. Our proposed approach addresses this challenge by
using the transformer as a teacher.

There has also been a great deal of interest using an oracle (in our case, the transformer policy)
to train a policy (in our case, the programmatic communication policy) [15, 20]. In the context of
multi-agent planning, this approach has been used to train a decentralized control policy using a
centralized one [29]; however, their communication structure is manually designed.

Finally, in the direction of program synthesis, there has been much recent interest in leveraging
program synthesis in the context of machine learning [7, 6, 30, 22, 35, 17]. Specifically in the context
of reinforcement learning, it has been used to synthesize programmatic control policies that are more
interpretable [33, 32], that are easier to formally verify [2, 23], or that generalize better [11]; to the
best of our knowledge, none of these approaches have considered multi-agent planning problems.
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2 Problem Formulation

We formulate the multi-agent planning problem as a decentralized partially observable Markov
decision process (POMDP). We consider N agents i ∈ [N ] = {1, ..., N} with states si ∈ S ⊆ RdS ,
actions ai ∈ A ⊆ RdA , and observations oi,j ∈ O ⊆ RdO for every pair of agents (j ∈ [N ]).
Following prior work [18, 9, 4], we operate under the premise of centralized training and decentralized
execution. Hence, during training the POMDP has global states SN , global actions AN , global
observations ON×N , transition function f : SN × AN → SN , observation function h : SN →
ON×N , initial state distribution s0 ∼ P0, and reward function r : SN ×AN → R.

The agents all use the same policy π = (πC , πM , πA) divided into a communication policy πC
(choose other agents from whom to request information), a message policy πM (choose what
messages to send to other agents), and an action policy πA (choose what action to take). Below, we
describe how each agent i ∈ [N ] chooses its action ai at any time step.

Step 1 (Choose communication). The communication policy πC : S × ON → CK inputs the
state si of current agent i and its observations oi = (oi,1, ..., oi,N ), and outputs K other agents
ci = πC(si, oi) ∈ CK = [N ]K from whom to request information. The communication graph
c = (c1, ..., cN ) ∈ CN×K is the directed graph G = (V,E) with nodes V = [N ] and edges
E = {j → i | (i, j) ∈ [N ]2 ∧ j ∈ πC(si, oi)}. For example, in the communication graph in Figure 1
(right), c0 = (1, 19)—i.e., agent 0 in group 1 receives messages from agent 1 in group 1 and agent
19 in group 2.

Step 2 (Choose and send/receive messages). For every other agent j ∈ [N ], the message policy
πM : S ×O →M inputs si and oi,j and outputs a message mi→j = πM (si, oi,j) to be sent to j if
requested. Then, agent i receives messages mi = {mj→i | j ∈ ci} ∈ MK .

Step 3 (Choose action). The action policy πA : S × ON ×MK → A inputs si, oi, and mi, and
outputs action ai = πA(si, oi,mi) to take.

Sampling a trajectory/rollout. Given initial state s0 ∼ P0 and time horizon T , π generates the
trajectory (s0, s1, ..., sT ), where ot = h(st) and st+1 = f(st, at), and where for all i ∈ [N ], we
have cit = πC(sit, o

i
t), m

i
t = {πM (sjt , o

j,i
t ) | j ∈ cit}, and ait = πA(sit, o

i
t,m

i
t).

Objective. Then, our goal is to train a policy π that maximizes the objective

J(π) = JR(π) + λJC(π) = Es0∼P0

[
T∑
t=0

γtr(st, at)

]
− λEs0∼P0

[
T∑
t=0

max
i∈[N ]

deg(i; ct)

]
,

where λ ∈ R>0 is a hyperparameter, the reward objective JR is the time-discounted expected
cumulative reward over time horizon T with discount factor γ ∈ (0, 1), and the communication
objective JC is to minimize the degree of the communication graph, where ct is the communication
graph on step t, and deg(i; ct) is the sum of the incoming and outgoing edges for node i in ct. Each
agent computes its action based on just its state, its observations of other agents, and communications
received from the other agents; thus, the policy can be executed in a decentralized way.

Assumptions on the observations of other agents. We assume that oi,j is available through visual
observation (e.g., camera or LIDAR), and therefore does not require extra communication. In all
experiments, we use oi,j = xj − xi + εi,j—i.e., the position xj of agent j relative to the position
xi of agent i, plus i.i.d. Gaussian noise εi,j . This information can often be obtained from visual
observations (e.g., using an object detector); εi,j represents noise in the visual localization process.

The observation oi,j is necessary since it forms the basis for agent i to decide whether to communicate
with agent j; if it is unavailable, then i has no way to distinguish the other agents. If oi,j is unavailable
for a subset of agents j (e.g., they are outside of sensor range), we could use a mask to indicate that
the data is missing. We could also replace it with alternative information such as the most recent
message from j or the most recent observation of j.

We emphasize that oi,j does not contain important internal information available to the other agents—
e.g., their chosen goals and their planned actions/trajectories. This additional information is critical
for the agents to coordinate their actions and the agents must learn to communicate such information.
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3 Neurosymbolic Transformer Policies

Our algorithm has three steps. First, we use reinforcement learning to train an oracle policy based
on transformers (Section 3.1), which uses soft attention to prioritize edges in the communication
graph. However, attention is soft, so every agent communicates with every other agent. Second, we
synthesize a programmatic communication policy (Section 3.2) by having it mimic the transformer
(Section 3.4). Third, we combine the programmatic communication policy with the transformer policy
by overriding the soft attention of the transformer by the hard attention imposed by the programmatic
communication policy (Section 3.3), and re-train the transformer network to fine-tune its performance
(Section 3.5). We discuss an extension to multi-round communications in Appendix A.

3.1 Oracle Policy

We begin by training an oracle policy that guides the synthesis of our programmatic communication
policy. Our oracle is a neural network policy πθ = (πCθ , π

M
θ , π

A
θ ) based on the transformer architec-

ture [31]; its parameters θ are trained using reinforcement learning to optimize JR(πθ). At a high
level, πCθ communicates with all other agents, πMθ is the value computed by the transformer for pairs
(i, j) ∈ [N ]2, and πA is the output layer of the transformer. While each agent i receives information
from every other agent j, the transformer computes a soft attention score αj→i that indicates how
much weight agent i places on the message mj→i from j.

More precisely, the communication policy is ci = πCθ (s
i, oi) = [N ] and the message policy is

mi→j = πMθ (si, oi,j). The action policy is itself composed of a key network πKθ : S ×O → Rd, a
query network πQθ : S → Rd, and an output network πOθ : S ×M→ A; then, we have

πAθ (s
i, oi,mi) = πOθ

si, N∑
j=1

αj→imj→i

 , (1)

where the attention αj→i ∈ [0, 1] of agent i to the message mj→i received from agent j is

(α1→i, ..., αN→i) = softmax
(
〈qi, ki,1〉√

d
, ...,
〈qi, ki,N 〉√

d

)
, (2)

where ki,j = πKθ (si, oi,j) and qi = πQθ (s
i) for all i, j ∈ [N ]. Since πθ is fully differentiable, we can

use any reinforcement learning algorithm to train θ; assuming f and r are known and differentiable,
we use a model-based reinforcement learning algorithm that backpropagates through them [5, 1].

3.2 Programmatic Communication Policies

Due to the combinatorial nature of the communication choice and the communication objective,
we are interested in training communication policies represented as programs. At a high level, our
communication policy πCP is a parameterized program P : S ×ON → CK , which is a set of K rules
P = (R1, ..., RK) where each rule R : S × ON → C selects a single other agent from whom to
request information—i.e., πCP (s

i, oi) = P (si, oi) = (R1(s
i, oi), ..., RK(si, oi)).

When applied to agent i, each rule first constructs a list

` = (x1, ..., xN ) = ((si, oi,1, 1), ..., (si, oi,N , N)) ∈ XN ,

where X = S ×O × [N ] encodes an observation of another agent. Then, it applies a combination of
standard list operations to `—in particular, we consider two combinations

R ::= argmax(map(F, filter(B, `))) | random(filter(B, `)).

Intuitively, the first kind of rule is a deterministic aggregation rule, which uses F to score every
agent after filtering and then chooses the one with the best score, and the second kind of rule is a
nondeterministic choice rule which randomly chooses one of the other agents after filtering.

More precisely, filter outputs the list of elements x ∈ ` such that B(x) = 1, where B : X → {0, 1}.
Similarly, map outputs the list of pairs (F (x), j) for x = (si, oi,j , j) ∈ `, where F : X → R.
Next, argmax inputs a list ((vj1 , j1), ..., (vjH , jH)) ∈ (R× [N ])H , where vj is a score computed for
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agent j, and outputs the agent j with the highest score vj . Finally, random(`) takes as input a list
((si, oi,j1 , j1), ..., (s

i, oi,jH , jH)) ∈ XH , and outputs jh for a uniformly random h ∈ [H].

Finally, the filter predicates B and map functions F have the following form:

B ::= 〈β, φ(si, oi,j)〉 ≥ 0 | B ∧B | B ∨B F ::= 〈β, φ(si, oi,j)〉,

where β ∈ Rd′ are weights and φ : S ×O → Rd′ is a feature map.

3.3 Combined Transformer & Programmatic Communication Policies

A programmatic communication policy πCP only chooses which other agents to communicate with;
thus, we must combine it with a message policy and an action policy. In particular, we combine
πCP with the transformer oracle πθ to form a combined policy πP,θ = (πCP , π

M
θ , π

A
P,θ), where (i) the

oracle communication policy πCθ is replaced with our programmatic communication policy πCP , and
(ii) we use πCP to compute hard attention weights that replace the soft attention weights in πAP,θ.

The first modification is straightforward; we describe the second in more detail. First, we use πCP as a
mask to get the hard attention weights:

αP,j→i =

{
αj→i/Z if j ∈ πCP (si, oi)
0 otherwise

where Z =
∑

j∈πC
P (si,oi)

αj→i

Now, we can use αP,j→i in place of αj→i when computing the action using πθ—i.e.,

πAP,θ(s
i,mi) = πOθ

si, N∑
j=1

αP,j→imj→i

 ,

where the messages mj→i = πMθ (sj , oj,i) are as before, and πOθ is the output network of πAθ .

3.4 Synthesis Algorithm

To optimize P over the search space of programs, we use a combinatorial search algorithm based on
MCMC [19, 10, 25]. Given our oracle policy πθ, our algorithm maximizes the surrogate objective

J̃(P ; θ) = J̃R(P ; θ) + λ̃J̃C(P ) = −Es0∼P0

[
T∑
t=0

‖at − aPt ‖1

]
− λ̃Es0∼P0

[
T∑
t=0

max
i∈[N ]

deg(i; cPt )

]
,

where λ̃ ∈ R>0 is a hyperparameter, the surrogate reward objective J̃R aims to have the actions aPt
output by πP,θ match the actions at output by the πθ, and the surrogate communication objective J̃C

aims to minimize the degree of the communication graph cPt computed using πCP .

Finally, a key to ensuring MCMC performs well is for sampling candidate programs P and evaluating
the objective J̃(P ) to be very efficient. The former is straightforward; our algorithm uses standard
choice of neighbor programs that can be sampled very efficiently. For the latter, we precompute a
dataset of tuples D = {(s, o, α, a)} by sampling trajectories of horizon T using the oracle policy
πθ. Given a tuple in D and a candidate program P , we can easily compute the corresponding values
(aP , αP , cP ). Thus, we can evaluate J̃(P ) using these values.

Note that, we sample trajectories using the transformer policy rather than using a program policy. The
latter approach is less efficient because we have to sample trajectories at every iteration of the MCMC
algorithm and we cannot batch process the objective metric across timesteps. The only potential
drawback of sampling using the transformer policy is that the objective J̃(P ) can be affected by the
shift in the trajectories. However, as our experiments demonstrate, we achieve good results despite
any possible distribution shift; hence, the efficiency gains far outweigh any cons.

3.5 Re-training the Transformer

Once our algorithm has synthesized a program P , we can form the combined policy πP,θ to control
the multi-agent system. One remaining issue is that the parameters θ are optimized for using the
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Figure 2: Statistics of cumulative loss and communication graph degrees across baselines, for (a)
random-cross, (b) random-grid, and (c) unlabeled-goals. We omit communication degrees
for tf-full, since it requires communication between all pairs of agents.

original soft attention weights αj→i rather than the hard attention weights αP,j→i. Thus, we re-train
the parameters of the transformer models in πP,θ. This training is identical to how πθ was originally
trained, except we use αP,j→i instead of αj→i to compute the action at each step.

4 Experiments

Formation task. We consider multi-agent formation flying tasks in 2D space [12]. Each agent has
a starting position and an assigned goal position. The task is to learn a decentralized policy for the
agents to reach the goals while avoiding collisions. The agents are arranged into a small number of
groups (between 1 and 4): starting positions for agents within a group are close together, as are goal
positions. Each agent’s state si contains its current position xi and goal position gi. The observations
oi,j = xj − xi + εi,j are the relative positions of the other agents, corrupted by i.i.d. Gaussian
noise εi,j ∼ N (0, σ2). The actions ai are agent velocities, subject to ‖ai‖2 ≤ vmax. The reward at
each step is r(s, a) = rg(s, a) − rc(s, a), where the goal reward rg(s, a) = −

∑
i∈[N ] ‖xi − gi‖2

is the negative sum of distances of all agents to their goals, and the collision penalty rc(s, a) =∑
i,j∈[N ],i6=j max{pc(2− ‖xi − xj‖2/dc), 0} is the hinge loss between each pair of agents, where

pc is the collision penalty weight and dc is the collision distance.

We consider two instances. First, random-cross contains up to 4 groups; each possible group
occurs independently with probability 0.33. The starting positions in each group (if present) are
sampled uniformly randomly inside 4 boxes with center b equal to (−`, 0), (0,−`), (`, 0), and (0, `),
respectively, and the goal positions of each group are sampled randomly from boxes with centers
at −b. The challenge is that agents in one group must communicate with agents in other groups to
adaptively choose the most efficient path to their goals. Second, random-grid contains 3 groups
with starting positions sampled in boxes centered at (−`, 0), (0, 0), and (`, 0), respectively, and the
goal positions are sampled in boxes centered at randomly chosen positions (bx, by) ∈ {−`, 0, `}2
(i.e., on a 3× 3 grid), with the constraint that the starting box and goal box of a group are adjacent
and the boxes are all distinct. The challenge is that each agent must learn whom to communicate
with depending on its goal.

Unlabeled goals task. This task is a cooperative navigation task with unlabeled goals [18] that hasN
agents along with N goals at positions g1, ..., gN (see Figure 5 in the appendix). The task is to drive
the agents to cover as many goals as possible. We note that this task is not just a navigation task. Since
the agents are not pre-assigned to goals, there is a combinatorial aspect where they must communicate
to assign themselves to different goals. The agent state si is its own position xi and the positions of the
goals (ordered by distance at the initial time step). The observations oi,j are the relative positions to
the other agents, corrupted by Gaussian noise. The actions ai = (pi1, · · · , pil, · · · , piN ) are the weights
(normalized to 1) over the goals; the agent moves in the direction of the weighted sum of goals—i.e.,
its velocity is ai =

∑
k∈[N ] p

i
k(gk − xi). The reward is r(s, a) =

∑
k∈[N ] maxi∈[N ]p

i
k − N—i.e.,

the sum over goals of the maximum weight that any agent assigns to that goal minus N .

Baselines. We consider four baselines. (i) Fixed communication (dist): A transformer, but where
other agents are masked based on distance so each agent can only attend to its k nearest neighbors.
We find this model outperforms GCNs with the same communication structure [12], since its attention
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Figure 3: (a) For random-cross, trajectories taken by each group (i.e., averaged over all agents
in that group) when all four groups are present (left) and only one group is present (right), by
prog-retrained (solid) and dist (dashed). Initial positions are circles and goal positions are
crosses. (b) Attention weights for hard-attn and prog-retrained at a single step near the start of
a rollout, computed by the agent along the y-axis for the message from the agent along the x-axis.

parameters enable each agent to re-weight the messages it receives. (ii) Transformer (tf-full): The
oracle transformer policy from Section 3.1; here, each agent communicates with all other agents. (iii)
Transformer + hard attention (hard-attn): The transformer policy, but where the communication
degree is reduced by constraining each agent to only receive messages from the k other agents with
the largest attention scores. Note that this approach only minimizes the maximum in-degree, not
necessarily the maximum out-degree; minimizing both would require a centralized algorithm. (iv)
Transformer + program (prog): An ablation of our approach that does not retrain the transformer
after synthesizing the programmatic communication policy (i.e., it skips the step in Section 3.5). (v)
Transformer + retrained program (prog-retrain): Our full approach.

The tasks random-cross and random-grid perform 1 round of communications per time step
for all the baselines, while the unlabeled-goals task uses 2 rounds of communications. For all
approaches, we train the model with 10k rollouts. For synthesizing the programmatic policy, we
build a dataset using 300 rollouts and run MCMC for 10000 steps. We retrain the transformer with
1000 rollouts. We constrain the maximum in-degree to be a constant d0 across all approaches (except
tf-full, where each agent communicates with every other agent); for dist and hard-attn, we
do so by setting the communication neighbors to be k = d0, and for prog and prog-retrain, we
choose the number of rules to be K = d0. This choice ensures fair comparison across approaches.

Results. We measure performance using both the loss (i.e., negative reward) and maximum commu-
nication degree (i.e., maximum degree of the communication graph), averaged over the time horizon.
Because the in-degree of every agent is constant, the maximum degree equals the in-degree plus
the maximum out-degree. Thus, we report the maximum in-degree and the maximum out-degree
separately. Results are in Figure 2; we report mean and standard deviation over 20 random seeds.

For random-cross and random-grid tasks, our approach achieves loss similar to the best loss
(i.e., that achieved by the full transformer), while simultaneously achieving the best communication
graph degree. In general, approaches that learn communication structure (i.e., tf-full, hard-attn,
and prog-retrained) perform better than having a fixed communication structure (i.e., dist). In
addition, using the programmatic communication policy is more effective at reducing the maximum
degree (in particular, the maximum out-degree) compared with thresholding the transformer attention
(i.e., hard-attn). Finally, retraining the transformer is necessary for the programmatic communi-
cation policy to perform well in terms of loss. For unlabeled-goals task, our approach performs
almost similar to dist baseline and slightly worse than tf-full baseline, but achieves a smaller
maximum degree. Moreover, the loss is significantly lower than the loss of 4.13 achieved when no
communications are allowed. We give additional results and experimental details in the appendix.

Learning whom to communicate with. Figure 3a shows two examples from random-cross: all
four groups are present (left), and only a single group is present (right). In the former case, the groups
must traverse complex trajectories to avoid collisions, whereas in the latter case, the single group can
move directly to the goal. However, with a fixed communication structure, the policy dist cannot
decide whether to use the complex trajectory or the direct trajectory, since it cannot communicate
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Figure 4: Visualization of a programmatic communication policy for random-grid, which has two
rules—one determinitsic and one nondeterministic. The red circle denotes the agent making the
decision, the red cross denotes its goal, and the green circle denotes the agent selected by the rule.
(a,b) Visualization of the nondeterministic rule for two configurations with different goals; orange
denotes the region where the filter condition is satisfied (i.e., the rule chooses a random agent in this
region). (c) Visualization of the deterministic rule, showing the score output by the map operator;
darker values are higher (i.e., the rule chooses the agent with the darkest value).

with agents in other groups to determine if it should avoid them. Thus, it always takes the complex
trajectory. In contrast, our approach successfully decides between the complex and direct trajectories.

Reducing the communication degree. Figure 3b shows the attention maps of hard-attn and
prog-retrained for the random-cross task at a single step. Agents using hard-attn often
attend to messages from a small subset of agents; thus, even if the maximum in-degree is low, the
maximum out-degree is high—i.e., there are a few agents that must send messages to many other
agents. In contrast, prog-retrained uses randomness to distribute communication across agents.

Understanding the learned program policy. Figure 4 visualizes a programmatic communication
policy for random-grid. Here, (a) and (b) visualize the nondeterministic rule for two different
configurations. As can be seen, the region from which the rule chooses an agent (depicted in orange)
is in the direction of the goal of the agent, presumably to perform longer-term path planning. The
deterministic rule (Figure 4c) prioritizes choosing a nearby agent, presumably to avoid collisions.
Thus, the rules focus on communication with other agents relevant to planning.

5 Conclusion

We have proposed an approach for synthesizing programmatic communication policies for decentral-
ized control of multi-agent systems. Our approach performs as well as state-of-the-art transformer
policies while significantly reducing the amount of communication required to achieve complex
multi-agent planning goals. We leave much room for future work—e.g., exploring other measures of
the amount of communication, better understanding what information is being communicated, and
handling environments with more complex observations such as camera images or LIDAR scans.

Broader Impact

Broadly speaking, reinforcement learning has the promise to significantly improve the usability of
robotics in open-world settings. Our work focuses on leveraging reinforcement learning to help solve
complex decentralized multi-agent planning problems, specifically by helping automate the design of
communication policies that account for computational and bandwidth constraints. Solutions to these
problems have a wide range of applications, both ones with positive societal impact—e.g., search and
rescue, disaster response, transportation, agriculture, and constructions—and ones with controversial
or negative impact—e.g., surveillance and military. These applications are broadly true of any work
that improves the capabilities of multi-agent systems such as self-driving cars or drones. Restricting
the capabilities of these systems based on ethical considerations is a key direction for future work.

Beyond communication constraints, security and robustness are important requirements for multi-
agent systems. While we do not explicitly study these properties, a key advantage of reduced
communication is to improve the resilience and robustness of the system and reduce the probability
of failure, since there are fewer points of failure. Furthermore, communication policies that include
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stochastic rules are typically more robust since they can replace a broken communication link with
another randomly selected link without sacrificing performance.

Furthermore, our research may have applications in other areas of machine learning. In general,
there has been growing interest in learning programmatic representations to augment neural network
models to improve interpretability, robustness, and generalizability. Along these dimensions, our
work could potentially impact other applications such as NLP where transformers are state-of-the-art.
In particular, our work takes a step in this direction by replacing soft attention weights in transformers
with programmatic attention rules. The programmatic nature of these weights makes them much
easier to interpret, as does the fact that the weights are hard rather than soft (since we now have a
guarantee that parts of the input are irrelevant to the computation).
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A Extending to Multi-Round Communications

The formulation in Section 3 can be extended to multiple rounds of communications per time step.
For the transformer architecture with two rounds of communications, first there is an internal network
πHθ : Rdin → Rdout that combines the state and the cumulative message into an internal vector

hi = πHθ

(
si,

∑N
j=1 α

j→imj→i
)

. Next, we compute the next round of messages as m′i→j =

πM
′

θ (hi, oi,j) which replaces the state si in the original equation with the internal state hi. New
keys and queries are also generated as k′i,j = πK

′

θ (si, oi,j) and q′i = πQ
′

θ (si), but these still use the
original state si. Finally, the Equations 2 and 1 are repeated to compute the action. This architecture
can be extended similarly to an arbitrary number of rounds of communications. A programmatic
policy for R rounds of communications will have R different programs (one for each round). We
synthesize these programs independently. To synthesize the communication program Pr for the
r-th round of communication, we use the hard attention weights αPr for the r-th round and use the
original soft attention weights for the other rounds r′ 6= r to compute the synthesis objective J̃(Pr).

B Experimental Details

The code and a short video illustrating the different tasks used in the paper can be found in https:
//github.com/jinala/multi-agent-neurosym-transformers. Figure 5 shows the initial
and goal positions for the unlabeled goals task, along with attention maps produced by our program
policies for the two rounds of communications at a particular timestep.

There are four main hyper-parameters in our synthesis algorithm.

• λ̃ in Section 3.4: This parameter strikes a balance between minimizing the difference in
the actions (with and without hard attention) and minimizing the maximum communication
degree. We use λ̃ = {0.3, 0.5, 0.7, 1.0}.

• The number of rules in the program = {2, 3, 4, 5}.

• The depth of the Boolean conditions in the filter expressions = 2.

• The feature map φ used in the filter predicates and the map functions. We have 2 versions:
1) for every vector (x, y) in the state s and the observations o, we also encode the norm√
x2 + y2 and the angle tan−1(y/x) as part of the features; 2) on top of 1, we add quadratic

features (xsxo, xsyo, ysxo, ysyo) where (xs, ys) is the state and (xo, yo) is the observation.

We used cross validation to choose these parameters. In particular, we chose the ones that produced
the lowest cumulative reward on a validation set of rollouts; if the cumulative rewards are similar, we
chose the ones that reduced the communication degree.
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Figure 5: Unlabeled goals task: (a) Initial positions of the agents and the locations of the goals to
cover (b) Final configuration of the agents where 8 out of the 10 goals are covered (c) Attention maps
of prog-retrained for the two rounds of communication.
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Figure 6: Statistics of cumulative loss and communication graph degrees for the additional baselines,
for (a) random-cross, (b) random-grid, and (c) unlabeled-goals.
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Figure 7: Comparing program policy with RL policy that treats communications as actions. RL1 and
RL2 correspond to two different hyper-parameters in the policy gradient algorithm.

C Additional Baselines

We compare to two additional baselines: (i) an ablation of our approach that learns only de-
terministic rules—i.e., rules with random are excluded from the search space (det-prog and
det-prog-retrained), and (ii) a learned communication policy in the form of a decision tree
(dt and dt-retrained). For (ii), to train the decision tree, we constructed a supervised dataset by
(i) collecting the soft-attentions from the transformer model, and (ii) solving the global hard-attention
problem at each timestep to ensure that the maximum degree (both in-degree and out-degree) is
at most k, where k is chosen as described in Section 4 (i.e., to match the number of rules in our
programmatic communication structure). Then, we train the decision tree using supervised data on
this dataset.

Figure 6 shows the performance using both the loss and the maximum communication degree for
these two baselines. The decision tree baselines (dt and dt-retrained) perform poorly in-terms of
the communication degree for all the tasks, demonstrating that domain-specific programs that operate
over lists are necessary for the communication policy to reduce communication.

The deterministic baseline (det-prog-retrained) achieves a similar loss as prog-retrained for
the random-cross and random-grid tasks; however, it has worse out-degrees of communication.
For these tasks, it is most likely difficult for a deterministic program to distinguish the different agents
in a group; thus, all agents are requesting messages from a small set of agents. For the unlabeled
goals task, the deterministic baseline has a lower degree of communication but has higher loss than
prog-retrained. Again, we hypothesize that the deterministic rules are insufficient for an agent to
distinguish the other agents, which led to a low in-degree (and consequently low out-degree), which
is not sufficient to solve the task.

D Comparison to Communication Decisions as Actions

The multi-agent communication problem can be formulated as an MDP where decisions about which
agents to communicate with are part of the action. We performed additional experiments to compare
to this approach. Since the action space now includes discrete actions, we use the policy gradient
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Figure 8: Random grid task with noisy communications.

algorithm to train the policy. We tuned several hyper-parameters including (i) weights for balancing
the reward term with the communication cost, (ii) whether to use a shaped reward function, and (iii)
whether to initialize the policy with the pre-trained transformer policy.

Results are shown in Figure 7. Here, rl1 is the baseline policy that achieves the lowest loss across all
hyper-parameters we tried; however, this policy has a very high communication degree. In addition,
rl2 is the policy with lowest communication degree; however, this policy has very high loss.

As can be seen, our approach performs significantly better than the baseline. We believe this is due
to the combinatorial blowup in the action space—i.e., there is a binary communication decision for
each pair of agents, so the number of communication actions is 2N−1 per agent and 2N(N−1) for
all agents (where N is the number of agents). Our approach addresses this challenge by using the
transformer as a teacher.

E Case Study with Noisy Communication

We consider a new benchmark based on the random grid task, but where the communication link
between any pair of agents has a 50% probability of failing. The results are shown in Figure 8.
As can be seen, the programmatic communication policy has similar loss as the transformer policy
while simultaneously achieving lower communication degree. Here, the best performing policy has
four rules (i.e., K = 4), whereas for the previous random grid task, the programmatic policy only
has 2 rules. Intuitively, each agent is attempting to communicate with more of the other agents to
compensate for the missing communications.
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