Locality: The 3rd Wall and The Need for
Innovation in Parallel Architectures

Peter M. Kogge! and Brian A. Page! kogge,bpagel@nd.edu

University of Notre Dame, Notre Dame, IN 46556, USA

Abstract. In the past we have seen two major “walls” (memory and
power) whose vanquishing required significant advances in architecture.
This paper discusses evidence of a third wall dealing with data local-
ity, which is prevalent in data intensive applications where computation
is dominated by memory access and movement — not flops, Such apps
exhibit large sets of often persistent data, with little reuse during com-
putation, no predictable regularity, significantly different scaling char-
acteristics, and where streaming is becoming important. Further, as we
move to highly parallel algorithms (as in running in the cloud), these
issues will get even worse. Solving such problems will take a new set of
innovations in architecture. In addition to data on the new wall, this pa-
per will look at one possible technique: the concept of migrating threads,
and give evidence of its potential value based on several benchmarks that
have scaling difficulties on conventional architectures.

Keywords: architecture - parallelism - multi-threading.

1 Introduction

The Cambrian explosion started about 540 million years ago, and represented
the jump from simple multi-cell colonies to complex multi-cell organisms, both
plant and animal, with rich internal structures and optimized for a wild variety
of environments. In their 2018 Turing Lecture [16], Hennessey and Patterson sug-
gested that we are reaching a similar threshold in computer architecture. We have
gone from simple single “cell” cores, through clustered “colonies” of such cells,
to the point where we are beginning to see specialized “organs” implemented by
accelerators for different functions. While the efficiency and scalability of such
systems are often quite good for problems with dense data that is accessed in a
regular pattern, this is not so true for “newly evolving” problems that are sparse
and irregular in their access patterns.

The thesis of this paper is that the problem is locality, which as typically
defined can come in several forms. In temporal locality, if some memory lo-
cation is accessed once, there is a high probability that the same location will
be accessed again within a short period of time. In spatial locality, if one lo-
cation is accessed, then there is a high probability that nearby locations will be
accessed within a short period of time. In parallel systems we also have physical
locality where it matters whether or not data is in a locally accessible memory.

2 Peter M. Kogge and Brian A. Page kogge,bpagel@nd.edu

Table 1. Eras in Parallel Architectures

Era Slime Mold Fungi Moss
Prehistory | Archaic |Yesteryear| Last Month Yesterday Today
App 3D Mesh-like Ax=Db, A dense nxn matrix Ax=Db sparse, BFS|ML, Analytics
Time Frame 1980s 1990s 2004 2008 2013
Computation o(n®) O(n?) O(n?) O(n®) O(n) O(n’)
Memory O(n®) 0(n?) 0(n?) O(n?) O(n) O(n")
1/0 o(n?) O(n) O(n) O(n) O(n*?) Oo(n")
Issue Basic Memory Socket Power Low App Locality
Scaling |Bandwidth| Power Efficiency Intensity
New 2D topology | Caches |Multi-core|Heterogeneous| GPUs, Hybrid | Massive core
Advances Moore’s Law Clock |Flat Clock Hybrid Many Core Smart NICs
SOC Fat Tree Hi-degree N/W
Low precision Proc. In/Near Mem

This paper is organized as follows. Section 2 walks briefly through the his-
torical changes. Sections 3 and 4 provide evidence of this new wall. Section 5
discusses one possible approach to solve these issues by allowing threads to mi-
grate. Section 6 provides examples of its effectiveness. Section 7 concludes.

2 Parallel Architectural Archaeology

To understand more fully the forces driving the need for changes in parallel ar-
chitectures, it is instructive to review briefly the historical record. In analogy
with biological evolution, the Proterozoic Eon saw the rise of the first cells with
organelles, which in computing terms corresponds to simple single core comput-
ers with basic function units. The Phanerozoic Eon saw the growth of multi-cell
organisms, or, in computing terms, systems with multiple cores. While parallel
function units date back to the Illiac IV (1972), and small-scale shared memory
machines date back almost as far, the first highly parallel machines really ap-
peared only in the mid 1980s (the Caltech Cosmic Cube). From then to now we
have seen three major eras in parallel systems:

— Slime Mold era: In biology, this early era was dominated by loose colonies
of simple single-cell organisms. The parallel architecture equivalent was the
early systems that had simple single core nodes with simple interconnects.

— Fungi era: In biology, this era represented a change to colonies of multi-cell
organisms, but where the cells are still mostly undifferentiated. The parallel
architecture equivalent was the appearance of multi-core processor chips.

— Moss era: In biology, this era began the evolution to organisms with multiple
types of cells. The parallel architecture equivalent was the introduction of
hybrid nodes with different types of cores and smart network interfaces.

In evolutionary terms, there have been major “extinction events” that caused
die-offs of lifeforms, and the emergence of newer ones that were better suited. The
same thing has happened with parallel architectures, driven by either technology
(“walls”) or changes in application needs. Table 1 summarizes how such events
have bifurcated the above three eras further into six periods.

Locality: The 3rd Wall 3

Prehistory - the start of the Slime Mold era: The first wave of parallel
computers were designed to solve 3D problems that were decomposable into
relatively independent sub-cubes that could be solved largely separately, such as
3D mesh equations and N-body problems, where “surfaces” of sub-cubes were
exchanged with nearest neighbors. Architecturally, nodes in such systems were
simple single cores. The major issue was simply getting enough parallel nodes.
The major technology advance was using Moore’s Law to move to single-chip
cores and scale the clock, with simple 2D or 3D hypercube interconnect topology.

Archaic: The Memory Wall. The second period emerged when processors
had accelerated clock speeds to the level where now memory bandwidth was
the major impediment. This triggered a shift from mesh-like simulation to the
solution of large linear equations of the form Ax=0 where A is a large dense ma-
trix. Packages such as LAPACK became quite efficient and easily parallelizable,
and led to HPL - the benchmark used for the semi-annual TOP500 rankings of
supercomputers. An advantage of these algorithms was that these large matrices
could be partitioned into smaller sub-matrices, such that a sub-matrix of O(m?)
values could be read into a core once, and O(m?) operations could be performed
on them, for the equivalent of m flops for each value read from memory. This
results in high locality, and with a sufficient-sized cache, a core could use nearly
all its capability. Moore’s Law provided the transistors to do this.

Yesteryear: The Power Wall. For a long time “Dennard scaling” allowed
us to reduce the size of transistors, increase the clock, and decrease the supply
voltage, all while keeping chip power density relatively constant. This meant
faster cores with bigger caches and enhanced ILP. Improving fabrication tech-
nology allowed larger die to be produced, resulting in power that was linear
in die size, but independent of clock or computational features. Around 2004,
however, our ability to scale voltage down slowed tremendously, and chip power
dissipation sykrocketed. This forced a major change in architecture. Maximum
clock speeds flattened to around 2-3GHz, and processor chips went from holding
single complex cores to multiple simpler cores that were more power efficient.
Caches continued to grow in size, with additional levels of caching introduced to
serve the multiple on-chip cores. Systems-on-a-chip that integrated multi-core
processing and networking became practical, such as IBM Blue Gene [11].

Last Month: Energy Efficiency. Even with multi-core processing chips with
simple cores, it became obvious that additional energy efficiencies would have to
be developed to allow cracking the petaflops (10! flops/sec.) barrier at accept-
able power levels. The first such system to do so in 2008, Roadrunner [1], had
several unique architectural features, and was a precursor for what became stan-
dard in the following decade. First, it employed a heterogeneous architecture
with two distinct types of processing chips, a conventional chip and one adapted
for specialized computation. Further, the accelerator chip was itself a hybrid
multi-core, where there were two types of cores that shared the same memory
space. Finally, the topology of the network changed from a mesh or torus to a
switched fat-tree that provided better non-nearest neighbor communication.

4 Peter M. Kogge and Brian A. Page kogge,bpagel@nd.edu

At the same time it became obvious that to get the next 1000x (“exascale”)
at acceptable power and in a reasonable period of time would need even more
architectural advances. A major study [21] performed an in-depth projection
that determined energy efficiency was the major problem, with memory and
interconnect, not computation, as the major culprits. The proposed architec-
ture featured not multi-core but many-core chips with hundreds of cores, 3D
stacked memory with substrate-level chip-to-chip connectivity to the processor
cores, on-chip integrated network interfaces, and high-radix interconnect topolo-
gies that do not use external switches. Even with all this, the projection for a
2015 exascale machine was 3X over the power goal, and to run at high efficiency
for dense problems could not provide anywhere near the relative memory or net-
work bandwidth found in then current machines. In addition, with millions of
cores, programming would have to deal with perhaps up to one billion threads.

Finally, this era also saw the rise of “Big Data” with analysis on large data
sets that were too unstructured for conventional databases. New parallel execu-
tion models like MapReduce staged data partitioned across many nodes through
various processing and merge steps. Architecturally, the workload presented by
such apps was dramatically different than their original design point (cf. [18]).

Yesterday: Sparsity. By the mid 2010s it became obvious that real algo-
rithms were not performing at anywhere near the floating point rates that HPL
achieved on the then top supercomputers. The percentage of non-floating point
operations had grown dramatically. Sparsity in data sets required significantly
more memory accesses that were not cacheable, and added to memory bandwidth
needs. Inter-node communication could no longer be fully overlapped with com-
putation, and thus became significant to compute times. Short point-to-point
messages with remote atomic operations were important for collectives that con-
trolled the overall flow of parallel computations. To shed light on these issues,
two new benchmarks were introduced. The first, Graph500, (2010) performs a
breadth-first search (BFS) through very large random graphs, and emphasizes
memory performance, short messages to random targets, and remote atomic
operations. Performance is in Traversed Edges Per Second (TEPS). The
second, High Performance Conjugate Gradient (HPCG) [17], is the solution of
Ax =0, but where A is very sparse, and integrated a local sparse matrix-vector
product with an iterative algorithm where the full matrix was partitioned across
a large number of nodes. Communication between nodes is regular and a sec-
ondary performance gate. As with HPL, performance is in flops. Unlike HPL,
where floating point efficiencies 80% and above are common, HPCG delivers
at best low single digits. The issue is the extra memory accesses to handle the
sparsity in the local matrix [23].

This era saw an explosive growth in heterogeneous architectures with the
coupling of conventional many-core processors to GPGPUs that themselves
are hybrid processors capable of running hundreds’ to thousands’ of threads.
At least one system (TaihuLight [10]) had only hybrid chips, each with literally
hundreds of cores. While highly efficient for traditional dense applications, these
features offered little for the newer sparse applications. However, given their

Locality: The 3rd Wall 5

origins in graphics applications needing less than 64-bit precision, they included
capabilities of performing multiple reduced-precision functions in the same time
as single 64-bit floating point operations.

Coupled with this were significant changes to the memory hierarchy. Three
levels of caching became commonplace. “Scratchpad” memory emerged that was
not cache but directly accessible, especially in many-core hybrid chips. 3D mem-
ory stacks offered more memory channels and much higher bandwidths. Per-
sistent memory that does not lose contents on power down is blurring the line
between main memory and file systems, and led to the term storage class
memory. Another trend has been to push intelligence out into the network.
“Smart NICs” reduced the overhead of message management by performing
such functions in hardware at either endpoints or in network switches.

Today: The Locality Wall. In the last few years we have seen a sea-change
in the applications driving high end parallel systems, with machine learning
(ML) leading the way. The emergence of the Internet of Things (IoT) has
pushed computation out to huge numbers of endpoints. The need to extract
and recognize complex connections in such massive, irregular, real-time, and
growingly sparse, data sets has become critical to both science and business.

The bulk of today’s AI applications take two forms: training and inference.
The former takes large data sets and tries to deduce a model. The latter ap-
ply such models to real data to make predictions about the data. Architec-
turally, such apps have triggered a growth in non-traditional parallel accelera-
tors. Nvidia, for example, markets a “DGX!" SuperPOD” that networks over
1500 GPUs. Google is even more application-specific with systems of thousands
of Tensor Processing Unit (TPUs) chips [19] that have up to 32,000 multiplier-
adders on a chip to accelerate matrix-vector products. Wafer-scale integration
as in the Cerebus chip now allows over 400,000 Al-tuned cores to be placed on
a huge chip with over 1 trillion transistors [15]. Such systems have several com-
mon features. First is a use of short floating point to greatly reduce the hardware
needed to perform computations. Second is the use of 3D stacked memory to
provide sufficient bandwidth to keep these huge numbers of function units fed.

Given the importance of lower precision arithmetic in such ML applications,
a new benchmark HPL-AT has been developed to continue attacking the Axz=0b
problem on conventional computers, but using lower than 64-bit precision for the
bulk of the computation. Limited results to date indicate a speedup of between
2.5 and 4.5X on the same hardware over native 64-bit performance.

Also there are indications that the old idea of “Processing Near Memory”
(PNM) or “Processing/Computing In Memory” (PIM/CIM) may finally demon-
strate real advantages, both for increased peak intensity for specialized apps and
for lowered energy. IBM’s TrueNorth chip [7] mirrors parallel functions found in
the human brain. Other chips, c.f. [35], implement low precision linear algebra
within a novel memory structure at extraordinarily low levels of energy.

6 Peter M. Kogge and Brian A. Page kogge,bpagel@nd.edu

10000 100 1.E+04

1000 7

Access
;
I
lbr
|
|

1.E+03

Flops/s

o

o
Flops per

7| 7

10

’
Gcatity 1E+02

? C#allenged| Denge HPL

IS

0.01

NN

Flop per Btye of Bandwidth
=
o

0.1 1 10 100 *
Application Intensity 1 AA 1.E+01

Both = — =MCDRAM ====- DDR4 2005 2010 2015 2020 2005 2010 2015 2020

(a) Roofline Curve (KNL) (b) Traditional Intensity (c) Flops/s per Access
1000 10 100

=
1<)
=)

==

L 2

Giga Compute Cycles/s
=
o
;

L

NERRNEI
ENEN

-

Compute Cycies per Byte
-
Compute Cycies per Access
I
[

0.1 0.1 10

2005 2010 2015 2020 2005 2010 2015 2020 2005 2010 2015 2020

(d) Compute Cycles (e) Intensity: Cycles/Byte (f) Intensity: Cycles/Access

Fig. 1. Today’s Architectures in terms of Ridge Point Intensity. The different color
points represent different classes of chip architectures.

3 Evidence of a New Wall - Low Intensity Apps

The roofline model [36] is a useful visualization of multiple performance bounds,
and how close a particular code is to reaching those bounds for a particular
architecture. In such charts, the y-axis is a measure of predicted performance in
terms of some basic operation count per second (such as flops/s), and the x-axis
a measure of “operational intensity,” the ratio of the number of such operations
performed in the algorithm divided by the minimum traffic from some level of
memory needed to support them. The numerator is a property of the program
being run, and the denominator a property of the memory hierarchy. A bounding
curve for such a chart is a line that represents the maximum performance possible
out of a particular system when running a code with a particular intensity.

Fig. 1(a) is an example of a bounding curve for a system using an Intel
Knight’s Landing many-core chip. In terms of bandwidth between memory and
the processor chip there are three possibilities: all data transfers are from the
main DDR4 memory, all is from the 3D stacked MCDRAM memory, or data
can come from either one at the same time. Each bounding curve consists of
two intersecting lines. The upper flat line is the peak performance possible from
the system if the computational units in the cores can run at 100%. The sloping

Locality: The 3rd Wall 7

line is a bandwidth constraining bound with a slope equalling the bandwidth
of the memory in bytes/sec. The “ridge point” where the two lines intersect is
when the peak bandwidth times the application’s peak intensity equals the peak
system performance. Alternatively, this ridge point is when a code’s operational
intensity equals the ratio of the processor’s peak computational performance
divided by the processor’s peak memory bandwidth. This ridge point is thus an
important characteristic of a processor. Fig. 1(b) charts how such a metric has
changed with time when flops is the metric. Modern designs have values of 10
or more, meaning that to utilize all their computational capability, a code must
continually find 10 or more flops to perform in the time required to transfer a
single byte from memory. This is the direct result of optimizing for dense HPL.

As some real examples, the SKA project is a massive radio-telescope project
with real-time computation at its core. An estimate of the Science Data Pro-
cessing chain is that it needs 250 pflops/s peak with a memory bandwidth of
200 pB/s [32,5]. This is an intensity of only 1.25 flops/byte. Further, the HPCG
sparse benchmark has an intensity of about 0.2 - even further below modern
systems. Also, the Sparse Matrix Dense Vector (SpMV) kernel that is central to
HPCG is even lower, at about 0.1 flops/byte. As another example, an ML kernel
using Stochastic Gradient Descent to compute a Support Vector Machine model
employs a loop involving an inner product and a vector-vector like operation
where one of the vectors (the model) has some temporal locality but the other
does not. The intensity varies between 0.01 and 0.4 depending on sparsity.

A variant of this is to use access rate as the denominator. Today’s archi-
tectures are designed to deliver 64 or more bytes per access, regardless of how
much is used. This is fine for dense HPL where there is significant spatial local-
ity, but for applications with little such, much of the accessed data is never used,
and represents wasted bandwidth. Fig. 1(c) charts this variation of intensity for
the same processors as Fig. 1(b). For a modern processor to run at maximum
efficiency, it must execute 1,000 or more flops for each memory access it makes.

Looking further, many of the newer locality-sensitive apps are not flop-
intensive, so the traditional flop intensity metric does not make sense. An al-
ternative to flops/s might be simply “compute cycles” - clock rate times number
of cores. If “operations” are measured as some number of instructions, and each
core may have some CPI up to a maximum of its issue width, then such a met-
ric is a decent approximation. Fig. 1(d) diagrams aggregate compute cycles per
processor over time, and Figs. 1(e) and (f) diagram equivalent intensity values
for both bandwidth and access rates. As can be seen, if apps have high locality
then it is easy to stay compute bound. However, with low locality, an app would
need 10s to 100s of instructions per operation to not be memory-bound.

An example is the BFS from the Graph500. Dividing the peak TEPS rating
for a typical processor by its memory bandwidth yields an intensity of about 0.03
TEPS/byte. The Firehose|[2] kernel takes streams of internet packets of data
containing IP addresses and a payload, correlates them via a huge hash table,
and looks for “events” based on the aggregate payloads. The metric is “Datums
per second,” with an intensity of about 0.01 Datums/byte.

8 Peter M. Kogge and Brian A. Page kogge,bpagel@nd.edu

1000 =
=i } /
- 08
c - e
£ w0 oo - | xced!
C e
5 xS - e
g et mny
® g0 -A S A0S Lo °
] - \» e
z = oW R
5 PR SRDE. 3 B G Ne?
il ox= et _z
: ¥
] —— = Sca\m% B2
b O) Seeo 1000X 1 NS
L] 59 - o
SRS S 7S = S 5
3 =
g we<
é 0.01 ——
E
o
£
So.001
1 10 100 Domains 1,000 10,000 100,000
—9—HPCG:Unconv M= HPCG:Conv <odee SPMV:Sparse7 =X SpMV:Sparsedd = SpMV:Sparse73
——BFS —+=perfect Firehose 1 Firehose 2

Fig. 2. Some Traditional Scaling Results. BF'S comes from www.graph500.org; HPCG
from www.hpecg-benchmark.org; SpMV from [4]; Firehose from firehose.sandia.gov.

In terms of PIM-like architectures, a recent study [12] looked at a variety of
challenges associated with when to use such concepts and the integration with
conventional systems. Such issues included many of the same ones mentioned,
especially how to integrate into a larger memory system, handle cache coherency,
and support a programming model that allows asynchronous executions.

The key take-away is that in many emerging cases the app intensity is at least
an order of magnitude less than the peak capability of a modern core, meaning
that performance is dominated by memory not processor architecture.

4 Further Evidence of a New Wall - Poor Scaling

The prior section gave evidence that memory has once again become a gat-
ing issue, but there is additional evidence that it is more than just a return
to the Memory Wall. Fig. 2 diagrams speedup for several sparse or irregular
benchmarks over a wide range of scaling and many different multi-node parallel
architectures. Each line represents a different benchmark for which years of re-
ports are available. The x-axis is the number of nodes that have been reported
for the same benchmark. The y-axis is the best relative speedup that some sys-
tem exhibited over the performance reported for the best case of a single node.
For each benchmark, the performance at (1,1) is the best reported for a single
node (this is often from a multi-threaded algorithm running on a multi-core chip
where memory is shared). The curves all have similar characteristics. Going from
1 to multiple nodes causes an immediate performance loss of sometimes 10X or
more. While in most cases decent linearity in the scaling is eventually obtained,
10 to 100 nodes are needed to regain the best performance of a single node, and
even then there is still significant performance loss over perfect scaling.

To provide even more insight, Fig. 3(a) (from [30]) diagrams SpMV strong
scaling results from three different architectures for a variety of matrices of
varying sizes and sparsity. The architectures include a conventional cluster, a

www.graph500.org
www.hpcg-benchmark.org
firehose.sandia.gov

Locality: The 3rd Wall 9

1655
-
e}i'} B 1644
PP T s
PO 103 * $
-7 cm of--*
1641 = n .
- "!*“’ . 1E42 % A A L
e el m e = A AT agWR 2
2 o T e '.- : g A A A 5 N
S 1EH a u 5 141 4 = L &
g \\ =" ! W meg W T a [B
2 N . A
2 N - e - o ™ £ 1640 1 ..
161 4 £ = 8 L s g
L 2 s
a NSRRI i A & w L]
12 * +
2 T e = = = = 1E2
. . ~Loweris better?
163 1E3

1643 1640 16+

1642 1 1642
MPI Process Count MPI Process Count

Fig. 3. SpMV Strong Scaling (from [30]).

cluster of Knight’s Landing nodes, and Lassen (a smaller version of Sierra with
dual socket IBM POWERY chips and multiple GPUs). The three curves for each
included the best results from any matrix in the suite, the worst results, and the
median results. For all but the densest matrices, the conventional cluster was
the only one to actually achieve even slightly positive speedup. Looking closer,
Fig. 3(b) shows why. For most cases, the ratio of the communication time to
computation time exceeds 1 and increases as the parallelism increases, meaning
that as the computational power of the nodes increases the computation time
drops but communication time does not. Making this even worse, as the level of
parallelism increases, the size of the local problem also decreases. Only for the
conventional case is the ratio ever less than 1, namely because this architecture
has relatively less computation capability than KNL or Lassen. Communications
delays increase with parallelism and dominates overall execution time. This is
true even for the second Lassen case where an expensive hypergraph partitioner
was used to optimize data placement to reduce communication by up to 90%.

Another example can be seen in the Firehose data in Fig. 2, especially the
leftmost part of the curve where the parallelism involves multiple cores on the
same node. Going from 1 to 7 cores increased performance by less than a factor
of 2. The issue here is a combination of low intensity and the need to employ
multiple expensive atomic updates to non-local hash table entries.

Yet another example is an HogWild!-style algorithm for a parallel ML trainer
for sparse SVM problems. Before HogWild! [25], attempts to parallelize via multi-
threading suffered from memory contention and excessive cache coherency traffic.
HogWild! attacked this by noticing that for sparse problems different trainers
are unlikely to be updating the same features at the same time, and as long as
individual updates are done atomically, coherency issues are minimized. While
this was relatively successful for low levels of parallelism and moderate sparsity,
after that the speedup plummeted much as for SpMV. A variant, HogWild++
[38], had each socket in a node operating separately, and used a token-passing
mechanism to perform inter-socket updates. This worked relatively well for up to
40 cores except for very sparse data sets. In one case, the news20 data set with
1.5 million features per sample, but only on average 460 of them non-zero, only

10 Peter M. Kogge and Brian A. Page kogge,bpagel@nd.edu

achieved a speedup of about 9.5 in a 40 core system. Once again a combination
of sparsity and inter-socket communication caused the scalability issues.
Finally, even experimental CIM/PIM chips such as [35], have scaling issues,
as the energy needed to combine two or more memory blocks far exceeds the
energy to perform a parallel operation within them, even if on the same chip.
The net effects is that such applications cause memory access issues “in the
small” by low intensity within a single (perhaps multi-threaded) node, AND
access issues “in the large” where accessing data on remote nodes becomes dom-
inant. Together, these issues form what we claim is the new Locality Wall.

5 An Alternative Architecture - Migrating Threads

As an alternative, instead of keeping the site of a computation stationary at
some core and moving copies of data as needed to it (and thus causing locality
problems), we might consider what happens if instead we allow the state of a
thread to migrate as needed to different computational sites. This has been im-
plemented for years in software, from actors and SmallTalk [14], active messages
[9], to autonomous objects [3] and messengers [13]. All have been conceptually
attractive, but suffered from significant software overhead and scalability.
Limited hardware implementations have been demonstrated, such as the J-
machine [26], but only for primarily remote procedure calls. A more complete
model would handle all remote memory references in hardware, without any
explicit software involvement. When a thread executing on some core tries to
access a location not found in a memory to which the core is associated, the
hardware suspends the thread from execution, its state is packaged, sent to the
appropriate node, unpackaged, and restarted on a more appropriate core - all
without any explicit software or additional memory references. Thus all memory
references are local, and if any caching is memory and not core correlated, with-
out any coherency traffic. Further, to allow such migrations, all memory must
be in a common logical address space. Fig. 4 diagrams such an architecture.
There are at least two reasons why this concept might be an aid to over-
coming locality issues. First, while migrating an execution doesn’t change the
intensity of an application, it does eliminate all the cache coherency traffic re-
quired to track the copies of data that are shared among traditional threads in
a classical shared memory node. Second. and of more impact, it eliminates the
entire software stack needed to communicate between nodes in a traditional dis-
tributed memory cluster. In most of the above apps with scaling problems, the
inter-node communication is usually to request that some small amount of data
be shipped to another node and some rather simple set of operations performed
there. An example is a remote atomic operation on some memory location, such
as a partial sum accumulation. Today, with MPI, SHMEM, or the like, software
must copy the data to a buffer, assemble a message around it, read out the mes-
sage into the sending NIC, write the message back to a buffer on the receiving
side, and trigger a thread to interpret and execute the required action. An ac-
knowledgement requires a similar path. When we add in the memory references

Locality: The 3rd Wall 11

Nodelet: New unit of parallelism

All memory in single

i il i
: Memory ‘ Memory ‘ Memory ‘ global address space ’ Memory ‘ ’ Memory ‘ Memory :
Mémiory i
Channel U @ U @ ﬁ 11
Memory Memory Memory Memory Memory Memory
\Front End Front End Front End Front End Front End Front End
Core(s) Core(s) Core(s) . s Core(s) Core(s) Core(s)

AN g JK\ $ 3
\ |\ Network M ‘

AN

Until they make a non-local reference And they are free to spawn
g?lft?OM$21°ry And then moved to correct nodelet independent children
that also do atomics

Spawned threads include fixed function remote atomics
Threads execute here

Fig. 4. A Migrating Thread Architecture (from [20]).

needed to save and restore registers at both procedure call/returns and interrupt
handling, it should be clear that we have added a huge number of memory refer-
ences to support what should be a simple operation. With today’s architectures
we have also idled the core on the sending side and interfered with the core on
the receiving side. This is a performance and energy hit.

There are several obvious enhancements. First is to make the cores multi-
threaded so that arriving and departing threads can be scheduled for execution
at the hardware level, and with sufficient threads at each core, the cores can be
kept fully utilized. Second is enhancing the memory controllers at each channel
to perform atomic operations directly on memory, with an absolute guarantee
of atomicity in terms of other threads. Next, adding lightweight mechanisms to
allow a thread to spawn additional threads provides cheap mechanisms for ad
hoc parallelism. Finally, allowing this mechanism to spawn not just full threads
but even lighter weight threads with limited functionality (such as perform a
remote atomic add) can reduce even further the cost of remote operations.

6 A Real Example

One such machine [8] was designed by Lucata Inc. and is housed at Georgia
Tech’s CRNCH center®. It consists of 64 memory channels, each with a multi-
threaded core capable of holding 64 active thread states, and interconnected
with a RapidlO network designed to transport the register set of a thread be-
tween cores without software. Each memory channel holds 8GB and returns
only 8 bytes per access, minimizing unused spatial locality. All memory is in
a single common logical address space. The memory channel/core combination
is packaged 8 to a board, with 8 boards in a hypercube topology. The current
implementation is in an FPGA with programs written in Cilk. Each board also

! https://crnch.gatech.edu/rogues-emu

https://crnch.gatech.edu/rogues-emu

12 Peter M. Kogge and Brian A. Page kogge,bpagel@nd.edu

N

S

10 4

g\Wiild 4

L
T

2 L
AT 1 v

) ‘ , ‘ ‘ ,; Lt ﬂireho e
1 ¢ 1 e/l 1 ¢ esults

1 10 100 1 10 100 1000 1 10 100
Nodelets (Memory + Core) Total Thread Count: 64 Nodelets Nodelets (Memory + Core)

(a) SpMV (b) SGD SVM (c) Firehose

L (wiy

A

Sppedup over 1 Nodelet
7
7%,
NS
]
T
i
Speedup over 1 Thread: news20
5
Ao
!
1
Speedup
5
)
‘ R
|

Fig. 5. Speedup Results on the CRNCH System.

houses a conventional dual-core processor that runs Linux, hosts a local SSD,
and can interface to a PCle adapter for communication with the outside world.
Applications are launched from a Linux process into the system as a single mas-
ter thread, which then spawns threads on each nodelet to perform localized
initialization and then spawn additional worker threads to perform the parallel
computations. At completion, the parent Linux process is signaled.

A variety of demonstration benchmarks have been developed and run on
this machine. Fig. 5 diagrams summary speedup for three of them. The SpMV
results [28], Fig. 5(a), should be compared to Fig. 3(a). Both use the same set of
matrices, and while none of the conventional architectures had good scaling for
all cases, the migrating thread system was positive not only for the best cases,
but even the worse cases. The key feature used was the ability to launch very
light weight threads to perform remote atomic memory operations.

Fig. 5(b) diagrams some results for the migrating thread version ([27] Chap.
4) of the HogWild! style algorithms. The data set is the sparse news20, which
achieved only a speedup of 9.5 on a 4-socket 40 core system. The code was simi-
lar in that one nodelet corresponded to a single multi-threaded training process.
The inter-process algorithm, however, was optimized to use the features of the
migrating thread architecture. At 40 threads, the migrating threads version ex-
ceeded the classical reported speedup by a factor of 2, and continues to increase.

Finally, Fig. 5(c) diagrams an implementation of the Firehose streaming
benchmark for which today’s architectures have scaling issues. There are three
versions of the benchmark, in increasing complexity, with a metric of datums
processed per second. For the simplest version the migrating thread architecture
[29] not only had better speedup, but actually beat the conventional architec-
tures in datums/s by a large factor, even though the classical cores had a 20X
higher clock. For the intermediate version, [31], the conventional 7 core version
achieved a measly 1.8X speedup while an 8 nodelet migrating version achieved
near perfect 6.6X. Other examples of benchmarking for this machine include
radix sort [24], machine learning using the Random Forest algorithm [34], sparse

Locality: The 3rd Wall 13

linear algorithm kernels [22], pointer chasing [37], approaches to handling spar-
sity [33], and new compilation techniques [6].

7 Conclusions

In evolutionary terms, parallel architectures have grown from colonies of simple
cells to simple plants with a few cell types performing different functions, but
with all “life activities” occurring within some limited region. Explicit messaging
across an interface is needed to affect computation being performed elsewhere.
This paper has presented evidence that today’s architectures are highly inef-
ficient at supporting many emerging apps. The paper then suggests that the
introduction of primitive “animals” in the form of migrating threads that can
move freely around a system can provide better efficiency.

Also, given the current implementation of the prototype migrating thread
system in a FPGA, there are some interesting caveats to some of the currently
demonstrated benchmarks. First, the core is a single issue design running at
175MHz, vs multi-issue 2-3GHz classical cores. Then each classical socket has
3-4 memory channels for a combined memory bandwidth of 30-50GB/s. This
is about 5-6 GB/s per core. The migrating thread implementation has only 1.2
GB/s per core. Thus on a per core basis the FPGA cores are significantly less
capable than a classical core. This makes many of the migrating thread results
especially striking, especially the throughput numbers for Firehose. It will be
interesting to see what happens when faster and larger migrating thread systems
become available.

Looking further, the marriage of migrating threads with PIM/CIM and PNM
processors placed on the bottom of 3D stacks of memory may usher in an era
where computing is done in a sea of “plant-like” stacks, with “animal” threads
moving naturally and freely throughout them to manage computation.

Acknowledgements

This work was supported in part by NSF grant CCF-1642280, and in part by
the University of Notre Dame. We would also like to acknowledge the CRNCH
Center at Georgia Tech for allowing us to use the Emu system there.

References

1. Barker, K., Davis, K., Hoisie, A., et al: Entering the petaflop era: The architecture
and performance of roadrunner. In: 2008 SC - Int. Conf. for High Perf. Computing,
Networking, Storage and Analysis, SC 2008. p. 1 (11 2008)

2. Berry, J., Porter, A.: Stateful streaming in distributed memory supercomputers.
In: Chesapeake Large Scale Data Analytics Conf. (2016)

3. Bic, L.: Distributed computing using autonomous objects. In: Proc. 5th IEEE
Workshop on Future Trends of Distributed Computing Systems. pp. 160-168 (1995)

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Peter M. Kogge and Brian A. Page kogge,bpagel@nd.edu

Bylina, B., Bylina, J., Stpiczynski, P., Szalkowski, D.: Performance analysis of
multicore and multinodal implementation of SpMV operation. In: 2014 Federated
Conf. on Computer Science and Information Systems. pp. 569-576 (Sept 2014)
Chan, T., Brown, A., Ensor, A.: SDP Memo 54: Compute Node Pipeline Efficiency
Assessment Framework. Tech. rep., SKA Square Kilometre Array (Aug 2018)
Chatarasi, P., Sarkar, V.: A Preliminary Study of Compiler Transformations for
Graph Applications on the Emu System. In: Proc. Workshop on Memory Centric
High Performance Computing. p. 37-44. MCHPC’18, Assoc. for Computing Ma-
chinery, New York, NY, USA (2018)

Cheng, H., Wen, W., Wu, C., Li, S., Li, H.H., Chen, Y.: Understanding the design
of IBM neurosynaptic system and its tradeoffs: A user perspective. In: Design,
Automation Test in Europe Conf. Exhibition (DATE), 2017. pp. 139-144 (2017)
Dysart, T., Kogge, P.M., Deneroff, M., et al: Highly Scalable Near Memory Pro-
cessing with Migrating Threads on the Emu System Architecture. In: Proc. of 6th
Workshop on Irregular Applications: Architectures and Algorithms. pp. 2-9. IA3
’16, IEEE Press, Piscataway, NJ, USA (Nov 2016)

von Eicken, T., Culler, D.E.,; Goldstein, S.C., Schauser, K.E.: Active messages:
A mechanism for integrated communication and computation. In: Proc. 19th Int.
Symp. on Computer Architecture. pp. 256-266. ISCA ’92, ACM, New York, NY,
USA (1992), http://doi.acm.org/10.1145/139669.140382

Fu, H., Liao, J., Yang, J., et al: The Sunway TaihuLight supercomputer: system
and applications. Science China. Information Sciences 59, 072001:1-16 (07 2016)
Gara, A., Blumrich, M.A., Chen, D., et al: Overview of the Blue Gene/L system
architecture. IBM J. of R&D 49(2.3), 195-212 (2005)

Ghose, S., Boroumand, A., Kim, J.S., Gémez-Luna, J., Mutlu, O.: Processing-in-
memory: A workload-driven perspective. IBM J. of R&D 63(6), 3:1-3:19 (2019)
Gmelin, M., Kreuzinger, J., Pfeffer, M., Ungerer, T.: Agent-Based Distributed
Computing with JMessengers. In: Proc. Int. Workshop on Innovative Internet Com-
puting Systems. p. 134-145. IICS ’01, Springer-Verlag, Berlin, Heidelberg (2001)
Goldberg, A.: SMALLTALK-80: The Interactive Programming Environment.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1984)
Groeneveld, P.: Wafer scale interconnect and pathfinding for machine learning
hardware. In: Proceedings of the Workshop on System-Level Interconnect: Prob-
lems and Pathfinding Workshop. SLIP ’20, Assoc. for Computing Machinery, New
York, NY, USA (2020)

Hennessy, J.L., Patterson, D.A.: A New Golden Age for Computer Architecture.
Comm. ACM 62(2), 48-60 (Jan 2019)

Heroux, M.A., Dongarra, J.: Toward a new metric for ranking high performance
computing systems. Sandia Report SAND2013 4744 (June 2013)

Jia, Z., Zhan, J., Wang, L., et al: Understanding Big Data Analytics Workloads
on Modern Processors. IEEE Trans. on Parallel and Distributed Systems 28(6),
1797-1810 (2017)

Jouppi, N.P., Yoon, D.H., et al: A Domain-Specific Supercomputer for Training
Deep Neural Networks. Comm. ACM 63(7), 67-78 (Jun 2020)

Kogge, P.M.: Unifying Threading Paradigms for Highly Scalable PGAS Systems
with Mobile Threads. In: Int. Conf. on High Perf. Computing and Simulation
(HPCS) (July 2019)

Kogge, P.M., Bergman, K., Borkar, S., et al: ExaScale Computing Study: Technol-
ogy Challenges in Achieving Exascale Systems. Tech. Rep. CSE 2008-13, Univ. of
Notre Dame (Sept 2008), http://www.cse.nd.edu/Reports/2008 /TR-2008-13.pdf

http://doi.acm.org/10.1145/139669.140382
http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Locality: The 3rd Wall 15

Krawezik, G.P., Kuntz, S.K., Kogge, P.M.: Implementing Sparse Linear Algebra
Kernels on the Lucata Pathfinder-A Computer. In: IEEE High Perf. Extreme Com-
puting Conf. (HPEC) (Sept 2020)

Marjanovic, V., Gracia, J., Glass, C.W.: High Perf. Computing Systems. Perfor-
mance Modeling, Benchmarking, and Simulation, chap. Performance modeling of
the HPCG benchmark, pp. 172-192. Springer Int. Publishing (Nov 2014)
Minutoli, M., Kuntz, S., Tumeo, A., Kogge, P.M.: Implementing Radix Sort on Emu
1. In: 3rd Workshop on Near-Data Processing in conjunction with 48th IEEE/ACM
Int. Symp. on Microarchitecture (MICRO-48) (Dec 2015)

Niu, F., Recht, B., Re, C., Wright, S.J.: HOGWILD!: A Lock-free Approach to
Parallelizing Stochastic Gradient Descent. In: Proc. 24th Int. Conf. on Neural
Info/ Proc. Systems. pp. 693-701. NIPS’11, Curran Associates Inc., USA (2011)
Noakes, M.D., Wallach, D.A., Dally, W.J.: The J-Machine Multicomputer: An
Architectural Evaluation. In: Proc. 20th Int. Symp. on Computer Architecture. p.
224-235. ISCA '93, ACM, New York, NY, USA (1993)

Page, B.A.: Scalability of Irregular Problems. Ph.D. thesis, Univ. of Notre Dame,
USA (Oct 2020)

Page, B.A., Kogge, P.M.: Scalability of Sparse Matrix Dense Vector Multiply
(SpMV) on a Migrating Thread Architecture. In: Tenth Int. Workshop on Ac-
celerators and Hybrid Exascale Systems (AsHES) held in conjunction with 34th
IEEE Int. Parallel and Distributed Processing Symp. (May 2020)

Page, B.A., Kogge, P.M.: Scalability of Streaming on Migrating Threads. In: IEEE
High Perf. Extreme Computing Conf. (HPEC) (Sept 2020)

Page, B.A., Kogge, P.M.: Scalability of Hybrid SpMV with Hypergraph Partition-
ing and Vertex Delegation for Communication Avoidance. In: Int. Conf. on High
Perf. Computing and Simulation (HPCS 2020) (March 2021)

Page, B.A., Kogge, P.M.: Scalability of Streaming Anomaly Detection in an Un-
bounded Key Space on Migrating Threads. 2021 IEEE Int. Symp. on Parallel
Distributed Processing (2021)

Rees, N.: SKA and its computing challenges. Tech. rep., SKA Square Kilometre
Array (May 2017), https://indico.cern.ch/event/638811/attachments/1460553/
2255823 /SKA _Computing_Challenges-20170516.pdf/

Rolinger, T.B., Krieger, C.D.: Impact of traditional sparse optimizations on a mi-
gratory thread architecture. In: 2018 IEEE/ACM 8th Workshop on Irregular Ap-
plications: Architectures and Algorithms (IA3). pp. 45-52 (2018)

Springer, P.L.; Schibler, T., Krawezik, G., Lightholder, J., Kogge, P.M.: Machine
Learning Algorithm Performance on the Lucata Computer. IEEE High Perf. Ex-
treme Computing Conf. (HPEC) (Sept 2020)

Wan, W., Kubendran, R., Eryilmaz, S.B., et al: 33.1 A 74 TMACS/W CMOS-
RRAM Neurosynaptic Core with Dynamically Reconfigurable Dataflow and In-
situ Transposable Weights for Probabilistic Graphical Models. In: 2020 IEEE Int.
Solid- State Circuits Conf. - (ISSCC). pp. 498-500 (2020)

Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Comm. of the ACM 52(4), 65-76 (2009)
Young, J., Hein, E.R., Eswar, S., et al: A Microbenchmark Characterization of the
Emu Chick. CoRR abs/1809.07696 (2018)

Zhang, H., Hsieh, C.J., Akella, V.: HogWild++: A New Mechanism for Decentral-
ized Asynchronous Stochastic Gradient Descent. In: 2016 IEEE 16th Int. Conf. on
Data Mining (ICDM). pp. 629-638 (Dec 2016)

https://indico.cern.ch/event/638811/attachments/1460553/2255823/SKA_Computing_Challenges-20170516.pdf/
https://indico.cern.ch/event/638811/attachments/1460553/2255823/SKA_Computing_Challenges-20170516.pdf/

	Locality: The 3rd Wall and The Need for Innovation in Parallel Architectures

