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Abstract

Online algorithms for detecting changepoints, or

abrupt shifts in the behavior of a time series, are

often deployed with limited resources, e.g., to edge

computing settings such as mobile phones or indus-

trial sensors. In these scenarios it may be beneficial

to trade the cost of collecting an environmental

measurement against the quality or “fidelity” of

this measurement and how the measurement affects

changepoint estimation. For instance, one might

decide between inertial measurements or GPS to

determine changepoints for motion. A Bayesian

approach to changepoint detection is particularly

appealing because we can represent our posterior

uncertainty about changepoints and make active,

cost-sensitive decisions about data fidelity to re-

duce this posterior uncertainty. Moreover, the total

cost could be dramatically lowered through ac-

tive fidelity switching, while remaining robust to

changes in data distribution. We propose a multi-

fidelity approach that makes cost-sensitive deci-

sions about which data fidelity to collect based

on maximizing information gain with respect to

changepoints. We evaluate this framework on syn-

thetic, video, and audio data and show that this

information-based approach results in accurate pre-

dictions while reducing total cost.

1 INTRODUCTION

Sequential data are rarely stationary. For example, a stock’s

volatility might increase or a text stream’s topics might shift

due to world events. A changepoint is an abrupt change in

the generative parameters of sequential data. The goal of

changepoint detection is to discover these structural changes,

and thereby partition the data into regimes Changepoint de-

tection is a broad class of algorithms, including the classic

CUSUM algorithm [Page, 1954], hidden Markov models

with a changing transition matrix [Braun and Muller, 1998],

Poisson processes with varying rates [Ritov et al., 2002],

two-phase linear regression [Lund and Reeves, 2002], and

Gaussian process changepoint models [Saatçi et al., 2010].

The Bayesian approach is appealing due to the ability to

specify priors and represent posterior uncertainty [Chib,

1998, Fearnhead, 2006, Chopin, 2007]. For streaming appli-

cations, exact filtering algorithms allow for online Bayesian

detection of changepoints without retrospective smooth-

ing [Fearnhead and Liu, 2007, Adams and MacKay, 2007].

Many applications of online changepoint detection are in

real-time settings with limited resources for sensing and

computation, such as content delivery networks [Akhtar

et al., 2018], autonomous vehicles [Ferguson et al., 2015],

and smart home and internet-of-things devices [Aminikhang-

hahi et al., 2018, Lee et al., 2018, Munir et al., 2019]. In

such resource-constrained settings, the observations for a

changepoint detector are typically environmental measure-

ments, for example heart-rate data [Villarroel et al., 2017].

Trading the cost of collecting these data against their qual-

ity or “fidelity” may be useful, depending on how these

fidelities affect changepoint estimation.

For example, since scaling up neural network capacity is an

effective approach to improving model performance [Arora

et al., 2018, Kaplan et al., 2020, Mahajan et al., 2018],

a high-fidelity observation model might be a large but

expensive-to-evaluate neural network. Retraining a smaller

architecture or using compression algorithms such as distil-

lation [Hinton et al., 2015], quantization [Gong et al., 2014,

Hubara et al., 2017], or pruning [Frankle and Carbin, 2018]

could produce a low-fidelity observation model. If the out-

put of these neural networks is the input to a changepoint

detector, then the fidelity of the networks will impact the

quality of changepoint detection.

In such situations, the cost of Bayesian online changepoint

detection (BOCD) could be reduced by making decisions

about the fidelity of the observations. One view of BOCD is
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as a model-based version of an exponentially-weighted mov-

ing average, estimating the weights from data rather than

selecting them a priori. It determines which of the recent

data matter for the current state. This view motivates our

multi-fidelity approach: if changepoints are easily identified

and the data can be partitioned into stationary regimes, there

is no need for expensive high-fidelity observations when

BOCD’s posterior confidence about changepoints is high.

In our framing of the problem, we must choose which

data fidelity to use and pay a fixed cost to make this

choice. In the neural network example, we can evaluate

either an expensive or cheap neural network to obtain

a high- or low-fidelity representation of a raw measure-

ment. To make this choice, we propose an information-

theoretic approach, similar to the active data collection strat-

egy proposed by MacKay [1992] and to approaches used

in Bayesian optimization [Hernández-Lobato et al., 2014],

preference learning [Houlsby et al., 2012], and Bayesian

quadrature [Gessner et al., 2020]. We choose the data fi-

delity with maximal weighted information rate (gain over

cost) for the posterior distribution over changepoints. The

weights allow modelers to specify a desired computational

budget. This results in policies that use lower-fidelity data

in regimes with higher posterior certainty.

Contributions. First, we formulate a new version of an

important problem: online changepoint detection with mul-

tiple data sources of varying cost and quality. The task is

to choose which fidelity to use at each time point to make

accurate predictions while minimizing costs. Second, we

propose active selection of each datum’s fidelity based on

the expected informativeness of observations from each fi-

delity, and choose the one that maximizes the information

rate for the posterior distribution over changepoints. Finally,

we demonstrate the empirical performance of our algorithm

on both synthetic and real-world data. We show that in many

real-world scenarios, despite the extra step of computing

information gain, our model reduces the total computational

budget while maintaining good predictive accuracy.

2 BAYESIAN ONLINE CHANGEPOINT

DETECTION

We begin by reviewing the BOCD algorithm [Adams

and MacKay, 2007, Fearnhead and Liu, 2007]. Our

data are a contiguous sequence of observations in

time, X1:T := {x1, . . . ,xT } where xt ∈ R
D. Assume that

the data can be partitioned such that, within each partition,

the data are i.i.d. [Barry and Hartigan, 1992], governed by

partition-specific parameters θ. The transition from one par-

tition into another results in an abrupt change from one set

of parameters to another. This transition is referred to as a

changepoint.

Denote the parameters at time t as θt. In the changepoint

process, these parameters are determined in one of two

ways: either a changepoint has occurred at time t, in which

case the parameters are drawn afresh from a prior distribu-

tion Π, or a changepoint has not occurred and the parameters

are θt = θt−1, i.e., they stay the same. We model the arrival

of changepoints as a discrete time Bernoulli process with

hazard rate 1/β, resulting in a geometric distribution over

partition lengths with mean β ∈ R>0.

In the online setting, the primary quantity of interest is the

time since the last changepoint, which we refer to as the

run length. We denote the run length at time t as rt, which

takes values in the non-negative integers. Thus, a change-

point at t means rt = 0. At time t, the BOCD algorithm

estimates the posterior marginal distribution over the run

length p(rt |X1:t). We refer to this distribution as the run-

length posterior. Online updating of the run-length posterior

is made easy via a recursion that is essentially the same as

the message-passing (dynamic programming) approach to

hidden Markov models [Baum and Petrie, 1966, Rabiner,

1989]:

p(rt |X1:t) ∝ p(rt,X1:t)

=
∑

rt−1

p(rt,xt | rt−1,X1:t−1)p(rt−1,X1:t−1)

=
∑

rt−1

p(rt | rt−1,✘✘✘X1:t−1)p(xt | rt,✟✟rt−1,X1:t−1)

× p(rt−1,X1:t−1)

=
∑

rt−1

p(rt | rt−1)
︸ ︷︷ ︸

Bernoulli
process prior

p(xt | rt,X1:t−1)
︸ ︷︷ ︸

posterior
predictive

p(rt−1,X1:t−1),
︸ ︷︷ ︸

previous
estimate

(1)

where the cancellations arise from Markovian assumptions

we have made: 1) the probability of a changepoint at time t
is independent of data before t, given knowledge of rt−1,

and 2) the predictive distribution over the data xt at time t
is independent of past run lengths, given knowledge of the

current run length rt. The three terms within the sum have a

convenient interpretation as the prior, the predictive distribu-

tion, and the estimated joint distribution from the previous

time step. These are the only ingredients necessary for a

straightforward online filtering algorithm.

The Bernoulli process prior above is in an unconventional

form that represents the time since the last changepoint:

p(rt | rt−1) =







1/β if rt = 0,

1− 1/β if rt = rt−1 + 1,

0 otherwise.

(2)

In other words, the run length rt must either increase by one

from the previous time point or drop to zero.

The construction so far has not depended on the specifics

of the data-generating distribution Pθt
, which appears as a

part of the posterior predictive distribution in Equation (1):

p(xt | rt=ℓ,X1:t−1) =

∫

Θ

pθt
(xt)π(θt |X(ℓ)) dθt , (3)



where pθt
(·) is the probability density function associated

with the distribution Pθt
, π(θ | ·) is the probability density

function associated with the posterior distribution w.r.t. θ,

and X
(ℓ) := Xt−ℓ:t−1 denotes the most recent ℓ data. This

is a key property of the BOCD algorithm: conditioning

on rt = ℓ means that only the most recent ℓ data need to be

accounted for in the posterior distribution. When the data

distribution Pθt
is chosen to allow for a conjugate prior

for Π, then the computations necessary for the recursion are

relatively simple: it is only necessary to maintain a set of

sufficient statistics for each rt hypothesis. These statistics

can be easily updated via addition, and the posterior pre-

dictive is often available in closed form. (See Adams and

MacKay [2007] for further discussion.) When more compli-

cated models are used, approximate inference or numerical

integration are necessary.

Given the run-length posterior, we can compute a predictive

distribution to make online predictions that are robust to

changepoints by marginalizing out the run length, i.e., by

computing a mixture of posterior predictive distributions—

which are already available from the recursion—under the

run-length posterior:

p(xt+1 |X1:t) = Ep(rt |X1:t)[p(xt+1 | rt = ℓ,X(ℓ))] . (4)

Equation (4) underscores the value of modeling the run-

length in this construction: it provides a model-based ap-

proach to decide which data are currently relevant for pre-

dicting the next observation. That is, the value of rt explic-

itly captures the size of the current partition, i.e., what recent

data share the same parameters.

The basic framework for BOCD has been extended in a num-

ber of ways, such as learning the changepoint prior [Wilson

et al., 2010], adding Thompson sampling for multi-armed

bandits with changing rewards [Mellor and Shapiro, 2013],

estimating uncertainty bounds on the number and location

of changepoints [Ruggieri and Antonellis, 2016], and using

β-divergences for robustness against outliers [Knoblauch

et al., 2018]. While changepoint detection has been explored

in the context of active data selection [Osborne et al., 2010,

Hayashi et al., 2019], to our knowledge, the BOCD frame-

work has not been considered in multi-fidelity settings.

3 MULTI-FIDELITY CHANGEPOINT

DETECTION

We now extend the BOCD framework to the multi-fidelity

setting, referring to our algorithm as MF-BOCD. Our cen-

tral assumption is that, at any time point t, we choose the

quality of our observation, with higher fidelity (lower noise)

having greater cost. We generally take this cost to be compu-

tational, but it could also be quantified in terms of resources

such as money or energy. Given the selected data fidelities,

we can again recursively compute a run-length posterior

(Section 3.2). Given this multi-fidelity run-length posterior,

the algorithm then selects the data fidelity that maximizes a

cost-sensitive information rate objective (Section 3.4).

3.1 MULTI-FIDELITY POSTERIOR PREDICTIVE

Again, suppose we have a distribution Pθt
and prior Π,

and the task is to estimate the parameter θt in the pres-

ence of changepoints. Our data are again the contiguous

sequence X1:T .

However, we now assume each observation xt has an as-

sociated value ζt ∈ [0, 1], which we call the fidelity. The

fidelities z1:T := {ζ1, . . . , ζT } are non-random and take

values from a set Z . In the experiments, we only consider

the case when the cardinality of Z is two, i.e., we only have

low- and high-fidelities, but this is not a necessary restriction.

Let our sequence of observations and chosen fidelities be

D1:T := {(x1, ζ1), . . . , (xT , ζT )}. The role of the fidelity

ζt is to re-weight the associated probability function pθt
(x)

in a multi-fidelity posterior (MF-posterior). At time t, the

MF-posterior is:

π(θt |D1:t) ∝ π(θt)

t∏

i=1

pθt
(xi)

ζi . (5)

Here, π(·) is the probability density function associated with

the prior distribution Π.

Intuitively, the effect of data re-weighting on the MF-

posterior is a density that concentrates as if the contribution

of T samples were
∑T

t=1 ζt number of data points instead

of T data points. Figure 1 illustrates the MF-posterior of a

conjugate Gaussian model with known variance (discussed

in Section 3.3). Here the data are generated from a standard

normal distribution, and the MF-posterior π(θT |D1:T ) is

visualized for varying ζLF and fixed ζHF = 1. As ζLF de-

creases, the MF-posterior becomes less concentrated with a

larger variance and increased influence from the prior.

Re-weighting terms in the likelihood has been considered

under various names, such as safe Bayes [Heide et al.,

2020, Grünwald et al., 2017], generalized posteriors [Walker

and Hjort, 2001, Bissiri et al., 2016], coarsened poste-

riors [Miller and Dunson, 2018], and Bayesian data re-

weighting [Wang et al., 2017]. In our framing of this model,

we must choose the fidelity ζt of each observation xt, paying

a fixed cost to make this choice.

When using a member of the exponential family with a

conjugate prior, one has analytical expressions of the MF-

posterior and MF-posterior predictive. Let the distributions

on x and θt have the following functional forms:

pθt
(x)=h1(x) exp

{
θ⊤
t u(x)− a1(θt)

}
, (6)

πχ,ν(θt)=h2(θt) exp
{
θ⊤
t χ−νa1(θt)−a2(χ, ν)

}
, (7)





which we use in Section 4. To simplify notation, we ig-

nore the run length in this section, since it only specifies

which data need to be accounted for in the MF-posterior

distribution. See Appendix A for more detailed derivations.

Multi-fidelity Gaussian. Consider a univariate Gaussian

model with known variance σ2
x,

xi
iid∼ N (θt, σ

2
x), θt ∼ N (µ0, σ

2
0). (12)

The multi-fidelity likelihood is

t∏

i=1

pθt(xi)
ζi ∝

t∏

i=1

exp

{

− ζi
2σ2

x

(xi − θt)
2

}

, (13)

and the MF-posterior is the product of t + 1 independent

Gaussian densities, which is again a Gaussian:

π(θt |D1:t) ∝ N (θt |µ0, σ
2
0)

t∏

i=1

N (xi | θt, σ2
x/ζi) (14)

∝ N (θt |µt, σ
2
t ), (15)

where

1

σ2
t

=
1

σ2
0

+

t∑

i=1

ζi
σ2
x

, µt=σ2
t

(

µ0

σ2
0

+

t∑

i=1

ζixi

σ2
x

)

. (16)

The MF-posterior predictive distribution can be com-

puted by integrating out θt. This is a convolution of

two Gaussians—the posterior in Equation (15) and the

prior π(θt)—which is again Gaussian:

p(xt+1 | ζt+1,D1:t) = N
(

xt+1

∣
∣
∣µt,

σ2
x

ζt+1
+σ2

t

)

. (17)

In this example, the fidelity ζi has the natural interpreta-

tion of increasing the posterior variance when ζi < 1. In

Equation (11), this has the effect that the multi-fidelity run

length posterior is less concentrated. Any confidence in a

changepoint is by definition lower.

Multi-fidelity Bernoulli. Consider a Bernoulli model,

xi
iid∼ Bernoulli(θt), θt ∼ Beta(α0, β0). (18)

The MF-posterior is proportional to a beta distribution

π(θt |D1:t) = Beta(αt, βt) with parameters

αt := α0 +

t∑

i=1

ζixi, βt := β0 +

t∑

i=1

ζi(1− xi). (19)

The multi-fidelity posterior predictive distribution is the

same as for a standard beta-Bernoulli model with αt and βt

and additional re-weighting due to ζt+1:

p(xt+1 | ζt+1,D1:t) (20)

=
B (ζt+1xt+1 + αt, ζt+1(1− xt+1) + βt)

B(αt, βt)
,

where B(·, ·) is the beta function. When ζi < 1, the fidelity

has the natural effect of discounting count observations.

3.4 ACTIVE FIDELITY SELECTION

So far, we have only discussed modeling data with mul-

tiple fidelities. However, in our framing of the problem,

we must actively decide the fidelity of our observation xt,

i.e., we must pick ζt ∈ Z . We propose an information-

theoretic approach, similar to ideas in active data collec-

tion [MacKay, 1992], Bayesian optimization [Hernández-

Lobato et al., 2014], preference learning [Houlsby et al.,

2012], and Bayesian quadrature [Gessner et al., 2020].

We propose maximizing the weighted information rate of

the multi-fidelity run length distribution. After observing

D1:t−1 observations and fidelities, our current information

about rt is the Shannon entropy H[p(rt |D1:t−1)]. Since

we must choose a fidelity without observing xt, we want to

choose the one that minimizes the expected entropy with

respect to the predictive distribution in Equation (4). Thus,

we choose the fidelity that maximizes the information gain

of the run length posterior. The utility of ζt is therefore

U(ζt) = H[rt |D1:t−1]−Ext
[H[rt |D1:t−1,xt, ζt]]. (21)

At time t, the left term in Equation (21) is easy to compute,

since we have already computed the posterior distribution

p(rt−1 |D1:t−1). We simply roll our estimation forward in

time according to the changepoint process and without con-

ditioning on new data. Furthermore, this value is the same

for all fidelities, and therefore an equivalent formulation

is to minimize the expected run length entropy, the right

term in Equation (21). This entropy term is easy to com-

pute because it is with respect to a discrete distribution that

we can estimate at time t. The expectation is with respect

to the predictive distribution (Equation (4)) and must be

approximated in general.

However, we are not interested in the fidelity that just maxi-

mizes information gain regardless of cost. If this were the

case, we would simply always use the highest fidelity. Let

λ(ζt) denote the cost of fidelity ζt. In general, λ(·) could

be a function of the input domain, but here we assume it is

a scalar constant that is known, e.g., wall-time, energy us-

age, or floating point operations. Then the information rate

of fidelity ζt at time t is α(ζt) := U(ζt)/λ(ζt). However,

given the interaction of fixed costs and estimated fideli-

ties, it is possible that the maximum information rate is

always achieved using the highest (or lowest) fidelity. In

this case, we may still want some amount of low-fidelity (or

high-fidelity) usage depending on dataset size and compu-

tational budget. To address this, consider arbitrary weights

w(ζt) ≥ 0. Our decision rule is then: use fidelity ζ⋆t that

maximizes the weighted information rate:

ζ⋆t := argmax
ζt∈Z

w(ζt)α(ζt). (22)

Note that the weights can be tuned on held-out data to

achieve a desired expected budget. Introducing weights is



useful because we do not lose λ(ζt), which may represent

an interpretable quantity such as floating point operations.

We considered alternative decision rules to Equation (22).

For example, in scenarios with just two fidelities (low and

high), we explored a decision rule that picked the low-

fidelity datum when the absolute difference in information

gains was less than some margin hyperparameter. However,

empirically, this resulted in frequent switching between fi-

delities since the two information gains were often quite

close in value. We found that information rate was more

stable because it requires a more significant change in in-

formation gain to induce a switch. See Appendix B for a

discussion and additional results.

3.5 PRACTICAL CONSIDERATIONS

Analyzing costs. Since we are motivated by real-time

decision-making, a sensible question is whether our

decision-making algorithm is cheaper than using only high-

fidelity observations. Here, we give a complete example of

the cost for the beta-Bernoulli model. Since the predictive

distribution is easy to work with, a useful reformulation of

Equation (21) is

U(ζt) = H[xt |D1:t−1]−Ert [H[xt |D1:t−1, rt, ζt]], (23)

which uses the symmetry of information gain. At time t, the

cost in floating point operations (flops) of computing Equa-

tion (23) is 32t+ 1 flops. The cost grows linearly with time

because computing information gain requires summing over

the run length posterior p(rt |D1:t−1), and the support of

this distribution grows linearly with time. However, Fearn-

head and Liu [2007] proposed an optimal resampling algo-

rithm, similar to particle filtering, that enables efficient ap-

proximate inference. This allows for a fixed cost to compute

information gain. For example, with 10,000 particles, com-

puting the information gain for the Bernoulli model requires

0.32 million flops. For comparison, consider MobileNets,

which are a class of efficient neural networks designed for

mobile and embedded vision applications [Howard et al.,

2017]. The smallest reported MobileNet requires 41 million

multi-adds (82 million flops). Thus, computing the beta-

Bernoulli information gain twice (when the cardinality of Z
is 2) is 140 times cheaper than evaluating the smallest Mo-

bileNet, while still using 10,000 particles in the run length

posterior estimation.

Estimating fidelity ζt. A second practical consideration

is estimating ζt. In the Gaussian case with known variance

σ2
x, we can estimate ζt/σ

2
x using the sample variance of

held-out data and then calculate the value for ζt. In the

Bernoulli case, we use model accuracy as a proxy for ζt.
For example, if a binary classifier has a true positive rate of

90%, we treat an observation of 1 as a 0.9 using ζt = 0.9.

4 EXPERIMENTS

In this section, we empirically evaluate our algorithm on syn-

thetic, video, and audio data, and compare performance of

MF-BOCD against BOCD using only low- or high-fidelity

data, as well as a randomized baseline. Please see Ap-

pendix C for didactic code and the repository for a complete

implementation.1

To evaluate our framework, we define two metrics. Let

X̄1:T := {x̄1, . . . , x̄T } denote the mean of the predictive

distribution, Equation (4), of BOCD or MF-BOCD for all

time points. Then the reported mean squared error (MSE)

is between X̄1:T from the evaluated model and X̄1:T from

BOCD using only high-fidelity data. Now let R1:T denote

a lower triangular matrix denoting the run length poste-

rior at all time points. The L1 distance is between R1:T

from the evaluated model and R1:T from BOCD using only

high-fidelity data. In other words, we compare the evaluated

model to the best it could have done in practice.

As a baseline, we compare MF-BOCD with a model that ran-

domly switches between fidelities and which uses roughly

the same percentage of high-fidelity data as MF-BOCD. For

the random switching model, the decision to use low-fidelity

data was based on the outcome of a Bernoulli random vari-

able with bias equal to the percentage of low-fidelity data

used by MF-BOCD, normalized to [0, 1]. This comparison

isolates the question: is it when a multi-fidelity model uses

high-fidelity data that improves performance or just the

presence of high-fidelity data at all?

4.1 NUMERICAL EXPERIMENTS

The purpose of these experiments is to demonstrate that

information rate is a useful decision rule and to build in-

tuition about the model’s behavior in a controlled setting.

Consider a synthetic univariate signal with two fidelities.

We assume data are i.i.d. Gaussian within each partition,

and we use the Gaussian multi-fidelity model described in

Section 3.3. When a changepoint occurs, the parameter θt is

drawn from a prior N (1, 3). The data is then drawn from a

distribution xt ∼ N (θt, ζ/σ
2
x) where σ2

x = 1. Our fidelities

are from the set Z = {ζHF, ζLF}. We set the higher fidelity

to ζHF = 1 and the lower fidelity to ζLF = 1/2. Thus, low-

fidelity data have twice the variance. Costs are arbitrary in

this setting, and we set them to λ(ζHF) = 2 and λ(ζLF) = 1.

We simulated the data using T = 500 observations with a

changepoint prior with 1/β = 1/100.

This experiment illustrates information rate as a decision

rule as described in Section 3.4. In regions in which the

model is confident about the run length posterior, low-

fidelity data are preferred because both fidelities provide suf-

ficient information. However, when the model is uncertain

1https://github.com/princetonlips/mf-bocd
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A MODEL DERIVATIONS

A.1 MF-POSTERIOR PREDICTIVE FOR EXPONENTIAL FAMILY MODELS

In multi-fidelity BOCD, we desire the posterior predictive distribution conditioned on the run length,

p(xt | rt = ℓ, ζt,Dt−ℓ:t−1). (24)

Assume this is an exponential family model with the following likelihood and and prior density functions:

pθt
(x) = h1(x) exp

{
θ⊤
t u(x)− a1(θt)

}
, (25)

πχ,ν(θt) = h2(θt) exp
{
θ⊤
t χ− νa1(θt)− a2(χ, ν)

}
. (26)

See Section 3 or Equation (7) for a description of these terms. We introduce the following notation to denote the data and

parameter estimates for the previous ℓ observations, associated with the run length hypothesis rt = ℓ:

D
(ℓ) := Dt−ℓ:t−1, χℓ := χ+

t−1∑

τ=t−ℓ

ζτu(xτ ), νℓ := ν +

t−1∑

τ=t−ℓ

ζτ . (27)

Then the posterior predictive is

p(xt | rt = ℓ, ζt,D
(ℓ)) (28)

=

∫

Θ

pθ(xt)
ζtπχℓ,νℓ

(θ)dθ (29)

=

∫

Θ

[h1(xt)]
ζt exp

{
θ⊤ζtu(xt)− ζta1(θ)

}
(30)

h2(θ) exp
{
θ⊤χℓ − νℓa1(θ)− a2(χℓ, νℓ)

}
dθ (31)

= [h1(xt)]
ζt

∫

Θ
h2(θ) exp

{
θ⊤ [ζtu(xt) + χℓ]− a1(θ) [ζt + νℓ]

}
dθ

exp {a2(χℓ, νℓ)}
(32)

⋆
= [h1(xt)]

ζt
exp {a2(ζtu(xt) + χℓ, ζt + νℓ)}

exp {a2(χℓ, νℓ)}
(33)

= [h1(xt)]
ζt exp {a2(ζtu(xt) + χℓ, ζt + νℓ)− a2(χℓ, νℓ)} (34)

Step ⋆ follows from the previous line because we know the normalizer for the integral. This result is similar to the result on

power posteriors for the exponential family [Miller and Dunson, 2018]. However, our approach requires multiple values of

powers, which represent data fidelities.
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A.2 MULTI-FIDELITY GAUSSIAN MODEL

To simplify notation, we ignore the run length in this section, since it only specifies which data need to be accounted for in

the MF-posterior distribution. Consider a univariate1 Gaussian model with known variance.

xi
iid∼ N (θt, σ

2
x), θt ∼ N (µ0, σ

2
0). (35)

The multi-fidelity likelihood is

t∏

i=1

pθt(xi)
ζi =

t∏

i=1

[
1√
2πσ2

x

exp

{

− 1

2σ2
x

(xi − θt)
2

}]ζi

(36)

∝
t∏

i=1

exp

{

− ζi
2σ2

x

(xi − θt)
2

}

(37)

When ζi < 1, the variance of N (xi |σ2
x/ζi) increases, and the fidelity hyperparameter has the natural interpretation of

increasing the variance of our model.

The multi-fidelity posterior is the product of t+ 1 independent Gaussian densities, which is itself Gaussian:

π(θt | D1:t) ∝ N (θt |µ0, σ
2
0)

t∏

i=1

N (xi | θt, σ2
x/ζi) (38)

∝ N (θt |µt, σ
2
t ), (39)

where

1

σ2
t

=
1

σ2
0

+
t∑

i=1

ζi
σ2
x

, µt = σ2
t

(

µ0

σ2
0

+
t∑

i=1

ζixi

σ2
x

)

. (40)

The MF-posterior predictive can be computed by integrating out θt. This is a convolution of two Gaussians, the posterior

in Equation (15) and the prior π(θ) = N (θ |µ0, σ
2
0), which is again Gaussian:

p(xt+1 | ζt+1,D1:t) =

∫

Θ

[N (xt+1 | θt, σ2
x)]

ζt+1N (θt |µt, σ
2
t )dθt (41)

= N
(

xt+1 |µt,
σ2
x

ζt+1
+ σ2

t

)

. (42)

With a single fidelity and ζ = 1, this results reduces to the standard result for Gaussian models with known variance [Murphy,

2007].

A.3 MULTI-FIDELITY BERNOULLI MODEL

To simplify notation, we ignore the run length in this section, since it only specifies which data need to be accounted for in

the MF-posterior distribution. Consider a beta-Bernoulli model

xi
iid∼ Bernoulli(θt), θt ∼ Beta(α0, β0). (43)

The multi-fidelity likelihood is

t∏

i=1

pθt(xi)
ζi =

t∏

i=1

[
θxi

t (1− θt)
1−xi

]ζi
(44)

=

t∏

i=1

θζixi

t (1− θt)
ζi(1−xi). (45)

1This result straightforwardly extends to the multivariate Gaussian.





However, we found that results on the Gaussian model in Section 4.1 were not promising (Figure 5). The model would

frequently switch between fidelities because the utilties U(ζlow) and U(ζhigh) were quite close in value. We found that

information rate was more stable because it requires a more significant change in information gain to induce a switch.



C MF-BOCD ALGORITHM IN DIDACTIC CODE

This Python code is a didactic example of the MF-BOCD algorithm. At each time step, the algorithm (1) chooses a data

fidelity using maximal information rate; (2) observes a datum of the chosen fidelity; (3-4) computes the posterior predictive

and run-length posterior distributions; (5) updates the model parameters; and (6) makes a prediction. Please see the code

repository2 for a complete example.

Note that in practice, each datum will be observed by evaluating an observation model in real-time. Here, for clarity, we

simply index into a pre-initialized data array.

1 import numpy as np

2 from scipy.special import logsumexp

3

4 def mf_bocd(data, model, hazard, costs):

5 J, T = data.shape

6 log_message = np.array([1])

7 log_R = np.ones((T+1, T+1))

8 log_R[0, 0] = 1

9 pmean = np.zeros(T)

10 igs = np.empty(J)

11 choices = np.empty(T)

12

13 for t in range(1, T+1):

14

15 # 1. Choose fidelity.

16 rl_post = np.exp(log_R[t-1, :t])

17 for j in range(J):

18 igs[j] = compute_info_gain(t, model, rl_post, log_message, hazard, j)

19 j_star = np.argmax(igs / costs)

20 choices[t-1] = j_star

21

22 # 2. Observe new datum.

23 x = data[j_star, t-1]

24

25 # 3. Compute predictive probabilities.

26 log_pis = model.log_pred_prob(t, x, j_star)

27

28 # 4. Estimate run length distribution.

29 log_growth_probs = log_pis + log_message + np.log(1 - hazard)

30 log_cp_prob = logsumexp(log_pis + log_message + np.log(hazard))

31 new_log_joint = np.append(log_cp_prob, log_growth_probs)

32 log_R[t, :t+1] = new_log_joint

33 log_R[t, :t+1] -= logsumexp(new_log_joint)

34

35 # 5. Update model parameters and message pass.

36 model.update_params(t, x, j_star)

37 log_message = new_log_joint

38

39 # 6. Predict.

40 pmean[t-1] = np.sum(model.mean_params[:t] * rl_post)

41

42 return choices, np.exp(log_R), pmean

2https://github.com/princetonlips/mf-bocd



D ABLATION STUDIES

Here, we report the results of an ablation study for the multi-fidelity Gaussian and multi-fidelity Bernoulli models described

in Section 3.3. For varying costs, a multi-fidelity model using information gain-based switching was run on data generated

from their respective data generating proceses. The percentage of low-fidelity observations was recorded; call this Plow. Then

a randomized multi-fidelity model was run on the same dataset. At each time step, the randomized model chose low-fidelity

data based on a Bernoulli random variable with bias Plow. The goal of this experiment is to demonstrate that when the model

switches to high-fidelity data is important to model performance, not just the fact that some percentage of high-fidelity data

are used. We found that for both Gaussian (Table 2) and Bernoulli data (Table 3), choosing when to switch fidelities was

often useful.

Table 2: Ablation study for multi-fidelity Gaussian models. “LF only” is BOCD using only low-fidelity data. Mean and

two standard errors, representing 95% confidence intervals, are reported over 200 trials. Bold numbers indicate statistically

significant using 95% confidence intervals.

MSE L1

LF (%) LF only Random Info-based LF only Random Info-based

1

0.879 (0.034)

0.046 (0.056) 0.003 (0.001)

270.87 (8.35)

5.98 (3.06) 73.92 (9.61)

2 0.125 (0.073) 0.111 (0.046) 18.18 (7.37) 77.68 (9.79)

38 0.680 (0.118) 0.494 (0.059) 162.31 (12.97) 161.05 (11.08)

53 0.702 (0.091) 0.483 (0.066) 183.40 (11.36) 173.01 (10.46)

60 0.752 (0.140) 0.452 (0.037) 186.11 (10.89) 174.95 (10.13)

67 0.665 (0.075) 0.466 (0.036) 187.72 (10.01) 173.41 (9.91)

74 0.643 (0.064) 0.480 (0.043) 182.18 (9.48) 175.88 (9.36)

80 0.656 (0.087) 0.492 (0.044) 184.66 (9.20) 175.70 (9.20)

97 0.547 (0.028) 0.537 (0.028) 176.76 (9.40) 175.34 (9.33)

Table 3: Ablation study for multi-fidelity Bernoulli models. “LF only” is BOCD using only low-fidelity data. Mean and

two standard errors, representing 95% confidence intervals, are reported over 200 trials. Bold numbers indicate statistically

significant using 95% confidence intervals.

MSE L1

LF (%) LF only Random Info-based LF only Random Info-based

9

0.123 (0.009)

0.003 (0.001) 0.002 (0.000)

186.27 (7.02)

45.55 (6.04) 40.31 (5.43)

21 0.008 (0.001) 0.009 (0.002) 76.42 (7.68) 71.88 (7.54)

25 0.011 (0.002) 0.011 (0.002) 84.47 (8.11) 80.61 (7.89)

46 0.025 (0.003) 0.021 (0.003) 124.80 (7.07) 117.34 (7.31)

61 0.040 (0.004) 0.034 (0.005) 143.87 (6.34) 139.88 (7.23)

68 0.050 (0.005) 0.040 (0.005) 158.48 (6.34) 149.79 (7.02)

73 0.057 (0.005) 0.048 (0.006) 163.68 (6.39) 158.08 (6.66)

83 0.077 (0.006) 0.064 (0.007) 174.01 (6.21) 170.26 (6.49)

90 0.098 (0.007) 0.082 (0.007) 184.46 (6.11) 178.86 (6.28)



E EXPERIMENTAL DETAILS

E.1 CAMVID EXPERIMENTS

The pretrained MobileNets were downloaded from the Fastseg Python library.3

We can estimate the computational cost of MF-BOCD (λMF) relative to BOCD using only high- (λHF) and low- (λLF) fidelity

data. We used 85 low- and 86 high- fidelity observations. The low- (high-) fidelity observation model required 19.48 (36.89)

billion flops (Table 4). Computing the information gain required 465,291 flops. The total cost of our algorithm in billions of

flops is

λLF = 171×19.5 ≈ 3333,

λHF = 171×36.9 ≈ 6303,

λMF = 0.00046+(85×19.5) + (86×36.7) ≈ 4827.

As we can see, decision-making has a marginal cost.

Table 4: Observation model details for CamVid and MIMII experiments. (CamVid) The high-fidelity model has roughly

twice times the number of flops and higher accuracy as measured by intersection-over-union (IoU) on the Cityscapes dataset.

(MIMII) The high-fidelity model requires roughly 250 times as many floating point operations (ops). “FC”, “M”, and “B”

mean fully-connected, millions, and billions respectively.

Fidelity Model Ops Accuracy

CamVid
HF V3-large 36.86 B 72.3 (IoU%)

LF V3-small 19.48 B 67.4 (IoU%)

MIMII
HF MicroNet-AD(M) 124.7 M 96.15 (AUC%)

LF Two-layer FC 0.5 M 86.7 (AUC%)

Figure 6: Illustration of pipeline to generate anomaly scores from log-Mel spectrograms using deep neural networks.

E.2 MIMII EXPERIMENT

In the MIMII experiment, the output of the observation models (Table 4) is a scalar anomaly score in the range [0, 1], where

0 indicates normal machine operation. An illustration of how these scores are obtained for an audio clip is shown in Figure 6.

To convert these anomaly scores to binary numbers for a Bernoulli multi-fidelity posterior predictive model, we thresholded

the scores to integers in {0, 1}. The quality of the observation models depends on the choice of threshold. For examples of

these data, see Figure 7. To select the appropriate threshold, we used the intersection of the false negative and false positive

3https://github.com/ekzhang/fastseg
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