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Abstract—The trace reconstruction problem studies the num-
ber of noisy samples needed to recover an unknown string
x € {0,1}™ with high probability, where the samples are
independently obtained by passing x through a random deletion
channel with deletion probability g. The problem is receiving
significant attention recently due to its applications in DNA
sequencing and DNA storage. Yet, there is still an exponential
gap between upper and lower bounds for the trace reconstruction
problem. In this paper we study the trace reconstruction problem
when x is confined to an edit distance ball of radius k£, which
is essentially equivalent to distinguishing two strings with edit
distance at most k. It is shown that n®*) samples suffice to
achieve this task with high probability.

I. INTRODUCTION

The trace reconstruction problem seeks to recover an un-
known string x € {0, 1}", given multiple independent noisy
samples or traces of x. In this paper, a noisy sample is obtained
by passing x through a deletion channel, which randomly and
independently deletes each bit of x with probability q. We are
interested in how many samples are needed to recover x with
high probability.

The trace reconstruction problem was introduced in [2] and
proposed earlier in [18] under an adversarial setting. It has
been receiving increased attention recently due to its applica-
tion in DNA sequencing [3] and DNA storage under nanopore
sequencing [21], [26]. Also, there are many significant results
on trace reconstruction and its variants and generalizations,
such as coding for trace reconstruction [9] and population
recovery [1]. For average case trace reconstruction, where the
reconstruction error probability is averaged over all choices
of x € {0,1}", the state of the art upper and lower bounds
on the number of samples are exp(O(log% (n))) [15] and

Q(%) [7] respectively.

Despite the progress for average cases, the trace reconstruc-
tion problem proved to be highly nontrivial in worst cases,
where the reconstruction error probability goes to zero for
arbitrary choice of x. For small deletion probabilities, the work
in [10] showed that polynomial number of samples suffice
when g < n=(G+9 for some € > 0, improving the result in
[2] for ¢ < n=(3+9) and some ¢ > 0. When the deletion
probability becomes constant, there is still an exponential gap
between the upper and lower bounds on the number of samples
needed. The first achievable sample size for constant deletion
probability ¢ is exp(O(nz)) [16], which was improved to
exp(©(n3)) in independent and simultaneous works [13] and
[20]. Both [13] and [20] studied mean-based algorithms, which
use single bit statistics in traces, for reconstruction. They

showed that exp(O(n?)) is the best sample size achieved by
mean-based algorithms. A novel approach in [13] and [20] is to
relate single-bit statistics to complex polynomial analysis, and
borrow results from [5] on complex analysis. This approach
was further developed in [8], where multi-bit statistics were
considered. The current best upper bound on the samgle size

is exp(O(ns)) [8], while the best lower bound Q(é%) [7]
is orders of magnitude away from the upper bound.

While the general trace reconstruction problem is hard to
solve, in this paper, we focus on a variant of the trace recon-
struction problem with an edit distance constraint. Specifically,
the goal is to recover the string x by using its noisy samples
and additional information of a given string y, which is
known to be within a bounded distance from x. The edit
distance between two strings is commonly defined as the
minimum number of deletions, insertions, or substitutions that
transform one string into another. In this paper, we consider
only deletion/insertion for convenience, as a substitution is an
insertion followed by a deletion. We say that a string x is
within edit distance k to a string y, denoted as x € Bg(y),
if x can be obtained from y after at most k£ deletions and &
insertions. Note that the general trace reconstruction problem
considers cases where k = n.

The setting considered in this paper arises in many practical
scenarios in genome sequencing, where one needs to recover
an individual genome sequence of a species, given a reference
genome sequence that represents the species [25]. Normally,
the genome sequences of a species share some similarity and
most of them can be considered to be within a bounded
edit distance from the reference genome. One example is the
Human Genome Project, where a human reference genome is
provided to study the difference between individual genomes.
Complementary to the problem we consider, the work in [12]
studied approximate trace reconstruction, which aims to find
an estimate within a given edit distance to the true string. Note
that such an estimate, together with an algorithm to distinguish
two strings within edit distance k, establishes a solution to the
general trace reconstruction problem.

As indicated in [13], [14], [16], [17], [20], the problem of
worst case trace reconstruction is essentially equivalent to a
hypothesis testing problem of distinguishing any two strings
using noisy samples. More specifically, the sample complexity
needed for trace reconstruction is at most poly(n) times the
sample complexity needed to distinguish arbitrary two strings.
The same equivalence holds in our setting as well, where a
reference string y is known and close to x in edit distance.
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Hence, for convenience, we consider the problem in the form
of distinguishing any two strings x € {0,1}" andy € {0,1}"
when x is within edit distance k to y. One special case of the
problem is to distinguish two strings within Hamming distance
k, which was addressed in [17] and n®*) sample complexity
was achieved. Recently, an independent work [14] studied
the limitations of mean-based algorithms (see [13] and [20])
in distinguishing two strings with bounded edit distance. It
was shown that mean-based algorithms need at least n©(°&™)
traces to distinguish two strings with edit distance of even 4.
The paper [14] also showed that n®**) suffices to distinguish
two strings x € {0,1}™ and y € {0,1}"™ with special block
structures, if x € Bg(y). Yet, as pointed out in [12], it is
an open problem whether n©*) samples suffice to recover a
string that is within edit distance k to a known string.

The main contribution of this paper is an affirmative answer
to this question. We show that distinguishing two sequences
within edit distance & needs at most n°*) samples. The result
is stated in the following.

Theorem 1. Let x € {0,1}"” and y € {0,1}" be two
strings satisfying x € By (y). Then strings x and y can be
distinguished with high probability, given n°®*) independent
noisy samples, each obtained by passing x through a deletion
channel with deletion probability q < 1.

Remark 1. Theorem 1 holds for any string y that can be
obtained from x after at most k deletions or insertions. The
length of y is not necessarily n. Yet by definition of the trace
reconstruction problem, we focus on length n strings x and
y.

The approach we take follows a similar method to that in
[8], [13], [14], [20], in the sense that we derive bounds on
multi-bit statistics through complex analysis of a special class
of polynomials. Yet, the complex analysis in this paper differs
from those in [8], [13], [14], [20] in the following two ways.
Firstly, we make use of the fact that the polynomial is related
to a number theoretic problem called the Prouhet-Tarry-Escott
problem [4], which is also noted in [14]. This allows us to
link the problem to our previous result on deletion codes
[24], where we showed that two constrained strings can be
distinguished using weighted sums of powers, which is similar
in form to the Prouhet-Tarry-Escott problem. Secondly, to find
the maximum value of the polynomial, we let the complex
variable take values on a small circle around the point 1,
while the work in [8], [13], [14], [20] analyze the complex
polynomial on a unit circle. By doing this, we are able to
improve the n®**) bound in [14] to nO*),

The rest of the paper is organized as follows. In Section II
we provide an introduction to the techniques and the lemmas
needed to prove Theorem 1. In Section III, the proof of
Theorem 1 is given. Section IV presents the proof of a critical
lemma on complex analysis. Section V concludes the paper.

II. PROOF TECHNIQUES AND LEMMAS

In this section we present a brief introduction to the tech-
niques and key lemmas needed in proving Theorem 1. For

strings x € {0,1}" and y € {0,1}", let X = (Xy,...,X,,)
and Y = (Y1,...,Y,) denote the sample obtained by passing
x and y through the deletion channel respectively. We have
X, =0 orY; = 0 if iorjis larger than the length of
XorY, respectively. Note that X and Y are sequences of
random variables that describe the probability distributions of
the samples.

The techniques we use were originated in [13], [20], which

presented the following identity

|
Ex| Y X(C=D)
i=1 q i=1

£ fi(2), (1

for a sequence x and a complex number z. The identity
(1) links the analysis of single bit statistics {Eg[Xi]}?",
to that of complex polynomials. As a result, a lower bound
on the maximal difference between single bit statistics
max;<;<n |E5[X;] — Ey[Y;]| can be obtained through ana-
lyzing the maximal value of the polynomial f;(2) — f;(z) on
a unit disk, a problem referred to as Littlewood type problems
and studied in [5], [6]. Generalizing the approach in [13],
[20], the papers [8] and [11] presented multi-bit statistics
counterparts of (1). In this paper, we consider the version from
[8], stated in the following lemma.

Lemma 1. [8] For integer { > 1, complex numbers z1, . .., zy,
and sequences x € {0,1}" and w € {0,1}, we have
—0
Ez [(1 —-q) > 1%, —w, viell
1<ii<...<ig<n
z q £
1 ’LJ i]‘7171:|
1 —q 1;[ 1-— q
L
1
= Z ]]-x]} =wy, VhE[(]? H M Ino1=
1<j1<...<je<n h=1
éfx,w(zla-'wzf)u (2)
where [(] ={1,... f}andi:i4+0—1={i,...,i+£€—1}.

For any statement E, the variable 1 = 1 iff E holds true.

By taking 2o = ... =z, = 0 in (2), we obtain

n—~_0+1

Z :I]'xi:i+l—1:w2i' (3)
=1

Similar to the arguments in [8], we prove Theorem 1 by
analyzing the polynomial fx w(z,0,...,0)— fy w(z,0,...,0)
associated with the multi-bit statistics in (3). Note that the
polynomial fx w(2,0,...,0)— fy w(2,0,...,0) is single vari-
ate. The way in which the polynomial is analyzed in this paper
deviates from that in [8]. While the paper [8] taylored the
complex analysis arguments in [6] to obtain improved bounds,
in this paper, we exploit number theoretic properties of two
strings x and y within edit distance k.

In our previous paper [24], we showed implicitly that the
weighted sums of powers > . i/x;, j € {0,...,0(k)} can

Sxew (2,0,



be used to distinguish two constrained strings x and y within
edit distance k. The following lemma makes this statement
explicit. Let R,, », denote the set of length 7 strings such that
any two 1 entries in each string are separated by a 0 run of
length at least k£ — 1.

Lemma 2. For distinct strings X,y € Ry 6k, if X € Ber(y),
then there exists an integer m € [12k + 1] such that

Doy My F Y Y
Proof. Suppose on the contrary, we have that Y . i"z; =
Yo @™y, for all m € [12k + 1]. Then, we have that

z": (iljm/)wi = Z (jz:jm/)yi

n
i=1  j= i=1

“

for all m’ € {0,...,12k}. This is because Zj‘:l ™ s a
weighted sum of i',...,i™ 1 for any m’ € {0,...,12k+1}
(Faulhaber’s formula). Next, we borrow a result from [24].

Proposition 1. [24] For sequences X,y € Ry if y €

Bsy(x) and 2?21(23-:1 Jmw = 22:1(23:1 ™)y for
m € {0,...,6k}, then x =y.

Note that Bsr(x) C Bgr(x). Since (4) holds, we apply
Proposition 1 with £ = 2k and conclude that x = y, which
contradicts the fact that x and y are distinct. [l

Interestingly, the following result from [4] connects the
sums of powers of two sets of integers that appear in Lemma
2 to the number of roots of a polynomial at 1. It allows us
to combine the number theoretic result with further complex
analysis, which will be given in Lemma 6. The lemma can
be proved by checking the i-th, i € [m], derivative of the
polynomial 37 2% — 3! 2P at point z = 1.
Lemma 3. [4] Let {cv1,...,as} and {f1, ...
of integers. The following are equivalent:

(@) 32y o = 325 B for j € [m —1].
(b) (z —1)™ divides > ;_, 2% — > i_, 27u.

, Bs} be two sets

Remark 2. The problem of finding two sets of integers
{aq,...,as} and {1, ..., Bs} satisfying the statement (a) is
called the Prouhet-Tarry-Escott problem [4]. This connection
between the Prouhet-Tarry-Escott problem and the analysis of
polynomials was also used in [14] and implicitly in [19].

Lemma 2 requires that the strings x and y are within
R(n, 6k), which does not hold in general. Following the same
trick as in [8] and [24], we define an indicator vector as
follows. For any sequences x € {0,1}" and w € {0,1}%,
define the length n vector

1, ifxu401=w,

]lw(X)i é {0

for i € [n]. Note that 1 (x); =0 fori € {n—¢(+2,...,n}.
It can be seen that the polynomial fx w(%,0,...,0) related to
multi-bit statistics is exactly the polynomial f]fw(x) (z) related
to single-bit statistics. To apply Lemma 2, we need to find a

else.

w such that 1., (x) € R(n,6k). The same as what the paper
[8] did, we find such a w by using the following lemma from
[23]. A string w € {0, 1}* is said to have period a, if and only
if w; = w;4, for i € [¢ — a]. Moreover, a string w € {0, 1}
is said to be non-periodic, iff w does not have period a for
a€ [[g] —1].

Lemma 4. For any sequences w € {0,1}?P~Y either (w,0)
or (w, 1) is non-periodic, where (w,0) and (w, 1) is the string
obtained by appending 0 and 1 to w, respectively.

Lemma 4 can be proved by definition of period. The claim
that 1,,(x) € R(n,p) follows from Lemma 4 and will be
proved in Lemma 5. In addition, the edit distance between
1w (x) and 1(y) needs to be bounded to apply Lemma 2.
This is proved in the following lemma.

Lemma 5. Let w € {0,1}?F be a non-periodic string. For
two strings x and y € By(x), we have that

(@) Lw(x) € Ry p.
) 1w(y) € Rnp.
(© ]lW(X) € B5k(]lW(Y))-

Proof. The statements (a) and (b) follow from the definition of
vectors 1y (x) and 1 (y) and the fact that w is non-periodic.
Suppose there are two 1 entries 1y (x); and L1y (X)itq in
1w(x) that are separated by less than p—1 0’s,i.e.,, a < p—1.
Then by definition of 1., (x), we have that X;.;42,—1 = W and
that Xitaiitat2p—1 = W. This 1mphes that Wj = Titatj—1 =
Wjq for j € [2p—al. Hence, the string w has period a < p—1,
contradicting to the fact that w is non-periodic. Hence, we
have that 1 (x) € R, p, and similarly that 1, (y) € Ry,

We now prove statement (c). To this end, we first show
that a deletion in x results in at most three deletions and two
insertions in 1 (x). Since w has length 2p and 1, (x) € Ry, p
as shown in (a), a deletion in x results in at most two
deletions and two insertions of 1 entries in 1y, (x), respectively.
Otherwise, suppose that a deletion in x deletes three 1 entries
Iw(X)i, Lw(X)iy, and Ly (x);, in 1y (x), then we have
that 73 — 77 > 2p because (a) holds. This is impossible
since w € {0,1}?" and the deletion in x can not affect
the two occurrences X;, i, +2p—1 and X,.j,+2p—1 of W in x
simultaneously. Hence a deletion causes at most two deletions
of 1 entries in 1y(x) and similarly, the same holds for
insertions.

Moreover, at most one 0 entry is deleted in 1y, (x) because
of the deletion in x. Hence, a deletion in x causes at most three
deletions and two insertions in total in 1y, (x), and k deletions
in x results in at most 3k deletions and 2k insertions in 1y, (x).
The same holds for y and 1 (y).

Since x € By (y), we conclude that 1y,(y) can be obtained
from 1 (x) by at most 5k deletions and 5k insertions, and
hence, Ly (x) € Bsi(1w(y)). O

With Lemma 2 and Lemma 5 established, we present
a lower bound on the maximal value of polynomial
fxw(2,0,...,0)— fy.w(2,0,...,0) for z close to 1. Note that
it is important that z is located near the point 1 on the complex



plane because of the scaling factor (i—:g)i in the multi-bit
statistics in Eq. (3). To meet this requirement on z, existing
works [8], [13], [14], [20] restrict z to lie on short subarcs of a
unit circle around 1, a case also considered in [5] in the context
of complex analysis. In this paper, we choose z from a small
circle around 1. It turns out that this choice of z achieves a
lower bound — on fxw(z,0,...,0) = fyw(z,0,...,0),
which improves the bound ﬁ established in [14]. The
details will be given in the followmg lemma, which is a critical

result in this paper. Its proof will be given in Section IV.

Lemma 6. For integer { > 1 and strings x,y € {0,1}" and
w € {0, 1}{ ifzzl:l Tw(x)id™ # 2?21 Iw(y)ii™ for some
non-negative integer m, then there exists a complex number
z, such that |3=L" < 2 and

for sufficiently large n.

Finally, we use the lower bound in Lemma 6 for sin-

gle variate polynomial fx w(2,0,...,0) — fyw(2,0,...,0)
to obtain a lower bound for the multi-variate polynomial
fxw(z1, ..oy 20)— fyw(z1, ..., 20), Where z1, . .., z; are close

to 1. This lower bound guarantees a gap between the multi-bit
statistics of X and }7, which makes x and y distinguishable
by Hoeffding’s inequality (See Section III). The proof follows
similar steps to the ones in [8].

Lemma 7. For integer { > 1 and strings x,y € {0,1}" and
w € {0, 1}{ ifzzl:l Tw(x)id™ # 2?21 Iw(y)ii™ for some
non-negative integer m, then there exist complex numbers
21, ..., 2 such that |3=1" < 2 for j € [(] and

1
fy,w(zla"'wzf) > W- (6)

fx,w(zlu- . 725) -

for sufficiently large n.

Proof. Accordmg to Lemma 6, there exists a complex number

*

z q|" < 2 and (5). Let 2y = 2* and
g = ... = Zg = 2. Then the polynomial f(z*, z) =
fxw(z*,2,..,2) = fyw(2®,2,...,2) is a function of z.

By (3) and (5) we have that f(z*,0) > m The
following result from [6] relates f(z*,0) to the maximal value
of f(z*,z2) for z close to 1.

Proposition 2. [6] Let f(z) be an analytic function satisfying
f(z) <= | ; for |z| < 1. There are positive real constants ¢y
and co such that

e C2
a < el
F(0)] < exp(— )Zer[rll‘cg{;”

£ (2)l

Sor real number a € (0, 1]

According to Proposition 2, we have that

7
z€[max{2q 1,0},1] |f( )l @)
C2 « c1
> — 1—max{2¢—1,0}
> exp(- et IG0) ®
1
ZO(W) (€))

Let z; = 2* and 22 = ... = 2, be the number z maximizing
the term |f(z*, z)| in (7). Then by Lemma 6 we have that
|2 < 2 for sufficiently large n and [3=1" < 1 for
1€ {2,...,¢}. Hence, the proof is done. O

III. PROOF OF THEOREM 1

In this section we prove Theorem 1 based on the results
from Lemma 1 to Lemma 5 and Lemma 7. Let ¢y be the
smallest index such that z; # y;. If to < 12k, we have the
following result from [22], which was also used in [8].

Proposition 3. For sequences x,y € {0,1}", let ty be the
smallest index such that 1, # ys,, i.e., T; = y; fori € [to—1].
Then, witlh high probability x and 'y can be distinguished using

exp(O(t3)) samples.

According to Proposition 3, sequences x and y can be

distinguished with high probability using exp(O(t¢ g )) < nO®)
samples. Hence, it suffices to consider cases when ty > 12k.

Let w' = X4, _12k+1:t—1- By Lemma 4, either (w’,0) or
(w’, 1) is non-periodic. Without loss of generality, assume that
w = (w,0) € {0,1}'?* is non-periodic. Then, similar to
the arguments in [8], [13], [14], [17], [20], the core part of
the proof is to show that the difference of multi-bit statistics
]EX[]lXij:wj,v‘je[mk]] and Ey[1 V., _wjme[l%]] is at least
—o for some integers 1 <y < ... <ijgx <n,ie.,

max Eglls .
1<i1 <...<i12p <N X[ Xij :w]‘,VjG[le]]
_E?[ﬂﬁ-j :wj,VjE[IZk]]’ 2 nO&) " (10)
Let
(47, ..., i791) = argmax1§i1<...<i12k§n|E5{ []l)zij:wj,vje[uk]]

—Ey []lf/ij :wj,VjE[IZk]”’

which can be determined once x and y are given. Suppose
that x is passed through the deletion channel N times,
generating /N independent samples {Tt}ivzl. Then, by using
similar Hoeffding’s inequality (or the Chernoff bound) argu-
ments as in [20], we can show that with high probability,

Zr 1 Tt*fw \ViE([12k]
the empirical distribution i is closer to

N
E[]l;zi;:wj,we[m]] than to E[1 Vir= wj,we[mﬂ if

1

N>0
-Ey [ﬂﬁ; —w; vjenzil?

IE % [1;@.; —w, Vje[12k]]
ok



Hence x and y can be distinguished using n°®*) samples.
Therefore, it suffices to show (10) in the rest of the proof.

Since w is non-periodic and x € By(y), Lemma 5
implies that 1, (x),1w(y) € R(n,6k) and that 1y (x) €
Bsk(1w(y)). In addition, either Xy, —12k+1.4y = W O
Yto—12k+1:t, = W holds by definition of w and ¢(. Therefore,
we have that 1y (X)+,—12k+1 # Lw(¥)to—12k+1, and thus that
1w(x) # 1w(y). Hence, we apply Lemma 2 and obtain
an integer m € [12k + 1] such that > ! | 1y (x);i™ #
Z?:l 1w (x);i™. Then, according to Lemma 7, there exist
complex numbers z1,..., 212k, such that |%|" < 2 for

€ [12k] and (6) holds for sufficiently large n. Lemma 1
and Eq. (6) imply that

2.

1<iy <...<i1ok<n

12k
1 —12k qviy i~ DNij—ij_i—1
(-0 =D [IE=D
j=2
S 1
= LO(k)’

and thus that

max
1<i1 <...<i12x.<n
1 12k
12k
12k j=1
1
N

Therefore, (10) holds and the proof is done.

IV. PROOF OF LEMMA 6

Without loss of generality, assume that m is the small-
est non-negative integer satisfying > . | 1w(x);i™ #

Z?:l L1w(x);2™. Let
f(z) = Z Tw(x);2" — Z Ly ()2 an
=1 i=1

be a complex polynomial. The coefficients of f(z) are within
the set {—1,0,1}.

According to Lemma 3, we have that f(z) = (z—1)"¢(x),
where g(z) = >_', ¢;z" is a complex polynomial with integer
coefficients and (z — 1) does not divide ¢(z), i.e., ¢(1) # 0.
The following result was presented in [6]. It gives an upper
bound on the norm of coefficients of ¢(z).

Proposition 4. [6] If a complex degree n polynomial f(z)
has all coefficients with norm not greater than 1, and can be
factorized by

f(z)=(z=1)"q(z) =
leil < (n+1)(5)™

(z—=1)"(cp, 2" + ...+ co),
then, we have that Z?:ll

We are now ready to prove Lemma 6. Let D £ 2m + 2
and z; = exp(QJm) j € [D] be a sequence of D complex

‘EX [1)"%. =w, ,Vje[le]} —Ey [1{@ :wj,v;'e[uk]] ‘

Ex []lXij :wj,Vj6[12k]} —Ey []lfaj :wj,Vje[l2k]] ‘

numbers equally distributed on a unit circle. We first show that
there exists a number j € [D] satisfying

Note that

D z
’ZQ(l +-3)
j=1

T Z exp D ’
s n2s

n25

7\ D1p givides s )
s n25

7\ D1p givides s

=|Dgq(1 - _—
ORI (S)

r= O s=1
D]]-D divides s
n25

S i)
Z D]]-D divides s

s=1 r=s

—(n+1)(

en. .,

2

en m

D22m+2 e 2
=""D-D N(—)"=
(n + )(mn) n?
1
=D —o(—
o(—)
>1

for sufficiently large n, where (a) follows from the identity

D . . (25D7r1) -1

2jsmi exp
> exp( jD ) =

= D1p divides s
= exp(257rz) -1

and (b) follows from Proposition 4 and the facts that ¢(1) is
a nonzero integer and that (7;) < n?®. Therefore, there exists
an integer j such that

z 1
a1+ 2)| > .
and thus that
zjy  la(1+ %)
1
n?m(2m + 2)
Moreover, we have that
1+ 3% — 1 cos(2x) \
e (14 L pa D)
l—gq n*(1-q) n*(1—q)

<2



for sufficiently large n. Hence, z =
conditions in Lemma 6.

1 + 2 satisfies the

V. CONCLUSION

In this paper we studied the trace reconstruction problem
when the string to be recovered is within bounded edit
distance to a known string. Our result implies that when
the edit distance is constant, the number of traces needed is
polynomial. The problem of whether a polynomial number of
samples suffices for the general trace reconstruction is open.
However, it will be interesting to see if the methods in this
paper can be extended to obtain more general results.

REFERENCES

[1] F. Ban, X. Chen, A. Freilich, R. A. Servedio, and S. Sinha, “Beyond
trace reconstruction: Population recovery from the deletion channel.” 60th
IEEE Annual Symposium on Foundations of Computer Science (FOCS),
pp. 745—768, 2019.

[2] T. Batu, S. Kannan, S. Khanna, and A. McGregor, “Reconstructing strings
from random traces.” Proceedings of the Fifteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 910-918, 2004.

[3] V. Bhardwaj, P. A. Pevzner, C. Rashtchian, and Y. Safonova, “Trace
reconstruction problems in computational biology.” IEEE Transactions
on Information Theory, to appear.

[4] P. Borwein, “Computational excursions in analysis and number theory.”
Springer Science & Business Media, 2012.

[5] P. Borwein and T. Erdélyi, "Littlewood-type problems on subarcs of
the unit circle.” Indiana University mathematics journal, vol. 46, no. 4,
pp. 1323—1346, 1997.

[6] Peter Borwein, Tamds Erdélyi, and Géza Kés. "Littlewood-type problems
on [0, 1] Proceedings of the London Mathematical Society, vol. 79,
no. 1, pp. 22-46, 1999.

[71 Z. Chase, “New lower bounds for trace reconstruction.”
arXiv:1905.03031, 2020.
[8] Z. Chase, “New upper bounds for trace reconstruction.”

arXiv:2009.03296, 2020.

[9] M. Cheraghchi, R. Gabrys, O. Milenkovic, and J. Ribeiro, “Coded
trace reconstruction.” IEEE Transactions on Information Theory, vol. 66,
no. 10, pp. 6084—6103, 2020.

[10] X. Chen, A. De, C. H. Lee, R. A. Servedio, and S. Sinha,
“Polynomial-time trace reconstruction in the low deletion rate regime.”
arXiv:2012.02844, 2020.

[11] X. Chen, A. De, C. H. Lee, R. A. Servedio, and S. Sinha, “Polynomial-
time trace reconstruction in the smoothed complexity model.” Pro-
ceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 54-73, 2021.

[12] S. Davies, M. Z. Rédcz, C. Rashtchian and B. G. Schiffer, “Approximate
trace reconstruction.” arXiv:2012.06713, 2020.

[13] A. De, R. O’Donnell, and R. A. Servedio, “Optimal mean-based
algorithms for trace reconstruction.” The Annals of Applied Probability,
vol. 29, no. 2, pp. 851-874, 2019.

[14] E. Grigorescu, M. Sudan, and M. Zhu, “Limitations of mean-based
algorithms for trace reconstruction at small distance.” arXiv:2011.13737,
2020.

[15] N. Holden, R. Pemantle, and Y. Peres, “Subpolynomial trace reconstruc-
tion for random strings and arbitrary deletion probability.” Proceedings of
the 31st Conference On Learning Theory (COLT), pp. 1799-1840, 2018.

[16] T. Holenstein, M. Mitzenmacher, R. Panigrahy, and U. Wieder, “Trace
reconstruction with constant deletion probability and related results.”
Proc. 19th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 389—398, 2008.

[17] A. Krishnamurthy, A. Mazumdar, A. McGregor, and S. Pal, “Trace
reconstruction: Generalized and parameterized.” arXiv:1904.09618, 2019.

[18] V. I. Levenshtein, “Efficient reconstruction of sequences.” IEEE Trans-
actions on Information Theory, vol. 47, no. 1, pp. 2-22, 2001.

[19] I. Krasikov and Y. Roditty, “On a reconstruction problem for sequences.”
Journal of Combina- torial Theory, Series A, vol. 77, no. 2, pp. 344-348,
1997.

[20] F. Nazarov and Y. Peres, “Trace reconstruction with exp(O(n'/3))
samples.” Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing (STOC), pp. 1042-1046, 2017.

[21] L. Organick, S. D. Ang, Y. J. Chen, R. Lopez, S. Yekhanin,
K. Makarychev, M. Z. Racz, G. Kamath, P. Gopalan, B. Nguyen,
C. Takahashi, S. Newman, H. Y. Parker, C. Rashtchian, G. G. K. Stewart,
R. Carlson, J. Mulligan, D. Carmean, G. Seelig, L. Ceze, and K. Strauss,
“Scaling up DNA data storage and random access retrieval,” bioRxiv,
2017.

[22] Y. Peres and A. Zhai, “Average-case reconstruction for the deletion chan-
nel: Subpolynomially many traces suffice.” 58th IEEE Annual Symposium
on Foundations of Computer Science (FOCS), pp. 228-239, 2017.

[23] J. M. Robson, “Separating strings with small automata.” Information
Processing Letters, vol. 30, no. 4, pp. 209-214, 1989.

[24] J. Sima and J. Bruck, “Optimal k-deletion correcting codes,” IEEE
Transactions on Information Theory, to appear.

[25] Wikipedia, ”Reference genome”,
https://en.wikipedia.org/wiki/Reference_genome

[26] S. M. H. T. Yazdi, R. Gabrys, and O. Milenkovic, “Portable and error-
free DNA-based data storage,” Scientific reports, vol. 7, no. 1, p. 5011,
2017.

available at


https://en.wikipedia.org/wiki/Reference_genome

	I Introduction
	II Proof Techniques and Lemmas
	III Proof of Theorem 1
	IV Proof of Lemma 6
	V Conclusion
	References

