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I. SYSTEM MODEL

In the hard disk drive (HDD) industry, new technologies are being developed to increase density such as
two-dimensional magnetic recording (TDMR). TDMR utilizes 2D signal processing without changes to existing
magnetic media to get remarkable density gains [1]. In multilayer magnetic recording (MLMR), an additional
magnetic media layer is vertically stacked to a TDMR system to achieve additional density gains [2], [3]. We
study deep neural network (DNN) based methods for equalization and detection for MLMR, using a realistic grain
switching probability (GSP) model [4] for generating waveforms.

Fig. 1 shows a cross-track view of the MLMR Read head{ Rasitions
system. There are six tracks written at track pitch (TP) f '
24 nm and bit length (BL) 10 nm on the upper layer. g Ty O3 T s Cross-track View
The three tracks are written at TP 48 nm and BL 20 nm l
on the lower layer. Thus, the system stores four bits on
the upper layer for every one bit on the lower layer. To ap,L.

be consistent with [3], we denote the bit sequences
written on the upper left and right tracks by a,; and
a, r respectively, and the bit sequence on the lower
track by a, for the tracks of interest. There are two
boundary tracks a;, ; and a,,  on the left and right sides
of a,; and a, p, respectively. Readings are obtained at track positions (relative to 1, which is centered on track
a, ;) of 0,24, 36,48, and 72nm, from left to right, and denoted by 1, to 75, respectively.
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Fig. 1 Cross-track view of the MLMR System

The effective channel model has a media noise term which models signal dependent noise due to, e.g.,
magnetic grains intersected by bit boundaries. Trellis based detection with pattern dependent noise prediction
(PDNP) [5] is standard practice in HDDs. The trellis detector sends soft coded bit estimates to a channel decoder,
which outputs user information bit estimates. PDNP uses a relatively simple autoregressive noise model and linear
prediction; this model is somewhat restrictive and may not accurately represent the media noise, especially at high
storage densities. To address these problems, we design and train DNN based equalizer-separators and media
noise predictors. The proposed turbo-detector assumes a channel model for the kth equalizer-separator output §j:

S = (e * W(k) + nyp(k) + ne(k), (M

where hy is the partial response (PR) target, u are the coded bits on the track, * indicates 1D/2D convolution,

n,, (k) is media noise, and n, (k) is reader electronic noise modeled as additive white Gaussian noise (AWGN).
10 x 17

In [3] we proposed a CNN equalizer-separator for N/2 examples

MLMR followed by 1D soft output Viterbi Algorithm Rate Lower CNN | 51
(SOVA) detectors for all three tracks a,, a, ; and a, p. Conv. X 2 Eq.-Sep )
We proposed BCJR-LDPC-CNN turbo detectors for
1D magnetic recording (IDMR) and TDMR in [6]. 5 %17
This paper combines the equalizer-separator of [3] with N examples 3
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a modified version of [6] designed for MLMR. r Eastan |
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II. CNN EQUALIZER-SEPARATOR

We investigate a method for equalization of bit ~ Fig. 2 Architecture of the CNN Equalizer-Separator
sequences a4, @, ; and a, p from readings r( to 5 [3].
Fig. 2 illustrates a convolutional neural network (CNN) equalizer-separator. For the upper layer, the inputs include
a sliding window of readings with the size of 5 X 17. For the lower layer, a rate converter multiplexes the
additional readings across-track to have 10 X 17 input examples, since each reader collects two samples per lower
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layer bit, and to maintain a 17-bit down-track footprint. The CNN equalizer iterates with a constrained mean
squared error (MSE) solver to adjust the PR target during the training. The lower layer CNN is provided with the
reading samples r for the five sequences to generate the equalized waveforms §; for the lower track. The upper
layer CNN produces the equalized waveform §, for the four upper tracks.

II1. BCJR-LDPC-CNN TURBO-DETECTOR

Fig. 3 shows the MLMR BCJR-LDPC-CNN turbo-detector. BCJR-LDPC-CNN turbo-detectors for IDMR
and TDMR are employed for the lower and upper layers, respectively. For each layer’s turbo-detector, the separate
BCIJR trellis-based ISI/ITI detector and CNN-based media-noise predictor exchange log-likelihood-ratio (LLR)
and media noise estimates to iteratively reduce the BER until convergence. The upper layer’s 2D-BCJR detector

generates LLR estimates of a,; and a,p by performing it
ISI/ITI equalization on input §,. Since the PR target h; is
3 X 3, the 2D-BCIR state-input window is 2 X 3, and its s, Wlﬁ‘ LLRy,, |
trellis has 16 states. The CNN media noise predictor uses N i - i thAéfjr::aN
the 2D-BCJR LLRs LLR,,, and §; to estimate the media n J toPC | LLR,, | MNowe i
noise fi,,,. The noise Ay, is fed back to the 2D-BCJR to B | Seerl], ' e
obtain a lower BER. Next, the 2D-BCJR passes LLRs i o D:cl:ri]saiclm
LLR, to a low-density parity check (LDPC) decoder. At s, 2D BCJR LLRy,, e NN
the end of each turbo-iteration, the decoder generates the Hatctor Media
final LLRs LLR;. The lower layer employs a 1D-BCJR Jimee . MRy, | NS
with a three-tap PR target h; to estimate a,, so its trellis IR, | PP | i [—————
has four states. Areal density (AD) is determined by ﬁ;nz ===
increasing the LDPC code rate until the decoded BER is H Decision
= 10._5. Dotted lines in Fig. 3 indicate optional inner Fig. 3 BCJR-LDPC-CNN turbo-detector for
iterations between the BCJR layer detectors. MLMR system

IV. RESULTS AND DISCUSSION Table I Simulation results for MLMR

. . Method/ | Detector AD Code
Table I presents simulation results for the proposed turbo- Layer BER | (Th/in?)| Rate

detectors for MLMR on the GSP model [4]. Each block contains
82,412 bits per track on the upper layer and 41,206 bits per track on the | Reference | 0.0146 | 2.2102 | 0.8222
lower layer. For the CNN equalizer-separator and BCJR-LDPC-CNN | _Upper | 0.0485 | 1.9640 | 0.7306
detector, we use 59, 1, and 20 blocks as the training, validation and test Lower 0.0274 | 0.5507 | 0.8195
datasets respectivly. The average BERs before the LDPC decoder are shown in Table I. As a reference, we evaluate
a one-layer TDMR system (without lower layer interference) with TP 24 nm and BL 10 nm using the upper layer’s
BCJR-LDPC-CNN architecture. The maximum code rate achieved by the reference system is 0.8222. In
comparison, for the MLMR system, the maximum code rates are 0.7306 and 0.8195 on the upper and lower layers,
respectively. Since there are four bits on the upper layer per one bit on the lower layer, the total rate of the MLMR
system is 0.7306 + 0.8195/4 = 0.9354. Thus, the areal density gain of the MLMR system over the TDMR system
is (0.9354 — 0.08222)/ 0.8222 = 13.77%. The conventional baseline comparison involving a linear equalizer
followed by 1D-PDNP will be reported in an expanded version of this paper.

REFERENCES

[1] K.S. Chan, R. Radhakrishnan, K. Eason, M. R. Elidrissi, J. J. Miles, B. Vasic, and A. R. Krishnan, “Channel
models and detectors for two-dimensional magnetic recording,” IEEE Trans. Mag., vol. 46, no. 3, pp. 804—
811, March 2010.

[2] K.S. Chan, A. Aboutaleb, K. Sivakumar, B. Belzer, R. Wood and S. Rahardja, “Data Recovery for Multilayer
Magnetic Recording,” IEEE Trans. Mag., vol. 55, no. 12, pp. 1-16, Dec. 2019.

[3] A. Aboutaleb, A. Sayyafan, K. Sivakumar, B. J. Belzer, S. Greaves, K. S. Chan, and R. Wood, “Deep Neural
Network-based Detection and Partial Response Equalization for Multilayer Magnetic Recording,” IEEE
Trans. Mag., vol. 57, no. 3, pp. 1-12, March 2021.

[4] S. Greaves, K. S. Chan, and Y. Kanai “Areal Density Capability of Dual-Structure Media for Microwave-
Assisted Magnetic Recording,” IEEE Trans. Mag., vol. 55, no. 12, pp. 1-9, Dec. 2019.

[5] J. Moon and J. Park, “Pattern-dependent noise prediction in signal dependent noise,” IEEE Jour. Sel. Areas
Commun., vol. 19, no. 4, pp. 730-743, Apr 2001.

[6] A.Sayyafan, A. Aboutaleb, B. J. Belzer, K. Sivakumar, A. Aguilar, C. A. Pinkham, K. S. Chan, and A. James,
“Deep Neural Network Media Noise Predictor Turbo-detection System for 1-D and 2-D Dimensional High-
Density Magnetic Recording,” IEEE Trans. Mag., vol. 57, no. 3, pp. 1-13, March 2021.




