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Abstract
We design differentially private algorithms for the bandit
convex optimization problem in the projection-free setting.
This setting is important whenever the decision set has a
complex geometry, and access to it is done efficiently only
through a linear optimization oracle, hence Euclidean pro-
jections are unavailable (e.g. matroid polytope, submodular
base polytope). This is the first differentially-private algo-
rithm for projection-free bandit optimization, and in fact our
bound matches the best known non-private projection-free al-
gorithm and the best known private algorithm, even for the
weaker setting when projections are available.

Introduction
Online learning is a fundamental optimization paradigm
employed in settings where one needs to make decisions
in an uncertain environment. Such methods are essential
for a range of practical applications: ad-serving (McMa-
han et al. 2013), dynamic pricing (Lobel, Leme, and Vladu
2018; Mao, Leme, and Schneider 2018), or recommender
systems (Abernethy et al. 2007) are only a few examples.
These techniques are highly dependent on access to certain
user data, such as search history, list of contacts, etc. which
may expose sensitive information about a particular person.

As these tools become ubiquitous on the internet, one can
witness a surge in the collection of user data at massive
scales. This is a tremendous problem, since by obtaining
information about the behavior of algorithms run on these
data, adversarial entities may learn potentially sensitive in-
formation. This could then be traced to a particular user,
even if the users were anonymized to begin with (Dwork,
Roth et al. 2014).

To mitigate the threat of diminishing user privacy, one
can leverage the power of differential privacy (Dwork et al.
2006), a notion of privacy which ensures that the output of
an algorithm is not sensitive to the presence of a particular
user’s data. Therefore, based on this output, one can not de-
termine whether a user presents one or more given attributes.

Differentially private learning algorithms have been stud-
ied in several settings, and a large number of recent works
addressed the challenge of designing general optimiza-
tion primitives with privacy guarantees (Jain, Kothari, and
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Thakurta 2012; Agarwal and Singh 2017; Bassily, Smith,
and Thakurta 2014; Abadi et al. 2016; Wang, Ye, and Xu
2017; Iyengar et al. 2019). In this paper, we further advance
this line of research by offering differentially private algo-
rithms for a very general task – the bandit convex optimiza-
tion problem in the case where the space of decisions that the
learning algorithm can make exhibits complex geometry.

Bandit convex optimization is an extremely general
framework for online learning, which is motivated by the
natural setting where, after making a decision, the algorithm
only learns the loss associated with its action, and nothing
about other possible decisions it could have made (as op-
posed to the weaker full information model where losses
associated to all the possible decisions are revealed). Algo-
rithms for this problem are highly dependent on the geo-
metric properties of the space of decisions – and their per-
formance usually depends on the ability to perform cer-
tain projections onto this space (Ben-Tal and Nemirovski
2001; Jaggi 2013). For large scale problems, this require-
ment may be prohibitive, as decisions may have to satisfy
certain constraints (the set of recommendations must be di-
verse enough, or the set of ads to be displayed satisfy a
given budget). Projection-free methods overcome this is-
sue by exploiting the fact that some canonical decision sets
often encountered in applications (matroid polytope, sub-
modular base polytope, flow polytope, convex relaxations
of low-rank matrices) have efficient linear optimization ora-
cles. One can therefore use these efficient oracles in conjunc-
tion with the projection-free method to obtain algorithms
that can be deployed for real-world applications.

In this work we bridge the requirements of privacy and ef-
ficiency for online learning, building on the works of (Gar-
ber and Kretzu 2020; Garber and Hazan 2013b), and ob-
tain the first differentially private algorithm for projection-
free bandit optimization. To do so we leverage a generic
framework for online convex optimization in the presence
of noise, which we then adapt to our specific setting in a
modular fashion.

Our Contributions. We give the first differentially pri-
vate algorithm for the bandit convex optimization problem in
the projection-free setting (we defer the definition of (ε, δ)-
privacy to Definition 2 and the problem statement to the Pre-
liminaries section). We summarize the regret guarantees of
our algorithm in the following theorem and compare it with



the state of the art guarantees in the private and non-private
settings. Our main focus is on the dependency on the dimen-
sion n of the ambient space, the number T of iterations, and
the privacy budget ε. For ease of comparison, we use the ˜︁O
notation to hide poly-logarithmic factors in n and T , as well
as parameters such as the Lipschitz constant of the loss func-
tions. The precise guarantees can be found in Lemma 8 (for
(ε, 0)-privacy) and Lemma 11 (for (ε, δ)-privacy).

Theorem 1. Let D ⊆ Rn be a convex domain for which
we have access to a linear optimization oracle. Assume that
for every t ≥ 1, ft is convex and L-Lipschitz. Further-
more suppose that maxx,y∈D ∥x − y∥ ≤ D. Then there
exists an algorithm PRIVATEBANDIT (Algorithm 1) which
performs projection-free convex optimization in the bandit
setting such that one of the following two properties holds:
• the algorithm is (ε, 0)-differentially private and, assuming
L = O(1) and D = O(1), achieves an expected regret of

RT = ˜︁O(︃T 3/4n3/2

ε

)︃
.

• the algorithm is (ε, δ)-differentially private and, assuming
L = O(1) and D = O(1), achieves an expected regret of

RT = ˜︁O(︃ (T 3/4n1/2 + T 1/2n) logO(1)(1/δ)

ε

)︃
,

whenever δ = 1/(n+ T )O(1).

In the non-private setting, the state of the art re-
gret guarantee for projection-free bandit optimization is˜︁O(n1/2T 3/4) due to Garber and Kretzu (2020).1 The regret
guarantee of our algorithm matches the guarantee of Garber
and Kretzu up to a n/ε factor in the (ε, 0) regime, and a 1/ε
factor in the (ε, δ)-regime, whenever T ≥ n2.

Prior works in the private setting require projections to be
available. The state of the art guarantees for private bandit
optimization with projections are achieved by the work of
Thakurta and Smith (2013). Thakurta and Smith focus on
(ε, 0)-privacy and obtain a regret bound of ˜︁O(nT 3/4/ε). A
variant of their algorithm can be used for (ε, δ)-privacy and
obtains a regret bound of ˜︁O(

√
nT 3/4/ε). Our algorithm’s

guarantee matches the best guarantee with projections for
(ε, δ)-privacy and is worse by a

√
n factor for (ε, 0)-privacy.

We leave it as an interesting open problem to improve the
bound for (ε, 0)-privacy to match the one using projections.

Our Techniques. In the process of obtaining our main
result, we develop the common abstraction of noisy mirror
descent to capture both online bandit optimization and pri-
vate optimization (the NOISYOCO framework). This allows
us to analyze the impact of the noise introduced to protect
privacy on the regret of the online optimization. Once the
framework is set up, it only remains to analyze the noise
level to ensure the appropriate privacy guarantee and one
immediately obtains the corresponding regret bound.

1Their paper allows for a tradeoff among parameters. This
bound is optimized for the case when T ≫ n.

However, analyzing the noise is in itself a non-trivial chal-
lenge. In the case of (ε, δ)-privacy, we give a strong concen-
tration bound allowing us to match the privacy-regret trade-
off achieved with projections (see Lemmas 9 and 10). By us-
ing this concentration bound and ignoring the tail of the dis-
tribution, we obtain stronger results under (ε, δ)-differential
privacy than the straightforward approach. In contrast, in
(ε, 0)-differential privacy, one cannot ignore what happens
in the tail of the distribution and understanding the algorithm
in that regime seems difficult.

Our algorithms use established techniques from differ-
ential privacy, such as the Gaussian and Laplacian mech-
anisms, and tree based aggregation. However, integrating
these techniques with optimization methods requires some
degree of care. For example, our (ε, δ)-privacy bound is
derived using a matrix concentration inequality which cru-
cially relies on a randomized smoothing technique used for
obtaining gradient estimates. This is a key ingredient to ob-
taining the correct ˜︁O(n1/2) dependence in dimension in the
(ε, δ) regime.

Our algorithms can be viewed as a proof of concept for a
general approach to deriving differentially private optimiza-
tion methods. Previous results in this area can be recovered
by following our approach: inject the maximum amount of
noise as to not change the convergence rate asymptotically,
then analyze the privacy loss. This is very simple, but it
paves the way for further development of practical differ-
entially private algorithms, without requiring major changes
in their implementation – simply replace certain components
of the algorithm with a black box implementation of the re-
quired differentially private mechanism.

We believe our framework is general and it facilitates
further progress in differentially private optimization. We
demonstrate our framework by instantiating it with the
Laplace mechanism (to obtain an (ε, 0)-private algorithm)
and with the Gaussian mechanism (to obtain an (ε, δ)-
private algorithm). It would be interesting to apply our
framework to other notions of differential privacy, such
as concentrated differential privacy (Dwork and Rothblum
2016; Bun and Steinke 2016) and Renyi differential pri-
vacy (Mironov 2017).

Other Related Work. The theory of online convex op-
timization is truly extensive, and has seen a lot of devel-
opments in recent years. Here we only discuss the rele-
vant works that involve projection-free and/or differentially
private online learning algorithms. The class of projection-
free online learning algorithms was initiated by the work
of Hazan and Kale (2012) in the context of online con-
vex optimization, where full gradients are revealed after
making a decision. This was further extended to multiple
regimes (Garber and Hazan 2013b,a, 2015) including the
bandit setting (Chen, Zhang, and Karbasi 2018; Garber and
Kretzu 2020).

As discussed above, Thakurta and Smith (2013) achieve
the state of the art regret guarantee for (ε, 0)-private on-
line bandit optimization when projections are available. For
general Lipschitz functions, their regret is ˜︁O(nT 3/4/ε). In
the specific case where the adversary is oblivious and the



loss functions are strongly-convex, they improve this to˜︁O(nT 2/3/ε).
In a different line of work, Agarwal and Singh (2017) ob-

tained improved bounds for the case where losses are linear
functions and for the multi-armed bandit problem (a gen-
eralization of the learning with experts framework), with
regret ˜︁O(T 2/3/ε) and ˜︁O(nT 2/3/ε) respectively. These re-
sults, however, concern only a restricted class of bandit op-
timization problems, so for the general bandit convex opti-
mization problem the result of Thakurta and Smith (2013)
still stands as the best one.

In fact, even in the non-private setting, improving the
regret of the bandit convex optimization problem from˜︁O(T 3/4) to ˜︁O(T 2/3) (Awerbuch and Kleinberg 2004; Dani
and Hayes 2006) or below (Dani, Kakade, and Hayes 2008;
Abernethy, Hazan, and Rakhlin 2008; Bubeck, Lee, and
Eldan 2017) requires stronger access to the set of actions
than just projections (such as via a self-concordant barrier),
and involves performing expensive computations. Indeed,
Bubeck, Lee, and Eldan (2017) are the first to achieve both
optimal regret ˜︁O(T 1/2) and polynomial running time per it-
eration.

Preliminaries
Bandit Convex Optimization. In the bandit convex opti-
mization problem, an algorithm iteratively selects actions xt

(using a possibly randomized strategy) from a convex set
D ⊆ Rn. After selecting an action, the loss caused by this
choice ft(xt) is revealed, where ft : D → R is a convex
function unknown to the algorithm.

After T iterations, the algorithm compares its total loss∑︁T
t=1 ft(xt) to the smallest loss it could have incurred

by choosing a fixed strategy throughout all the iterations
minx∈D

∑︁T
t=1 ft(x). The difference between these two

losses is called regret:

RT =

T∑︂
t=1

ft(xt)−min
x∈D

T∑︂
t=1

ft(x)

and the goal is to minimize its expectation over the random-
ized choices of the algorithm.

Differential Privacy. Differential privacy (Dwork et al.
2006) is a rigorous framework used to control the amount
of information leaked when performing computation on a
private data set. In our framework, we seek algorithms which
ensure that the amount of information an adversary can learn
about a particular loss function ft is minimal, i.e. it is almost
independent on whether ft appears or not in the sequence
of loss functions occurring throughout the execution of the
algorithm. For completeness, we define differential privacy
in the context of loss functions encountered in the bandit
convex optimization problem.
Definition 2 ((ε, δ)-differential privacy). A randomized on-
line learning algorithm A on the action set D is (ε, δ)-
differentially private if for any two sequences of loss func-
tions F = (f1, . . . , fT ) and F ′ = (f ′

1, . . . , f
′
T ) differing in

at most one element, for all S ⊆ DT it holds that
Pr[A(F ) ∈ S] ≤ eε Pr[A(F ′) ∈ S] + δ .

One obstacle that may occur in the context of bandit op-
timization is that changing a single loss function may alter
the set of actions returned in the future by the algorithm.

The Projection-Free Setting. While classical online op-
timization methods have a long history of developments,
these rely in general on the ability to perform projections
onto the feasible set D of actions. For example, one may
want to choose actions that correspond to points inside a
matroid polytope, or other complicated domains. In such
situations, it is computationally infeasible to perform pro-
jections onto D, and designing algorithms where all the
actions lie inside this domain becomes a challenging task.
In the case of online optimization, this issue is mitigated
by projection-free methods (Jaggi 2013; Garber and Hazan
2015; Dudik, Harchaoui, and Malick 2012; Shalev-Shwartz,
Gonen, and Shamir 2011), where the complexity of the high
complexity of the description of D is balanced by the ex-
istence of a linear optimization oracle over this domain.
Among these, the conditional gradient method (also known
as Frank-Wolfe) (Bubeck et al. 2015) is the best known one.

In our setting, we treat the case where, although D may
be very complicated, we have access to a linear optimiza-
tion oracle that, given any direction v ∈ Rn, returns
argminx∈D⟨v,x⟩. Such oracles are easily available for in-
teresting domains such as the matroid polytope or the sub-
modular base polytope.

Parameters and Assumptions. We write vectors and ma-
trices in bold. We use ⟨x,y⟩ to represent inner products, and
∥x∥ to represent the ℓ2 norm of a vector ∥x∥ = (

∑︁
i xi)

1/2.
When considering other norms than ℓ2 we explicitly spec-
ify them ∥x∥p = (

∑︁
i x

p
i )

1/p. We let Bn
p be the n dimen-

sional unit ℓp ball and Sn
p the boundary of Bn

p i.e. the n
dimensional unit ℓp sphere. We consider optimizing over a
convex domain D ⊆ Rn, for which we have access to a
linear optimization oracle. We define the diameter of the do-
main as D = maxx,y∈D ∥x − y∥. We say that a function
f : D → R is L-Lipschitz iff |f(x) − f(y)| ≤ L∥x − y∥
for all x,y ∈ D and that a differentiable function f is β-
smooth iff ∥∇f(x)−∇f(y)∥ ≤ β∥x−y∥ for all x,y ∈ D.
We say that f is α-strongly convex iff ∥∇f(x)−∇f(y)∥ ≥
α∥x−y∥. In our setting, all functions ft satisfy the standard
assumption of being L-Lipschitz.

Just like in prior works (Thakurta and Smith 2013; Agar-
wal and Singh 2017), we further assume that the number of
iterations T we run the algorithm for is known ahead of time.
This assumption can be eliminated via a standard reduction
using the doubling trick (see (Auer et al. 1995) and (Chen,
Zhang, and Karbasi 2018)), which invokes the base algo-
rithm repeatedly by doubling the horizon T at each invoca-
tion, at the expense of adding an extra O(log T ) factor in the
privacy loss.

We further assume that all ft’s are defined within a region
that slightly exceeds the boundary of D. This assumption is
required, since one of the techniques employed here requires
having ft defined over D ⊕ ζBn

2 for a small scalar ζ. This
assumption can be removed via a simple scaling trick, when-
ever D contains an ℓ2 ball centered at the origin (similarly



to (Garber and Kretzu 2020)); we explain how to do so in
the full version (Ene, Nguyen, and Vladu 2021).

Finally, in order to be able to appropriately privatize the
losses ft(xt), we need to bound their magnitude. To this
end, we assume that each ft achieves 0 loss at some point
within D, which via the Lipschitz condition and the diameter
bound automatically implies that |ft(xt)| ≤ LD for all t.
Other related works (Flaxman, Kalai, and McMahan 2004;
Agarwal, Dekel, and Xiao 2010; Thakurta and Smith 2013)
simply use a fixed upper bound |ft(xt)| ≤ B for some fixed
parameter B, but we prefer this new convention to reduce
the number of parameters to control, since we are focused
mainly in the regret dependence in T , n and ε.

Mirror Maps and the Fenchel Conjugate. In general,
convex optimization implicitly relies on the existence of a
mirror map ω : D → R with desirable properties (see (Ben-
Tal and Nemirovski 2001) for an extensive treatment of
these objects). This is used in order to properly interface it-
erates and gradient updates, since in Banach spaces these are
of different types. In this paper, we use ω(x) = 1

2∥x∥
2
2, al-

though other choices can be used depending on the geometry
of D. We define the Fenchel conjugate of ω as ω∗ : Rn → R
such that

ω∗(y) = max
x∈D

⟨y,x⟩ − ω(x) . (0.1)

Furthermore, if ω is strongly convex, then ω∗ is smooth and
differentiable (Nesterov 2005), and its gradient satisfies

∇ω∗(y) = argmax
x∈D

⟨y,x⟩ − ω(x) . (0.2)

Smoothing. We use the randomized smoothing technique
from (Flaxman, Kalai, and McMahan 2004) in order to
smoothen the loss functions ft. This technique is crucial to
obtain gradient estimators despite having only value access.

Lemma 3 ((Flaxman, Kalai, and McMahan 2004)). Let
f : Rn → R be a convex and L-Lipschitz function. Then
the smoothing ˆ︁f(x) = Eu∼Bn

2
f (x+ ζu) satisfies the fol-

lowing properties: (1)
⃓⃓⃓
f(x)− ˆ︁f(x)⃓⃓⃓ ≤ ζL, (2) ˆ︁f is convex

and L-Lipschitz, (3) ∇ ˆ︁f(x) = n
ζ · Eu∼Sn

2
f(x+ ζu) · u.

Tree Based Aggregation. An essential ingredient of the
algorithm is maintaining partial sums of the gradient esti-
mators witnessed so far. We use a variant of the algorithm
from (Dwork et al. 2010; Jain, Kothari, and Thakurta 2012),
as implemented in (Agarwal and Singh 2017). We use the
algorithm as a black box and only rely on its properties that
are stated in Theorem 4 below. We include a description
of the TREEBASEDAGG algorithm in the full version (Ene,
Nguyen, and Vladu 2021) for completeness.

Theorem 4 ((Jain, Kothari, and Thakurta 2012; Agarwal and
Singh 2017)). Let {ℓt}Tt=1 be a sequence of vectors in Rn,
and let Y1 and Y2 be promises such that ∥ℓt∥1 ≤ Y1 and
∥ℓt∥2 ≤ Y2 for all t. Let ε, δ > 0, and λ ≥ Y1 log T

ε and
σ ≥ Y2

ε log T log log T
δ .

There is an algorithm, TREEBASEDAGG, that first out-
puts ˆ︁L0 and then iteratively takes ℓt as input and returns

an approximate partial sum ˆ︁Lt for 1 ≤ t ≤ T . The al-
gorithm can be specified with a noise distribution P over
Rn so that the output sequence {ˆ︁Lt}Tt=1 satisfies ˆ︁Lt =∑︁t

s=1 ℓs +
∑︁⌈log T⌉

r=1 Zr, where Zr ∼ P , and furthermore:
• when P is coordinate-wise Lap(0, λ), the sequence
{ˆ︁Lt}Tt=1 is (ε, 0)-differentially private.

• when P is coordinate-wise N (0, σ2), the sequence
{ˆ︁Lt}Tt=1 is (ε, δ)-differentially private.

Algorithm
The algorithm is described in Algorithm 1. It builds on the
work of Garber and Kretzu (2020) and uses the smoothing
(Lemma 3) and tree aggregation (Theorem 4) routines de-
signed in previous work (see the preliminaries section). The
algorithm follows the structure of an online mirror descent
algorithm. It performs a sequence of iterations, and in each
iteration it makes a guess xt based on the previous outcomes.
The iterations are divided into Tround batches, each of size
Tbatch (thus, T = Tround · Tbatch). Each batch R is treated as a
round for online mirror descent with a twist: in parallel, we
compute the best regularized response ˜︁xR for the revealed
outcomes in the first R−1 batches (line 14) and use the pre-
viously computed ˜︁xR−1 for all iterations in batch R (lines 6
to 12). Three notices are in order:
• Computing the best regularized response to previous out-

comes requires maintaining the sum of gradients in pre-
vious rounds. The tree-based aggregation method (Theo-
rem 4) is used to maintain these sums accurately while
preserving privacy (line 13).

• In each iteration of a batch, the algorithm only has ac-
cess to the function value, not the gradient, so we use the
smoothing technique (Lemma 3): the function value at a
perturbation of ˜︁xR−1 is used to obtain a stochastic esti-
mate of the gradient of a smoothed proxy of the objective
function. Thus each iteration in the same batch uses a dif-
ferent perturbation of the same response ˜︁xR−1.

• We only compute an approximation of the best regular-
ized response, using the conditional gradient method in
line 14. The precision to which this is computed is cho-
sen in such a way that the number of iterations required
by conditional gradient matches the number of iterations
in a batch, so that we can charge each call to the linear
optimization oracle over D to one iteration of the bandit
algorithm.
The algorithm needs to be specified with a noise distri-

bution P over Rn, which we use for privatizing the partial
sums in order to strike the right tradeoff between privacy
and regret. To obtain an (ε, 0)-private algorithm, we set P
to be coordinate-wise Laplace noise Lap(0, λ). To obtain
an (ε, δ)-private algorithm, we set P to be coordinate-wise
Gaussian noise N (0, σ2). The precise choice for the param-
eters λ and σ2 are established in Lemmas 8 and 11.

Our algorithm can be viewed as a slight simplification and
generalization of the algorithm of Garber and Kretzu (2020).
Specifically, we do not require any specific stopping con-
ditions and case analysis for solving the inner conditional
gradient routine and we can extend it to more general
geometries defined by the mirror map. Additionally, the



Algorithm 1 PRIVATEBANDIT(T,P, D)

input time horizon T , symmetric noise distribution P , di-
ameter of domain D.

1: Tround = T 1/2, Tbatch = T
Tround

, η = D
T 3/4n1/2L

, ζ =
Dn1/2

T 1/4 .
2: Initialize TREEBASEDAGG for a sequence of length

Tround and noise P .
3: for R = 1 to Tround do
4: execute in parallel:
5: ˜︁gR = 0
6: for r = 1 to Tbatch do
7: t = (R− 1)Tbatch + r
8: Sample ut ∼ S2(1)
9: xt = ˜︁xR−1 + ζut

10: Query Ft =
n
ζ ft(˜︁xR−1 + ζut)

11: ˜︁gR = ˜︁gR + Ft · ut

12: end for
13: // Update the partial sum of noisy gradients:˜︁sR = TREEBASEDAGG (˜︁gR, R)
14: Solve via conditional gradient

min
x∈D

1

2
∥x∥22 − ⟨η˜︁sR−1,x⟩

to precision εcg = D/T
1/2
batch. Let ˜︁xR be the output.

15: end for

NOISYOCO framework allows us to handle the noise in-
troduced by the differentially private mechanisms without
making any further changes to the algorithm or its analysis.
This framework may be of further interest for designing dif-
ferentially private optimization methods.

In the following section, we show the following regret
guarantee:

Lemma 5. Let µ = EX∼P∥X∥, and let D be the diameter
of the domain D, n the ambient dimension, and L an up-
per bound on the Lipschitz constant of the loss functions ft.
Algorithm PRIVATEBANDIT achieves a regret of

O

(︃
T 3/4n1/2LD + T 1/4Dµ log T

)︃
.

Noisy Mirror Descent Framework and Regret
Analysis

In this section, we sketch the regret analysis for Algorithm 1.
We derive the algorithm’s regret guarantee via the NOISY-
OCO framework, a meta-algorithm for online convex op-
timization with noise. We show that Algorithm 1 is an in-
stantiation of this meta-algorithm and we derive its regret
guarantees from the guarantee for NOISYOCO.

Noisy Mirror Descent Framework
Here we describe and analyze the NOISYOCO algorithm
(Algorithm 2) for online convex optimization with noise. We
assume that we perform online convex optimization over a
convex domain D endowed with a strongly convex mirror

Algorithm 2 NOISYOCO(T )

input time horizon T .
1: η = D

1/2
ω /(κT 1/2), s0 = 0

2: for t = 1 to T do
3: ˜︁xt = NOISYMAP(−ηst−1)
4: output ˜︁xt and query ˜︁gt = NOISYGRAD(ft, ˜︁xt)
5: st = st + ˜︁gt
6: end for

map ω : D → R such that maxx∈D ω(x) ≤ D2
ω . We also

assume (κ, γ)-noisy gradient access, defined as follows:
• a noisy gradient oracle for ft; given x, it returns a random-

ized ˜︁g = NOISYGRAD(ft,x) such that E˜︁g = ∇ft(x),
and E∥˜︁g∥2 ≤ κ2,

• a noisy gradient oracle for ω∗; given g, it returns a ran-
domized ˜︁x = NOISYMAP(g) such that E∥∇ω∗(g) −˜︁x∥ ≤ γ.
Under these conditions we can derive the following re-

gret guarantee. We give the proof in the full version (Ene,
Nguyen, and Vladu 2021).
Lemma 6. Given an instance of online convex optimization
with (κ, γ)-noisy gradient access, the algorithm NOISY-
OCO obtains an expected regret of

RT = O
(︂
T 1/2κDω + Tκγ

)︂
.

Regret Analysis
The regret analysis for Algorithm 1 is based on the guar-
antee for NOISYOCO from Lemma 6. It follows from map-
ping the steps in Algorithm 1 to the framework from NOISY-
OCO, and bounding the parameters involved. In order to do
so, we explain how the NOISYGRAD and NOISYMAP rou-
tines are implemented by Algorithm 1. We then proceed to
bound the κ and γ parameters corresponding to this specific
instantiation, which will yield the desired result. Here we
describe the steps required for analysis. We give the detailed
proofs in the full version (Ene, Nguyen, and Vladu 2021).

The first step is to reduce the problem to minimizing
regret on a family of functions { ˜︁fR}Tround

R=1 , where ˜︁fR =∑︁Tround
t=1

ˆ︁f(Tbatch−1)·R+t. This introduces two sources of error:
one from using the smoothed ˆ︁f instead of f , and another
from using different iterates xt = ˜︁xR−1 + ut in the same
round, even though batching iterations effectively constrains
all the iterates in a fixed batch to be equal. These errors are
easy to control, and add at most O(TζL) in regret.

For the family of functions { ˜︁fR}Tround
R=1 we implement

NOISYGRAD as:˜︁gR := NOISYGRAD( ˜︁fR,xt)

=

RTbatch∑︂
t=(R−1)Tbatch+1

n

ζ
ft(xt + ζut)ut ,

which is an unbiased estimator for ∇ ˆ︁fR(xt), per Lemma 3.
Thus we bound κ2 by showing that E∥˜︁gR∥2 ≤ Tbatch ·
(LDn/ζ)

2
+ T 2

batchL
2.



Furthermore, the output of NOISYMAP is implemented
in line 14 by running conditional gradient to approximately
minimize a quadratic over the feasible domain D. The er-
ror in the noisy map implementation comes from (1) only
approximately minimizing the quadratic, (2) using a noisy
partial sum of gradient estimators rather than an exact one,
and (3) using a stale partial sum approximation ˜︁sR−1 for
round R + 1, instead of ˜︁sR. We show that the error param-
eter corresponding to this NOISYMAP implementation can
be bounded as γ ≤ η (⌈log T ⌉ · µ+ κ) +

√
20 D√

Tbatch
.

In the full version (Ene, Nguyen, and Vladu 2021), we
bound the specific parameters corresponding to these im-
plementations. Plugging these with bounds into Lemma 6
yields the proof of Lemma 5, after appropriately balancing
the parameters Tbatch, Tround, ζ.

Privacy Analysis
In this section, we instantiate Algorithm 1 with appropriate
noise distribution P in order to derive our (ε, 0)-private al-
gorithm and our (ε, δ)-private algorithm. As mentioned ear-
lier, we use Laplace noise for (ε, 0)-privacy and obtain the
guarantee in Lemma 8, and we use Gaussian noise for (ε, δ)-
privacy and obtain the guarantee in Lemma 11.

First, we describe the proofs for the (ε, 0)-privacy regime,
where we employ Laplace noise, since they show how this
framework allows us to trade regret and privacy.

Lemma 7 (Privacy with Laplace noise). Let P be
coordinate-wise Lap(0, T 1/2nL log T/ε). The algorithm
PRIVATEBANDIT(T,P) is (ε, 0)-differentially private.

Proof. First we bound the ℓ1 norm of the vectors whose
partial sums are maintained by the tree based aggregation
method in Algorithm 1. Since each vector contributing to
that partial sum is obtained by adding up Tbatch = T 1/2 vec-
tors, each of which is a unit ℓ2 vector scaled by a constant
that is absolutely bounded by M = LDn

ζ = T 1/4n1/2L, we
naively bound the ℓ1 norm of each of them by Tbatch · n1/2 ·
M ≤ T 1/2nL.

Therefore, by Theorem 4, releasing Tround = T 1/2 such
partial sums causes a loss of privacy of at most ε whenever

λ ≥ T 1/2nL log T

ε
.

Using Lemma 7 we can now bound the regret of the (ε, 0)-
differentially private algorithm.

Lemma 8 (Regret with Laplace noise). Let P be
coordinate-wise Lap(0, T 1/2nL log T/ε). The algorithm
PRIVATEBANDIT(T,P) has regret

RT = O

(︃
T 3/4n1/2LD +

T 3/4n3/2LD log2 T

ε

)︃
.

Proof. Per Lemma 5 we only need to upper bound
the expected ℓ2 norm of an n-dimensional vector

where each coordinate is independently sampled from
Lap(0, T 1/2nL log T/ε). Indeed, we have

µ = O

(︃
n1/2 · T 1/2nL log T/ε

)︃
.

Plugging this into the regret guarantee from Lemma 5 gives
the desired result.

We note that the regret guarantee we achieved has an un-
desirable dependence in dimension. In the remainder of this
section, we show that we can obtain improved guarantees
if we settle for (ε, δ)-differential privacy instead, which we
achieve by using Gaussian noise. This is also more properly
suited to our setting, since the regret bound we proved de-
pends on ℓ2 norms of the injected noise vectors, which is
exactly what governs the privacy loss in this case. A novel
and precise error analysis in Lemmas 9 and 10 enables us to
obtain the same regret bound as when projection is available
for (ε, δ)-privacy.

We additionally use the fact that the randomized smooth-
ing technique further constrains the norm of the vectors ˜︁gR
we employ to update the partial sums, with high probabil-
ity. In order to do this, we use a concentration inequality
for random vectors (Lemma 9) which allows us to obtain
an improved guarantee on privacy, at the expense of a slight
increase in the δ parameter. Compared to the (ε, 0) case, al-
lowing this low probability failure event enables us to save
roughly a factor of ˜︁O(T 1/4n−1/2) in the norm of the vectors
we use to update the partial sums via tree based aggregation.
In turn, this allows us to use less noise to ensure privacy, and
therefore we obtain an improved regret.

We start with the following lemma, which establishes a
high probability bound on the ℓ2 norm of a sum of random
vectors multiplied by an adversarially chosen set of scalars.

Lemma 9. Let u1, · · ·uk ∼ B2(1) be a set of independent
random vectors in Rn. Then, with probability at least 1− δ,
one has that for any vector c ∈ Rk such that ∥c∥ ≤ ∆:⃦⃦⃦⃦
⃦

k∑︂
i=1

uici

⃦⃦⃦⃦
⃦ ≤ 10∆

(︃
log

n+ k

δ
+

√︄(︃
1 +

k

n

)︃
log

n+ k

δ

)︃
Proof. Consider the family of matrices {Zi}ki=1 ∈ Rn×k

where Zi has its ith column equal to ui and all the other en-
tries are 0. Therefore EZk = 0 and ∥Zk∥ ≤ 1. Furthermore,
by definition ZiZ

⊤
i = uiu

⊤
i and Z⊤

i Zi = ∥ui∥2 · 1i1
⊤
i .

Therefore EZiZ
⊤
i = I/n and EZiZ

⊤
i = 1i1

⊤
i .

So

σ2 = max

{︄⃦⃦⃦⃦
⃦E

k∑︂
i=1

ZiZ
⊤
i

⃦⃦⃦⃦
⃦ ,
⃦⃦⃦⃦
⃦E

k∑︂
i=1

Z⊤
i Zi

⃦⃦⃦⃦
⃦
}︄

= max

{︃⃦⃦⃦⃦
k

n
· I
⃦⃦⃦⃦
, ∥I∥

}︃
≤ 1 + k/n .

Letting Z =
∑︁k

i=1 Zi, and using matrix Bernstein (Tropp
et al. 2015), we see that

Pr [∥Z∥ ≥ t] ≤ (n+ k) exp(−t2/(2(1 + k/n) + 2t/3)) .



Hence for t = 10

(︃
log n+k

δ +
√︂(︁

1 + k
n

)︁
log n+k

δ

)︃
one has

that ∥Z∥ ≤ t with probability at least 1− δ.
Therefore with probability at least 1− δ we have ∥Zc∥ ≤

∥Z∥∥c∥ ≤ 10∆

(︃
log n+k

δ +
√︂(︁

1 + k
n

)︁
log n+k

δ

)︃
which

implies what we needed.

Using the above lemma, we can obtain a tighter bound the
privacy loss when using Gaussian noise.
Lemma 10 (Privacy with Gaussian noise). Let P be
coordinate-wise N (0, σ2), where

σ =
T 1/4n1/2L log T log(T/δ)

ε

·

(︄
log

n+ T

δ
+

√︄(︃
1 +

T 1/2

n

)︃
log

n+ T

δ

)︄
The algorithm PRIVATEBANDIT(T,P) is (ε, δ)-
differentially private.

Proof. Using Lemma 9 and union bound we have that with
probability at least 1 − δ0T

1/2 the ℓ2 norm of each of
the Tbatch vectors contributing to the partial sums main-
tained in the tree based aggregation routine is M =

O

(︃
T 1/4n1/2L

(︂
log n+T

δ0
+
√︂
(1 + Tbatch

n ) log n+T
δ0

)︂)︃
.

By Theorem 4 maintaining these partial sums is
thus (ε, δ0T

1/2 + δ1)-differentially private, where ε =
M log T log(T/δ1)

σ . Hence setting δ1 = δ/2, δ0 = δ/(2T 1/2)
and

σ =
M log T log(T/δ1)

ε
=

T 1/4n1/2L log T log(T/δ)

ε

·

(︄
log

n+ T

δ
+

√︄(︃
1 +

T 1/2

n

)︃
log

n+ T

δ

)︄
yields an (ε, δ)-differentially private algorithm.

Lemma 11 (Regret with Gaussian noise). Let δ = 1/(n +
T )O(1). The algorithm PRIVATEBANDIT(T,N (0, σ2))
where σ is chosen according to Lemma 10 such that the
algorithm is (ε, δ)-private has regret

RT = O

(︃
T 3/4n1/2LD

+
T 1/2nLD log2 T log(T/δ) log((n+ T )/δ)

ε

+
T 3/4n1/2LD log2 T log(T/δ)

√︁
log((n+ T )/δ)

ε

)︃
.

Proof. Per Lemma 5 we only need to upper bound the ex-
pected norm of an n-dimensional vector where each co-
ordinate is sampled from N (0, σ2). In this case we have
µ = O(n1/2σ), so plugging it into the regret guarantee from
Lemma 5 we obtain regret

RT = O

(︃
T 3/4n1/2LD + T 1/4n1/2Dσ log T

)︃
which implies the result after substituting σ.

The proof of Theorem 1 now follows from combining
Lemmas 7, 8, 10 and 11.

Discussion and Open Problems
We saw how one can derive differentially private algorithm
starting from a very basic framework for noisy online con-
vex optimization. Our analysis builds on advances in both
differential privacy and online convex optimization, com-
bines their techniques in non-trivial ways and introduces
new ideas. Among others, a novel and precise error analy-
sis in Lemmas 9 and 10 enables us to obtain the same regret
bound as when projection is available for (ε, δ)-privacy, in
contrast to (ε, 0)-privacy. To the best of our knowledge, this
is a rare case where such a difference between the two pri-
vacy settings arise. We think it is an interesting direction for
future work to obtain an analogous improvement even in the
(ε, 0)-privacy setting.

It would be interesting to see if this generic method in
conjunction with tools from differential privacy can be used
to obtain more private learning algorithms. A few outstand-
ing questions remain. Since ˜︁O(T 3/4) is also the best known
regret bound in the non-private setting, it would be interest-
ing to improve this result, which may lead to an improved
differentially private algorithm. Furthermore, in the non-
private setting with projections, obtaining algorithms with
lower regret requires a stronger control of the geometry of
the domain. This makes differential privacy more difficult
to achieve since even the simplest algorithms with improved
regret require solving a linear system of equations, which is
much more sensitive to noise than vanilla gradient steps. De-
veloping a more fine-grained understanding of these prob-
lems via differential privacy poses an exciting challenge.
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