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ON A NOVEL FULLY DECOUPLED, SECOND-ORDER ACCURATE
ENERGY STABLE NUMERICAL SCHEME FOR A BINARY

FLUID-SURFACTANT PHASE-FIELD MODEL∗
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Abstract. The binary fluid surfactant phase-field model, coupled with two Cahn–Hilliard equa-
tions and Navier–Stokes equations, is a very complex nonlinear system, which poses many challenges
to the design of numerical schemes. As far as the author knows, due to the highly nonlinear cou-
pling nature, there is no fully decoupled scheme with second-order accuracy in time for numerical
approximation. This paper proposes a novel decoupling approach by introducing a nonlocal auxiliary
variable and its associated ODE to deal with the nonlinear coupling terms that satisfy the so-called
zero-energy-contribution property. By combining it with other proven effective methods (the projec-
tion method of the Navier–Stokes equations and the SAV method of linearizing nonlinear potential),
we arrive at a fully decoupled, linear, unconditionally energy stable scheme with second-order time
accuracy. At each time step, only a few fully decoupled linear elliptic equations with constant coeffi-
cients are needed to be solved, which shows the advantages of ease of implementation and efficiency.
We also prove the unconditional energy stability rigorously and provide various numerical simulations
in two and three dimensions to demonstrate its stability and accuracy, numerically.

Key words. fully decoupled, second-order, phase-field, unconditional energy stability, fluid-
surfactant, Navier–Stokes
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1. Introduction. In this paper, we focus on the numerical approximation of the
phase-field model of a binary fluid surfactant system, which includes the nonlinear
coupling of two Cahn–Hilliard equations and Navier–Stokes equations. The use of
the phase-field method to simulate the fluid surfactant system can be traced back
to the pioneering work of Laradji and co-authors in [29, 30] around two decades
ago, as well as many subsequent modeling/analysis/simulation works in [8, 9, 14,
20, 26, 28, 37, 41, 53, 55, 56, 57, 58, 69], etc. For the binary phase-field surfactant
model, two phase-field variables are usually used to represent the local concentration
difference of the two fluids and the local surfactant concentration, respectively. Some
physical properties are included in the total free energy, including hydrophilicity-
hydrophobicity interaction and the phenomenon of high concentration of surfactants
at the liquid interface. By using the gradient flow method to minimize the total
energy, a partial model containing two coupled nonlinear Cahn–Hilliard equations
can be obtained. Moreover, if the fluid properties of two substances are considered,
the full model needs to further couple the Navier–Stokes equations by using the surface
tension and advection terms.

Many successful attempts have been made for numerical simulations of various
models of binary fluid surfactant systems. Regarding algorithm developments, how-
ever, compared with the partial model containing only two coupled Cahn–Hilliard
equations, the full flow-coupled model has received less attention due to its highly cou-
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B480 XIAOFENG YANG

pled nonlinear nature (cf. [27, 35, 61, 62, 71]). As we all know, for the two constituents
of the full flow-coupled model, the Navier–Stokes equations, and the Cahn–Hilliard
equation, there are many effective methods available for each individual equation, for
example, the projection method [16, 17, 18, 19, 34, 39, 40, 49] for Navier–Stokes equa-
tions, the linear stabilization [48, 51, 67], convex splitting [7, 23, 43, 45, 68], quadra-
tization (invariant energy quadratization (IEQ) [2, 60, 63, 64] and scalar auxiliary
variable (SAV) [3, 47, 65]), nonlinear derivative [5], nonlinear quadrature [11, 12, 42]
methods for phase-field models, etc. Therefore, one might consider that by simply
applying the above methods to each component, an effective numerical method can be
easily developed, especially a fully decoupled scheme with second-order time accuracy
and unconditional energy stability; however, this is not the case.

So far, for the flow-coupled phase-field model, as far as the author knows, the only
numerical scheme with a fully decoupled structure and maintaining energy stability
was developed in [38, 50, 51], where the method to achieve complete decoupling is
to add a stabilization term to the explicit advective velocity. However, this fully
decoupled scheme in [38, 50, 51] is only first-order time-accurate, and it needs to
solve the Cahn–Hilliard equation with variable coefficients. More importantly, it
seems very difficult to upgrade the stabilization method to the second-order version.
The main difficulty in establishing the second-order fully decoupled scheme is how to
design a proper discretization method with second-order time accuracy to deal with
the advection and surface tension terms, so that the computation of the phase-field
equation can be decoupled from the momentum equation while maintaining the energy
stability. Various attempts have been made in this direction, including the above-
mentioned stabilization technique or explicit-implicit combination method [15, 21, 22,
23, 33, 49, 51, 63], etc. However, unfortunately, the ideal scheme has not been designed
yet. More unfortunately, coupled nonlinear terms such as advection/surface tension
exist in almost all flow-coupled phase-field models, which makes the development of
a second-order fully decoupled scheme a universal difficulty.

Therefore, the main purpose of this paper is to overcome this challenge and de-
velop a novel full decoupling approach that can also achieve the second-order time
accuracy and unconditionally energy stability. To this end, we notice that advec-
tion and surface tension terms satisfy a so-called zero-energy-contribution feature. In
other words, when deducing the energy law, after applying the inner products of some
appropriate functions, the results of these terms will completely cancel out. Thus,
using this property, we rewrite the PDE system by introducing a nonlocal variable
and designing an ordinary differential equation (ODE) containing the inner products
of the advection and surface tension with some specific functions. This ODE is triv-
ial at the continuous level because all the terms contained in it are zero. But after
discretization, it can help eliminate all the troublesome terms originated from those
nonlinear coupled terms, thereby obtaining unconditional energy stability. Besides,
the introduction of the nonlocal variable can decompose each discrete equation into
multiple subequations that can be solved independently, thereby obtaining a fully
decoupled structure.

By combining this novel decoupling method with the existing proven effective
methods (including the projection method of the Navier–Stokes equations and the
SAV method of linearizing the nonlinear energy potential), we finally arrive at an un-
conditionally energy stable, linear, fully decoupled, and second-order time-accurate
scheme. The implementation of this scheme is very simple, and it only needs to solve
a few linear independent equations with constant coefficients at each time step, which
means that the computational cost is very low. We also give a rigorous proof of the
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solvability and unconditional energy stability of the scheme and further simulate vari-
ous numerical examples in two and three dimensions to demonstrate the stability and
accuracy numerically. To the best of the author’s knowledge, the scheme developed in
this article is the first to have all the desired characteristics (i.e., linear, fully decou-
pled, second-order accurate in time and unconditional energy stable) for solving the
flow-coupled phase-field model. In addition, the decoupling method developed in this
paper is universally applicable. First, it can be combined with other linear methods
(such as the linear stabilization, IEQ, etc.) to form various types of fully decoupled
and energy-stable schemes. Second, it can also be applied to any nonlinear cou-
pling type model. As long as the coupling term follows the zero-energy-contribution
property, this method is always applicable for generating an effective full decoupling
scheme.

We organize the rest of this article in the following manner. We first briefly in-
troduce the fluid surfactant model and derive its energy law structure in section 2.
A second-order fully decoupled numerical scheme is constructed in section 3 and we
further describe its implementations in detail. The unconditional energy stability
is proved rigorously as well. Then various benchmark two-dimensional (2D) and
3D numerical simulations are shown in section 4, including the accuracy/stability
tests, spinodal decomposition in two and three dimensions, and droplets coalescence/
nonmergence phenomena with and without surfactant application under shear flow in
two and three dimensions. In section 5, some concluding remarks are given.

2. Model and its energy law. Now, we briefly introduce the representative
binary fluid-surfactant flow-coupled model proposed in [35, 57, 58, 69]. Suppose Ω ∈
Rd with d = 2, 3 is a smooth, open, bounded, connected domain, the two functions
φ(x, t) and ρ(x, t) are used to simulate the dynamics in a binary fluid-surfactant
systems, where φ(x, t) is used to represent the local concentration difference of the
two fluids, namely,

(2.1) φ(x, t) =

{
1 fluid I,

−1 fluid II,

with a thin transition layer with width O(ε) linking these two distinct values, and
ρ(x, t) is introduced to be the concentration of surfactants. The interface of the
two-phase fluids is then described by the zero level set of φ: Γt = {x : φ(x, t) = 0}.

The total free energy that couples the two variables φ, ρ is postulated as follows:

(2.2)

E(φ, ρ,u)

=

∫
Ω

(
1

2
|u|2 + λ1

(
1

2
|∇φ|2 +

1

ε2
F (φ)

)
+ λ2

(
γ

2
|∇ρ|2 +

1

η2
G(ρ)

)
+W (φ, ρ)

)
dx,

where u is the average fluid velocity field, the three nonlinear potentials F (φ), G(ρ),
and W (φ, ρ) are given by

F (φ) =
1

4
(φ2 − 1)2, W (φ, ρ) = −θ

2
ρ|∇φ|2 − αρφ+

ζ

4
|∇φ|4,

G(ρ) =


ρ ln ρ+ (1− ρ) lnσ +Gr(σ, ρ) if ρ ≥ 1− σ,
ρ ln ρ+ (1− ρ) ln(1− ρ) if σ ≤ ρ ≤ 1− σ,
(1− ρ) ln(1− ρ) + ρ lnσ +Gl(σ, ρ) if ρ ≤ σ,

(2.3)

and λ1, λ2, ε, γ, η, θ, ζ, α, σ are allpositive parameters. It can be seen from the free
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energy that for the variable φ, the mixing potential introduced by this model takes
into account the hydrophilicity (gradient)-hydrophobicity (double-well) of interac-
tions. The bulk energy for the concentration variable ρ is given similarly but the
nonlinear potential G(ρ) takes a different form, where η is a penalty parameter, and
the two functions Gr(σ, ρ), Gl(σ, ρ) are used to extend the logarithmic potential (see
Remark 2.1), where σ � 1 is a preassigned parameter for extension (we set σ = 0.01
in all simulations). All the couplings between the surfactants and fluid interface are
contained in the nonlinear potential W (φ, ρ), where the θ term controls the degree
to which the surfactant affects the fluid-interface, the ζ term can guarantee the total
free energy bounded from below [69], and the asymmetric term related to α indicates
the different solubility of the surfactant in the two components of the fluid.

Remark 2.1. For the binary surfactant model, the choice of nonlinear potential
G(ρ) has great flexibility. In the earliest work of the phase-field surfactant model [29],
G(φ) is chosen as the quadratic polynomial type. In [28, 37, 41], G(φ) is selected as
the fourth-order double-well potential type. In [57, 58, 69], G(φ) is selected as the
Flory–Huggins logarithmic type (ρlnρ + (1 − ρ)ln(1 − ρ)), which is also used in this
paper. However, the domain of the logarithmic potential is an open interval (0, 1), so
it must be strictly ensured that the value of the calculated solution is in this domain;
otherwise, the calculation will easily overflow. Therefore, the usual practice is to
modify the logarithm potential to be an extended form defined on (−∞,∞). The two
functions Gr(σ, ρ), Gl(σ, ρ) given in (2.3) are used for the extension. Here, we extend
the Flory–Huggins logarithmic potential to a C2(−∞,∞) and convex function by

setting Gl(σ, ρ) = ρ4

12σ3 + 2ρ
3 −

3σ
4 and Gr(σ, ρ) = (1−ρ)4

12σ3 + 2(1−ρ)
3 − 3σ

4 . This kind of
extension helps to bound the coupling potential W (φ, ρ) from below. Another type
of C2(−∞,∞)-extension for the logarithmic potential was given in [4, 6, 69].

Then, by using the Cahn–Hilliard type (H−1-gradient flow) relaxation kinetics
for φ and ρ and assuming that the fluid is incompressible and follows the generalized
Fick’s law, that is, the mass flux is proportional to the gradient of the chemical
potential, we get the hydrodynamics coupled binary surfactant model, which reads as

φt +∇ · (uφ) = M1∆µ,(2.4)

µ =
δE

δφ
= λ1

(
−∆φ+

1

ε2
f(φ)

)
+Wφ,(2.5)

ρt +∇ · (uρ) = M2∆ω,(2.6)

ω =
δE

δρ
= λ2

(
−γ∆ρ+

1

η2
g(ρ)

)
+Wρ,(2.7)

ut + (u · ∇)u +∇p− ν∆u + φ∇µ+ ρ∇ω = 0,(2.8)

∇ · u = 0,(2.9)

where

(2.10)
Wφ =

δW (φ, ρ)

δφ
= θ∇ · (ρ∇φ) + αρ− ζ∇ · (|∇φ|2∇φ),

Wρ =
δW (φ, ρ)

δρ
= −θ

2
|∇φ|2 − αφ, f(φ) = F ′(φ) = φ(φ2 − 1), g(ρ) = G′(ρ),

M1,M2 are two mobility parameters, ν is the fluid viscosity, p is the pressure, the
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nonlinear terms ∇ · (uφ),∇ · (uρ), (u · ∇)u are advection, and the nonlinear terms
φ∇µ and ρ∇ω in the momentum (2.8) are the induced surface tensions.

In this paper, we consider the following two kinds of boundary conditions:

(i) all variables are periodic or(2.11)

(ii) u|∂Ω = 0, ∂nφ|∂Ω = ∂nρ|∂Ω = ∇µ · n|∂Ω = ∇ω · n|∂Ω = 0,(2.12)

where n is the unit outward normal on the boundary ∂Ω. The initial conditions read
as

u|(t=0) = u0, p|(t=0) = p0 , φ|(t=0) = φ0, ρ|(t=0) = ρ0.(2.13)

The PDE energy law of the system (2.4)–(2.9) can be obtained by the following
process. For (2.4), we take the inner product with µ in L2 and use integration by
parts to get

(φt, µ) = −M1‖∇µ‖2 −
∫

Ω

∇ · (uφ)µdx︸ ︷︷ ︸
I

.(2.14)

For (2.5), we take the inner product with −φt in L2 to get

−(µ, φt) = − d

dt

∫
Ω

λ1

(
1

2
|∇φ|2 +

1

ε2
F (φ)

)
dx−

∫
Ω

Wφφtdx.(2.15)

For (2.6), we take the inner product with ω in L2 to obtain

(ρt, ω) = −M2‖∇ω‖2 −
∫

Ω

∇ · (uρ)ωdx︸ ︷︷ ︸
II

.(2.16)

For (2.7), we take the inner product with −ρt in L2 to get

−(ω, ρt) = − d

dt

∫
Ω

λ2

(
γ

2
|∇ρ|2 +

1

η2
G(ρ)

)
dx−

∫
Ω

Wρρtdx.(2.17)

For (2.8), after taking the inner product with u in L2 and using (2.9) and integration
by parts, we get

(2.18)

d

dt

∫
Ω

1

2
|u|2dx + ν‖∇u‖2 = −

∫
Ω

φ∇µ · udx︸ ︷︷ ︸
III

−
∫

Ω

ρ∇ω · udx︸ ︷︷ ︸
IV

−
∫

Ω

(u · ∇)u · udx︸ ︷︷ ︸
V

.

Combining the above five equations, the obtained energy law reads as follows:

d

dt
E(u, φ, ρ) =−M1‖∇µ‖2 −M2‖∇ω‖2 − ν‖∇u‖2 ≤ 0,(2.19)

where the three negative terms at the right end specify the diffusion rate of the total
free energy E(u, φ, ρ).

Remark 2.2. We note that when deriving the PDE energy law (2.19), after using
integration by parts and boundary conditions, I and III, II and IV are canceled,
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respectively. The term V vanishes due to the divergence-free condition and boundary
conditions as well. This means that the advection and surface tension terms do not
contribute to the total free energy or energy diffusion rate. Therefore, the zero-energy-
contribution property behind these terms provides some guidance for the development
of decoupling type schemes, which will be given in the next section.

3. Numerical scheme. We aim to construct an effective time marching scheme
to solve the system (2.4)–(2.9). We expect that the scheme can not only achieve
full decoupling, linearity, and second-order accuracy but also maintain unconditional
energy stability. To achieve this goal, the main difficulty lies in how to develop a de-
coupling approach to deal with the coupled nonlinear terms between the flow field and
the phase-field variables. If we give up the full decoupling structure and only need a
linear scheme with second-order accuracy in time and unconditional energy stability,
the second-order IEQ or SAV method is a good choice (see [69, 71]). However, the
simple application of these methods cannot achieve the fully decoupled structure we
expect.

Therefore, in this paper, in order to achieve all the above goals, especially the
full-decoupling, we develop a novel method whose key idea is to introduce a nonlocal
auxiliary variable and design its associated ODE by using the well-known by often
ignored zero-energy-contribution characteristics satisfied by those coupled nonlinear
terms causing troubles. It helps to decompose all equations into several equations
that can be solved independently, thus achieving the full-decoupling structure. The
detailed process is as follows.

3.1. Reformulation. First, we introduce a nonlocal variable Q(t) and design a
special ODE system that reads asQt =

∫
Ω

(
∇ · (uφ)µ+ (φ∇µ) · u +∇ · (uρ)ω + (ρ∇ω) · u + (u · ∇)u · u

)
dx,

Q|(t=0) = 1,

(3.1)

under the condition of ∇ · u = 0 and the boundary conditions specified in (2.11).
Utilizing the zero-energy-contribution property satisfied by the advection and surface
tension terms (see Remark 2.2), it is easy to see that the ODE (3.2) is equivalent to{

Qt = 0,

Q|(t=0) = 1,
(3.2)

which means the exact solution of (3.1) is Q(t) = 1.
Second, we define a nonlocal variable U(t) such that

U(t) =

√∫
Ω

(
λ1
F (φ)

ε2
+ λ2

G(ρ)

η2
+W (φ, ρ)

)
dx +B,(3.3)

where B is a constant to guarantee the radicand is always positive. We can always
find such a constant B since the summation of the three terms in the radicand are
always bounded from below (where the term associated with α can be always bounded
from below by F (φ) and G(ρ), and the term associated with θ can be bounded by
G(ρ) and the quartic gradient term associated with ζ; see also in [69]).
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Then, by combining the two nonlocal variables Q and U and the trivial evolution
(3.1), the system (2.4)–(2.9) is reformulated to the following form:

φt +Q∇ · (uφ) = M1∆µ,(3.4)

µ = −λ1∆φ+HU,(3.5)

ρt +Q∇ · (uρ) = M2∆ω,(3.6)

ω = −λ2γ∆ρ+RU,(3.7)

Ut =
1

2

∫
Ω

(Hφt +Rρt)dx,(3.8)

ut +Q(u · ∇)u +∇p− ν∆u +Qφ∇µ+Qρ∇ω = 0,(3.9)

∇ · u = 0,(3.10)

Qt =

∫
Ω

(
∇ · (uφ)µ+ (φ∇µ) · u +∇ · (uρ)ω + (ρ∇ω) · u + (u · ∇)u · u

)
dx,(3.11)

where

H(φ) =
λ1

f(φ)
ε2 +Wφ√∫

Ω

(
λ1

F (φ)
ε2 + λ2

G(ρ)
η2 +W (φ, ρ)

)
dx +B

,

R(φ) =
λ2

g(ρ)
η2 +Wρ√∫

Ω

(
λ1

F (φ)
ε2 + λ2

G(ρ)
η2 +W (φ, ρ)

)
dx +B

.

We give some detailed descriptions of the reformulated system in the following re-
marks.

Remark 3.1. Some modifications have been made to the original system (2.4)–
(2.9) to obtain the new system (3.4)–(3.11). First, we rewrite (2.5) and (2.7) with
the new variables U and take the time derivative of U to obtain (3.8). Second, we
simply add the ODE (3.1) into the obtained system. Note that under the divergence-
free conditions and the boundary conditions of the system, (3.1) is equivalent to
Q = 1. Hence, for the advection and surface tension terms satisfying the zero-energy-
contribution feature, we multiply them with Q. Therefore, the new PDE system using
the variables (u, p, φ, ρ, µ, ω,Q,U) is equivalent to the original PDE system (2.4)–(2.9)
using the variables (u, p, φ, ρ, µ, ω).

Remark 3.2. Using the nonlocal variable U , the complex form of the nonlinear
terms in the chemical potentials turns to a very simple form (HU and RU). This
method is the so-called SAV method, which can linearize the nonlinear term very ef-
fectively (see [3, 46, 47, 52, 65, 71]). We also notice that in [71], the SAV method has
been used to develop an energy stable scheme for the Cahn–Hilliard phase-field sur-
factant model without the flow field, that is, the case of u ≡ 0. This paper considers
the full flow-coupled model which includes more coupled nonlinear structures; there-
fore, the corresponding numerical scheme requires the participation of more effective
techniques, especially the new decoupling method developed in this article.

The transformed system (3.4)–(3.11) satisfies the following initial conditions:

u|(t=0) = u0, p|(t=0) = p0, φ|(t=0) = φ0, ρ|(t=0) = ρ0,

Q|(t=0) = 1, U |(t=0) =

√∫
Ω

(
λ1
F (φ0)

ε2
+ λ2

G(ρ0)

η2
+W (φ0, ρ0)

)
dx +B .

(3.12)
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B486 XIAOFENG YANG

Note that the new system (3.4)–(3.11) is equivalent to the original PDE system
(2.4)–(2.9) because the summation of all nonlinear integrals on the right end of (3.11)
are just zero, which means q ≡ 1. Meanwhile, the new transformed system (3.4)–
(3.11) also follows an energy dissipative law which can be derived by performing a
similar process as obtaining (2.19). We present the detailed process since the energy
stability proof in the discrete level follows the same line.

We take the inner product of (3.4) by µ in L2 and use integration by parts to
obtain

(φt, µ) = −M1‖∇µ‖2 −Q
∫

Ω

∇ · (uφ)µdx︸ ︷︷ ︸
I

.(3.13)

By taking the inner product of (3.5) with −φt in L2, we get

−(µ, φt) = − d

dt

∫
Ω

λ1

2
|∇φ|2dx− U

∫
Ω

Hφtdx.(3.14)

Taking the inner product of (3.6) by ω in L2, we obtain

(ρt, ω) = −M2‖∇ω‖2 −Q
∫

Ω

∇ · (uρ)ωdx︸ ︷︷ ︸
II

.(3.15)

Taking the inner product of (3.7) with −ρt in L2, we get

(3.16) − (ω, ρt) = − d

dt

∫
Ω

λ2γ

2
|∇ρ|2dx− U

∫
Ω

Rρtdx.

By multiplying (3.8) with 2U , we obtain

d

dt
|U |2 = U

∫
Ω

(Hφt +Rρt)dx.(3.17)

Taking the inner product of (3.9) with u in L2 and using integration by parts and
(2.9), we obtain

(3.18)

d

dt

∫
Ω

1

2
|u|2dx + ν‖∇u‖2 =−Q

∫
Ω

φ∇µ · udx︸ ︷︷ ︸
III

−Q
∫

Ω

ρ∇ω · udx︸ ︷︷ ︸
IV

−Q
∫

Ω

(u · ∇)u · udx︸ ︷︷ ︸
V

.

By multiplying (3.11) with Q, we obtain

d

dt

(
1

2
|Q|2

)
= Q

∫
Ω

∇ · (uφ)µdx︸ ︷︷ ︸
I1

+Q

∫
Ω

∇ · (uρ)ωdx︸ ︷︷ ︸
II1

+Q

∫
Ω

φ∇µ · udx︸ ︷︷ ︸
III1

+Q

∫
Ω

ρ∇ω · udx︸ ︷︷ ︸
IV1

+Q

∫
Ω

(u · ∇)u · udx︸ ︷︷ ︸
V1

.

(3.19)

Combining (3.13)–(3.19), the obtained energy law in the new form reads as

d

dt
E(u, φ, ρ,Q, U) = −M1‖∇µ‖2 −M2‖∇ω‖2 − ν‖∇u‖2,(3.20)
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where

(3.21)

E(u, φ, ρ, U,Q) =

∫
Ω

(
1

2
|u|2 +

λ1

2
|∇φ|2 +

λ2γ

2
|∇ρ|2

)
dx + |U |2 +

1

2
|Q|2 −B.

Remark 3.3. The advantage of adding the simple ODE of Q to the system can
be seen from the above process of energy law derivation. Taking the advection and
surface tension terms related to φ as an example, in the original formulation, the two
nonlinear integrals I in (2.14) and III in (2.18) cancel each other out, so that these two
terms must be discretized in the same way when designing the algorithm, which leads
to a coupled type scheme of φ and u. But using the new formulation, term I in (3.13)
will be offset by term I1 in (3.19). This allows greater flexibility when discretizing the
two terms I and III because they no longer need to cancel each other out. Therefore,
the introduction of the Q (3.19) makes it possible to design the fully decoupled scheme.
A similar technique was used to handle the advection term when developing explicit-
type numerical schemes for the Navier–Stokes equations (see [31, 32]).

3.2. Numerical scheme. We introduce some notation here. Let δt > 0 be a
time step size and set tn = nδt for 0 ≤ n ≤ N with T = Nδt. The L2 inner product
of any two functions φ(x) and ψ(x) is denoted by (φ(x), ψ(x)) =

∫
Ω
φ(x)ψ(x)dx,

and the L2 norm of φ(x) is denoted by ‖φ‖2 = (φ, φ). Let ψn be the numerical
approximation to the function ψ(·, t)|t=tn .

Now, we are ready to contruct a numerical scheme to solve the model (3.4)–
(3.11). After using the second-order backward differentiation formula (BDF2), a time
marching scheme reads as follows.

We solve (ũ,u, φ, µ, ρ, ω, U,Q)n+1 by

aφn+1 − bφn + cφn−1

2δt
+Qn+1∇ · (u∗φ∗) = M1∆µn+1,(3.22)

µn+1 = −λ1∆φn+1 +
S1

ε2
(φn+1 − φ∗) +H∗Un+1,(3.23)

aρn+1 − bρn + cρn−1

2δt
+Qn+1∇ · (u∗ρ∗) = M2∆ωn+1,(3.24)

ωn+1 = −λ2γ∆ρn+1 +
S2

η2
(ρn+1 − ρ∗) +R∗Un+1,(3.25)

aUn+1 − bUn + cUn−1

=
1

2

∫
Ω

(H∗(aφn+1 − bφn + cφn−1) +R∗(aρn+1 − bρn + cρn−1))dx,(3.26)

aũn+1 − bun + cun−1

2δt
xx

+ Qn+1(u∗ · ∇)u∗ +∇pn − ν∆ũn+1 +Qn+1φ∗∇µ∗ +Qn+1ρ∗∇ω∗ = 0,(3.27)

aQn+1 − bQn + cQn−1

2δt
(3.28)

=

∫
Ω

(
∇ · (u∗φ∗)µn+1 + (φ∗∇µ∗) · ũn+1 +∇ · (u∗ρ∗)ωn+1

+ (ρ∗∇ω∗) · ũn+1 + (u∗ · ∇)u∗ · ũn+1
)
dx,
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and

a

2δt
(un+1 − ũn+1) +∇(pn+1 − pn) = 0,(3.29)

∇ · un+1 = 0,(3.30)

where {
a = 3, b = 4, c = 1,u∗ = 2un − un−1, φ∗ = 2φn − φn−1, ρ∗ = 2ρn − ρn−1,

µ∗ = 2µn − µn−1, ω∗ = 2ωn − ωn−1, H∗ = H(φ∗, ρ∗), R∗ = R(φ∗, ρ∗),
(3.31)

and S1 and S2 are two prespecified stability parameters.
The boundary conditions for the unknown variables (u, ũ, φ, ρ, µ, ω, p)n+1 are ei-

ther periodic or

(3.32)

ũn+1|∂Ω = 0,un+1 · n|∂Ω = ∂nφ
n+1|∂Ω = ∂nρ

n+1|∂Ω = ∂nµ
n+1|∂Ω = ∂nω

n+1|∂Ω = 0.

Remark 3.4. The initialization of the second-order scheme requires the values of
all variables at t = t1, which can be obtained by constructing a first-order scheme
using the backward Euler method. In the above second-order scheme (3.22)–(3.30),
as long as we set a = 2, b = 2, c = 0, ψ∗ = ψ0 for any variable ψ, the first-order
scheme can be easily obtained.

Remark 3.5. The second-order projection type (pressure-correction) method is
used in the developed scheme to solve the Navier–Stokes equation. This method
effectively decouples the computations of pressure from that of the velocity field. To
obtain the pressure, we just apply the divergence operator to (3.29) and then obtain
the following Poisson equation for pn+1, i.e.,

−∆pn+1 = − a

2δt
∇ · ũn+1 −∆pn.(3.33)

Once pn+1 is computed from (3.33), we update un+1 by using (3.29), i.e.,

un+1 = ũn+1 − 2δt

a
∇(pn+1 − pn).(3.34)

Remark 3.6. In the two Cahn–Hilliard equations of φ and ρ, we add two second-
order linear stabilization terms related to Si, i = 1, 2 in (3.23) and (3.25) to improve
energy stability. Similar treatment had been used to apply the IEQ/SAV method for
various gradient flow models (see [52, 69, 70]). Numerical experiments in section 4
(Figures 1, 3, 4) show that these two stabilizers can effectively improve energy stability
when large time steps are used. Moreover, although these two additional stabilizers
increase the splitting errors, the increased error is comparable to the error caused by
the extrapolation to the nonlinear terms f(φ) and g(ρ).

3.3. Implementation process. However, it seems that the developed scheme
(3.22)–(3.30) is not a fully decoupled scheme. All unknown variables are coupled to-
gether nonlocally. If we solve it using any direct iterative method, the time consump-
tion can be considerable. Therefore, we develop the following process to eliminate all
nonlocal terms and obtain a fully decoupled implementation.
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First, we use the nonlocal scalar variable Qn+1 to split (φ, ρ, µ, ω, U)n+1 into a
linear combination that reads as

φn+1 = φn+1
1 +Qn+1φn+1

2 ,

ρn+1 = ρn+1
1 +Qn+1ρn+1

2 ,

µn+1 = µn+1
1 +Qn+1µn+1

2 ,

ωn+1 = ωn+1
1 +Qn+1ωn+1

2 ,

Un+1 = Un+1
1 +Qn+1Un+1

2 .

(3.35)

Then the scheme (3.22)–(3.25) can be rewritten as



a

2M1δt
(φn+1

1 +Qn+1φn+1
2 ) +

1

M1
Qn+1∇ · (u∗φ∗)

= ∆(µn+1
1 +Qn+1µn+1

2 ) +
1

2M1δt
(bφn − cφn−1),

µn+1
1 +Qn+1µn+1

2

=

(
−λ1∆ +

S1

ε2

)
(φn+1

1 +Qn+1φn+1
2 ) +H∗(Un+1

1 +Qn+1Un+1
2 )− S1

ε2
φ∗,

a

2M2δt
(ρn+1

1 +Qn+1ρn+1
2 ) +

1

M2
Qn+1∇ · (u∗ρ∗)

= ∆(ωn+1
1 +Qn+1ωn+1

2 ) +
1

2M2δt
(bρn − cρn−1),

ωn+1
1 +Qn+1ωn+1

2

=

(
−λ2∆ +

S2

η2

)
(ρn+1

1 +Qn+1ρn+1
2 ) +R∗(Un+1

1 +Qn+1Un+1
2 )− S2

η2
ρ∗.

(3.36)

According to Qn+1, the linear system (3.36) can be decomposed into two subsystems
as follows,



a

2M1δt
φn+1

1 = ∆µn+1
1 +A1,

µn+1
1 =

(
−λ1∆ +

S1

ε2

)
φn+1

1 +H∗Un+1
1 +B1,

a

2M2δt
ρn+1

1 = ∆ωn+1
1 + C1,

ωn+1
1 =

(
−λ2∆ +

S2

η2

)
ρn+1

1 +R∗Un+1
1 +D1.

(3.37)



a

2M1δt
φn+1

2 = ∆µn+1
2 +A2,

µn+1
2 =

(
−λ1∆ +

S1

ε2

)
φn+1

2 +H∗Un+1
2 +B2,

a

2M2δt
ρn+1

2 = ∆ωn+1
2 + C2,

ωn+1
2 =

(
−λ2∆ +

S2

η2

)
ρn+1

2 +R∗Un+1
2 +D2,

(3.38)
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where Ai, Bi, Ci, Di, i = 1, 2 are explicit, that read as

A1 =
1

2M1δt
(bφn − cφn−1), B1 = −S1

ε2
φ∗, C1 =

1

2M2δt
(bρn − cρn−1), D1 = −S2

η2
ρ∗,

A2 = − 1

M1
∇ · (u∗φ∗), B2 = 0, C2 = − 1

M2
∇ · (u∗ρ∗), D2 = 0.

Note that the two subsystems (3.37) and (3.38) have the same form, so we only need
to introduce a method to solve any one of them, and the other follows the same rule.
Hence, we take the first subsystem (3.37) as an example. To solve (3.37), we continue
to use the split technique, that is, the variables (φ1, ρ1, µ1, ω1)n+1 are split into a
linear combination form by the variable Un+1

1 , which read as{
φn+1

1 = φn+1
11 + Un+1

1 φn+1
12 , ρn+1

1 = ρn+1
11 + Un+1

1 ρn+1
12 ,

µn+1
1 = µn+1

11 + Un+1
1 µn+1

12 , ωn+1
1 = ωn+1

11 + Un+1
1 ωn+1

12 .
(3.39)

By substituting the split form of all variables in (3.39) into (3.37) and decomposing
the results according to Un+1

1 , we obtain four independent subsystems that read as
a

2M1δt
φn+1

11 = ∆µn+1
11 +A1,

µn+1
11 =

(
−λ1∆ +

S1

ε2

)
φn+1

11 +B1,
(3.40)


a

2M1δt
φn+1

12 = ∆µn+1
12 ,

µn+1
12 =

(
−λ1∆ +

S1

ε2

)
φn+1

12 +H∗,
(3.41)


a

2M2δt
ρn+1

11 = ∆ωn+1
11 + C1,

ωn+1
11 =

(
−λ2∆ +

S2

η2

)
ρn+1

11 +D1,
(3.42)


a

2M2δt
ρn+1

12 = ∆ωn+1
12 ,

ωn+1
12 =

(
−λ2∆ +

S2

η2

)
ρn+1

12 +R∗.
(3.43)

The boundary conditions for (3.40)–(3.43) are either periodic or

∂nφ
n+1
11 |∂Ω = ∂nφ

n+1
12 |∂Ω = ∂nρ

n+1
11 |∂Ω = ∂nρ

n+1
12 |∂Ω = 0,

∂nµ
n+1
11 |∂Ω = ∂nµ

n+1
12 |∂Ω = ∂nω

n+1
11 |∂Ω = ∂nω

n+1
12 |∂Ω = 0.

(3.44)

One can easily solve (φ11, φ12, ρ11, ρ12, µ11, µ12, ω11, ω12)n+1 from the above four sub-
systems (3.40)–(3.43) since all nonlinear terms are given explicitly.

We continue to solve (3.38) in a similar way where the variable Un+1
2 is used to

split (φ2, ρ2, µ2, ω2)n+1 into a linear combination, i.e.,{
φn+1

2 = φn+1
21 + Un+1

2 φn+1
22 , ρn+1

2 = ρn+1
21 + Un+1

2 ρn+1
22 ,

µn+1
2 = µn+1

21 + Un+1
2 µn+1

22 , ωn+1
2 = ωn+1

21 + Un+1
2 ωn+1

22 .
(3.45)

D
ow

nl
oa

de
d 

04
/0

5/
21

 to
 1

29
.2

52
.3

3.
20

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DECOUPLED SCHEME FOR BINARY SURFACTANT MODEL B491

Then the unknowns (φ21, φ22, ρ21, ρ22, µ21, µ22, ω21, ω22)n+1 can be obtained by solv-
ing another four subsystems that are similar to (3.40)–(3.43) with the same boundary
conditions as (3.44).

Second, we rewrite (3.26) in the following form:

Un+1 =
1

2

∫
Ω

(H∗φn+1 +R∗ρn+1)dx + gn,(3.46)

where gn = 1
a (bUn − cUn−1) − 1

2a

∫
Ω

(H∗(bφn − cφn−1) + R∗(bρn − cρn−1))dx is an
explicit form. Substituting the linear form of (U, φ, ρ)n+1 represented by Qn+1 given
in (3.35) into (3.46), we get

Un+1
1 +Qn+1Un+1

2(3.47)

=
1

2

∫
Ω

(
H∗(φn+1

1 +Qn+1φn+1
2 ) +R∗(ρn+1

1 +Qn+1ρn+1
2 )

)
dx + gn.

Then, according to Qn+1, we decompose (3.47) into the following two equalities:
Un+1

1 =
1

2

∫
Ω

(
H∗φn+1

1 +R∗ρn+1
1

)
dx + gn,

Un+1
2 =

1

2

∫
Ω

(
H∗φn+1

2 +R∗ρn+1
2

)
dx.

(3.48)

Substituting the linear form of (φ1, ρ1, φ2, ρ2)n+1 represented by Un+1
1 given in (3.39)

into (3.48), we get
Un+1

1 =
1

2

∫
Ω

(
H∗(φn+1

11 + Un+1
1 φn+1

12 ) +R∗(ρn+1
11 + Un+1

1 ρn+1
12 )

)
dx + gn,

Un+1
2 =

1

2

∫
Ω

(
H∗(φn+1

21 + Un+1
2 φn+1

22 ) +R∗(ρn+1
21 + Un+1

2 ρn+1
22 )

)
dx.

(3.49)

After applying a simple factorization to (3.49), we derive

Un+1
1 =

1
2

∫
Ω

(H∗φn+1
11 +R∗ρn+1

11 )dx + gn

1− 1
2

∫
Ω
H∗φn+1

12 dx− 1
2

∫
Ω
R∗ρn+1

12 dx
,(3.50)

Un+1
2 =

1
2

∫
Ω

(H∗φn+1
21 +R∗ρn+1

21 )dx

1− 1
2

∫
Ω
H∗φn+1

22 dx− 1
2

∫
Ω
R∗ρn+1

22 dx
.(3.51)

We need to verify that Un+1
1 and Un+1

2 are solvable. This can be obtained by applying
a simple energy estimate to the two subsystems (3.41) and (3.43). We take the L2

inner product of the first equation in (3.41) with −µ12, and of the second equation in
(3.41) with a

2M1δt
φ12, and we derive

(3.52)

− a

2M1δt

∫
Ω

H∗φn+1
12 dx = ‖∇µn+1

12 ‖2 +
aλ1

2M1δt
‖∇φn+1

12 ‖2 +
aS1

2ε2M1δt
‖φn+1

12 ‖2 ≥ 0.

By implementing a similar process as in (3.43), we derive

(3.53)

− a

2M2δt

∫
Ω

R∗ρn+1
12 dx = ‖∇ωn+1

12 ‖2 +
aλ2

2M2δt
‖∇ρn+1

12 ‖2 +
aS2

2η2M2δt
‖ρn+1

12 ‖2 ≥ 0.
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Hence, the denominator in (3.50) is nonzero, which means that Un+1
1 is always solv-

able. Similarly, Un+1
2 can be always solved from (3.51) as well. After calculating

Un+1
1 and Un+1

2 , we further obtain φn+1
1 , ρn+1

1 , µn+1
1 , ωn+1

1 from (3.39) and φn+1
2 ,

ρn+1
2 , µn+1

2 , ωn+1
2 from (3.45).

Third, for the velocity field ũn+1,un+1 and the pressure pn+1 in the scheme
(3.27) and (3.29)–(3.30), we also use the nonlocal variable Qn+1 to split them into
the following linear combinations:

(3.54)

ũn+1 = ũn+1
1 +Qn+1ũn+1

2 ,un+1 = un+1
1 +Qn+1un+1

2 , pn+1 = pn+1
1 +Qn+1pn+1

2 .

By replacing these variables (ũ,u, p)n+1 in the scheme (3.27) and (3.29)–(3.30), and
then splitting the obtained equations according to Qn+1, we arrive at a system
that includes two subequations. More precisely, from (3.27), the two split variables
ũn+1
i , i = 1, 2, follow the equations

a

2δt
ũn+1

1 − ν∆ũn+1
1 = σ1,

a

2δt
ũn+1

2 − ν∆ũn+1
2 = σ2,

(3.55)

where σ1, σ2 are explicit forms that are given by

σ1 = −∇pn +
bun − cun−1

2δt
, σ2 = −(u∗ · ∇)u∗ − φ∗∇µ∗ − ρ∗∇ω∗.(3.56)

Similarly, from (3.29)–(3.30), the two split variables un+1
i , pn+1

i , i = 1, 2, follow the
equations 

3

2δt
(un+1

1 − ũn+1
1 ) +∇pn+1

1 = ∇pn, ∇ · un+1
1 = 0,

3

2δt
(un+1

2 − ũn+1
2 ) +∇pn+1

2 = 0, ∇ · un+1
2 = 0.

(3.57)

We request the four split variables ũn+1
i ,un+1

i , i = 1, 2, follow the boundary conditions
described in (3.32), i.e, they are either periodic or satisfy

ũn+1
i |∂Ω = 0, un+1

i · n|∂Ω = 0.(3.58)

Fourth, we solve the auxiliary variable Qn+1. Using the split form for the variables
µn+1, ωn+1, ũn+1, one can rewrite (3.28) in the form( a

2δt
− ϑ2

)
Qn+1 =

1

2δt
(bQn − cQn−1) + ϑ1,(3.59)

where ϑi are all known from previous steps:

ϑi =

∫
Ω

(
∇ · (u∗φ∗)µn+1

i + (φ∗∇µ∗) · ũn+1
i(3.60)

+ ∇ · (u∗ρ∗)ωn+1
i + (ρ∗∇ω∗) · ũn+1

i + (u∗ · ∇)u∗ · ũn+1
i

)
dx, i = 1, 2.

We verify that (3.59) is solvable by showing a
2δt − ϑ2 6= 0. By taking the L2 inner

product of the second equation in (3.55) with ũn+1
2 , we get

−
∫

Ω

(
(φ∗∇µ∗) · ũn+1

2 + (ρ∗∇ω∗) · ũn+1
2 + (u∗ · ∇)u∗ · ũn+1

2

)
dx(3.61)

=
a

2δt
‖ũn+1

2 ‖2 + ν‖∇ũn+1
2 ‖2 ≥ 0.
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By taking the L2 inner product of the first equation in (3.38) with M1µ
n+1
2 , of the

second equation with − a
2δtφ

n+1
2 , of the third equation with M2ω

n+1
2 , and of the fourth

equation with − a
2δtφ

n+1
2 , and combining the obtained four equalities, we get

−
∫

Ω

(∇ · (u∗φ∗)µn+1
2 +∇ · (u∗ρ∗)ωn+1

2 )dx

= M1‖∇µn+1
2 ‖2 +M2‖∇ωn+1

2 ‖2 +
aλ1

2δt
‖∇φn+1

2 ‖2 +
aλ2

2δt
‖∇ρn+1

2 ‖2

+
aS1

2δtε2
‖φn+1

2 ‖2 +
aS2

2δtη2
‖ρn+1

2 ‖2 +
a

2δt
Un+1

2

∫
Ω

(H∗φn+1
2 +R∗ρn+1

2 )dx.

(3.62)

From the second equation in (3.48), we derive Un+1
2

∫
Ω

(H∗φn+1
2 + R∗ρn+1

2 )dx =
1
2 (Un+1

2 )2 ≥ 0. Therefore, from (3.61) and (3.62), we derive −ϑ2 ≥ 0 that implies
(3.59) is solvable.

Finally, we update (φ, ρ, µ, ω, U)n+1 from (3.35) and (ũ,u, p)n+1 from (3.54).
In summary, we implement the scheme (3.22)–(3.30) in the following way:
• Step 1: Compute (φij , ρij , µij , ωij)

n+1, i, j = 1, 2, from (3.40)–(3.43) and an-
other similar four equations split from (3.38) using the variable Un+1

2 .
• Step 2: Update (U1, U2)n+1 from (3.50) and (3.51).
• Step 3: Update (φi, ρi, µi, ωi)

n+1, i = 1, 2, from (3.39) and (3.45).
• Step 4: Compute ũn+1

i , i = 1, 2, from (3.55).
• Step 5: Compute un+1

i and pn+1
i , i = 1, 2, from (3.57).

• Step 6: Compute Qn+1 from (3.59).
• Step 7: Update (φ, ρ, µ, ω, U)n+1 from (3.35), and (ũ,u, p)n+1 from (3.54).

Hence, the total computational cost needed by the scheme (3.22)–(3.30) at each time
step includes solving eight independent elliptic linear systems in Step 1, two Poisson-
type equations in Step 4, and two more Poisson type equations in Step 5. All these
equations have constant coefficients and are fully decoupled, which means very efficient
calculations in practice.

3.4. Unconditional energy stability. Now we prove that the scheme (3.22)–
(3.30) is unconditionally energy stable as follows.

Theorem 3.1. The time-discrete scheme (3.22)–(3.30) satisfies the discrete en-
ergy dissipation law as follows:

1

δt
(En+1 − En) ≤ −ν‖∇ũn+1‖2 −M1‖∇µn+1‖2 −M2‖∇ωn+1‖2 ≤ 0,(3.63)

where

(3.64)

En+1

=
1

2

(
1

2
‖un+1‖2 +

1

2
‖2un+1 − un‖2

)
+
λ1

2

(
1

2
‖∇φn+1‖2 +

1

2
‖2∇φn+1 −∇φn‖2

)
+
λ2γ

2

(
1

2
‖∇ρn+1‖2 +

1

2
‖2∇ρn+1 −∇ρn‖2

)
+

(
1

2
|Un+1|2 +

1

2
|2Un+1 − Un|2

)
+

1

2

(
1

2
|Qn+1|2 +

1

2
|2Qn+1 −Qn|2

)
+
δt2

3
‖∇pn+1‖2

+
S1

2ε2
‖φn+1 − φn‖2 +

S2

2η2
‖ρn+1 − ρn‖2.

D
ow

nl
oa

de
d 

04
/0

5/
21

 to
 1

29
.2

52
.3

3.
20

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B494 XIAOFENG YANG

Proof. By taking the inner product of (3.27) with 2δtũn+1 in the L2 space, we
obtain

(3ũn+1 − 4un + un−1, ũn+1) + 2νδt‖∇ũn+1‖2 + 2δt(∇pn, ũn+1)

+ 2δtQn+1

∫
Ω

(u∗ · ∇)u∗ · ũn+1dx + 2δtQn+1

∫
Ω

φ∗∇µ∗ · ũn+1dx

+ 2δtQn+1

∫
Ω

ρ∗∇ω∗ · ũn+1dx = 0.

(3.65)

From (3.29), for any variable v with ∇ · v = 0 and v · n|∂Ω = 0, we have

(un+1,v) = (ũn+1,v).(3.66)

We derive the equality

(3ũn+1− 4un+ un−1, ũn+1)

= (3ũn+1− 4un+ un−1,un+1) + (3ũn+1− 4un+ un−1, ũn+1− un+1)

= (3un+1− 4un+ un−1,un+1) + (3ũn+1, ũn+1− un+1)

= (3un+1 − 4un + un−1,un+1) + 3(ũn+1 − un+1, ũn+1 + un+1)

=
1

2

(
‖un+1‖2 − ‖un‖2 + ‖2un+1 − un‖2 − ‖2un − un−1‖2

+ ‖un+1 − 2un + un−1‖2
)

+ 3(‖ũn+1‖2 − ‖un+1‖2),

(3.67)

where we use the following identity:

2(3a− 4b+ c, a) = a2 − b2 + (2a− b)2 − (2b− c)2 + (a− 2b+ c)2.(3.68)

We reformulate the projection step (3.29) as

3

2δt
un+1 +∇pn+1 =

3

2δt
ũn+1 +∇pn.(3.69)

By taking the square of both sides of the above equation, we get

(3.70)
9

4δt2
‖un+1‖2 + ‖∇pn+1‖2 =

9

4δt2
‖ũn+1‖2 + ‖∇pn‖2 +

3

δt
(ũn+1,∇pn).

Hence, by multiplying the above equation with 2δt2/3, we derive

(3.71)
3

2
(‖un+1‖2 − ‖ũn+1‖2) +

2δt2

3
(‖∇pn+1‖2 − ‖∇pn‖2) = 2δt(ũn+1,∇pn).

By taking the inner product of (3.29) with 2δtun+1 in the L2 space, we have

(3.72)
3

2
(‖un+1‖2 − ‖ũn+1‖2 + ‖un+1 − ũn+1‖2) = 0.

We combine (3.65), (3.67), (3.71), and (3.72) to obtain
(3.73)

1

2
(‖un+1‖2 − ‖un‖2 + ‖2un+1 − un‖2 − ‖2un − un−1‖2 + ‖un+1 − 2un + un−1‖2)

+
3

2
‖un+1 − ũn+1‖2 +

2δt2

3
(‖∇pn+1‖2 − ‖∇pn‖2) + 2νδt‖∇ũn+1‖2

+ 2δtQn+1

∫
Ω

(u∗ · ∇)u∗ · ũn+1dx + 2δtQn+1

∫
Ω

φ∗∇µ∗ · ũn+1dx

+ 2δtQn+1

∫
Ω

ρ∗∇ω∗ · ũn+1dx = 0.
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Computing the inner product of (3.22) with 2δtµn+1 in the L2 space, we have

(3.74)

(3φn+1 − 4φn + φn−1, µn+1) + 2δtQn+1

∫
Ω

∇ · (u∗φ∗)µn+1dx + 2δtM1‖∇µn+1‖2 = 0.

Computing the L2 inner product of (3.23) with −(3φn+1 − 4φn + φn−1), we find

(3.75)

µn+1, 3φn+1 − 4φn + φn−1) + λ1(∇φn+1,∇(3φn+1 − 4φn + φn−1))

+ Un+1

∫
Ω

H∗(3φn+1 − 4φn + φn−1)dx +
S1

ε2
(φn+1 − φ∗, 3φn+1 − 4φn + φn−1) = 0.

Computing the inner product of (3.24) with 2δtωn+1 in the L2 space, we have

(3.76)

(3ρn+1 − 4ρn + ρn−1, ωn+1) + 2δtQn+1

∫
Ω

∇ · (u∗ρ∗)ωn+1dx + 2δtM2‖∇ωn+1‖2 = 0.

Computing the L2 inner product of (3.25) with −(3ρn+1 − 4ρn + ρn−1), we get

(3.77)

−(ωn+1, 3ρn+1 − 4ρn + ρn−1) + λ2(∇ρn+1,∇(3ρn+1 − 4ρn + ρn−1))

+ Un+1

∫
Ω

R∗(3ρn+1 − 4ρn + ρn−1)dx +
S2

η2
(ρn+1 − ρ∗, 3ρn+1 − 4ρn + ρn−1) = 0.

By multiplying (3.26) with 2Un+1 and using (3.68), we obtain

(3.78)

|Un+1|2 − |Un|2 + |2Un+1 − Un|2 − |2Un − Un−1|2 + |Un+1 − 2Un + Un−1|2

= Un+1

∫
Ω

(H∗(3φn+1 − 4φn + φn−1) +R∗(3ρn+1 − 4ρn + ρn−1))dx.

By multiplying (3.28) with 2δtQn+1 and using (3.68), we obtain

(3.79)

1

2

(
|Qn+1|2 − |Qn|2 + |2Qn+1 −Qn|2 − |2Qn −Qn−1|2 + |Qn+1 − 2Qn +Qn−1|2

)
= 2δtQn+1

∫
Ω

∇ · (u∗φ∗)µn+1dx

+ 2δtQn+1

∫
Ω

φ∗∇µ∗ · ũn+1dx + 2δtQn+1

∫
Ω

∇ · (u∗ρ∗)ωn+1dx

+ 2δtQn+1

∫
Ω

ρ∗∇ω∗ · ũn+1dx + 2δtQn+1

∫
Ω

(u∗ · ∇)u∗ · ũn+1dx.
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Hence, by combining (3.73)–(3.79) and using (3.68), we arrive at

(3.80)

1

2
(‖un+1‖2 − ‖un‖2 + ‖2un+1 − un‖2 − ‖2un − un−1‖2) +

2δt2

3
(‖∇pn+1‖2 − ‖∇pn‖2)

+
λ1

2
(‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇(2φn+1 − φn)‖2 − ‖∇(2φn − φn−1)‖2)

+
λ2γ

2
(‖∇ρn+1‖2 − ‖∇ρn‖2 + ‖∇(2ρn+1 − ρn)‖2 − ‖∇(2ρn − ρn−1)‖2)

+ (|Un+1|2 − |Un|2 + |2Un+1 − Un|2 − |2Un − Un−1|2)

+
1

2
(|Qn+1|2 − |Qn|2 + |2Qn+1 −Qn|2 − |2Qn −Qn−1|2)

+
S1

ε2
(‖φn+1 − φn‖2 − ‖φn − φn−1‖2) +

S2

η2
(‖ρn+1 − ρn‖2 − ‖ρn − ρn−1‖2)

+

{
1

2
‖un+1 − 2un + un−1‖2 +

3

2
‖un+1 − ũn+1‖2

+
λ1

2
‖∇(φn+1 − 2φn + φn−1)‖2 +

λ2γ

2
‖∇(ρn+1 − 2ρn + ρn−1)‖2

+
2S1

ε2
‖φn+1 − 2φn + φn−1‖2 +

2S2

η2
‖ρn+1 − 2ρn + ρn−1‖2

+ |Un+1 − 2Un + Un−1|2 +
1

2
|Qn+1 − 2Qn +Qn−1|2

}
= −2δtν‖∇ũn+1‖2 − 2δtM1‖∇µn+1‖2 − 2δtM2‖∇ωn+1‖2,

where we use the following identity:

(3a− 4b+ c)(a− 2b+ c) = (a− b)2 − (b− c)2 + 2(a− 2b+ c)2.(3.81)

Finally, from (3.80), we obtain (3.63) after dropping the positive terms in { }.
4. Numerical simulations. In this section, we first implement several nu-

merical examples to verify the convergence and energy stability of the proposed
scheme (3.22)–(3.30). Then, some benchmark simulations are proposed, including
the spinodal decomposition in two and three dimensions and the droplets coales-
cence/nonmergence phenomena with and without surfactant application under shear
flow in two and three dimensions, to demonstrate the effectiveness of the scheme.

In all the examples below, we set the computational domain to be a rectangular
domain of [0, Lx]× [0, Ly] or [0, Lx]× [0, Ly]× [0, Lz]. For the directions with periodic
boundary conditions, we use the Fourier spectral method to discretize them. For
the directions with physical boundary conditions specified in (3.32), the Legendre–
Galerkin method is used to discretize them. The inf-sup stable pair (PN , PN−2) is
used for the velocity (ũ and u) and pressure p, respectively, and PN is used for the
phase-field function φ and ρ.

4.1. Accuracy and stability test. We first perform several convergence/
stability tests to verify the accuracy and stability of the fully decoupled scheme using
double auxiliary variables (3.22)–(3.30), referred to as DSAV. For comparisons, we
also compute the numerical solutions by using the following schemes:

• DSAV scheme with Q but no Si (to illustrate the effectiveness of the two
stabilizers Si, i = 1, 2), i.e., the scheme (3.22)–(3.30) but with S1 = S2 = 0,
referred to as SAV;
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(a) DSAV and SAV for all variables. (b) DSAV, EX-SAV, convex-spliting, and implicit
for φ.

Fig. 1. Accuracy tests with the presumed exact solutions given in (4.1), where (a) the L2

numerical errors of φ, ρ, the average of u = (u, v), p, are computed by DSAV (stabilized) and SAV
(nonstabilized) with different time steps, and (b) the L2 numerical errors of φ computed by DSAV,
EX-SAV, convex-splitting, and implicit.

• DSAV scheme with S but no Q (by setting Qk ≡ 1 ∀k such that (3.28) is re-
moved), i.e., the advection and surface tension terms are all treated explicitly,
referred to as EX-SAV;

• convex-splitting scheme (the nonlinear term f(φ) is discretized using the
second-order convex-splitting approach, g(ρ) is treated implicitly since G(ρ)
is convex, and the advection/surface tension terms are treated by implicit-
explicit combinations; see the similar scheme developed in [22, 23] for the
Cahn–Hilliard/Navier–Stokes system for two-phase flows), referred to as
convex-splitting;

• implicit scheme (all nonlinear terms are handled implicitly), referred to as
implicit.

4.1.1. Presumed exact solution. We first perform the convergence tests by
assuming the exact solution of the system (2.4)–(2.7) is given by the following formula:

φ(x, y, t) = sinxcosycost, ρ(x, y, t) = (0.5 + 0.1sinxcosy)cost,

u(x, y, t) = (u(x, y, t), v(x, y, t)) = (cosxsiny,−sinxcosy)cost,

p(x, y, t) = sinxsinysint.

(4.1)

We add some suitable force fields so that the solutions given in (4.1) can satisfy the
system. The computational domain is Ω = [0, 2π]2, and the model parameters are set
as

M1 = M2 = 1, λ1 = λ2 = 0.01, ε = 0.08, η = 0.06,(4.2)

α = 2, θ = 0.01, ζ = 1e−5, ν = 1, S1 = S2 = 0.1.

The boundary conditions are set to periodic and 1292 Fourier modes are used to
discretize the space, so the discretization error in space is negligible compared to the
time discretization error. In Figure 1(a) and (b), we plot the L2-errors between the
numerical solution and the exact solution at t = 0.2 for unknown variables, where
for all scenarios, the time step size ranges from δt = 0.01 to δt = 0.01

28 with a factor
of 1/2. In Figure 1(a), the L2 errors for all variables computed by DSAV and SAV
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Fig. 2. The profiles of φ and ρ computed by the scheme DSAV at t = 0.5, 0.72, 1.5, 1.75, and
2, where the top row is φ and the bottom row is ρ. The initial conditions are given in (4.3) and the
time step is δt = 0.01/23.

are shown, and the scheme DSAV (with stabilizers) presents perfect second-order
accuracy in time. Instead, for the scheme SAV (without stabilizers), when a large
time step (δt > 0.01

27 ) is used, it blows up, thereby missing the corresponding error
points. Only when using a smaller time step (δt ≤ 0.01

27 ) can SAV display second-order
accuracy.

In Figure 1(b), we compare the errors for φ computed by DSAV, EX-SAV, convex-
splitting, and implicit. The scheme EX-SAV also presents a second-order convergence
rate. But for any fixed time step δt, the magnitude of the error computed using the
scheme DSAV is smaller than that computed by EX-SAV. This means that the scheme
DSAV is more accurate because the variable Q records all variances caused by the
coupled nonlinear terms. For convex-splitting and implicit schemes, they present the
second-order accuracy only when the adopted time step is small enough. For similar
accuracy comparisons between different schemes for various phase-field models, we
refer to [1, 10, 13, 25, 44, 54, 59].

4.1.2. Mesh refinement in time. We further test the convergence rate of the
developed scheme DSAV by performing more mesh refinement tests in time. We still
use the 2D domain of Ω = [0, 2π]2 and assume the periodic boundary conditions. We
discretize the space using 1292 Fourier modes. The initial conditions of the two circles
with different radii are as follows:

φ0(x, y) = 1 +

2∑
i=1

tanh

(
ri −

√
(x− xi)2 + (y − yi)2

1.5ε

)
,(4.3)

ρ0(x, y) = 0.2,u0(x, y) = 0, p0(x, y) = 0,

where r1 = 1.4, r2 = 0.5, x1 = π − 0.8, x2 = π + 1.7, y1 = y2 = π. The model
parameters are still from (4.2).

We first implement the scheme DSAV to the equilibrium state by using the time
step size δt = 0.01

23 . Snapshots of the profiles of φ and ρ at various times are shown
in Figure 2, where we find that the coarsening effect is such that the small circle is
absorbed into the large circle gradually. Meanwhile, we can see that concentration is
high around the fluid interfaces due to the coupling between φ and ρ, and the values of
ρ are different in two bulk phases, which is due to the different solubility of surfactants
in different phases that is due to the asymmetric parameter α.
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(a) DSAV and SAV for all variables. (b) DSAV, EX-SAV, convex-spliting, and implicit
for φ.

Fig. 3. Mesh refinement in time with the initial conditions given in (4.3), where (a) the L2

numerical errors of φ, ρ, the average of u = (u, v), p, are calculated by DSAV (stabilized) and SAV
(nonstabilized) with different time steps, and (b) the L2 numerical errors of φ are calculated by
using the schemes DSAV, EX-SAV, convex-splitting, and implicit.

More time refinement tests for temporal convergence are shown in Figure 3. Since
the exact solutions are not known, we choose the numerical solutions computed by
the scheme DSAV with a very tiny time step δt = 1e−9 as the exact solution. The L2

errors of unknown variables at t = 0.5 are computed by varying the time step δt. From
the convergence rate shown in Figure 3(a) (which shows the errors of all variables),
we find that the scheme DSAV always exhibits almost perfect second-order accuracy.
However, when the nonstabilized scheme SAV uses a large time step, the convergence
rate is very poor. Only for smaller time steps is the second-order accuracy displayed.
In Figure 3(b), the errors for φ computed by DSAV, EX-SAV, convex-splitting, and
implicit are plotted, and their performances are similar to the previous accuracy test
(hence the description is omitted here due to the page limit).

4.1.3. Stability tests. In this example, by plotting the temporal evolution of
the free energy calculated by DSAV, we verify whether it is unconditional energy stable
numerically. We still use the previous accuracy test on mesh refinement. In Figure 4,
the evolution curves of the total free energy (3.64) computed using schemes DSAV and
SAV are shown, respectively, where different time steps are used. In Figure 4(a), the
evolution curves of the total free energy (3.64) calculated by DSAV are plotted, where
we observe that monotonic attenuation is obtained, which confirms its unconditional
energy stability.

For the nonstabilized scheme SAV, when δt > 0.01
212 , the computed energy blows

up rapidly and only decays when using a smaller time step (δt ≤ 0.01
212 ). Therefore,

in Figure 4(b), we use the maximum time step (δt = 0.01
212 ) that SAV can take and

also plot the energy curve computed by DSAV with a large time step (δt = 0.01
23 ) for

comparison. The two energy curves are very consistent, which means that the time
step of the DSAV scheme can be 512 times larger than the time step adopted by the
nonstabilized scheme SAV for this test.

4.2. Spinodal decomposition in two and three dimensions. In this ex-
ample, we use the developed scheme DSAV to study the phase separation dynamics
(referred to as spinodal decomposition). We set the initial condition to be a homoge-
neous binary mixture, where a random number perturbation with a small magnitude
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(a) DSAV. (b) SAV.

Fig. 4. Comparison of the total free energy (3.64) calculated by using schemes (a) DSAV and
(b) SAV with different time steps.

(a) t = 0.4. (b) t = 0.8.

(c) t = 50.

Fig. 5. 2D spinodal decomposition example, where snapshots of the profiles of φ and ρ are
plotted with t = 0.4, 0.8, and 50. In each subfigure, φ is on the left and ρ is on the right.

is applied to each grid point. Then, as time passes, the system develops from a
homogeneous state caused by spontaneous increase to a two-phase state.

We first implement a 2D simulation where the initial conditions are given by

u0(x) = 0, p0(x) = 0, φ(x) = 0.5 + 0.001rand(x), ρ(x) = 0.2,(4.4)

where the rand(x) is the random number in [−1, 1] that follows the normal distri-
bution. We assume periodic boundary conditions and set the computed domain to
be [0, 2π]2. 2572 Fourier modes and time step 1e−3 are used for computations. The
model parameters are set as M1 = M2 = 1, λ1 = λ2 = 0.01, ε = 0.04, η = 0.01, α =
1, θ = 0.01, ζ = 1e−5, ν = 1, S1 = S2 = 0.1, B = 1e5. In Figure 5, the configuration
profiles of φ, ρ at different times are plotted. The final equilibrium solution appears
to be circular, and the value of the concentration variable at the is significantly higher
than at other locations.

We use the same initial conditions given in (4.4) to perform a 3D simulation. The
computational domain is [0, 2]3 and discretized by using 2573 Fourier modes. The
time step is δt = 0.001, and order parameters are M1 = M2 = 1, λ1 = λ2 = 0.01, ε =
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(a) t = 1. (b) t = 3.

(c) t = 5.

Fig. 6. 3D spinodal decomposition example, where snapshots of the isosurfaces of {φ = 0} and
{ρ = 0.21} (near the maximum value of ρ) are plotted with t = 1, 3, and 5. In each subfigure, φ
(yellow) is on the left and ρ (red) is on the right.

(a) Energy evolution for 2D spinodal decom-
position.

(b) Energy evolution for 3D spinodal decom-
position.

Fig. 7. Comparison of the total free energy in the original form (2.2) and modified form (3.64)
computed by using the scheme DSAV for the spinodal decomposition examples in two and three
dimentions.

0.06, η = 0.02, α = 1, θ = 0.01, ζ = 1e−5, ν = 1, S1 = S2 = 0.1, B = 1e5. In Figure 6,
snapshots of the isosurfaces of {φ = 0} and {ρ = 0.21} (near the maximum value of ρ)
are plotted. The dynamics of phase separation are similar to the 2D simulation, and
the final steady state appears to be spherical. In Figure 7, we plot the time evolutions
of the total free energy in the original form (2.2) and the modified form (3.64) and
find that there is no viewable difference between them.

4.3. Droplets coalescence/nonmergence phenomena with and without
surfactant application under shear flow. In this example, we study the effect
of surfactants on the droplets deformation and coalescence dynamics driven by the
imposed shear flow. We set the initial conditions to two adjacent circles (2D) and
spheres (3D). Driven by the shear flow, the two droplets start to move in the opposite
direction. If there is no surfactant, as time evolves, because the distance between the
two droplets is very close, they will merge together due to coarsening effects. On the
contrary, if the surfactant effect is added into the model, the droplets will slip away
rather than merge, which implies the coarsening effect is overcome.
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Fig. 8. The example of 2D droplet dynamics driven by shear flow without surfactant effect
(θ = α = 0). The snapshots of the configuration profiles of φ are taken at t = 0, 1.5, 1.7, 1.75, 1.8,
and 3.

We first perform a 2D simulation with the computed domain Ω = [0, 2]2. The
initial conditions read as follows:

φ0 =

2∑
i=1

tanh

(√
ri − (x− xi)2 − (y − yi)2

ε

)
+ 1,(4.5)

ρ0 = 0.2,u0 = (0.35(y − 1), 0), p0 = 0,

where (x1, y1, r1)=(0.8, 1.295, 0.28) and (x2, y2, r2)=(1.2, 0.705, 0.28). For the x-axis,
we set periodic boundary conditions and use Fourier-spectral method to discretize it,
where 513 Fourier modes are adopted. The boundary conditions for u = (u, v), φ,
and ρ along the y-direction are set as follows:

u|(y=0,2) = ±0.35, (v, φy, ρy, µy, ωy)|(y=0,2) = 0.(4.6)

The Legendre–Galerkin method is used to discretize the y-direction, where the Le-
gendre polynomials with degrees up to 1024 are adopted. The model parameters for
this simulation read as M1 = M2 = 0.01, λ1 = λ2 = 0.01, ε = 0.02, η = 0.005, ζ =
1e−5, ν = 1, S1 = S2 = 0.1, B = 1e5, δt = 1e−3.

First, we set the coupling parameter θ = 0, α = 0, so the surfactant effect vanishes.
In Figure 8, snapshots of the phase-field variable φ at different times are plotted. We
observe that the two droplets deform and move to each other under the action of
shear flow. Around t = 1.75, they start to merge into a larger droplet by coarsening
effects. Furthermore, we set the coupling parameter as θ = 0.025, α = 2 and study
how the drop motions are affected by surfactant effects. From Figure 9(a) and (b),
which plots the configuration profiles of φ and ρ at various times, we observe that
surfactant prevents the fusion of droplets. This means that the action of surfactants
can overcome the coarsening effect and completely change the way the droplets move.
Similar dynamics were observed experimentally in [24, 36, 66], and some simulations in
two dimensions were performed using alternative phase-field surfactant models in [35].

We continue to perform 3D simulations. The computed domain is set as (x, y, z) ∈
Ω = [0, 2] × [0, 0.7] × [0, 0.2], and the initial conditions read as (shown in the first
subfigure of Figure 10)

φ0 =

2∑
i=1

tanh

(√
ri − (x− xi)2 − (y − yi)2 + (z − zi)2

ε

)
+ 1, ρ0 = 0.2,(4.7)

u0 = (0.7(y − 1), 0, 0), p0 = 0,

where (x1, y1, z1, r1) = (0.8, 0.35, 1.272, 0.28) and (x2, y2, z2r2) = (1.2, 0.35, 0.728, 0.28).
Periodic boundary conditions are assumed for the x and y-directions. We discretize
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(a) The phase-field variable φ at various times.

(b) The concentration variable ρ at various times.

Fig. 9. The example of 2D droplet dynamics driven by shear flow with surfactant effect (θ =
0.025, α = 2). The snapshots of the configuration profiles of φ are taken at t = 0.5, 1.5, 2, 2.5, 3.5,
and 5.

Fig. 10. 3D droplet deformation dynamics driven by the shear flow without surfactant effect
(θ = α = 0). Snapshots of the isosurfaces {φ = 0} (red) are taken at t = 0, 1.65, 1.675, 1.7, 2, and
2.5.

them by using 2572 Fourier-modes. The boundary conditions along the z-direction
for variables u = (u, v, w), φ, ρ, µ, ω read as

u|(z=0,2) = ±0.7, (v, w, φz, ρz, µz, ωz)|(z=0,2) = 0.(4.8)

The spatial discretization for the z-direction is based on the Legendre–Galerkin method,
and the Legendre polynomials with degrees up to 256 are used. The order parameters
are the same as the 2D simulations. In Figure 10, we plot the isosurfaces of {φ = 0}
for the case of no surfactant where the coupling parameters are set as θ = 0, α = 0.
The two droplets move, deform, and then merge into a larger droplet due to the coars-
ening effect. With the surfactant effect (θ = 0.02, α = 1), the two droplets slide and
finally depart from each other, as shown in Figure 11, where isosurfaces of {φ = 0}
(red) and {ρ = 0.21} (yellow) are plotted.

5. Concluding remarks. To solve a challenging, hydrodynamically coupled
Cahn–Hilliard phase-field binary surfactant model, we have designed a novel time
marching scheme that can include almost all the desired characteristics: linear, second-
order accurate in time, fully decoupled, and unconditionally energy stable. The
novelty of the scheme is the development of a novel, universally applicable decou-
pling method. Its key idea is based on a well-known but often ignored zero-energy-
contribution property satisfied by the coupled nonlinear terms between the flow-field
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Fig. 11. 3D droplet deformation dynamics driven by the shear flow with surfactant effect
(θ = 0.02, α = 1). Snapshots of the isosurfaces {φ = 0} (red) and {ρ = 0.21} (yellow) are taken at
t = 0.5, 2, 2.25, 2.3bymulti5, 2.75, and 3.5.

and phase-field variables. We give a detailed practical implementation and also prove
the unconditional energy stability rigorously. By simulating a large number of 2D and
3D numerical examples and comparing them with several other popular methods, we
numerically prove the effectiveness of the developed scheme. To the best of the au-
thor’s knowledge, the developed scheme is the first one that owns the fully decoupled
nature and second-order accurate in time for the hydrodynamics coupled phase-field
surfactant model.
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