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Abstract

We consider the numerical approximation of the flow-coupled multi-phase-field elastic bending energy model of lipid
vesicles. Based on the classical model with approximate volume conservation only, this paper first establishes a new model
that can accurately conserve volume by adding some nonlocal terms to the model equation. Then, for the system coupled with
the incompressible flow, we propose a novel numerical method to construct an effective scheme that is fully-decoupled, linear,
unconditionally energy stable, and second-order time-accurate. The key idea to achieve the full decoupling nature is to introduce
an ordinary differential equation to deal with the nonlinear coupling term that satisfies the so-called “zero-energy-contribution"
property. Thus, in actual calculations, this scheme only needs to solve several independent linear equations with constant
coefficients at each time step. We strictly prove the solvability and unconditional energy stability, and perform numerical
simulations in 2D and 3D to verify the accuracy and stability of the scheme numerically.
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1. Introduction

Starting from Du et. al.’s work in [1,2], the phase-field method or diffuse interface method has been used to
simulate the shape transitions of lipid vesicles under various conditions, see [3—7]. The basic idea of the phase-field
method is to introduce one or multiple labeling functions (called phase-field variables) to label the internal and
external components surrounded by the vesicle membrane. Then, by using the elastic bending energy represented
by the phase-field variables to replace the average curvature of the membrane surface, and minimizing the total free
energy in a certain metric space, the so-called phase-field elastic bending energy model (EBE, for short) for lipid
vesicles has arrived.

The derivation of the classical EBE model normally uses the so-called Allen—-Cahn (L>-gradient flow) type
dynamical system. Because the free energy formally contains a second-order Laplacian term, the governing system
consists of one (for single-phase-field EBE model) or multiple coupled (for multi-phase-field EBE model) highly

E-mail address: xtyang@math.sc.edu.

https://doi.org/10.1016/j.cma.2020.113600
0045-7825/@© 2020 Elsevier B.V. All rights reserved.


http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2020.113600
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2020.113600&domain=pdf
mailto:xfyang@math.sc.edu
https://doi.org/10.1016/j.cma.2020.113600

X. Yang Computer Methods in Applied Mechanics and Engineering 375 (2021) 113600

nonlinear fourth-order equation(s). To obtain the conservation of global volume and surface area, it adopts a penalty
method, that is, adding two penalty energy potentials to the total energy, so that the volume and surface area can be
approximately conserved. However, the penalty method can cause a problem, that is, a larger penalty parameter can
better conserve the volume and surface area, but the system becomes stiffer, resulting in a small time step required.
Certainly, some numerical techniques can be used to achieve the conservation of volume and surface area through
numerical iterations, such as the Lagrangian multiplier method [3,8]. However, it leads to some essential difficulties
to develop a numerical scheme with provable unconditional energy stability. Therefore, a natural question arises, that
is, how to achieve precise conservation of volume and surface area while deriving the partial differential equation
(PDE) system.

Remarkably, the formula for expressing the global volume of the vesicle using the phase-field variable is much
simpler than the surface area (see (2.2) and (2.12), and also their definitions in [1-7]). Therefore, there are indeed
more ways to achieve accurate volume conservation than to achieve accurate surface area conservation, which is
still an unresolved problem so far. For example, one can reformulate the model using the well-known volume-
conserved Cahn-Hilliard dynamics, see [9]. However, it brings a disadvantage that the generated system has two
more orders than the Allen—Cahn system, so it is relatively difficult to solve. If the low-order advantage of the
Allen—Cahn equation is expected to be retained, inspired by a widely-known conservative Allen—Cahn equation
developed by Rubinstein and Sternberg in [10] (see also the application in [11-20] for different models), we can
add a simple nonlocal term to the PDE system, so that the precise conservation of volume can be achieved from
the perspective of modeling instead of using advanced numerical techniques. Hence, the first goal of this paper is
to use the conservative Allen—Cahn dynamics to reconstruct the multiple-phase-field EBE model thereby conserving
the volume in a precise manner.

Next, since both the inside and the outside of the vesicles are fluids, we consider the numerical approximation
of the new volume-conserved multi-phase-field vesicle model coupled with the incompressible flow field, i.e., the
Naiver—Stokes equations. The focus is to construct an efficient and accurate scheme to solve this highly nonlinear
coupling system, that is, to establish a second-order time-accurate, energy-stable, fully-decoupled, and linear
scheme. We recall that, regarding algorithm development for the single-phase-field EBE model without coupling
the flow field, some available numerical schemes can successfully achieve unconditional energy stability, for
example, the Invariant Energy Quadratization (IEQ) method [21], Scalar Auxiliary Variable (SAV) method [22],
linear stabilization method [23], nonlinear functional derivative method [9], Exponential Time Differencing method
(ETD) [8], etc. Therefore, it may be considered that when dealing with the coupling between the vesicles and
the flow field, an effective numerical method can be easily developed by simply combining the above-mentioned
numerical methods for the EBE model and the numerical method of solving the Navier—Stokes equation.

However, the fact is quite the opposite. It is not an easy task to develop a scheme that can simultaneously
have energy stability, second-order time accuracy, and full decoupling structure. So far, as far as the author knows,
among various temporal discretization approach for Navier—Stokes coupled phase-field models (cf. [9,24-33]), the
only available energy-stable fully-decoupled scheme was developed in [9,23], in which the way to achieve the full
decoupling is to add a stabilization term to the explicit advection velocity term. However, the decoupling type
scheme in [9,23] is only first-order accurate in time, and it requires more calculations at each time step because
the phase field equation needs to be solved with variable coefficients. Moreover, it seems to be very challenging
to upgrade the stabilization method to the second-order version. Therefore, how to establish a fully-decoupled
numerical scheme with second-order time accuracy is still an unsolved problem. The main difficulty lies in how to
discretize the coupled nonlinear terms between the phase-field variable and the flow field (e.g. the advection and
stress). At the same time, it is even more unfortunate that these kinds of terms exist in almost all flow-coupled
phase-field type models (for example, the phase-field surfactant model [34-36], the ternary flow-coupled phase-
field model [37,38], the two-phase complex fluid model [31,39,40], etc.). This makes how to establish an ideal
fully-decoupled scheme has become a universal difficulty.

Therefore, the second purpose of this paper is to overcome this challenge and develop a novel full decoupling
method for the flow-coupled volume-conserved multi-phase-field EBE model. To this end, we note that advection
and stress terms satisfy a so-called “zero-energy-contribution” feature. That is, when deducing the energy law, after
applying the inner products of some appropriate functions, the results of these two terms will completely cancel
out. Thus, using this property, we introduce a nonlocal variable and design an ordinary differential equation (ODE)
containing the inner products of the advection and stress with some specific functions. This ODE is trivial at the
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continuous level because all the terms in it are zero. But after discretization, it can help eliminate all the troublesome
nonlinear terms to obtain unconditional energy stability. Meanwhile, the introduction of the nonlocal variable can
decompose each discrete equation into multiple sub-equations that can be solved independently, thereby obtaining
a fully-decoupled structure.

By combining this novel method with the existing proven effective methods (including the projection method for
the Navier—Stokes equations, and the SAV method that linearizes the nonlinear energy potential), we finally arrive at
an unconditionally energy stable, linear, fully-decoupled, second-order time-accurate scheme. The implementation
of this scheme is very simple. It only needs to solve a few linear independent equations with constant coefficients
at each time step, which means that computation is very efficient. We also give a rigorous proof of the solvability
and unconditional energy stability of the scheme and further simulate various numerical examples in 2D and 3D to
demonstrate the stability and accuracy numerically. In addition to the above-mentioned benefits, another important
advantage of the new decoupling method is that it is universally applicable. For instance, first, it can be combined
with other linear methods (such as the linear stabilization, IEQ, etc.) to form various types of fully-decoupled
energy-stable schemes. Second, it can also be applied to any nonlinear coupling type model to form an effective
complete decoupling scheme, as long as the coupling terms follow the “zero-energy-contribution” property.

The rest of the paper is organized as follows. In Section 2, we establish the volume-conserved flow-coupled
multi-phase-field EBE model. In Section 3, we develop a numerical scheme to solve the model, propose a detailed
process to realize fully-decoupled implementation, and prove the solvability and unconditional energy stability. In
Section 4, we perform numerical simulations, including the accuracy/stability tests and other examples in 2D and
3D to show the accuracy and efficiency of the developed scheme. Section 5 provides some concluding remarks.

2. Model and its energy law

Now, based on the classical approximate volume conservation multi-phase-field EBE model developed in [1,2,
41,42], a new flow-coupled multi-phase-field EBE model with accurate volume conservation is established.

We introduce N scalar phase-field variables ¢;(x) = tanh(%),i =1,..., N is defined for all x € 2 € R",
where m is the dimension, d;(x) is the signed distance between a point x and the membrane surface I, positive
inside and negative outside, and € <« 1 is a transition parameter, which is used to characterize the width of the
diffusive interface or transition layer.

Therefore, the phase-field elastic bending energy for the ith vesicle is formulated as follows (cf. [1,2]):
€
Epena($1) = / 5 (A¢i — f(g)* dx, @.1)
2

where F(¢;) = ﬁ(q&f — 1)? is the Ginzburg-Landau double-well potential and f(¢;) = F'(¢;) = e%qﬁi((piz —1).
While using the elastic bending energy to describe vesicles, a fixed surface area for each vesicle is often required.
The surface area function A(¢;) is defined as

1 2
Ag) =€ /ﬂ (51Veil + F@n) dx. 22)

The surface area can be given as %A(dn) that converges to the surface area quadratically as € — 0. To conserve
the surface area of the ith vesicle, a penalized potential is introduced into the total free energy, cf. [1,2], that reads
as

1
Earea(®) = SM(A@) = Bi)% (2.3)

where M is a positive penalty parameter, and B; denote the constant related to the surface area, respectively.
Throughout in this paper, we set 8, = A(qﬁ?) with qb? = ¢il¢=0) which is the initial surface area for each type
of vesicle.

Regarding the interaction of different type of vesicles i and j with i < j, the adhesion energy between different
vesicles is formulated as

Cij
Eaan($is ¢)) = =" /Q (@7 — 1)(@7 — Ddx, (2.4)

where C;; > 0 is the magnitude of adhesion potential.
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After coupling with the fluid momentum, the total free energy reads as

B g1 ) = Exw e [ Wior. ... dpd. 2.5)
0]
where Ei(u) = [ 0 %|u|2dx is the kinetic energy, u is the fluid velocity, the energy density functional W(¢q, ..., ¢n)
(including the elastic bending potential, surface area potential, and adhesion potential) reads as:
ARl 1 AR
W@ ...dn) = (—Ai— NE —MA,-—,-Z)— ZU (2 — 1)(@? — 1)dx,
@1+ ¢N) ; S(Agi = F@)) + - M(A@) = B) ij;q S (@7 = (g} — Ddx

and A is the relative ratio of the kinetic energy to the elastic energy.

By adopting the gradient flow approach in L2-space, i.e., the Allen—Cahn relaxation dynamics, and assuming the
generalized Fick’s law, i.e., the mass flux is proportional to the gradient of the chemical potential, we obtain the
governing dynamical system that reads as

1

i + - V)g; + v (Mi - m/ Midx> =0,i=1,...,N, (2.6)

Q
N
wi = €(A — fl(@))Ap; — f(di) + eM(A(P;) — B)(—A¢: + f(di)) — Z Cij¢i(¢f — Ddx, 2.7
j=Lj#i

N

o+ @ Vu—vAut Vp =iy uiVe =0, 28)
i=1

V.u=0, (2.9)

2_
where Au; = % is the chemical potential, C;; = Cj;, f'(¢;) = 3¢22 : and y; > 0 is the relaxation time scale

parameter, the term (u - V)¢; is the advection for ith type vesicle, u; V¢; is the induced stress term.
We consider one of the following boundary conditions:

ulyo =0, 9,050 = 0, A¢;is = 0, or all variables are periodic, (2.10)
where n is the unit outward normal on the boundary 9 (2. The initial conditions read as

uli=0) = u’, plu=oy = P’ dilu=0) = ¢} (2.11)
Remark 2.1. Note that the global volume of the vesicle is defined as (see [1,2,43,44]):
i+ 1
Vigi) = / L (2.12)
o 2

Hence, by computing the L’-inner product of (2.6) with 1 and using the divergence-free condition (2.9) for the
velocity field, we derive

d
» / didx =0, (2.13)
2

which means the model (2.6) retains the exact volume. It can be seen that the nonlocal term —ﬁ f o Midx added
in (2.6) can accurately conserve the total volume of ¢. This idea was originally ingeniously proposed in [10] to
develop the conservative Allen—Cahn equation.

Remark 2.2. For the sake of completeness, here we also give the classical multi-phase-field EBE model (no
flow-coupled case) developed in [1,2]. Similar to the surface area potential, a penalization potential is added to the
total free energy to enforce the volume constraint approximately as

1
Evol($i) = 7 M (V (i) — ), (2.14)

where M, >> 1 is the penalty parameter, o; = V(q)?) is the initial volume for the ith type vesicle. Note that when
M, is very large, the volume remains approximately the same, but a small time step is required due to the increased
stiffness.
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The system (2.6)—(2.9) admits the law of energy dissipation, which can be obtained by the following process.
By multiplying the inner product of (2.6) with Ax; in L? and taking the summation for i = 1, ..., N, we get

N N N
S0 == o wu = g [ x| 2% [ @ va 2.15)
i=1 i=1 i=1

where we use

1
(mi — M,dx i)
12/

1
= (u;i — uld X, Wi — /Mz x) + (u; — /Mz /mdx)
12| 12| 12| 12|

= HM: - ﬁ'/gﬂidx

since (u; — ﬁ o Midx, 1) = 0. By multiplying the inner product of (2.7) with —A¢;, in L? and taking summation
fori =1,..., N, we get

k]

N
d
=D (i i)+ re (| W, wdx) =0. 2.16
;w Gi) +he fg (1, .. n)dx (2.16)
Taking the inner product of (2.8) with u in L2, and using integration by parts and (2.9), we obtain
d |u|2dx +v|[Vu|? = A Z/ wiVe: - udx — f (u-V)u-udx. (2.17)
dt l 1 .

Combining the above three equations (2.15)—(2.17) and using the divergence-free condition for u, we obtain the
energy dissipation law as

d N
—FE ceey =—A (3
7 (u, ¢1, on) ;V

1 2 5
R IR 2.18)
121 Ja
where the two negative terms on the right end specify the energy diffusion rate.

Remark 2.3. We note that when deriving (2.18), the nonlinear integrals related to advection and stress are all
canceled out. More precisely, the following two identities hold

/Q(M,-Vqﬁi ‘u— (- Vg )dx =0, /Q(u -V)u-udx =0, (2.19)

where the second one is due to the divergence-free condition (2.9), the boundary condition for u specified in (2.10),
and the integration by parts. The two identities mean that these nonlinear terms do not contribute to the total free
energy or energy diffusivity, that is, they satisfy the “zero-energy-contribution” property. We will take advantage of
this feature to develop the full decoupling type scheme in the next section.

3. Numerical scheme

We now construct a fully-decoupled scheme for solving the highly nonlinear, flow-coupled, volume-conserved
multi-phase-field EBE model (2.6)—(2.9). Meanwhile, considering the efficiency and accuracy of the algorithm
in practice, we also expect the scheme to satisfy linearity, second-order time accuracy, and unconditional energy
stability. The detailed process is given as follows.
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3.1. Reformulation to an equivalent system

First, we introduce a nonlocal variable Q(¢) and an ODE system related to it that reads as:

N
0= / (Z M- V)gip; — Api Vi -u) + (u- Viu- “) dx,
2 \iz1
3.1)
Qlu=0)=1,V-u=0,

u|yo = 0, or all variables are periodic.

By utilizing the “zero-energy-contribution” property satisfied by the advection and stress terms, we find that the
ODE (3.1) is equivalent to Q; =0, Q|(=0) = 1 which has the solution of Q(t) = 1.
Second, we extract two linear terms from the free energy density W(¢y, ..., ¢») and define

N
~ e 2, € 2
W@t .o dn) = Wi, ... dn) — Y (= |A¢i > + =|pil?), 32
@1, N) = W (1, ..., dn) §<2|¢|+2|¢|> (32)
where 0 < ¢; < %, and e, > 0. Thus the total free energy (2.5) is rewritten as
N e e
1 2 ~
E@, 1,...,¢n) =Ep(u)+he Y / (5 1A¢i > + =1 [P)dx + e / W@, ..., oy)dx. (3.3)
o e 2 2 2

Note that f Q W(d)], ..., ¢n)dx can be shown to be bounded from below (see Remark 3.1), thus we define a
nonlocal variable U(t) as the square root of it, that reads as

U@t) = \// W1, ..., ¢n)dx + B, (3.4)
2

where B is a positive constant such that the radicand is positive. This is the so-called SAV method [11,22,45-48]
which is an efficient method to linearize the nonlinear energy potential. Using the variable U, we rewrite (2.7) as
the following equivalent form:

i = ey A*p; + eerps + € H; U,
N
1 (3.5)
U = 5 /Q ;Hi@th,

where the function H; is defined as:

H= e ,
Vo W@, ondx + B
W; = —e1 A% — eaghi + (A — f'(@))(Ap — () (3.6)
N
Ci:
+ MA@) — BN-Adi + f) = D —Lbi(dF D).
J=Lj#i
Remark 3.1. 'We roughly outline the reasons why f Q W(qb], ..., ¢n)dx is bounded from below. We expand the
bending potential as
1 2 1 2 2 2, 2 2
S(A¢ = f(@))ydx = | (G1AGI" — 51V [dx + | (5¢71Veil” + f(¢i))dx. (3.7
0 2 0 2 € 0 €
Therefore, we can see that there are several negative terms in W(¢>1, ..., ¢n) which are needed to be bounded from

below, including the adhesion potential, the quadratic term — f Py %2|¢>|2dx, as well as the term f o —E%|V¢>i|2dx.
6
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Moreover, for the adhesion potential, some fourth-order polynomial terms will be generated from it after applying
the Cauchy-Schwarz inequality (i.e., —Cyj(@? — 1)(@? — 1) > — (g7 — 1 — (g2 — ).

We use the sixth-order polynomial term f(¢;)> = e%(d)f — ¢1)* to bound the quadratic term —%|¢|* and
those negative fourth-order polynomial terms from the adhesion potential. Moreover, the combination of two terms
[0 1_;1 |A¢;|*dx and [, f(¢;)’dx can form the H? norm which can be used to bound the [, —E%|V¢,<|2dx from
below after using the Holder’s inequality and the Sobolev inequality ||¢||;4 < Cq|¢|lz2 where Cy, is a constant

(see [22]).

Third, by combining (3.1) and (3.5), we rewrite the PDE system (2.6)—(2.9) to:

1
oir + O - V), + v (Mz‘ - —/ Midx) =0, i=1,...,N, (3.8)
12| Jo
i = ey A’¢; + eerpp; + € H;U, (3.9)
1 N
U = E/Qiglemdx, (3.10)
N
U+ Q- Vu—vAu+Vp—10 ) u; Ve =0, (3.11)
i=1
N
0 = / (Z (- V)it — 2 Vi - w) +<u-V>u-u> dx, (3.13)
2 \io

with the boundary conditions as
Uy =0, 0xdilon = InAdilan = 0, or all variables are periodic, (3.14)
and initial conditions as

0 0 0
Uls=0) =0, plg=0) = P > ila=0) = ¢; ,

i 0 (3.15)
Ole=0y = L, Uly=0) = </QW(¢ oo Op)dx 4+ B.

Remark 3.2. The new system (3.8)—(3.13) is obtained by combining (3.1), (3.5) and (2.6)—(2.9), where (2.7) is
replaced by (3.5). Another modification is that we multiply the coupled nonlinear terms satisfying the “zero-energy-
contribution” property with the nonlocal variable Q in (3.8) and (3.11). This modification is also reasonable and
will not change the equivalence of the system since we (3.13) still implies Q@ = 1. Thus, the new PDE system
(3.8)—(3.13) using the variables (u, p, u;, ¢;, U, Q) is equivalent to the original PDE system (2.6)—(2.9) using the
variables (u, p, Ui, @;).

The new system (3.8)—(3.13) also holds the energy dissipation law that can be obtained through a similar process
obtaining (2.18). Since the discrete energy stability proof process follows the same principle, we show the following
detailed process to make it clear.

We multiply the L? inner product of (3.8) with Au; and take the summation for i = 1, ..., N to derive

N N N
1 2
AZ((ﬁit’Mi):_)\Zyi Hi _m/ ,U«idXH _)LQZ/(“V)QM,dx (316)
= i=1 @ =170
L
By multiplying the inner product of (3.9) with —Ag;, in L? and taking the summation fori = 1,..., N, we get
z d N e e N
_ xi;(m, bi) = e 2}/9( T1A¢ L + S )dx — enU Z/ﬂ Hiudx. (3.17)

7
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Multiplying (3.10) with 21eU, we get
d N
2 P . .
)»GE(|U| ) =€eAU ;:1 /QH,QS,,dx. (3.18)

Taking the inner product of (3.11) with u in L2, and using integration by parts and (3.12), we obtain

d

o |u|2dx+v||Vu|| —AQZ/ wivVo; - udx—Q/(u Viu-udx . (3.19)

1, 117

Multiplying (3.13) with Q, we get

a1, N N
—Glol )—)»Q;/Q(H-V)fbimdx—kQ;/Q v ~udx+QfQ(u-V)u~udx- (3.20)

o I, 111,

Combining (3.16)—(3.20) and noting that all two terms marked with the same Roman numerals are canceled, we
derive the energy law as follows:

N
d 1 2
CEW b U Q) = =23 v — — [ H — v Vul?, 321
T (u, ¢ PN 0) i:ly 2 |Q|/Q,U« x v[[Vu|| (3.21)

where

N
e e 1 1
EW.¢1.....¢x. U, Q)zer/Q(E‘|A¢,-|2+§|¢i|2)dx+ /fzilulzdx+AEIUI2+§|Q|2- (3.22)
i=1

Remark 3.3. Here we can see that the extraction of two linear terms (associated with e; and e;) can help to
ensure the H? stability of the ¢; from the PDE level. In the process of deriving the energy law for the new model
(3.8)—(3.13), we no longer need the two integral terms formed by the advection (term I;) and stress (term II;) to
cancel each other as (2.19), because the newly added ODE (3.13) contains corresponding terms that can cancel them
separately (I} and I; II; and II,). In other words, when we try to develop a decoupled and energy stable discrete
scheme, we can use different ways to discretize the advection and stress terms to generate a fully-decoupled scheme.

3.2. Numerical scheme

We are now ready to develop a second-order semi-discrete scheme to solve the system (3.8)—(3.13). Given (u,
p. Wis i, U, Q)" and (u, p, i, ¢, U, Q)", we calculate (u, p, w;, ¢;, U, Q)™ as follows.
We compute (@, i, ¢, U, O, u, p)"t! by

ad?™ — be! + co ! "
i i i n V n+l / +1d ’ 323
251 + Q0" (" - V)¢ +y 2 x (3.23)
Wit = eey APt + cerpt ! + e HF UM (3.24)

S S
+€—§(¢>;’“ — 1) — fA(cbf“ — ¢F) + €S A% — ¢,

N
1
aU™' —pU" +cU"' = E/ > Hag!t' — b} + g dx, (3.25)
2o
~n+1 b n n—1 N
au 2:; T Lo Yyt — v AEH 4 V20 Y Vg =0, (3.26)

i=l1
8
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aQnJrl _ an + Canl N ~
- MU VIO = g Vg 5 )d 3.27
T /();( - V)G = A vy w )dx (327)
—i—(/ (u* - Vu* ~ﬁ”+'>dx.
1)
and
A bl =ntl ntl n
E(u —u"")+ V(@' = ph) =0, (3.28)
V.utl =0. (3.29)

In the above scheme,
-1 -1
a=3b=4c=1Lu"=2u"—u"", ¢ =2¢"' — !,
HY = Hi(@},.... ¢80, nf =2 — ™",

S1, S2, S3 are positive stabilization parameters, and the boundary conditions are either periodic or the physical
boundary conditions as

0! e = 0 AP oo = 0, @ 50 =0, w"T [y = 0. (3.30)

We explain some details of the scheme (3.23)—(3.29) in the following remarks.

Remark 3.4. The scheme is linear, and it uses implicit and explicit combination method to deal with all nonlinear
terms. For the hydrodynamical equations, we use the second-order pressure correction scheme (3.26)—(3.28)—(3.29)
(see the overview of projection methods in [49]), of which 6"*! is the intermediate velocity following the Dirichlet
boundary conditions (or periodic) and the final velocity field u"*! follows the divergence-free condition. To obtain
the pressure, we just apply the divergence operator to (3.28) and then obtain the following Poisson equation for

e,

a
— A ntl _ 7
P 26t

with the periodic boundary condition or 3, p"*'|3 = 0. Once p"*
using (3.28), i.e.,

V.a'tl — Ap", (3.31)

!'is computed from (3.31), we update u"*! by

268t
wtl = §rt 7V(er—l — M. (3.32)

Remark 3.5. The initialization of the second-order scheme requires all values at t = ¢!, which can be obtained
by constructing the first-order scheme based on the backward Euler method. In the above second-order scheme
(3.23)-(3.29), as long as we set a = 2,b = 2,¢c = 0, ¥* = 1//0 for any variable ¥, the first-order scheme can
be easily obtained. Moreover, by using mathematical induction, it is easy to conclude that the following volume
conservation property holds:

/g¢7+1dx:/Q¢;*dx=---=fﬂ¢?dx=fﬂ¢;‘dx. (3.33)

Remark 3.6. Three additional second-order linear terms are the commonly linear stabilizers (associated with S, S,,
and S3) used in the SAV type schemes when adopting larger time steps or the system has very high stiffness issue
due to the model parameters. Although the SAV method is formally unconditionally energy stable, but exceedingly
small time steps are needed to achieve reasonable accuracy. To fix such an inherent deficiency, the SAV approaches
are combined with the stabilization technique to construct stabilized-SAV (S-SAV) methods (see also a review for
SAV method in [50]). The reasons to use three different stabilizers for the particular EBE model are as follows.
Note that the coefficients H;,i = 1, ..., N contain almost all explicitly processed terms, including the fourth-order
terms A’¢;. As we all know, the explicit processing method used for higher-order linear terms is unstable, so we
have to restore the higher-order terms by using the second-order stabilizer with comparable magnitude, which is the
reason for adding the S3 term. The use of S} and S, is for similar reasons, and these two terms are used to balance

9
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the explicit processed terms f2(¢;) and A f(¢;) contained in H;, respectively. In Section 4, we provide numerical
evidence that these stabilizers are important for maintaining accuracy while enhancing the stability of the numerical
schemes with larger time steps, see Fig. 4.2(b).

3.3. Implementation process and solvability

Now, we discuss the specific approach of implementing the scheme (3.23)—(3.29). Since (3.28)—(3.29) is the
standard step of the projection method, we only need to consider the implementation of (3.23)—(3.27).

Note that the scheme (3.23)—(3.27) is not in the decoupled form, on the contrary, all unknowns are still coupled
together. This means that a direct method to solve the scheme will bring high computational costs to actual
calculations. Therefore, in practice, we implement the scheme through the following steps, which make full use
of the nonlocal properties of the auxiliary variables U and Q. The following implementation method can decouple
all variables and delete all nonlocal calculations, as shown below.

First, we use the nonlocal variable Q"*! to split (¢, wi, U y**1 into a linear combination form that reads as

¢n+1 — ¢n+1 Qn+l¢n2+1’

M?H _ M;1+1 + Qn+1uln2+1’ (3.34)
Ut — U]n+1 + Q"HUSH.

Then the scheme (3.23)—(3.24) can be rewritten as

ali" + 0" o))
26t

4 Qn-‘rl(u* . V)(bl*

b — e
. n+l n+1 n+1 n+1 n+1, n+l d — i i
+yi (/M +0 IQI/(M + 0" ) x) s
M:llﬂ + Qn-‘rlﬂlnz-H _ ee1A2(¢”+l + Qn+l¢11+l)+€ez(¢n+l + Qn+l¢n+l) (3.35)

+ GH-*(Un+1 QI’H-] Un+1) _|_ (¢n+1 Qn+l¢n+1 ¢ )
_ _A(¢n+l + Qn+1¢n+l ¢l*) + GS3A2(¢1{1}+1 + Qn+1¢n+l ¢l>k)
According to Q"*!, the system (3.35) can be split into two subsystems as
n n—1
i n+1 n+l f n+l b¢ - C¢
a5 T <“’1 192 ) T st
M:’l]—‘rl — E€1A2 n1+1 4 E€2¢~n]+1 +€H*Un+l (3.36)
—(qs"“ ¢ — A(¢"“ ¢ + €S A% — o),
and

|
28t¢n+1 tv (“flz+1 12] “?fldx) =~ V)7,

M:l;l = ee A2¢lnz+l +662¢n+1 +€H*Un+l (3.37)

+ ¢n+1 A¢n+l + ES’;A2¢)"+1.

By taking the L? inner product of the first equation in (3.36) and (3.37) with 1, using (3.33), and noting V-u* =0
and (3.30), we immediately get

/qs;q“dx =/ ¢;1dx=/ or 'dx =/ gbi*dx,/ ¢psdx = 0. (3.38)
] 2

The boundary conditions of the d)”+1 and ¢i"2+1 are either periodic or

I o = 0, AP a0 = 9ud5 90 = 3 AdS 9 = 0. (3.39)
10



X. Yang Computer Methods in Applied Mechanics and Engineering 375 (2021) 113600

Second, using the nonlocal variables U]”H and U2”+', we split the variables (¢, ¢i2, tti1, iz)*+! into the

following form

+1 _ gntl +1n+l a1l _ o0+l +1,,n+1
{‘f’ﬁ =¢h TUIT O = wih U 1wy (3.40)

¢n+1 _ an+l +U;+1¢n+1 n+1 n+1 +U£z+1 n+1

iz = Pinl 22 Mo = Moy Kz -

Replacing (¢;1, ¢z, M1, win) ! in (3.36) and (3.37) using (3.40), and splitting the obtained equations according to

U™ and Uyt we get the following four subsystems,

n n—1
a 41 nt1 1 nt1 bg! — c¢;
—qQ. fl . —_— . dx =,
25t¢‘” + v <:ul|1 10| Q“;ll ) 251

ui' = ee AN + eerpplil! (3.41)
St n $2 n St S2 «
+ 6_3¢i1J{1 - ?A¢i1+11 + ES3A2¢1’1J?1 - (€_3¢i - ?A¢i + €S3A2¢i ’
a ntl ntl 1 ntl
E‘bnz Vi |\ Hin Yl Qﬂilz dx ) =0,
uih' = ee AP + eerppliy! (3.42)
Sl n S2 n n *
+ €_3¢i1J51 - :A¢il+21 + ES3A2¢1'1J§1 +eH;,
@ L n n+1 1 n+l * *
E@zl TVi| M — 121 /o Hipy dx | = —(u™ - V)¢7,

M:}Zw;l — €€1A2¢in;gl 4 662(]&;127;1 (343)

St 82 4 n
+ 6_3¢52t1 - :A‘pz’ﬁl +eS; A%
and

a4 n+1 +1 1 +1
E(binﬂ +Vi (:u':‘lzz - m 5 IL?ZZ d.X') =0,
Wil = ey A*QiE + eergpit! (3.44)
Si n+1 S ApH! AZgntl H*
+ €_3¢i22 T biy T €530, +eH;.
The boundary conditions of the above four system are either periodic or

3 (Pir1, Giras dints $i22)" o = 0, 3 Albirt, i1z, diat, $i2) o = 0. (3.45)

By taking the L? inner product of the first equation in the above four subsystems with 1, using (3.33), and noting
V-u* =0 and (3.30), we get

/(/)l.”ﬁldx:/ ¢?dx=f ¢i"_1dx=/ oidx,
Q o Q o

(3.46)
oitldx = | ¢htldx = | ¢itldx = 0.
i12 i21 i22
2 2 2
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To solve the above four subsystems (3.41)—(3.44), we simply combine the two equations in each subsystem and
use (3.46) to get the following four equations

Sl Sz
n+1 2 yn+1 n+1 n+1 n+1 2 yn+1
2y,8t¢’ﬁ +E€1A ¢,1-]F +€€2¢“—~1_ +E_3¢11-'l_ _?A(ﬁiﬁ +€S3A d)ll"l' _Gl
a o+l 2 n+l N N . i
2),‘&‘1’,‘12 +ee AP, +eerds + 6_3¢“2 _ _Ad)m Sy A = G2,
l (3.47)
- S
2y-8t¢’{1£1 +ear A’ +eerp! + 6—;¢;12T1 — _A¢l1+l +eS; A% = G,
a n+1 2 n+1 Sl nal il i \
2yi5t¢i2J£ +e€e1A ¢,22 + 662¢>12; + E_3¢i2§ _ :A(b,;g T eSsA ¢124£ _ G

where
S S ¢—¢"‘e@/

Gl = Zo* — Z= ApF S A2 _ ntl g

i (63¢l € ¢l +E 3 ¢l> 2 |Q| ¢111 X,

G? =Gt =—« (H*—mf H}dx),

G} =—(" - V)§;.

Note G}, G2, G}, G} are all explicit terms since [,, ¢1'dx is given in (3.46). Moreover, G? = G} means ¢} =

¢i”;§'. Hence we can easily solve three independent biharmonic equations in (3.47) to get (¢,11, bi12, Din1, Pina)" L.
Third, we rewrite (3.25) into the following form

Uttt = % [9 XN: H ¢! 'dx + G°, (3.48)
i=1

where

G = l(bU" — U™ = / ZH (bp!' — e Ndx. (3.49)

a

We replace U"+! and ¢*! using the split form given in (3.34) to get

Ut 4 gyt = / ZH @ + Qg dx + GO (3.50)
We split the above result according to Q"*! to derive

Uln+1 / ZH ¢n+1dx +G5,

(3.51)
1
Un+1 — _/ Fli*qb{'H*ldx'
2 2 o IZ:]: i2
We replace (¢;1, ¢in)' ! using the split form given in (3.40) to get
| N
Uit =3, A v e + 6%
(3.52)

Un+1 / Z H*(¢lnz+ll Un+1¢lan51)dx.
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By applying the simple factorization for each equality in (3.52), we derive
Lo X HEol 4 G
N n ’
- %f() > i Hi ¢ lgldx
N * 4n+1

Un+1 _ % f!? Zi:l Hi 1241— dx

2T N % pn+1 :

L= 3 [ Xis) Hi ¢y dx

We need verify (3.53) is solvable by showing the denominator 1 — 1 [, SN HF  dx # 0 (note ¢ = ¢!

thus the two denominators in (3.53) are the same). By taking the L? inner product of the fourth equation in (3.47)

with qb,zz , and using fQ qbf’;gldx =0, we get

n+l __
um =

(3.53)

—€ / H ¢t == lg55 12 + eer | gl |12 + eeallpls 12
2 2y;dt (3.54)

S ,
+ 6—3||¢;3+2‘ I+ :||V¢i33'||2 + S5 A5 17 >

which implies (3.53) is solvable. After we get U{’H and U;"Ll from (3.53), we update (¢;1, @2, i1, piz)"+! from
(3.40).
Fourth, we use the nonlocal variable Q"*! to split the velocity field 4"*! as the following form:

ﬁn+1 — ﬁ111+l + Qn+1ﬁg+l. (3.55)

By replacing the variables @"*! in (3.26), and then splitting the obtained equation according to Q"*!, we arrive at
a system that includes two linear elliptic sub-equations with constant coefficients as follows:

a _, . , . bu" —cu"!
0 VAR = —Vp + ——
a (3.56)

Z—Stﬁgﬂ vAN”+1 =—u*-V)u* + 2 ZMTV(JS:‘
i=1

The two split variables u"+1 ~"+1 follow the boundary conditions described in (3.30), i.e., they are either periodic
or satisfy:

e =@ e = 0. (3.57)

Fifth, we solve the auxiliary variable Q"*!. Using the split form for the variables u"*! in (3.55) and ,uf’“
(3.34), one can rewrite the scheme (3.27) as the following form:

1
— — 90" = bO" —cO" H+ v 3.58
(25[ 2)0 SI(Q cQ" )+ vy, (3.58)
where

= / Z A* - V) — A ver - "+‘ dx+/(u Vu' i dx,
(3.59)
0 = / Z AU - V)F s — A ver ”+‘ dx+/(u Viu* -5 dx.

We need to verify the solvability of (3.58) by showing 55 — ¢, # 0 as follows. By multiplying the L? inner
product of the second equation in (3.56) with u"Jrl we get

/—(u -Vu* - ﬁg“dx /Zkuqu) ;de

~n+1 ~n+1
|I 5P+ vvast?

(3.60)

13
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By taking the L? inner product of the first equation in (3.37) with AM:’; ! of the second equation with —k%(ﬁf;l,

and combining the two obtained equations, we derive

/ ZA(u V)qb*u?z“dx—zxy, W f wd

N
aieey . akeez "
Z( 1AGS 1% + =l |12 )

i=1

v (3.61)
a

+ ﬁ2<—n¢"+‘n [ +653||A¢"+1||>

N
are

+ UnJrl/ Hfgbf“dx.
28t 2 QZ; 2

From the second equation in (3.51), we derive

2
N N
1
n+1 n+1 _ n+1
U, /Q;Hi*@z dx—g(/;Q;Hi*‘ﬁiz dx) ) (3.62)

which implies

N
— / > o a@t - Vi dx > 0. (3.63)
i=1
Therefore, from (3.60) and (3.63), we derive —1%, > 0, which means that the unique solvability of (3.58) is then
verified.
Finally, we update ¢;’+1, /,L:-H_l, U™ from (3.34), @"*! from (3.55), and obtain u"*!, p"*! from (3.28)—(3.29)
using the process described in Remark 3.4.
In summary, the scheme (3.23)—(3.29) can be implemented in the following way:

e Stage 1: Compute (¢;11, $i12, Pio1, $in2)" ™" from (3.47);

e Stage 2: Update (U;, U,)"*! from (3.53);

e Stage 3: Update (¢;1, ¢in, ti1, nin)*+! from (3.40);

e Stage 4: Compute (i, i,)"*' from (3.56);

e Stage 5: Compute Q"*! from (3.58);

e Stage 6: Update (¢;, i, U)"*! from (3.34), and a"*! from (3.55);

e Stage 7: Compute u"*! and p"*! from (3.28)-(3.29) using the process described in Remark 3.4.

Hence, at each time step, the total cost at each time step includes solving 3 x N (N is the number of phase-field
variables) independent biharmonic equations in Stage 1, 2m (m is the dimension of space) elliptic type equations in
Stage 4, and one Poisson type equation in Step 7. All these equations have constant coefficients and are completely
decoupled, which means very effective calculations in practice.

3.4. Unconditional energy stability

The following theorem ensures that the developed scheme (3.23)—(3.29) satisfies the energy stability uncondi-
tionally.

Theorem 3.1. The following discrete energy dissipation law holds for the scheme (3.23)—(3.29),

n+1 / n+1
12

14

1
E(E”“ E" Y < —y|vart!? )\Zy, <0, (3.64)
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where

En+1 =l<1 ” n+1|| + — ”2un+1 unHZ) + ﬁnvpn#*lllz
2\2 3

N
1
+ e d %1 <§||A¢>;‘“||2 + (2400 — A¢;’||2>
i=1

N
e (1
+ MZ% (§||¢>;“+‘||2 + (129" —¢>;’||2) (3.65)
i=1
1 | 2 11 | 2
re(— Un+l - 2UVL+1 _ Un ~(_ n+1 ) n+l _ n
+ AU+ 2] D+ 5G4+ 5120 Q")
NS 1 1
1 n n n n n
+ Z(zxguq“ o * + )» ||V(¢ L= gDI + SheSs A —¢i)||2).
i=1

Proof. We multiply the inner product of (3.26) with 28¢@"*! in the L? space, we obtain
(3 n+1 4“ +un 1 ~n+l)+2l)8t||v~n+1” +28t(Vpn,ﬁ”+1)
| _— - N (3.66)
= —28t0"" / (u* - Vyu* - a"dx 4+ 25t0.0"F Z/ (Wiver) -u"dx.
Q I
From (3.28), by taking the L? inner product of any variable v with V- v =0 and v - n|3, = 0 (or all variables

are periodic), we have

n+1 V). (367)

n+1

™ v)=(u

Using (3.67), we derive following equality

(3 n+l 411 + un l n+l)
— (3ﬁn+l_ 4u” + un—l’ un-H) + (3ﬁn+l_ 4u” + un—l’ ﬁn-H_ un+l)
— (3 n+1__ 4ll + ll 1’ un+l) 4 (3ﬁn+1 ﬁn-H_ un+1)

:(3 n+1 — 4" +un l n+l)+3(ﬁn+l _un+1’ﬁn+l +un+1) (368)

1
= 3 (I = i 2 - — 2 —

I 2u ) 3R R,
where we use the following identity
2Ba —4b+c,a)=a* —b* 4+ (2a —b)* — (2b —¢)* + (a — 2b + ¢)*. (3.69)

We reformulate the projection step (3.28) as

_un+1 \v/ n+1 — _ﬁVH-l v n' 3.70
T T e (3.70)
By taking the square of both sides of the above equation, we get
9 ~n n
vl L R A e [ R A 8 R t(“ Lvph. (3.71)

Hence, by multiplying 28¢2/3 of the above equation, we derive

3 ~n n n ~n n
§<Ilu"+‘||2 [t +‘||)+ (||Vp 2 —IVp"I?) = 28t@" !, Vp). (3.72)

15
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By taking the inner product of (3.28) with 28ru"*! in the L? space, we have

3
S — @+ ottt —at?) = 0. (3.73)

2

We combine (3.66), (3.68), (3.72), and (3.73) to obtain
1
§(|Iun+l ||2 _ ||un||2 + ”2un+l _ un ”2 _ ”2“” _ un—l ”2 + ||un+1 _ 2un + un—l”2)

3 - 2812 0 0 -
+ 5l a4+ — Ve P =1V I + 2v8e | Va2 (3.74)

N
= —281‘Qﬂ+1 / (u* . V)u* . ﬁn+1dx + 2(St)\.Qn+1 Z/ (M;kv(ﬁl*) . ﬁn+ldx-
“ i=1 Y

Computing the inner product of (3.23) with 287" in the L? space, we have

1
n+l _ = n+l
& |9|/g”“‘ o

= —2A5t Q! / (u* - V)it dx.
]

ABoT —dgr + ¢ Wit + 208t

(3.75)

Computing the L? inner product of (3.24) with —k(3¢f+l —4¢! + q‘);’_l), we find

—h(u T3¢ — 4 + ¢ + heer (AT AGHT — 4¢7 + 17 1))
+ reex(@ !, 3¢ —dgr + ¢

F ARG 97300 — 49l + 9l

3.76

+ A%(V@;’*‘ — ¢, V3P —dgr + 4" 1)) G-70)

+ 1S3 (AP — ), AGBP!T —4¢! + ¢ "))

= —eAU"! / H (3!t — g + ¢ Ndx.
2

By multiplying (3.25) with 2AeU"*! and using (3.69), we obtain

)\.E(|Un+1|2 _ |Un|2 + |2Ul‘l+1 _ Un|2 _ |2Un _ Un71|2 + |Ul‘l+1 _ 2Un + Unfllz)
3.77)

N
= eyt / HY (3™ — 49 + ¢} dx.
i=1 Y8
By multiplying (3.27) with 26t Q"*! and using (3.69), we obtain
1 n 2 n n n 2 n n— 2 n n n— 2
S(1 = 10" + 20" = @' = 20" — @' 410" —20" + 0" 'T')
N N
=2281Q"" Y / W V)g; it dx — 22800 Y f iV - dx (3.78)
i=1 v i=1 Y8

+28tQ”+1/(u*~V)u* S dx.
2
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Hence, by combining (3.74)—(3.78) and taking the summation for (3.75)—(3.76) withi =1,..., N, we arrive at

1
g(llll”“ll2 — |7+ 2" — ) — 20" — R )+ (IIVP"“II IV p"1%)

N
1 1 1 _
+ reer Y (§I|A¢f“||2 = 514011 + S11AQe ! — ¢PI” - 5||A<2¢>? — ¢! 1>||2)
i=1
Mo 1 1 1
+ reer Y (5n¢?+‘u2 = Sl I+ S12¢7 ! — 417 = S 1297 — ¢,»"‘1||2>
i=1
S N
1 n n n n—
+ a3 D g = oI = gt — ¢
i=1
S N
2 n n n n—
+ 2= (Ve = VI — Ve — Vg
i=1

N
+ heSy ) (1A = ¢nIP — 1A — 677 HID)

i=1
+ ae(UHE — U P + 20 — U - U - U

1 (3.79)
n 2 n n n 2 n n— 2
+ 5010 =10 P+ 20" - 0" = 120" — 0"
1 3
+ [ 2” n+1 2“ +un 1” =+ 2” n+l _ﬁn+l”2
N N
+reer Y NA@T =298 + ¢ OIP + heer Y g = 200 + 47
i=1 i=1
+2A— Z 67+ — 207 + g1 4+ 2.2 Z IV @™ =297 + /DI
i=1
+ 2253 Z 1A@T — 207 + 677D
i=1
1
+)\'€|Un+l _2Un 4 Un—l|2 4 _|Qn+1 _2Qn + Qn—l|2 }
— _25tv||vﬁn+1”2 28t Vi n+l / n+1
; 12/
where we use the following identity:
Ba—4b+c)a—2b+c)=(a—b)?—((b—c)?+2a—2b+c) (3.80)

Finally, we obtain (3.64) from (3.79) after dropping the positive terms in { } and dividing both sides by 2. O

4. Numerical simulations

In this section, we implement numerical simulations to verify the accuracy and energy stability of the
proposed fully-decoupled scheme (3.23)—(3.29) (denoted by DSAV for short). Numerical simulations include
accuracy/stability tests, vesicle deformation in 2D and 3D, etc. In all numerical examples, we consider a rectangular
computational domain. For directions with periodic boundary conditions, the Fourier-spectral method is used for
discretization. For directions with boundary conditions specified in (3.30), the Legendre—Galerkin method is adopted
for discretization, where the inf-sup stable pair (Py, Py_») is used for the velocity (@ and u) and pressure p,
respectively, and Py is used for variables ¢;, ;.

17
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127 — T 100 ¢

| % DSAV-¢1, ¢,

8 10 —O-DSAV-u,v 4
S | -5 DSAV-p B
5 102; —p>-DSAV-Q bz =
% 081 1 f ref-slope 2 b ﬁ
e t=0 =14 103} b Séf = ;
o L - iz i
2 o0 1 2 0 - = - -
g oo i o
o &
ﬁ 0.2
= 107

DO é ) 1‘0 15 107180'4 ) T 11(;—3 ' ' ‘ o l“‘0—2

Time Time step size
(a) The ratio of surface area difference. (b) L? numerical Errors with various dt.

Fig. 4.1. (a) Time evolution curves of the ratio of surface area change that is computed using ¢ = 0.01/22, and (b) the numerical errors in
L? for all variables computed by using the scheme DSAV with different time steps. (For simplicity, we plot the average of the errors of the
two components of the phase-field variables (¢1, ¢2) and the velocity field u = (u, v). Moreover, for the nonlocal variable Q, we directly
compute its error with the exact solution Q(r) = 1.).

4.1. Accuracy test

We now test the convergence rates of DSAV by refining the time step. We set the 2D domain as (x,y) € 2 =
[0, 277]? and assume the periodic boundary conditions for each direction which is discretized by sufficient fine
meshes so the error in spatial directions can be ignored compared with the time discretization errors. We test the
two-phase-field model and set the initial condition to be two adjacent circular vesicles with

0 _ 0.287 —\/(x—xi)2_|_(y_yi)2
¢ = tanh( e

and set the model parameters to be

),i=1,2,u0=o,p°=0, 4.1)

x1=x=m,y1=m+0284x,y, =1 —0.284w,¢ = 0.08,¢; = e, = 0.5,

42
V=71, =01, M =1le, Cpp = 100, = 0.01, B =100, S; =4, S, =4, Sy = 1. 4.2)

Using 129 Fourier modes for each direction and the time step size 8t = 0.01/22, we implement the designed
scheme DSAV until the steady-state solution is obtained. In Fig. 4.1(a), we plot the evolution curve of the surface
area difference ratio (defined as Z,N: ] ‘W ‘) over time, where the initial and final steady-state profiles of ¢ — ¢,
are also attached therein. We can see that the surface area difference ratio has been maintained around le—3. The
two vesicles changed from a state of slight contact at the initial moment to a state of tightly adhering together,
where the contact part is a straight line due to the adhesion potential. In Fig. 4.1(b), we plot the L? errors for all
variables when ¢ = 0.2 computed by using various time steps §¢. Since the exact solution is not known (except the
auxiliary variable Q and Q(t) = 1 is the exact solution), we treat the numerical solution calculated by DSAV with
a small time step of §t = le—8 as the approximate exact solution (the error of Q"*! is computed by using its exact
solution of Q(#) = 1). It can be seen that the scheme DSAV presents almost perfect second-order convergence rates
for all variables including the auxiliary variable Q.

Furthermore, we use different time steps to test the energy stability of the scheme DSAV. In Fig. 4.2(a), we
plot the evolution curve of the total free energy in the original form (2.5) calculated using different time steps. It
can be seen that the obtained energy evolution curves always show monotonic decays, which means that DSAV
is unconditionally energy stable. Moreover, as the time step gets smaller and smaller, the obtained energy curves
overlap with each other, indicating that the obtained solution is getting closer and closer to the accurate solution.
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Fig. 4.2. (a) The time evolution curves of the total free energy (2.5) calculated by the scheme DSAV with different time steps, where the
small insert is the comparison between the original free energy (2.5) and the discrete energy (3.65) computed using 8t = 0.01/23; and (b)
the comparisons of energy evolution curves computed by using different stabilizers and time steps.
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(a) The velocity field at ¢t = 0.2 and ¢t = 1. (b) The pressure p at t = 1.

Fig. 4.3. (a) The velocity field at t = 0.2 and ¢ = 1, and (b) the pressure p at t = 1.

We also append a small inset figure to show the comparisons between the original free energy (2.5) and the discrete
energy (3.65) computed using 8¢ = 0.01/23 and there is almost invisible difference between them. In Fig. 4.2(b), we
use different stabilization parameters to verify their effects on improving energy stability by plotting the evolution
of the original free energy (2.5). We find that when S; = S, = 0, the energy decreases only when the time step is
very small (8 < 0.01/2%), and when the time step is large, the energy even increases reflecting the instability. We
also compare the two energy curves obtained with (§; = S, = 0, §t = 0.01/2%) and (§; = S, =4, §t = 0.01/22).
The coincidence shows that after using the stabilizers, the time step can be increased around 8 times. In Fig. 4.3,
we plot the velocity field and the pressure p at various times.

4.2. Deformation of multiple stacked vesicles

4.2.1. Singe-phase-field model with N =1 in 3D
In this example, we study the dynamic deformation of vesicles using the single-phase-field model (i.e., N = 1).
For this model, the adhesion energy vanishes. We set the computational domain to [0, L1? where L = 1.5, and
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the initial conditions are given as follows:

k Ti —\/(X—xki)z/rf+(y—yni)2/r§+(z—Zki)z/r,z
0 _ h ")+ k-1,
d) ;tan ( ﬁe )+ (43)

uw’' =0 p°=0,

where k is the number of vesicles. For k = 1, we set the initial shape of vesicle to be a wide or narrow ellipsoid.
For the former, we set iy = 0.75, x;; = yiy =zi1 =n,ry =ry, = 0.8L,r, = 0.16L, and for the latter, ri; = 0.75,
Xy =yu =2zu =m,r, =r, = 007L,r, = 0.65L. For k = 2, we set the initial shape of vesicles to be two
adjacent spheres, in which, rp; = ryp = 0.14L, x21 = x» = yo1 = Yoo = L, 201 = 0.642L, z50 = 0.358L. For
k = 4, we set the initial condition to be four adjacent spheres placed randomly, in which r4; = r4p = r43 = 0.14L,
Fag = 0.125L, X41 = O.3L, X4y = 0.67L, X43 = O.48L, X44 = 0.48L, V4l = Y42 = Y43 = O.SL, Yag = 0.715[,,
741 = 242 = 243 = 0.5L, z44 = 0.27L. The model parameters are set as follows:

€e=0.08,v=1,y =0.1, B = le2,

(4.4)
e =e=058=45=4.5=1,1A=0.01, 6t = le-3.

We use 129 Fourier modes to discretize each of the x and y directions which are assumed to be periodic and use the
Legendre polynomials up to the degree of 128 to discretize the z direction which is assumed to satisfy the boundary
conditions specified in (3.30).

For k£ = 1 with the initial shape as a wide ellipsoid, in Fig. 4.4(a), we plot the time evolution of surface area
change rate under two surface area parameters M, and attach the snapshots of an isosurface of {¢ = 0} at different
times. When M = 0, although the volume remains unchanged, the ellipsoid gradually shrinks, and the ratio of
surface area change eventually reaches about 16%. When M = 1e5, the final shape of the ellipsoid vesicle becomes
the pancake shape, where the middle region is slightly thinner, and the ratio of surface area change is always around
le—4. In Fig. 4.4(b), the surface area change and profiles of the narrow ellipsoid for M = 0 and M = le5 are
plotted. When M = 0, the narrow vesicle shrinks to the spherical shape, and when M = 1e5, it becomes a capsule
shape. The surface area changes are approximately 25% and Se—4, respectively.

For k = 2 (two stacked vesicles), as shown in Fig. 4.5(a), we can see that when M = 0, the vesicles fuse and
shrink, and the surface area ratio changes up to around 14%; when M = le5, the steady-state shape is displayed
as a capsule, and the surface area ratio is approximately le—4. For k = 4 (four stacked vesicles), as shown in
Fig. 4.5(b), we can see that when M = 0, the vesicles fuse and shrink to form a structure with multiple pores, and
the surface area ratio changes up to 14%; when M = le5, the steady-state shape forms a ring and the surface area
ratio is approximately 2e—4.

4.2.2. Multi-phase-field model

In this example, we simulate the multi-phase-field model to study the dynamic deformation of vesicles. In each
of the following figures, we plot the time evolutions of the ratio of surface area change and attach the topological
profiles of ¢; at various times using different colors. For the sake of simplicity, we ignore the detailed initial
condition formulas of ¢;, because they are just set to some simple shapes like circles, spheres, ellipses, or ellipsoids.
The computational domain is set to [0, L]",m = 2,3 with L = 2m with the periodic boundary conditions, and
each direction is discretized using 257 Fourier modes.

The model parameters are set as

€ =0.06,V = 1,)/,' =0], M = 164, Cij = 200,

4.5
B=1le2,e; =€ =055 =4,5=4,5=1,A=0.01, 6t = le—4. (43)

In Fig. 4.6(a)—(f) with N = 2, we set the initial conditions of ¢; to be multiple slightly touching 2D vesicles
stacked in different positions. We can see that, due to the adhesion energy, the vesicles adhere to each other tightly
and they finally evolve into different patterns. The ratio of the surface area changes are all kept to be small due to
the surface area constraint potential.

In Fig. 4.7(a)—-(d) with N = 2, various simulations in 3D are simulated. It is worth noting that some results of
3D simulation and 2D simulation are consistent, such as Figs. 4.6(c) and 4.7(c) all form a hamburger shape. But
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Fig. 4.4. Deformation of a 3D ellipsoid vesicles for the simulation of the single-phase-field model with N =1 where (a) a wide ellipsoid,
(b) a narrow ellipsoid. In each subfigure, we plot the time evolution of the ratio of surface area change for two surface area parameter
M =0 and M = le5 and append the isosurfaces of {¢p = 0} at the initial moments and the steady state.

some are different, such as Figs. 4.6(e) and 4.7(d), where the 2D result forms a bun shape with two closely fitting
ellipses, while the 3D result has a hole in the middle. In Fig. 4.8(a)—(b), we use three lightly touched elliptical
(ellipsoid) vesicles of the same size as initial conditions to simulate the multi-phase-field model of N = 3 in 2D
and 3D. It can be seen that due to the adhesive force, they all eventually become the shape of a hamburger.

4.3. Sedimentation of multiple vesicles driven by the gravity force

In this example, we simulate the sedimentation of multiple vesicles driven by the gravity force. The sedimentation
of a single vesicle had been studied experimentally in [51], and simulated using the different model in [52]. For
simplicity, we approximated the gravity force using the Boussinesq approximation, namely, the momentum equation
is replaced by

N N
w @ Vu—vAut Vp =iy wiVei=g) o (4.6)
i=1
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Fig. 4.5. Deformation of two and four 3D stacked spherical vesicles for the simulation of the single-phase-field model with N = 1. In each
subfigure, we plot the time evolution of the ratio of surface area change for two surface area parameter M = 0 and M = le5 and append
the isosurfaces of {¢p = 0} at the various times.

with g = (0, 0, 20). The other model parameters are set as

€=008v=1y =01 M= 1le4, C;; =200,
4.7
B =100,e =e;=0.5,5 =4,5 =4,5 =1,A=0.01, 6t = le-3.

We perform 3D simulations for the multi-phase-field model by setting the computational domain is set to be
(x,y,2) € 2 =1[0,27] x [0,27] x [0,47w]. We set periodic boundary conditions along the x and y directions
and discretize each of them using 128 Fourier modes. For the z-direction, we use the boundary conditions given in
(3.30) and use the Legendre—Galerkin method of Legendre polynomials to the degree of 128 for discretization.
In Figs. 4.9-4.11, we simulate the sediment process of two symmetrically placed vesicles (N = 2), two
asymmetrically placed vesicles (N = 2), and three asymmetrically placed vesicles (N = 3). We use different
colors to plot the interface contour {¢; = 0} at different times of the dynamical process. We find that these
vesicles exhibit different dynamic changes of merging, and eventually collide and fuse together due to the adhesion
potential, where the vesicles that are asymmetrically descended show a state of tilted angle due to the interactive
adhesion.
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Fig. 4.6. Deformation of multiple stacked 2D vesicles for the simulation of the two-phase-field model (N = 2). In each subfigure, we plot
the time evolution of the surface area difference ratio and append the profiles of ¢ — ¢, at various times until the steady state.
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Fig. 4.7. Deformation of multiple stacked 3D vesicles for the simulation of the two-phase-field model (N = 2). In each subfigure, we plot
the time evolution of the surface area difference ratio and append the isosurface plots of {¢; = 0} at various times using different colors
until the steady state. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

4.4. Dynamics of multiple vesicles driven by the shear flow

In this example, we simulate the dynamic motion of multiple vesicles driven by the shear flow imposed on the
boundary. The shear flow dynamics for a single vesicle had been studied in [53,54]. We set the computational domain
to be (x,y,z) € 2 =1[0,4r] x [0, 27] x [0, 27r]. We set periodic boundary conditions along the x and y directions
and discretize each of them using 128 Fourier modes. For the z-direction, we use the boundary conditions given in
(3.30) and use the Legendre—Galerkin method of Legendre polynomials to the degree of 128 for discretization. We
set the boundary condition of the velocity field u = (u, v, w) as

;=020 = Fuo, V|:=0,20 = W|z=027 = 0. (4.8)
The other model parameters are set as

N =3,e=008v=1y =01 M=1le4, C;; =200,

B =100,e; =e,=0.5,8=4,5%=4,5 =1,A=0.01, 8t = le—3,up = 3.

In Fig. 4.12, we simulate the dynamical process of three vesicles driven by the shear flow on the boundary. We use
different colors to plot the interface contour {¢; = 0} at different times of the dynamical process. We find that the

(4.9)
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Fig. 4.8. Deformation of multiple stacked 2D and 3D vesicles for the simulation of the three-phase-field model (N = 3). In each subfigure,
we plot the time evolution of the surface area difference ratio and append the isosurface plots of {¢; = 0} at various times using different
colors until the steady state. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 4.9. 3D simulations of two symmetrically placed vesicles (N = 2) driven by gravity force, and snapshots of the vesicles are taken at
t=0,04, 08, 1.2, 1.6, 2, 2.2, 2.4, 2.8, 3.2, 3.4, 3.6, 4, and 4.2. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

three vesicles are deformed into different shapes by the flow field. Due to the adhesive potential, the three vesicles
are always adhered together and elongated into a slender shape.

4.5. Dynamics of multiple vesicles driven by the Poiseuille flow: wrinkles

In this example, we simulate the dynamic motion of multiple vesicles driven by the Poiseuille flow. We perform
3D simulations for the multi-phase-field model with N = 3, where the computational domain is set to be
(x,y,2) € 2 = [0,47] x [0,27] x [0,27]. We set periodic boundary conditions along the x and y directions
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Fig. 4.10. 3D simulations of two asymmetrically placed vesicles (N = 2) driven by gravity force, and snapshots of the vesicle are taken at
t=0,04, 08, 1.2, 1.6, 2, 2.4, 2.8, 3, 3.4, 3.6, 3.8, 4.2, and 4.4. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

v "
v

Pty
v .

i,
S W

bl
L

Fig. 4.11. 3D simulations of three asymmetrically placed vesicles (N = 3) driven by gravity force, and snapshots of the vesicle are taken

at t =0, 04, 0.6, 1.2, 1.6, 2, 2.2, 2.4, 2.6, 2.8, 3.2, 3.6, 4, and 4.4. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

and discretize each of them using 128 Fourier modes. For the z-direction, we use the boundary conditions given in
(3.30) and use the Legendre—Galerkin method of Legendre polynomials to the degree of 128 for discretization. We
impose a force on the momentum equation to drive the flow motion, where the momentum equation is replaced by

N
u,+(u‘V)u—vAu+Vp—)\Zu,~V¢>i=g, (4.10)

i=1
with g = (20, 0, 0). The other model parameters are set as
N=3,e=008,v=1,y =01, M = le4, C;; = 200,
B=100,e1=¢,=05,5=4,5=4,5=1,1=0.01, 6t = le-3.
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Fig. 4.12. 3D simulations of multiple vesicles (N = 3) driven by the shear flow on the boundary, and snapshots of the vesicle are taken
at t =0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 45, 4.8, and 5.1. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

In Fig. 4.13, we use different colors to plot the interface contour {¢; = 0} at different times of the dynamical process,
where we can see that the vesicles form wrinkles due the flow field which had been also observed by experiments
in [55,56]. Due to the initial shape of the vesicles and the different angles facing the flow field, different dynamic
changes are observed. For example, the surface of the vesicles that were initially ellipsoid show more wrinkles,
while the vesicle that is initially spherical were compressed into a flat oblate shape over the time.

5. Concluding remarks

In this article, we first modify the classic multi-phase-field EBE model to establish a new volume-conserved
model. Then, for the flow-coupled model, we develop a new decoupling method, and combine it with other proven
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Fig. 4.13. 3D simulations of multiple vesicles (N = 3) driven by Poiseuille flow, and snapshots of the vesicle are taken at r =0, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, and 0.8.

effective numerical methods, to form an efficient numerical scheme. At each time step, one only needs to solve a
few linear fully-decoupled equations with constant coefficients. The specialty of the new decoupling method is that
the nonlinear coupling terms have been explicitly processed while still ensuring the unconditional energy stability.
This method can also be extended to other flow coupling models as long as the coupled nonlinear terms satisfy the

“zero-energy-contribution” property. We also conduct numerous numerical tests in 2D and 3D to demonstrate the
accuracy and stability of the scheme.
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