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Abstract

We consider the numerical approximation of the flow-coupled multi-phase-field elastic bending energy model of lipid
esicles. Based on the classical model with approximate volume conservation only, this paper first establishes a new model
hat can accurately conserve volume by adding some nonlocal terms to the model equation. Then, for the system coupled with
he incompressible flow, we propose a novel numerical method to construct an effective scheme that is fully-decoupled, linear,

unconditionally energy stable, and second-order time-accurate. The key idea to achieve the full decoupling nature is to introduce
an ordinary differential equation to deal with the nonlinear coupling term that satisfies the so-called “zero-energy-contribution"
property. Thus, in actual calculations, this scheme only needs to solve several independent linear equations with constant
coefficients at each time step. We strictly prove the solvability and unconditional energy stability, and perform numerical
simulations in 2D and 3D to verify the accuracy and stability of the scheme numerically.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Starting from Du et. al.’s work in [1,2], the phase-field method or diffuse interface method has been used to
imulate the shape transitions of lipid vesicles under various conditions, see [3–7]. The basic idea of the phase-field
ethod is to introduce one or multiple labeling functions (called phase-field variables) to label the internal and

xternal components surrounded by the vesicle membrane. Then, by using the elastic bending energy represented
y the phase-field variables to replace the average curvature of the membrane surface, and minimizing the total free
nergy in a certain metric space, the so-called phase-field elastic bending energy model (EBE, for short) for lipid
esicles has arrived.

The derivation of the classical EBE model normally uses the so-called Allen–Cahn (L2-gradient flow) type
ynamical system. Because the free energy formally contains a second-order Laplacian term, the governing system
onsists of one (for single-phase-field EBE model) or multiple coupled (for multi-phase-field EBE model) highly
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nonlinear fourth-order equation(s). To obtain the conservation of global volume and surface area, it adopts a penalty
method, that is, adding two penalty energy potentials to the total energy, so that the volume and surface area can be
approximately conserved. However, the penalty method can cause a problem, that is, a larger penalty parameter can
better conserve the volume and surface area, but the system becomes stiffer, resulting in a small time step required.
Certainly, some numerical techniques can be used to achieve the conservation of volume and surface area through
numerical iterations, such as the Lagrangian multiplier method [3,8]. However, it leads to some essential difficulties
to develop a numerical scheme with provable unconditional energy stability. Therefore, a natural question arises, that
is, how to achieve precise conservation of volume and surface area while deriving the partial differential equation
(PDE) system.

Remarkably, the formula for expressing the global volume of the vesicle using the phase-field variable is much
impler than the surface area (see (2.2) and (2.12), and also their definitions in [1–7]). Therefore, there are indeed
ore ways to achieve accurate volume conservation than to achieve accurate surface area conservation, which is

till an unresolved problem so far. For example, one can reformulate the model using the well-known volume-
onserved Cahn-Hilliard dynamics, see [9]. However, it brings a disadvantage that the generated system has two
ore orders than the Allen–Cahn system, so it is relatively difficult to solve. If the low-order advantage of the
llen–Cahn equation is expected to be retained, inspired by a widely-known conservative Allen–Cahn equation
eveloped by Rubinstein and Sternberg in [10] (see also the application in [11–20] for different models), we can
dd a simple nonlocal term to the PDE system, so that the precise conservation of volume can be achieved from
he perspective of modeling instead of using advanced numerical techniques. Hence, the first goal of this paper is

to use the conservative Allen–Cahn dynamics to reconstruct the multiple-phase-field EBE model thereby conserving
the volume in a precise manner.

Next, since both the inside and the outside of the vesicles are fluids, we consider the numerical approximation
of the new volume-conserved multi-phase-field vesicle model coupled with the incompressible flow field, i.e., the
Naiver–Stokes equations. The focus is to construct an efficient and accurate scheme to solve this highly nonlinear
coupling system, that is, to establish a second-order time-accurate, energy-stable, fully-decoupled, and linear
scheme. We recall that, regarding algorithm development for the single-phase-field EBE model without coupling
the flow field, some available numerical schemes can successfully achieve unconditional energy stability, for
example, the Invariant Energy Quadratization (IEQ) method [21], Scalar Auxiliary Variable (SAV) method [22],
linear stabilization method [23], nonlinear functional derivative method [9], Exponential Time Differencing method
(ETD) [8], etc. Therefore, it may be considered that when dealing with the coupling between the vesicles and
the flow field, an effective numerical method can be easily developed by simply combining the above-mentioned
numerical methods for the EBE model and the numerical method of solving the Navier–Stokes equation.

However, the fact is quite the opposite. It is not an easy task to develop a scheme that can simultaneously
have energy stability, second-order time accuracy, and full decoupling structure. So far, as far as the author knows,
among various temporal discretization approach for Navier–Stokes coupled phase-field models (cf. [9,24–33]), the
only available energy-stable fully-decoupled scheme was developed in [9,23], in which the way to achieve the full
decoupling is to add a stabilization term to the explicit advection velocity term. However, the decoupling type
scheme in [9,23] is only first-order accurate in time, and it requires more calculations at each time step because
the phase field equation needs to be solved with variable coefficients. Moreover, it seems to be very challenging
to upgrade the stabilization method to the second-order version. Therefore, how to establish a fully-decoupled
numerical scheme with second-order time accuracy is still an unsolved problem. The main difficulty lies in how to
discretize the coupled nonlinear terms between the phase-field variable and the flow field (e.g. the advection and
stress). At the same time, it is even more unfortunate that these kinds of terms exist in almost all flow-coupled
phase-field type models (for example, the phase-field surfactant model [34–36], the ternary flow-coupled phase-
field model [37,38], the two-phase complex fluid model [31,39,40], etc.). This makes how to establish an ideal
fully-decoupled scheme has become a universal difficulty.

Therefore, the second purpose of this paper is to overcome this challenge and develop a novel full decoupling
method for the flow-coupled volume-conserved multi-phase-field EBE model. To this end, we note that advection
nd stress terms satisfy a so-called “zero-energy-contribution” feature. That is, when deducing the energy law, after
pplying the inner products of some appropriate functions, the results of these two terms will completely cancel
ut. Thus, using this property, we introduce a nonlocal variable and design an ordinary differential equation (ODE)

ontaining the inner products of the advection and stress with some specific functions. This ODE is trivial at the
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continuous level because all the terms in it are zero. But after discretization, it can help eliminate all the troublesome
nonlinear terms to obtain unconditional energy stability. Meanwhile, the introduction of the nonlocal variable can
decompose each discrete equation into multiple sub-equations that can be solved independently, thereby obtaining
a fully-decoupled structure.

By combining this novel method with the existing proven effective methods (including the projection method for
he Navier–Stokes equations, and the SAV method that linearizes the nonlinear energy potential), we finally arrive at
n unconditionally energy stable, linear, fully-decoupled, second-order time-accurate scheme. The implementation
f this scheme is very simple. It only needs to solve a few linear independent equations with constant coefficients
t each time step, which means that computation is very efficient. We also give a rigorous proof of the solvability
nd unconditional energy stability of the scheme and further simulate various numerical examples in 2D and 3D to
emonstrate the stability and accuracy numerically. In addition to the above-mentioned benefits, another important
dvantage of the new decoupling method is that it is universally applicable. For instance, first, it can be combined
ith other linear methods (such as the linear stabilization, IEQ, etc.) to form various types of fully-decoupled

nergy-stable schemes. Second, it can also be applied to any nonlinear coupling type model to form an effective
omplete decoupling scheme, as long as the coupling terms follow the “zero-energy-contribution” property.

The rest of the paper is organized as follows. In Section 2, we establish the volume-conserved flow-coupled
multi-phase-field EBE model. In Section 3, we develop a numerical scheme to solve the model, propose a detailed
process to realize fully-decoupled implementation, and prove the solvability and unconditional energy stability. In
Section 4, we perform numerical simulations, including the accuracy/stability tests and other examples in 2D and
3D to show the accuracy and efficiency of the developed scheme. Section 5 provides some concluding remarks.

2. Model and its energy law

Now, based on the classical approximate volume conservation multi-phase-field EBE model developed in [1,2,
41,42], a new flow-coupled multi-phase-field EBE model with accurate volume conservation is established.

We introduce N scalar phase-field variables φi (x) = tanh
(

di (x)
√

2ϵ

)
, i = 1, . . . , N is defined for all x ∈ Ω ∈ Rm ,

where m is the dimension, di (x) is the signed distance between a point x and the membrane surface Γi , positive
inside and negative outside, and ϵ ≪ 1 is a transition parameter, which is used to characterize the width of the
diffusive interface or transition layer.

Therefore, the phase-field elastic bending energy for the i th vesicle is formulated as follows (cf. [1,2]):

Ebend (φi ) =

∫
Ω

ϵ

2
(∆φi − f (φi ))2 dx, (2.1)

where F(φi ) =
1

4ϵ2 (φ2
i − 1)2 is the Ginzburg–Landau double-well potential and f (φi ) = F ′(φi ) =

1
ϵ2φi (φ2

i − 1).
While using the elastic bending energy to describe vesicles, a fixed surface area for each vesicle is often required.

The surface area function A(φi ) is defined as

A(φi ) = ϵ

∫
Ω

(1
2
|∇φi |

2
+ F(φi )

)
dx. (2.2)

The surface area can be given as 3
2
√

2
A(φi ) that converges to the surface area quadratically as ϵ → 0. To conserve

the surface area of the i th vesicle, a penalized potential is introduced into the total free energy, cf. [1,2], that reads
s

Earea(φi ) =
1
2

M(A(φi ) − βi )2, (2.3)

where M is a positive penalty parameter, and βi denote the constant related to the surface area, respectively.
Throughout in this paper, we set βi = A(φ0

i ) with φ0
i = φi |(t=0) which is the initial surface area for each type

of vesicle.
Regarding the interaction of different type of vesicles i and j with i < j , the adhesion energy between different

vesicles is formulated as

Eadh(φi , φ j ) = −
Ci j

2

∫
Ω

(φ2
i − 1)(φ2

j − 1)dx, (2.4)

where C > 0 is the magnitude of adhesion potential.
i j

3
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After coupling with the fluid momentum, the total free energy reads as

E(u, φ1, . . . , φN ) = Ek(u) + λϵ

∫
Ω

W (φ1, . . . , φN )dx, (2.5)

where Ek(u) =
∫
Ω

1
2 |u|

2dx is the kinetic energy, u is the fluid velocity, the energy density functional W (φ1, . . . , φN )
(including the elastic bending potential, surface area potential, and adhesion potential) reads as:

W (φ1, . . . , φN ) =

N∑
i=1

(1
2

(∆φi − f (φi ))2
+

1
2ϵ

M(A(φi ) − βi )2
)

−

N∑
i, j=1,i< j

Ci j

2ϵ
(φ2

i − 1)(φ2
j − 1)dx,

and λ is the relative ratio of the kinetic energy to the elastic energy.
By adopting the gradient flow approach in L2-space, i.e., the Allen–Cahn relaxation dynamics, and assuming the

generalized Fick’s law, i.e., the mass flux is proportional to the gradient of the chemical potential, we obtain the
governing dynamical system that reads as

φi t + (u · ∇)φi + γi

(
µi −

1
|Ω |

∫
Ω

µi dx
)

= 0, i = 1, . . . , N , (2.6)

µi = ϵ(∆ − f ′(φi ))(∆φi − f (φi )) + ϵM(A(φi ) − βi )(−∆φi + f (φi )) −

N∑
j=1, j ̸=i

Ci jφi (φ2
j − 1)dx, (2.7)

ut + (u · ∇)u − ν∆u + ∇ p − λ

N∑
i=1

µi∇φi = 0, (2.8)

∇ · u = 0, (2.9)

where λµi =
δE
δφi

is the chemical potential, Ci j = C j i , f ′(φi ) =
3φ2

i −1
ϵ2 and γi > 0 is the relaxation time scale

parameter, the term (u · ∇)φi is the advection for i th type vesicle, µi∇φi is the induced stress term.
We consider one of the following boundary conditions:

u|∂Ω = 0, ∂nφi |∂Ω = ∂n∆φi |∂Ω = 0, or all variables are periodic, (2.10)

where n is the unit outward normal on the boundary ∂Ω . The initial conditions read as

u|(t=0) = u0, p|(t=0) = p0 , φi |(t=0) = φ0
i . (2.11)

Remark 2.1. Note that the global volume of the vesicle is defined as (see [1,2,43,44]):

V (φi ) =

∫
Ω

φi + 1
2

dx. (2.12)

Hence, by computing the L2-inner product of (2.6) with 1 and using the divergence-free condition (2.9) for the
elocity field, we derive

d
dt

∫
Ω

φi dx = 0, (2.13)

which means the model (2.6) retains the exact volume. It can be seen that the nonlocal term −
1

|Ω |

∫
Ω µi dx added

in (2.6) can accurately conserve the total volume of φ. This idea was originally ingeniously proposed in [10] to
develop the conservative Allen–Cahn equation.

Remark 2.2. For the sake of completeness, here we also give the classical multi-phase-field EBE model (no
flow-coupled case) developed in [1,2]. Similar to the surface area potential, a penalization potential is added to the
total free energy to enforce the volume constraint approximately as

Evol(φi ) =
1
2

Mv(V (φi ) − αi )2, (2.14)

where Mv ≫ 1 is the penalty parameter, αi = V (φ0
i ) is the initial volume for the i th type vesicle. Note that when

Mv is very large, the volume remains approximately the same, but a small time step is required due to the increased
tiffness.
4
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The system (2.6)–(2.9) admits the law of energy dissipation, which can be obtained by the following process.
y multiplying the inner product of (2.6) with λµi in L2 and taking the summation for i = 1, . . . , N , we get

N∑
i=1

λ(φi t , µi ) = −λ

N∑
i=1

γi

µi −
1

|Ω |

∫
Ω

µi dx
2

− λ

N∑
i=1

∫
Ω

(u · ∇)φiµi dx, (2.15)

where we use

(µi −
1

|Ω |

∫
Ω

µi dx, µi )

= (µi −
1

|Ω |

∫
Ω

µi dx, µi −
1

|Ω |

∫
Ω

µi dx) + (µi −
1

|Ω |

∫
Ω

µi dx,
1

|Ω |

∫
Ω

µi dx)

=

µi −
1

|Ω |

∫
Ω

µi dx
2
,

since (µi −
1

|Ω |

∫
Ω µi dx, 1) = 0. By multiplying the inner product of (2.7) with −λφi t in L2 and taking summation

for i = 1, . . . , N , we get

− λ

N∑
i=1

(µi , φi t ) + λϵ
d
dt

(∫
Ω

W (φ1, . . . , φN )dx
)

= 0. (2.16)

aking the inner product of (2.8) with u in L2, and using integration by parts and (2.9), we obtain

d
dt

∫
Ω

1
2
|u|

2dx + ν∥∇u∥
2

= λ

N∑
i=1

∫
Ω

µi∇φi · udx −

∫
Ω

(u · ∇)u · udx. (2.17)

Combining the above three equations (2.15)–(2.17) and using the divergence-free condition for u, we obtain the
energy dissipation law as

d
dt

E(u, φ1, . . . , φN ) = − λ

N∑
i=1

γi

µi −
1

|Ω |

∫
Ω

µi dx
2

− ν∥∇u∥
2, (2.18)

here the two negative terms on the right end specify the energy diffusion rate.

emark 2.3. We note that when deriving (2.18), the nonlinear integrals related to advection and stress are all
anceled out. More precisely, the following two identities hold∫

Ω

(
µi∇φi · u − (u · ∇)φiµi

)
dx = 0,

∫
Ω

(u · ∇)u · udx = 0, (2.19)

here the second one is due to the divergence-free condition (2.9), the boundary condition for u specified in (2.10),
nd the integration by parts. The two identities mean that these nonlinear terms do not contribute to the total free
nergy or energy diffusivity, that is, they satisfy the “zero-energy-contribution” property. We will take advantage of
his feature to develop the full decoupling type scheme in the next section.

. Numerical scheme

We now construct a fully-decoupled scheme for solving the highly nonlinear, flow-coupled, volume-conserved
ulti-phase-field EBE model (2.6)–(2.9). Meanwhile, considering the efficiency and accuracy of the algorithm

n practice, we also expect the scheme to satisfy linearity, second-order time accuracy, and unconditional energy
tability. The detailed process is given as follows.
5
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3.1. Reformulation to an equivalent system

First, we introduce a nonlocal variable Q(t) and an ODE system related to it that reads as:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Qt =

∫
Ω

(
N∑

i=1

(λ(u · ∇)φiµi − λµi∇φi · u)+ (u · ∇)u · u

)
dx,

Q|(t=0) = 1,∇ · u = 0,
u|∂Ω = 0, or all variables are periodic.

(3.1)

y utilizing the “zero-energy-contribution” property satisfied by the advection and stress terms, we find that the
DE (3.1) is equivalent to Qt = 0, Q|(t=0) = 1 which has the solution of Q(t) = 1.
Second, we extract two linear terms from the free energy density W (φ1, . . . , φN ) and define

W̃ (φ1, . . . , φN ) = W (φ1, . . . , φN ) −

N∑
i=1

(
e1

2
|∆φi |

2
+

e2

2
|φi |

2), (3.2)

where 0 < e1 <
1
2 , and e2 > 0. Thus the total free energy (2.5) is rewritten as

E(u, φ1, . . . , φN ) =Ek(u) + λϵ

N∑
i=1

∫
Ω

(
e1

2
|∆φi |

2
+

e2

2
|φi |

2)dx + λϵ

∫
Ω

W̃ (φ1, . . . , φN )dx. (3.3)

Note that
∫
Ω W̃ (φ1, . . . , φN )dx can be shown to be bounded from below (see Remark 3.1), thus we define a

onlocal variable U (t) as the square root of it, that reads as

U (t) =

√∫
Ω

W̃ (φ1, . . . , φN )dx + B, (3.4)

where B is a positive constant such that the radicand is positive. This is the so-called SAV method [11,22,45–48]
which is an efficient method to linearize the nonlinear energy potential. Using the variable U , we rewrite (2.7) as
the following equivalent form:⎧⎪⎨⎪⎩

µi = ϵe1∆
2φi + ϵe2φi + ϵHiU,

Ut =
1
2

∫
Ω

N∑
i=1

Hiφi t dx, (3.5)

where the function Hi is defined as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hi =
w̃i√∫

Ω W̃ (φ1, . . . , φN )dx + B
,

w̃i = −e1∆
2φi − e2φi + (∆ − f ′(φi ))(∆φ − f (φi ))

+ M(A(φi ) − βi )(−∆φi + f (φi )) −

N∑
j=1, j ̸=i

Ci j

ϵ
φi (φ2

j − 1).

(3.6)

Remark 3.1. We roughly outline the reasons why
∫
Ω W̃ (φ1, . . . , φN )dx is bounded from below. We expand the

ending potential as∫
Ω

1
2

(∆φi − f (φi ))2dx =

∫
Ω

(
1
2
|∆φi |

2
−

2
ϵ2 |∇φi |

2)dx +

∫
Ω

(
2
ϵ2φ

2
i |∇φi |

2
+ f (φi )2)dx. (3.7)

Therefore, we can see that there are several negative terms in W̃ (φ1, . . . , φN ) which are needed to be bounded from
below, including the adhesion potential, the quadratic term −

∫ e2 |φ|
2dx, as well as the term

∫
−

2
|∇φ |

2dx.
Ω 2 Ω ϵ2 i

6
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Moreover, for the adhesion potential, some fourth-order polynomial terms will be generated from it after applying
the Cauchy–Schwarz inequality (i.e., −Ci j (φ2

i − 1)(φ2
j − 1) ≥ −

Ci j
2 (φ2

i − 1)2
−

Ci j
2 (φ2

j − 1)2).
We use the sixth-order polynomial term f (φi )2

=
1
ϵ4 (φ3

i − φi )2 to bound the quadratic term −
e2
2 |φ|

2 and
those negative fourth-order polynomial terms from the adhesion potential. Moreover, the combination of two terms∫
Ω

1−e1
2 |∆φi |

2dx and
∫
Ω f (φi )2dx can form the H 2 norm which can be used to bound the

∫
Ω −

2
ϵ2 |∇φi |

2dx from
below after using the Hölder’s inequality and the Sobolev inequality ∥φ∥L4 ≤ CΩ∥φ∥H2 where CΩ is a constant
(see [22]).

Third, by combining (3.1) and (3.5), we rewrite the PDE system (2.6)–(2.9) to:

φi t + Q(u · ∇)φi + γi

(
µi −

1
|Ω |

∫
Ω

µi dx
)

= 0, i = 1, . . . , N , (3.8)

µi = ϵe1∆
2φi + ϵe2φi + ϵHiU, (3.9)

Ut =
1
2

∫
Ω

N∑
i=1

Hiφi t dx, (3.10)

ut + Q(u · ∇)u − ν∆u + ∇ p − λQ
N∑

i=1

µi∇φi = 0, (3.11)

∇ · u = 0, (3.12)

Qt =

∫
Ω

(
N∑

i=1

(λ(u · ∇)φiµi − λµi∇φi · u)+ (u · ∇)u · u

)
dx, (3.13)

with the boundary conditions as

u|∂Ω = 0, ∂nφi |∂Ω = ∂n∆φi |∂Ω = 0, or all variables are periodic, (3.14)

and initial conditions as⎧⎪⎨⎪⎩
u|(t=0) = u0, p|(t=0) = p0, φi |(t=0) = φ0

i ,

Q|(t=0) = 1,U |(t=0) =

√∫
Ω

W̃ (φ0
1 , . . . , φ

0
N )dx + B.

(3.15)

Remark 3.2. The new system (3.8)–(3.13) is obtained by combining (3.1), (3.5) and (2.6)–(2.9), where (2.7) is
replaced by (3.5). Another modification is that we multiply the coupled nonlinear terms satisfying the “zero-energy-
contribution” property with the nonlocal variable Q in (3.8) and (3.11). This modification is also reasonable and
will not change the equivalence of the system since we (3.13) still implies Q = 1. Thus, the new PDE system
(3.8)–(3.13) using the variables (u, p, µi , φi ,U, Q) is equivalent to the original PDE system (2.6)–(2.9) using the
variables (u, p, µi , φi ).

The new system (3.8)–(3.13) also holds the energy dissipation law that can be obtained through a similar process
obtaining (2.18). Since the discrete energy stability proof process follows the same principle, we show the following
detailed process to make it clear.

We multiply the L2 inner product of (3.8) with λµi and take the summation for i = 1, . . . , N to derive

λ

N∑
i=1

(φi t , µi ) = −λ

N∑
i=1

γi

µi −
1

|Ω |

∫
Ω

µi dx
2

− λQ
N∑

i=1

∫
Ω

(u · ∇)φiµi dx  
I1

. (3.16)

y multiplying the inner product of (3.9) with −λφi t in L2 and taking the summation for i = 1, . . . , N , we get

− λ

N∑
(µi , φi t ) = −λϵ

d
dt

N∑∫ (e1

2
|∆φi |

2
+

e2

2
|φi |

2
)

dx − ϵλU
N∑∫

Hiφi t dx. (3.17)

i=1 i=1 Ω i=1 Ω

7
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Multiplying (3.10) with 2λϵU , we get

λϵ
d
dt

(|U |
2) = ϵλU

N∑
i=1

∫
Ω

Hiφi t dx. (3.18)

Taking the inner product of (3.11) with u in L2, and using integration by parts and (3.12), we obtain

d
dt

∫
Ω

1
2
|u|

2dx + ν∥∇u∥
2

= λQ
N∑

i=1

∫
Ω

µi∇φi · udx  
II1

− Q
∫
Ω

(u · ∇)u · udx  
III1

. (3.19)

Multiplying (3.13) with Q, we get

d
dt

(
1
2
|Q|

2) = λQ
N∑

i=1

∫
Ω

(u · ∇)φiµi dx  
I2

− λQ
N∑

i=1

∫
Ω

µi∇φi · udx  
II2

+ Q
∫
Ω

(u · ∇)u · udx  
III2

. (3.20)

Combining (3.16)–(3.20) and noting that all two terms marked with the same Roman numerals are canceled, we
derive the energy law as follows:

d
dt

E(u, φ1, . . . , φN ,U, Q) = − λ

N∑
i=1

γi

µi −
1

|Ω |

∫
Ω

µi dx
2

− ν∥∇u∥
2, (3.21)

where

E(u, φ1, . . . , φN ,U, Q) =λϵ

N∑
i=1

∫
Ω

(e1

2
|∆φi |

2
+

e2

2
|φi |

2
)

dx +

∫
Ω

1
2
|u|

2dx + λϵ|U |
2
+

1
2
|Q|

2. (3.22)

Remark 3.3. Here we can see that the extraction of two linear terms (associated with e1 and e2) can help to
ensure the H 2 stability of the φi from the PDE level. In the process of deriving the energy law for the new model
(3.8)–(3.13), we no longer need the two integral terms formed by the advection (term I1) and stress (term II1) to
ancel each other as (2.19), because the newly added ODE (3.13) contains corresponding terms that can cancel them
eparately (I1 and I2; II1 and II2). In other words, when we try to develop a decoupled and energy stable discrete
cheme, we can use different ways to discretize the advection and stress terms to generate a fully-decoupled scheme.

.2. Numerical scheme

We are now ready to develop a second-order semi-discrete scheme to solve the system (3.8)–(3.13). Given (u,
p, µi , φi , U , Q)n−1 and (u, p, µi , φi , U , Q)n , we calculate (u, p, µi , φi , U , Q)n+1 as follows.

We compute (ũ, µi , φi ,U, Q,u, p)n+1 by

aφn+1
i − bφn

i + cφn−1
i

2δt
+ Qn+1(u∗

· ∇)φ∗

i + γ

(
µn+1

i −
1

|Ω |

∫
Ω

µn+1
i dx

)
= 0, (3.23)

µn+1
i = ϵe1∆

2φn+1
i + ϵe2φ

n+1
i + ϵH∗

i U n+1 (3.24)

+
S1

ϵ3 (φn+1
i − φ∗

i ) −
S2

ϵ
∆(φn+1

i − φ∗

i ) + ϵS3∆
2(φn+1

i − φ∗

i ),

aU n+1
− bU n

+ cU n−1
=

1
2

∫
Ω

N∑
i=1

H∗

i (aφn+1
i − bφn

i + cφn−1
i )dx, (3.25)

aũn+1
− bun

+ cun−1

2δt
+ Qn+1(u∗

· ∇)u∗
− ν∆ũn+1

+ ∇ pn
− λQn+1

N∑
µ∗

i ∇φ
∗

i = 0, (3.26)

i=1

8
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b

R
t
(
b
t

u

R
b
(
b
c

R

aQn+1
− bQn

+ cQn−1

2δt
=

∫
Ω

N∑
i=1

(
λ(u∗

· ∇)φ∗

i µ
n+1
i − λµ∗

i ∇φ
∗

i · ũn+1
)

dx (3.27)

+

(∫
Ω

(u∗
· ∇)u∗

· ũn+1
)

dx.

nd
a

2δt
(un+1

− ũn+1) + ∇(pn+1
− pn) = 0, (3.28)

∇ · un+1
= 0. (3.29)

In the above scheme,

a = 3, b = 4, c = 1,u∗
= 2un

− un−1, φ∗

i = 2φn
i − φn−1

i ,

H∗

i = Hi (φ∗

1 , . . . , φ
∗

N ), µ∗

i = 2µn
i − µn−1

i ,

S1, S2, S3 are positive stabilization parameters, and the boundary conditions are either periodic or the physical
oundary conditions as

∂nφ
n+1
i |∂Ω = ∂n∆φ

n+1
i |∂Ω = 0, ũn+1

|∂Ω = 0, un+1
· n|∂Ω = 0. (3.30)

We explain some details of the scheme (3.23)–(3.29) in the following remarks.

emark 3.4. The scheme is linear, and it uses implicit and explicit combination method to deal with all nonlinear
erms. For the hydrodynamical equations, we use the second-order pressure correction scheme (3.26)–(3.28)–(3.29)
see the overview of projection methods in [49]), of which ũn+1 is the intermediate velocity following the Dirichlet
oundary conditions (or periodic) and the final velocity field un+1 follows the divergence-free condition. To obtain
he pressure, we just apply the divergence operator to (3.28) and then obtain the following Poisson equation for
pn+1, i.e.,

− ∆pn+1
= −

a
2δt

∇ · ũn+1
− ∆pn, (3.31)

with the periodic boundary condition or ∂n pn+1
|∂Ω = 0. Once pn+1 is computed from (3.31), we update un+1 by

sing (3.28), i.e.,

un+1
= ũn+1

−
2δt
a

∇(pn+1
− pn). (3.32)

emark 3.5. The initialization of the second-order scheme requires all values at t = t1, which can be obtained
y constructing the first-order scheme based on the backward Euler method. In the above second-order scheme
3.23)–(3.29), as long as we set a = 2, b = 2, c = 0, ψ∗

= ψ0 for any variable ψ , the first-order scheme can
e easily obtained. Moreover, by using mathematical induction, it is easy to conclude that the following volume
onservation property holds:∫

Ω

φn+1
i dx =

∫
Ω

φn
i dx = · · · =

∫
Ω

φ0
i dx =

∫
Ω

φ∗

i dx. (3.33)

emark 3.6. Three additional second-order linear terms are the commonly linear stabilizers (associated with S1, S2,
and S3) used in the SAV type schemes when adopting larger time steps or the system has very high stiffness issue
due to the model parameters. Although the SAV method is formally unconditionally energy stable, but exceedingly
small time steps are needed to achieve reasonable accuracy. To fix such an inherent deficiency, the SAV approaches
are combined with the stabilization technique to construct stabilized-SAV (S-SAV) methods (see also a review for
SAV method in [50]). The reasons to use three different stabilizers for the particular EBE model are as follows.
Note that the coefficients Hi , i = 1, . . . , N contain almost all explicitly processed terms, including the fourth-order
terms ∆2φi . As we all know, the explicit processing method used for higher-order linear terms is unstable, so we
have to restore the higher-order terms by using the second-order stabilizer with comparable magnitude, which is the
reason for adding the S term. The use of S and S is for similar reasons, and these two terms are used to balance
3 1 2

9
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the explicit processed terms f 2(φi ) and ∆ f (φi ) contained in Hi , respectively. In Section 4, we provide numerical
vidence that these stabilizers are important for maintaining accuracy while enhancing the stability of the numerical
chemes with larger time steps, see Fig. 4.2(b).

.3. Implementation process and solvability

Now, we discuss the specific approach of implementing the scheme (3.23)–(3.29). Since (3.28)–(3.29) is the
tandard step of the projection method, we only need to consider the implementation of (3.23)–(3.27).

Note that the scheme (3.23)–(3.27) is not in the decoupled form, on the contrary, all unknowns are still coupled
ogether. This means that a direct method to solve the scheme will bring high computational costs to actual
alculations. Therefore, in practice, we implement the scheme through the following steps, which make full use
f the nonlocal properties of the auxiliary variables U and Q. The following implementation method can decouple
ll variables and delete all nonlocal calculations, as shown below.

First, we use the nonlocal variable Qn+1 to split (φi , µi ,U )n+1 into a linear combination form that reads as⎧⎪⎨⎪⎩
φn+1

i = φn+1
i1 + Qn+1φn+1

i2 ,

µn+1
i = µn+1

i1 + Qn+1µn+1
i2 ,

U n+1
= U n+1

1 + Qn+1U n+1
2 .

(3.34)

Then the scheme (3.23)–(3.24) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(φn+1
i1 + Qn+1φn+1

i2 )
2δt

+ Qn+1(u∗
· ∇)φ∗

i

+ γi

(
µn+1

i1 + Qn+1µn+1
i2 −

1
|Ω |

∫
Ω

(µn+1
i1 + Qn+1µn+1

i2 )dx
)

=
bφn

i − cφn−1
i

2δt
,

µn+1
i1 + Qn+1µn+1

i2 = ϵe1∆
2(φn+1

i1 + Qn+1φn+1
i2 ) + ϵe2(φn+1

i1 + Qn+1φn+1
i2 )

+ ϵH∗

i (U n+1
1 + Qn+1U n+1

2 ) +
S1

ϵ3 (φn+1
i1 + Qn+1φn+1

i2 − φ∗

i )

−
S2

ϵ
∆(φn+1

i1 + Qn+1φn+1
i2 − φ∗

i ) + ϵS3∆
2(φn+1

i1 + Qn+1φn+1
i2 − φ∗

i ).

(3.35)

ccording to Qn+1, the system (3.35) can be split into two subsystems as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a
2δt

φn+1
i1 + γi

(
µn+1

i1 −
1

|Ω |

∫
Ω

µn+1
i1 dx

)
=

bφn
i − cφn−1

i

2δt
,

µn+1
i1 = ϵe1∆

2φn+1
i1 + ϵe2φ

n+1
i1 + ϵH∗

i U n+1
1

+
S1

ϵ3 (φn+1
i1 − φ∗

i ) −
S2

ϵ
∆(φn+1

i1 − φ∗

i ) + ϵS3∆
2(φn+1

i1 − φ∗

i ),

(3.36)

nd ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a

2δt
φn+1

i2 + γi

(
µn+1

i2 −
1

|Ω |

∫
Ω

µn+1
i2 dx

)
= −(u∗

· ∇)φ∗

i ,

µn+1
i2 = ϵe1∆

2φn+1
i2 + ϵe2φ

n+1
i2 + ϵH∗

i U n+1
2

+
S1

ϵ3 φ
n+1
i2 −

S2

ϵ
∆φn+1

i2 + ϵS3∆
2φn+1

i2 .

(3.37)

By taking the L2 inner product of the first equation in (3.36) and (3.37) with 1, using (3.33), and noting ∇ · u∗
= 0

and (3.30), we immediately get∫
Ω

φn+1
i1 dx =

∫
Ω

φn
i dx =

∫
Ω

φn−1
i dx =

∫
Ω

φ∗

i dx,
∫
Ω

φn+1
i2 dx = 0. (3.38)

he boundary conditions of the φn+1
i1 and φn+1

i2 are either periodic or
n+1 n+1 n+1 n+1 (3.39)
∂nφi1 |∂Ω = ∂n∆φi1 |∂Ω = ∂nφi2 |∂Ω = ∂n∆φi2 |∂Ω = 0.

10
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Second, using the nonlocal variables U n+1
1 and U n+1

2 , we split the variables (φi1, φi2, µi1, µi2)n+1 into the
ollowing form{

φn+1
i1 = φn+1

i11 + U n+1
1 φn+1

i12 , µ
n+1
i1 = µn+1

i11 + U n+1
1 µn+1

i12 ,

φn+1
i2 = φn+1

i21 + U n+1
2 φn+1

i22 , µ
n+1
i2 = µn+1

i21 + U n+1
2 µn+1

i22 .
(3.40)

eplacing (φi1, φi2, µi1, µi2)n+1 in (3.36) and (3.37) using (3.40), and splitting the obtained equations according to
n+1
1 and U n+1

2 , we get the following four subsystems,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a
2δt

φn+1
i11 + γi

(
µn+1

i11 −
1

|Ω |

∫
Ω

µn+1
i11 dx

)
=

bφn
i − cφn−1

i

2δt
,

µn+1
i11 = ϵe1∆

2φn+1
i11 + ϵe2φ

n+1
i11

+
S1

ϵ3 φ
n+1
i11 −

S2

ϵ
∆φn+1

i11 + ϵS3∆
2φn+1

i11 −

(
S1

ϵ3 φ
∗

i −
S2

ϵ
∆φ∗

i + ϵS3∆
2φ∗

i

)
,

(3.41)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a
2δt

φn+1
i12 + γi

(
µn+1

i12 −
1

|Ω |

∫
Ω

µn+1
i12 dx

)
= 0,

µn+1
i12 = ϵe1∆

2φn+1
i12 + ϵe2φ

n+1
i12

+
S1

ϵ3 φ
n+1
i12 −

S2

ϵ
∆φn+1

i12 + ϵS3∆
2φn+1

i12 + ϵH∗

i ,

(3.42)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a
2δt

φn+1
i21 + γi

(
µn+1

i21 −
1

|Ω |

∫
Ω

µn+1
i21 dx

)
= −(u∗

· ∇)φ∗

i ,

µn+1
i21 = ϵe1∆

2φn+1
i21 + ϵe2φ

n+1
i21

+
S1

ϵ3 φ
n+1
i21 −

S2

ϵ
∆φn+1

i21 + ϵS3∆
2φn+1

i21 ,

(3.43)

and ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a
2δt

φn+1
i22 + γi

(
µn+1

i22 −
1

|Ω |

∫
Ω

µn+1
i22 dx

)
= 0,

µn+1
i22 = ϵe1∆

2φn+1
i22 + ϵe2φ

n+1
i22

+
S1

ϵ3 φ
n+1
i22 −

S2

ϵ
∆φn+1

i22 + ϵS3∆
2φn+1

i22 + ϵH∗

i .

(3.44)

The boundary conditions of the above four system are either periodic or

∂n(φi11, φi12, φi21, φi22)n+1
|∂Ω = 0, ∂n∆(φi11, φi12, φi21, φi22)n+1

|∂Ω = 0. (3.45)

y taking the L2 inner product of the first equation in the above four subsystems with 1, using (3.33), and noting
· u∗

= 0 and (3.30), we get∫
Ω

φn+1
i11 dx =

∫
Ω

φn
i dx =

∫
Ω

φn−1
i dx =

∫
Ω

φ∗

i dx,∫
φn+1

i12 dx =

∫
φn+1

i21 dx =

∫
φn+1

i22 dx = 0.

(3.46)
Ω Ω Ω

11
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To solve the above four subsystems (3.41)–(3.44), we simply combine the two equations in each subsystem and
se (3.46) to get the following four equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
2γiδt

φn+1
i11 + ϵe1∆

2φn+1
i11 + ϵe2φ

n+1
i11 +

S1

ϵ3 φ
n+1
i11 −

S2

ϵ
∆φn+1

i11 + ϵS3∆
2φn+1

i11 = G1
i ,

a
2γiδt

φn+1
i12 + ϵe1∆

2φn+1
i12 + ϵe2φ

n+1
i12 +

S1

ϵ3 φ
n+1
i12 −

S2

ϵ
∆φn+1

i12 + ϵS3∆
2φn+1

i12 = G2
i ,

a
2γiδt

φn+1
i21 + ϵe1∆

2φn+1
i21 + ϵe2φ

n+1
i21 +

S1

ϵ3 φ
n+1
i21 −

S2

ϵ
∆φn+1

21 + ϵS3∆
2φn+1

i21 = G3
i ,

a
2γiδt

φn+1
i22 + ϵe1∆

2φn+1
i22 + ϵe2φ

n+1
i22 +

S1

ϵ3 φ
n+1
i22 −

S2

ϵ
∆φn+1

i22 + ϵS3∆
2φn+1

i22 = G4
i ,

(3.47)

here⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
G1

i =

(
S1

ϵ3 φ
∗

i −
S2

ϵ
∆φ∗

i + ϵS3∆
2φ∗

i

)
+

bφn
i − cφn−1

i

2δt
−
ϵe2

|Ω |

∫
Ω

φn+1
i11 dx,

G2
i = G4

i = −ϵ(H∗

i −
1

|Ω |

∫
Ω

H∗

i dx),

G3
i = −(u∗

· ∇)φ∗

i .

Note G1
i ,G2

i ,G3
i ,G4

i are all explicit terms since
∫
Ω φ

n+1
i11 dx is given in (3.46). Moreover, G2

i = G4
i means φn+1

i12 =

φn+1
i22 . Hence we can easily solve three independent biharmonic equations in (3.47) to get (φi11, φi12, φi21, φi22)n+1.

Third, we rewrite (3.25) into the following form

U n+1
=

1
2

∫
Ω

N∑
i=1

H∗

i φ
n+1
i dx + G5, (3.48)

where

G5
=

1
a

(bU n
− cU n−1) −

1
2a

∫
Ω

N∑
i=1

H∗

i (bφn
i − cφn−1

i )dx. (3.49)

We replace U n+1 and φn+1
i using the split form given in (3.34) to get

U n+1
1 + Qn+1U n+1

2 =
1
2

∫
Ω

N∑
i=1

H∗

i (φn+1
i1 + Qn+1φn+1

i2 )dx + G5. (3.50)

We split the above result according to Qn+1 to derive⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
U n+1

1 =
1
2

∫
Ω

N∑
i=1

H∗

i φ
n+1
i1 dx + G5,

U n+1
2 =

1
2

∫
Ω

N∑
i=1

H∗

i φ
n+1
i2 dx.

(3.51)

We replace (φi1, φi2)n+1 using the split form given in (3.40) to get⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
U n+1

1 =
1
2

∫
Ω

N∑
i=1

H∗

i (φn+1
i11 + U n+1

1 φn+1
i12 )dx + G5,

U n+1
2 =

1
2

∫ N∑
H∗

i (φn+1
i21 + U n+1

2 φn+1
i22 )dx.

(3.52)
Ω i=1

12
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By applying the simple factorization for each equality in (3.52), we derive⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
U n+1

1 =

1
2

∫
Ω

∑N
i=1 H∗

i φ
n+1
i11 dx + G5

1 −
1
2

∫
Ω

∑N
i=1 H∗

i φ
n+1
i12 dx

,

U n+1
2 =

1
2

∫
Ω

∑N
i=1 H∗

i φ
n+1
i21 dx

1 −
1
2

∫
Ω

∑N
i=1 H∗

i φ
n+1
i22 dx

.

(3.53)

We need verify (3.53) is solvable by showing the denominator 1 −
1
2

∫
Ω

∑N
i=1 H∗

i φ
n+1
i22 dx ̸= 0 (note φn+1

i12 = φn+1
i22

hus the two denominators in (3.53) are the same). By taking the L2 inner product of the fourth equation in (3.47)
with φn+1

i22 , and using
∫
Ω φ

n+1
i22 dx = 0, we get

−ϵ

∫
Ω

H∗

i φ
n+1
i22 =

a
2γiδt

∥φn+1
i22 ∥

2
+ ϵe1∥∆φ

n+1
i22 ∥

2
+ ϵe2∥φ

n+1
i22 ∥

2

+
S1

ϵ3 ∥φn+1
i22 ∥

2
+

S2

ϵ
∥∇φn+1

i22 ∥
2
+ ϵS3∥∆φ

n+1
i22 ∥

2
≥ 0,

(3.54)

which implies (3.53) is solvable. After we get U n+1
1 and U n+1

2 from (3.53), we update (φi1, φi2, µi1, µi2)n+1 from
3.40).

Fourth, we use the nonlocal variable Qn+1 to split the velocity field ũn+1 as the following form:

ũn+1
= ũn+1

1 + Qn+1ũn+1
2 . (3.55)

y replacing the variables ũn+1 in (3.26), and then splitting the obtained equation according to Qn+1, we arrive at
system that includes two linear elliptic sub-equations with constant coefficients as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

a
2δt

ũn+1
1 − ν∆ũn+1

1 = −∇ pn
+

bun
− cun−1

2δt
,

a
2δt

ũn+1
2 − ν∆ũn+1

2 = −(u∗
· ∇)u∗

+ λ

N∑
i=1

µ∗

i ∇φ
∗

i .

(3.56)

The two split variables ũn+1
1 , ũn+1

2 follow the boundary conditions described in (3.30), i.e., they are either periodic
or satisfy:

ũn+1
1 |∂Ω = ũn+1

2 |∂Ω = 0. (3.57)

Fifth, we solve the auxiliary variable Qn+1. Using the split form for the variables ũn+1 in (3.55) and µn+1
i in

3.34), one can rewrite the scheme (3.27) as the following form:

(
a

2δt
− ϑ2)Qn+1

=
1

2δt
(bQn

− cQn−1) + ϑ1, (3.58)

where⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ϑ1 =

∫
Ω

N∑
i=1

(
λ(u∗

· ∇)φ∗

i µ
n+1
i1 − λµ∗

i ∇φ
∗

i · ũn+1
1

)
dx +

∫
Ω

(u∗
· ∇)u∗

· ũn+1
1 dx,

ϑ2 =

∫
Ω

N∑
i=1

(
λ(u∗

· ∇)φ∗

i µ
n+1
i2 − λµ∗

i ∇φ
∗

i · ũn+1
2

)
dx +

∫
Ω

(u∗
· ∇)u∗

· ũn+1
2 dx.

(3.59)

We need to verify the solvability of (3.58) by showing a
2δt − ϑ2 ̸= 0 as follows. By multiplying the L2 inner

product of the second equation in (3.56) with ũn+1
2 , we get∫

Ω

−(u∗
· ∇)u∗

· ũn+1
2 dx +

∫
Ω

N∑
i=1

λµ∗

i ∇φ
∗

i · ũn+1
2 dx

=
a

∥ũn+1
∥

2
+ ν∥∇ũn+1

∥
2

≥ 0.

(3.60)
2δt 2 2

13



X. Yang Computer Methods in Applied Mechanics and Engineering 375 (2021) 113600

u

H
v
S
d

3

t

T

By taking the L2 inner product of the first equation in (3.37) with λµn+1
i2 , of the second equation with −λ a

2δt φ
n+1
i2 ,

and combining the two obtained equations, we derive

−

∫
Ω

N∑
i=1

λ(u∗
· ∇)φ∗

i µ
n+1
i2 dx =

N∑
i=1

λγi

µn+1
i2 −

1
|Ω |

∫
Ω

µn+1
i2 dx

2

+

N∑
i=1

(
aλϵe1

2δt
∥∆φn+1

i2 ∥
2
+

aλϵe2

2δt
∥φn+1

i2 ∥
2
)

+
aλ
2δt

N∑
i=1

(
S1

ϵ3 ∥φn+1
i2 ∥

2
+

S2

ϵ
∥∇φn+1

i2 ∥
2
+ ϵS3∥∆φ

n+1
i2 ∥

2
)

+
aλϵ
2δt

U n+1
2

∫
Ω

N∑
i=1

H∗

i φ
n+1
i2 dx.

(3.61)

From the second equation in (3.51), we derive

U n+1
2

∫
Ω

N∑
i=1

H∗

i φ
n+1
i2 dx =

1
2

(∫
Ω

N∑
i=1

H∗

i φ
n+1
i2 dx

)2

, (3.62)

which implies

−

∫
Ω

N∑
i=1

λ(u∗
· ∇)φ∗

i µ
n+1
i2 dx ≥ 0. (3.63)

Therefore, from (3.60) and (3.63), we derive −ϑ2 ≥ 0, which means that the unique solvability of (3.58) is then
verified.

Finally, we update φn+1
i , µn+1

i , U n+1 from (3.34), ũn+1 from (3.55), and obtain un+1, pn+1 from (3.28)–(3.29)
sing the process described in Remark 3.4.

In summary, the scheme (3.23)–(3.29) can be implemented in the following way:

• Stage 1: Compute (φi11, φi12, φi21, φi22)n+1 from (3.47);
• Stage 2: Update (U1,U2)n+1 from (3.53);
• Stage 3: Update (φi1, φi2, µi1, µi2)n+1 from (3.40);
• Stage 4: Compute (ũ1, ũ2)n+1 from (3.56);
• Stage 5: Compute Qn+1 from (3.58);
• Stage 6: Update (φi , µi ,U )n+1 from (3.34), and ũn+1 from (3.55);
• Stage 7: Compute un+1 and pn+1 from (3.28)–(3.29) using the process described in Remark 3.4.

ence, at each time step, the total cost at each time step includes solving 3 × N (N is the number of phase-field
ariables) independent biharmonic equations in Stage 1, 2m (m is the dimension of space) elliptic type equations in
tage 4, and one Poisson type equation in Step 7. All these equations have constant coefficients and are completely
ecoupled, which means very effective calculations in practice.

.4. Unconditional energy stability

The following theorem ensures that the developed scheme (3.23)–(3.29) satisfies the energy stability uncondi-
ionally.

heorem 3.1. The following discrete energy dissipation law holds for the scheme (3.23)–(3.29),

1
δt

(En+1
− En−1) ≤ − ν∥∇ũn+1

∥
2
− λ

N∑
γi

µn+1
i −

1
|Ω |

∫
µn+1

i dx
2

≤ 0, (3.64)

i=1 Ω

14
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w

where

En+1
=

1
2

(1
2
∥un+1

∥
2
+

1
2
∥2un+1

− un
∥

2
)

+
δt2

3
∥∇ pn+1

∥
2

+ λϵ

N∑
i=1

e1

2

(
1
2
∥∆φn+1

i ∥
2
+ ∥2∆φn+1

i − ∆φn
i ∥

2
)

+ λϵ

N∑
i=1

e2

2

(
1
2
∥φn+1

i ∥
2
+ ∥2φn+1

i − φn
i ∥

2
)

+ λϵ(
1
2
|U n+1

|
2
+

1
2
|2U n+1

− U n
|
2
) +

1
2

(
1
2
|Qn+1

|
2
+

1
2
|2Qn+1

− Qn
|
2
)

+

N∑
i=1

(
1
2
λ

S1

ϵ3 ∥φn+1
i − φn

i ∥
2
+

1
2
λ

S2

ϵ
∥∇(φn+1

i − φn
i )∥2

+
1
2
λϵS3∥∆(φn+1

i − φn
i )∥2

)
.

(3.65)

Proof. We multiply the inner product of (3.26) with 2δt ũn+1 in the L2 space, we obtain

(3ũn+1
− 4un

+ un−1, ũn+1) + 2νδt∥∇ũn+1
∥

2
+ 2δt(∇ pn, ũn+1)

= −2δt Qn+1
∫
Ω

(u∗
· ∇)u∗

· ũn+1dx + 2δtλQn+1
N∑

i=1

∫
Ω

(µ∗

i ∇φ
∗

i ) · ũn+1dx.
(3.66)

From (3.28), by taking the L2 inner product of any variable v with ∇ · v = 0 and v · n|∂Ω = 0 (or all variables
are periodic), we have

(un+1, v) = (ũn+1, v). (3.67)

Using (3.67), we derive following equality

(3ũn+1
− 4un

+ un−1, ũn+1)

= (3ũn+1
− 4un

+ un−1,un+1) + (3ũn+1
− 4un

+ un−1, ũn+1
− un+1)

= (3un+1
− 4un

+ un−1,un+1) + (3ũn+1, ũn+1
− un+1)

= (3un+1
− 4un

+ un−1,un+1) + 3(ũn+1
− un+1, ũn+1

+ un+1)

=
1
2

(
∥un+1

∥
2
− ∥un

∥
2
+ ∥2un+1

− un
∥

2
− ∥2un

− un−1
∥

2

+ ∥un+1
− 2un

+ un−1
∥

2
)

+3(∥ũn+1
∥

2
− ∥un+1

∥
2),

(3.68)

here we use the following identity

2(3a − 4b + c, a) = a2
− b2

+ (2a − b)2
− (2b − c)2

+ (a − 2b + c)2. (3.69)

We reformulate the projection step (3.28) as

3
2δt

un+1
+ ∇ pn+1

=
3

2δt
ũn+1

+ ∇ pn. (3.70)

By taking the square of both sides of the above equation, we get

9
4δt2 ∥un+1

∥
2
+ ∥∇ pn+1

∥
2

=
9

4δt2 ∥ũn+1
∥

2
+ ∥∇ pn

∥
2
+

3
δt

(ũn+1,∇ pn). (3.71)

Hence, by multiplying 2δt2/3 of the above equation, we derive

3
(∥un+1

∥
2
− ∥ũn+1

∥
2) +

2δt2

(∥∇ pn+1
∥

2
− ∥∇ pn

∥
2) = 2δt(ũn+1,∇ pn). (3.72)
2 3
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By taking the inner product of (3.28) with 2δtun+1 in the L2 space, we have

3
2

(∥un+1
∥

2
− ∥ũn+1

∥
2
+ ∥un+1

− ũn+1
∥

2) = 0. (3.73)

We combine (3.66), (3.68), (3.72), and (3.73) to obtain

1
2

(∥un+1
∥

2
− ∥un

∥
2
+ ∥2un+1

− un
∥

2
− ∥2un

− un−1
∥

2
+ ∥un+1

− 2un
+ un−1

∥
2)

+
3
2
∥un+1

− ũn+1
∥

2
+

2δt2

3
(∥∇ pn+1

∥
2
− ∥∇ pn

∥
2) + 2νδt∥∇ũn+1

∥
2

= −2δt Qn+1
∫
Ω

(u∗
· ∇)u∗

· ũn+1dx + 2δtλQn+1
N∑

i=1

∫
Ω

(µ∗

i ∇φ
∗

i ) · ũn+1dx.

(3.74)

Computing the inner product of (3.23) with 2λδtµn+1
i in the L2 space, we have

λ(3φn+1
i − 4φn

i + φn−1
i , µn+1

i ) + 2λγiδt
µn+1

i −
1

|Ω |

∫
Ω

µn+1
i dx

2

= −2λδt Qn+1
∫
Ω

(u∗
· ∇)φ∗

i µ
n+1
i dx.

(3.75)

Computing the L2 inner product of (3.24) with −λ(3φn+1
i − 4φn

i + φn−1
i ), we find

−λ(µn+1
i , 3φn+1

i − 4φn
i + φn−1

i ) + λϵe1(∆φn+1
i ,∆(3φn+1

i − 4φn
i + φn−1

i ))

+ λϵe2(φn+1
i , 3φn+1

i − 4φn
i + φn−1

i )

+ λ
S1

ϵ3 (φn+1
i − φ∗

i , 3φn+1
i − 4φn

i + φn−1
i )

+ λ
S2

ϵ
(∇(φn+1

i − φ∗

i ),∇(3φn+1
i − 4φn

i + φn−1
i ))

+ λϵS3(∆(φn+1
i − φ∗

i ),∆(3φn+1
i − 4φn

i + φn−1
i ))

= −ϵλU n+1
∫
Ω

H∗

i (3φn+1
i − 4φn

i + φn−1
i )dx.

(3.76)

By multiplying (3.25) with 2λϵU n+1 and using (3.69), we obtain

λϵ(|U n+1
|
2
− |U n

|
2
+ |2U n+1

− U n
|
2
− |2U n

− U n−1
|
2
+ |U n+1

− 2U n
+ U n−1

|
2
)

= ϵλU n+1
N∑

i=1

∫
Ω

H∗

i (3φn+1
i − 4φn

i + φn−1
i )dx.

(3.77)

By multiplying (3.27) with 2δt Qn+1 and using (3.69), we obtain

1
2

(
|Qn+1

|
2
− |Qn

|
2
+ |2Qn+1

− Qn
|
2
− |2Qn

− Qn−1
|
2
+ |Qn+1

− 2Qn
+ Qn−1

|
2
)

= 2λδt Qn+1
N∑

i=1

∫
Ω

(u∗
· ∇)φ∗

i µ
n+1
i dx − 2λδt Qn+1

N∑
i=1

∫
Ω

(µ∗

i ∇φ
∗

i ) · ũn+1dx

+ 2δt Qn+1
∫

(u∗
· ∇)u∗

· ũn+1dx.

(3.78)
Ω

16



X. Yang Computer Methods in Applied Mechanics and Engineering 375 (2021) 113600

4

p
a
c
d
f
r

Hence, by combining (3.74)–(3.78) and taking the summation for (3.75)–(3.76) with i = 1, . . . , N , we arrive at

1
2

(∥un+1
∥

2
− ∥un

∥
2
+ ∥2un+1

− un
∥

2
− ∥2un

− un−1
∥

2) +
2δt2

3
(∥∇ pn+1

∥
2
− ∥∇ pn

∥
2)

+ λϵe1

N∑
i=1

(
1
2
∥∆φn+1

i ∥
2
−

1
2
∥∆φn

i ∥
2
+

1
2
∥∆(2φn+1

i − φn
i )∥2

−
1
2
∥∆(2φn

i − φn−1
i )∥2

)

+ λϵe2

N∑
i=1

(
1
2
∥φn+1

i ∥
2
−

1
2
∥φn

i ∥
2
+

1
2
∥2φn+1

i − φn
i ∥

2
−

1
2
∥2φn

i − φn−1
i ∥

2
)

+ λ
S1

ϵ3

N∑
i=1

(∥φn+1
i − φn

i ∥
2
− ∥φn

i − φn−1
i ∥

2)

+ λ
S2

ϵ

N∑
i=1

(∥∇φn+1
i − ∇φn

i ∥
2
− ∥∇φn

i − ∇φn−1
i ∥

2)

+ λϵS3

N∑
i=1

(∥∆(φn+1
i − φn

i )∥2
− ∥∆(φn

i − φn−1
i )∥2)

+ λϵ(|U n+1
|
2
− |U n

|
2
+ |2U n+1

− U n
|
2
− |2U n

− U n−1
|
2
)

+
1
2

(|Qn+1
|
2
− |Qn

|
2
+ |2Qn+1

− Qn
|
2
− |2Qn

− Qn−1
|
2
)

+

{ 1
2
∥un+1

− 2un
+ un−1

∥
2
+

3
2
∥un+1

− ũn+1
∥

2

+ λϵe1

N∑
i=1

∥∆(φn+1
i − 2φn

i + φn−1
i )∥2

+ λϵe2

N∑
i=1

∥φn+1
i − 2φn

i + φn−1
i ∥

2

+ 2λ
S1

ϵ3

N∑
i=1

∥φn+1
i − 2φn

i + φn−1
i ∥

2
+ 2λ

S2

ϵ

N∑
i=1

∥∇(φn+1
i − 2φn

i + φn−1
i )∥2

+ 2λϵS3

N∑
i=1

∥∆(φn+1
i − 2φn

i + φn−1
i )∥2

+ λϵ|U n+1
− 2U n

+ U n−1
|
2
+

1
2
|Qn+1

− 2Qn
+ Qn−1

|
2
}

= −2δtν∥∇ũn+1
∥

2
− 2δtλ

N∑
i=1

γi

µn+1
i −

1
|Ω |

∫
Ω

µn+1
i dx

2

,

(3.79)

where we use the following identity:

(3a − 4b + c)(a − 2b + c) = (a − b)2
− (b − c)2

+ 2(a − 2b + c)2. (3.80)

Finally, we obtain (3.64) from (3.79) after dropping the positive terms in { } and dividing both sides by 2. □

. Numerical simulations

In this section, we implement numerical simulations to verify the accuracy and energy stability of the
roposed fully-decoupled scheme (3.23)–(3.29) (denoted by DSAV for short). Numerical simulations include
ccuracy/stability tests, vesicle deformation in 2D and 3D, etc. In all numerical examples, we consider a rectangular
omputational domain. For directions with periodic boundary conditions, the Fourier-spectral method is used for
iscretization. For directions with boundary conditions specified in (3.30), the Legendre–Galerkin method is adopted
or discretization, where the inf–sup stable pair (PN , PN−2) is used for the velocity (ũ and u) and pressure p,
espectively, and P is used for variables φ ,µ .
N i i
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Fig. 4.1. (a) Time evolution curves of the ratio of surface area change that is computed using δt = 0.01/22, and (b) the numerical errors in
L2 for all variables computed by using the scheme DSAV with different time steps. (For simplicity, we plot the average of the errors of the
wo components of the phase-field variables (φ1, φ2) and the velocity field u = (u, v). Moreover, for the nonlocal variable Q, we directly
ompute its error with the exact solution Q(t) = 1.).

.1. Accuracy test

We now test the convergence rates of DSAV by refining the time step. We set the 2D domain as (x, y) ∈ Ω =

0, 2π ]2 and assume the periodic boundary conditions for each direction which is discretized by sufficient fine
eshes so the error in spatial directions can be ignored compared with the time discretization errors. We test the

wo-phase-field model and set the initial condition to be two adjacent circular vesicles with

φ0
i = tanh

(0.28π −
√

(x − xi )2 + (y − yi )2
√

2ϵ

)
, i = 1, 2,u0

= 0, p0
= 0, (4.1)

and set the model parameters to be

x1 = x2 = π, y1 = π + 0.284π, y2 = π − 0.284π, ϵ = 0.08, e1 = e2 = 0.5,
γ1 = γ2 = 0.1,M = 1e4,C12 = 100, λ = 0.01, B = 100, S1 = 4, S2 = 4, S3 = 1.

(4.2)

Using 129 Fourier modes for each direction and the time step size δt = 0.01/22, we implement the designed
cheme DSAV until the steady-state solution is obtained. In Fig. 4.1(a), we plot the evolution curve of the surface
rea difference ratio (defined as

∑N
i=1

⏐⏐⏐ A(φi )−βi
βi

⏐⏐⏐) over time, where the initial and final steady-state profiles of φ1−φ2

re also attached therein. We can see that the surface area difference ratio has been maintained around 1e−3. The
wo vesicles changed from a state of slight contact at the initial moment to a state of tightly adhering together,
here the contact part is a straight line due to the adhesion potential. In Fig. 4.1(b), we plot the L2 errors for all
ariables when t = 0.2 computed by using various time steps δt . Since the exact solution is not known (except the
uxiliary variable Q and Q(t) = 1 is the exact solution), we treat the numerical solution calculated by DSAV with
small time step of δt = 1e−8 as the approximate exact solution (the error of Qn+1 is computed by using its exact

olution of Q(t) = 1). It can be seen that the scheme DSAV presents almost perfect second-order convergence rates
or all variables including the auxiliary variable Q.

Furthermore, we use different time steps to test the energy stability of the scheme DSAV. In Fig. 4.2(a), we
lot the evolution curve of the total free energy in the original form (2.5) calculated using different time steps. It
an be seen that the obtained energy evolution curves always show monotonic decays, which means that DSAV
s unconditionally energy stable. Moreover, as the time step gets smaller and smaller, the obtained energy curves
verlap with each other, indicating that the obtained solution is getting closer and closer to the accurate solution.
18
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Fig. 4.2. (a) The time evolution curves of the total free energy (2.5) calculated by the scheme DSAV with different time steps, where the
small insert is the comparison between the original free energy (2.5) and the discrete energy (3.65) computed using δt = 0.01/23; and (b)
he comparisons of energy evolution curves computed by using different stabilizers and time steps.

Fig. 4.3. (a) The velocity field at t = 0.2 and t = 1, and (b) the pressure p at t = 1.

e also append a small inset figure to show the comparisons between the original free energy (2.5) and the discrete
nergy (3.65) computed using δt = 0.01/23 and there is almost invisible difference between them. In Fig. 4.2(b), we
se different stabilization parameters to verify their effects on improving energy stability by plotting the evolution
f the original free energy (2.5). We find that when S1 = S2 = 0, the energy decreases only when the time step is
ery small (δt ≤ 0.01/25), and when the time step is large, the energy even increases reflecting the instability. We
lso compare the two energy curves obtained with (S1 = S2 = 0, δt = 0.01/25) and (S1 = S2 = 4, δt = 0.01/22).
he coincidence shows that after using the stabilizers, the time step can be increased around 8 times. In Fig. 4.3,
e plot the velocity field and the pressure p at various times.

.2. Deformation of multiple stacked vesicles

.2.1. Singe-phase-field model with N = 1 in 3D
In this example, we study the dynamic deformation of vesicles using the single-phase-field model (i.e., N = 1).

or this model, the adhesion energy vanishes. We set the computational domain to [0, L]3 where L = 1.5π , and
19
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the initial conditions are given as follows:

φ0
=

k∑
i=1

tanh
(rki −

√
(x − xki )2/r2

x + (y − yni )2/r2
y + (z − zki )2/r2

z
√

2ϵ

)
+ k − 1,

u0
= 0, p0

= 0,

(4.3)

here k is the number of vesicles. For k = 1, we set the initial shape of vesicle to be a wide or narrow ellipsoid.
or the former, we set r11 = 0.75, x11 = y11 = z11 = π, rx = ry = 0.8L , rz = 0.16L , and for the latter, r11 = 0.75,

x11 = y11 = z11 = π, rx = ry = 0.07L , rz = 0.65L . For k = 2, we set the initial shape of vesicles to be two
djacent spheres, in which, r21 = r22 = 0.14L , x21 = x22 = y21 = y22 = L , z21 = 0.642L , z22 = 0.358L . For
= 4, we set the initial condition to be four adjacent spheres placed randomly, in which r41 = r42 = r43 = 0.14L ,

44 = 0.125L , x41 = 0.3L , x42 = 0.67L , x43 = 0.48L , x44 = 0.48L , y41 = y42 = y43 = 0.5L , y44 = 0.715L ,
z41 = z42 = z43 = 0.5L , z44 = 0.27L . The model parameters are set as follows:

ϵ = 0.08, ν = 1, γ = 0.1, B = 1e2,
e1 = e2 = 0.5, S1 = 4, S2 = 4, S3 = 1, λ = 0.01, δt = 1e−3.

(4.4)

e use 129 Fourier modes to discretize each of the x and y directions which are assumed to be periodic and use the
egendre polynomials up to the degree of 128 to discretize the z direction which is assumed to satisfy the boundary
onditions specified in (3.30).

For k = 1 with the initial shape as a wide ellipsoid, in Fig. 4.4(a), we plot the time evolution of surface area
hange rate under two surface area parameters M , and attach the snapshots of an isosurface of {φ = 0} at different
imes. When M = 0, although the volume remains unchanged, the ellipsoid gradually shrinks, and the ratio of
urface area change eventually reaches about 16%. When M = 1e5, the final shape of the ellipsoid vesicle becomes
he pancake shape, where the middle region is slightly thinner, and the ratio of surface area change is always around
e−4. In Fig. 4.4(b), the surface area change and profiles of the narrow ellipsoid for M = 0 and M = 1e5 are
lotted. When M = 0, the narrow vesicle shrinks to the spherical shape, and when M = 1e5, it becomes a capsule
hape. The surface area changes are approximately 25% and 5e−4, respectively.

For k = 2 (two stacked vesicles), as shown in Fig. 4.5(a), we can see that when M = 0, the vesicles fuse and
hrink, and the surface area ratio changes up to around 14%; when M = 1e5, the steady-state shape is displayed
s a capsule, and the surface area ratio is approximately 1e−4. For k = 4 (four stacked vesicles), as shown in
ig. 4.5(b), we can see that when M = 0, the vesicles fuse and shrink to form a structure with multiple pores, and

he surface area ratio changes up to 14%; when M = 1e5, the steady-state shape forms a ring and the surface area
atio is approximately 2e−4.

.2.2. Multi-phase-field model
In this example, we simulate the multi-phase-field model to study the dynamic deformation of vesicles. In each

f the following figures, we plot the time evolutions of the ratio of surface area change and attach the topological
rofiles of φi at various times using different colors. For the sake of simplicity, we ignore the detailed initial
ondition formulas of φi , because they are just set to some simple shapes like circles, spheres, ellipses, or ellipsoids.
he computational domain is set to [0, L]m,m = 2, 3 with L = 2π with the periodic boundary conditions, and
ach direction is discretized using 257 Fourier modes.

The model parameters are set as

ϵ = 0.06, ν = 1, γi = 0.1,M = 1e4,Ci j = 200,
B = 1e2, e1 = e2 = 0.5, S1 = 4, S2 = 4, S3 = 1, λ = 0.01, δt = 1e−4.

(4.5)

In Fig. 4.6(a)–(f) with N = 2, we set the initial conditions of φi to be multiple slightly touching 2D vesicles
tacked in different positions. We can see that, due to the adhesion energy, the vesicles adhere to each other tightly
nd they finally evolve into different patterns. The ratio of the surface area changes are all kept to be small due to
he surface area constraint potential.

In Fig. 4.7(a)–(d) with N = 2, various simulations in 3D are simulated. It is worth noting that some results of

D simulation and 2D simulation are consistent, such as Figs. 4.6(c) and 4.7(c) all form a hamburger shape. But
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Fig. 4.4. Deformation of a 3D ellipsoid vesicles for the simulation of the single-phase-field model with N = 1 where (a) a wide ellipsoid,
b) a narrow ellipsoid. In each subfigure, we plot the time evolution of the ratio of surface area change for two surface area parameter

M = 0 and M = 1e5 and append the isosurfaces of {φ = 0} at the initial moments and the steady state.

ome are different, such as Figs. 4.6(e) and 4.7(d), where the 2D result forms a bun shape with two closely fitting
llipses, while the 3D result has a hole in the middle. In Fig. 4.8(a)–(b), we use three lightly touched elliptical
ellipsoid) vesicles of the same size as initial conditions to simulate the multi-phase-field model of N = 3 in 2D

and 3D. It can be seen that due to the adhesive force, they all eventually become the shape of a hamburger.

4.3. Sedimentation of multiple vesicles driven by the gravity force

In this example, we simulate the sedimentation of multiple vesicles driven by the gravity force. The sedimentation
of a single vesicle had been studied experimentally in [51], and simulated using the different model in [52]. For
simplicity, we approximated the gravity force using the Boussinesq approximation, namely, the momentum equation
is replaced by

ut + (u · ∇)u − ν∆u + ∇ p − λ

N∑
µi∇φi = g

N∑
φi , (4.6)
i=1 i=1
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Fig. 4.5. Deformation of two and four 3D stacked spherical vesicles for the simulation of the single-phase-field model with N = 1. In each
subfigure, we plot the time evolution of the ratio of surface area change for two surface area parameter M = 0 and M = 1e5 and append
the isosurfaces of {φ = 0} at the various times.

with g = (0, 0, 20). The other model parameters are set as

ϵ = 0.08, ν = 1, γi = 0.1,M = 1e4,Ci j = 200,

B = 100, e1 = e2 = 0.5, S1 = 4, S2 = 4, S3 = 1, λ = 0.01, δt = 1e−3.
(4.7)

We perform 3D simulations for the multi-phase-field model by setting the computational domain is set to be
x, y, z) ∈ Ω = [0, 2π ] × [0, 2π ] × [0, 4π ]. We set periodic boundary conditions along the x and y directions
nd discretize each of them using 128 Fourier modes. For the z-direction, we use the boundary conditions given in
3.30) and use the Legendre–Galerkin method of Legendre polynomials to the degree of 128 for discretization.
n Figs. 4.9–4.11, we simulate the sediment process of two symmetrically placed vesicles (N = 2), two
symmetrically placed vesicles (N = 2), and three asymmetrically placed vesicles (N = 3). We use different
olors to plot the interface contour {φi = 0} at different times of the dynamical process. We find that these
esicles exhibit different dynamic changes of merging, and eventually collide and fuse together due to the adhesion
otential, where the vesicles that are asymmetrically descended show a state of tilted angle due to the interactive

dhesion.
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t

Fig. 4.6. Deformation of multiple stacked 2D vesicles for the simulation of the two-phase-field model (N = 2). In each subfigure, we plot
he time evolution of the surface area difference ratio and append the profiles of φ1 − φ2 at various times until the steady state.
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Fig. 4.7. Deformation of multiple stacked 3D vesicles for the simulation of the two-phase-field model (N = 2). In each subfigure, we plot
he time evolution of the surface area difference ratio and append the isosurface plots of {φi = 0} at various times using different colors
ntil the steady state. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
rticle.)

.4. Dynamics of multiple vesicles driven by the shear flow

In this example, we simulate the dynamic motion of multiple vesicles driven by the shear flow imposed on the
oundary. The shear flow dynamics for a single vesicle had been studied in [53,54]. We set the computational domain
o be (x, y, z) ∈ Ω = [0, 4π ] × [0, 2π ] × [0, 2π ]. We set periodic boundary conditions along the x and y directions
nd discretize each of them using 128 Fourier modes. For the z-direction, we use the boundary conditions given in
3.30) and use the Legendre–Galerkin method of Legendre polynomials to the degree of 128 for discretization. We
et the boundary condition of the velocity field u = (u, v, w) as

u|z=0,2π = ±u0, v|z=0,2π = w|z=0,2π = 0. (4.8)

he other model parameters are set as

N = 3, ϵ = 0.08, ν = 1, γi = 0.1,M = 1e4,Ci j = 200,
B = 100, e1 = e2 = 0.5, S1 = 4, S2 = 4, S3 = 1, λ = 0.01, δt = 1e−3, u0 = 3.

(4.9)

n Fig. 4.12, we simulate the dynamical process of three vesicles driven by the shear flow on the boundary. We use

ifferent colors to plot the interface contour {φi = 0} at different times of the dynamical process. We find that the
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Fig. 4.8. Deformation of multiple stacked 2D and 3D vesicles for the simulation of the three-phase-field model (N = 3). In each subfigure,
we plot the time evolution of the surface area difference ratio and append the isosurface plots of {φi = 0} at various times using different
olors until the steady state. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
his article.)

Fig. 4.9. 3D simulations of two symmetrically placed vesicles (N = 2) driven by gravity force, and snapshots of the vesicles are taken at
= 0, 0.4, 0.8, 1.2, 1.6, 2, 2.2, 2.4, 2.8, 3.2, 3.4, 3.6, 4, and 4.2. (For interpretation of the references to color in this figure legend, the

eader is referred to the web version of this article.)

hree vesicles are deformed into different shapes by the flow field. Due to the adhesive potential, the three vesicles
re always adhered together and elongated into a slender shape.

.5. Dynamics of multiple vesicles driven by the Poiseuille flow: wrinkles

In this example, we simulate the dynamic motion of multiple vesicles driven by the Poiseuille flow. We perform
D simulations for the multi-phase-field model with N = 3, where the computational domain is set to be
(x, y, z) ∈ Ω = [0, 4π ] × [0, 2π ] × [0, 2π ]. We set periodic boundary conditions along the x and y directions
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Fig. 4.10. 3D simulations of two asymmetrically placed vesicles (N = 2) driven by gravity force, and snapshots of the vesicle are taken at
t = 0, 0.4, 0.8, 1.2, 1.6, 2, 2.4, 2.8, 3, 3.4, 3.6, 3.8, 4.2, and 4.4. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 4.11. 3D simulations of three asymmetrically placed vesicles (N = 3) driven by gravity force, and snapshots of the vesicle are taken
at t = 0, 0.4, 0.6, 1.2, 1.6, 2, 2.2, 2.4, 2.6, 2.8, 3.2, 3.6, 4, and 4.4. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

and discretize each of them using 128 Fourier modes. For the z-direction, we use the boundary conditions given in
(3.30) and use the Legendre–Galerkin method of Legendre polynomials to the degree of 128 for discretization. We
impose a force on the momentum equation to drive the flow motion, where the momentum equation is replaced by

ut + (u · ∇)u − ν∆u + ∇ p − λ

N∑
i=1

µi∇φi = g, (4.10)

with g = (20, 0, 0). The other model parameters are set as

N = 3, ϵ = 0.08, ν = 1, γi = 0.1,M = 1e4,Ci j = 200,
(4.11)
B = 100, e1 = e2 = 0.5, S1 = 4, S2 = 4, S3 = 1, λ = 0.01, δt = 1e−3.
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Fig. 4.12. 3D simulations of multiple vesicles (N = 3) driven by the shear flow on the boundary, and snapshots of the vesicle are taken
t t = 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 4.8, and 5.1. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

n Fig. 4.13, we use different colors to plot the interface contour {φi = 0} at different times of the dynamical process,
where we can see that the vesicles form wrinkles due the flow field which had been also observed by experiments
in [55,56]. Due to the initial shape of the vesicles and the different angles facing the flow field, different dynamic
changes are observed. For example, the surface of the vesicles that were initially ellipsoid show more wrinkles,
while the vesicle that is initially spherical were compressed into a flat oblate shape over the time.

5. Concluding remarks

In this article, we first modify the classic multi-phase-field EBE model to establish a new volume-conserved

model. Then, for the flow-coupled model, we develop a new decoupling method, and combine it with other proven
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Fig. 4.13. 3D simulations of multiple vesicles (N = 3) driven by Poiseuille flow, and snapshots of the vesicle are taken at t = 0, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, and 0.8.

effective numerical methods, to form an efficient numerical scheme. At each time step, one only needs to solve a
few linear fully-decoupled equations with constant coefficients. The specialty of the new decoupling method is that
the nonlinear coupling terms have been explicitly processed while still ensuring the unconditional energy stability.
This method can also be extended to other flow coupling models as long as the coupled nonlinear terms satisfy the
“zero-energy-contribution” property. We also conduct numerous numerical tests in 2D and 3D to demonstrate the
accuracy and stability of the scheme.
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