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Abstract

For the highly coupled and nonlinear Cahn—Hilliard phase-field model of three-phase incompressible flow, how to establish
a fully-decoupled numerical scheme with second-order time accuracy has always been a very difficult and unsolved problem.
In this paper, we propose a novel decoupling method, which only needs to solve several decoupling linear elliptic equations
with constant coefficients at each time step to obtain a numerical solution with second-order time accuracy. The key idea is
to introduce two nonlocal auxiliary variables into the system, one of which is used to linearize the nonlinear potential, and
the other is used to introduce an ordinary differential equation to deal with the nonlinear coupling terms with “zero-energy-
contribution” characteristics. We strictly prove the solvability and unconditional energy stability of the scheme, and conduct
numerical simulations in 2D and 3D to show the accuracy and stability of the scheme numerically. To the best of the author’s
knowledge, the method developed in this paper is the first second-order fully-decoupled scheme for the hydrodynamics coupled
phase-field model.
(© 2020 Elsevier B.V. Allrights reserved.
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1. Introduction

Unlike the phase-field model of the two-phase flow system that requires only one phase-field variable to represent
the volume fraction of two phases, the Cahn—Hilliard phase-field model of three-phase incompressible flows usually
requires three phase-field variables to formally represent the volume (or mass) of each component [1—4]. In the total
free energy, the hydrophilic-hydrophobic tendency of each phase-field variable is independent, but to ensure the so-
called free-leakage condition of the system, a Lagrange multiplier needs to be added in each Cahn—Hilliard equation,
thereby establishing a highly nonlinear and coupled system. Not only that, for some specific physical phenomena,
such as the so-called “total spreading” situation, but it is also necessary to add some coupled higher-order terms to
the total free energy to ensure the well-posedness of the entire system. Finally, after combining the Navier—Stokes
equation describing the characteristics of the incompressible flow field, a highly coupled and nonlinear complex
dynamical system is obtained. Among them, the coupling terms can be divided into two categories, one is formulated
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from the energy variation, the other comes from fluid properties, including the advection and surface tension from
the three fluid components.

We recall that for this complex model, there are still some successful attempts to develop numerical algorithms
that can achieve unconditional energy stability, or fully-decoupling structure, or both. Some are for the partial
model without the flow field, such as the nonlinear method in [3,4], Invariant Energy Quadratization (IEQ) method
in [5], Scalar Auxiliary Variable (SAV) method in [6,7], etc. For the full model with the flow field, to the best of
the author’s knowledge, the only fully-decoupled scheme with unconditional energy stability is developed in [8],
however, the scheme is only first-order in time, and its computational cost is relatively expensive due to the nonlinear
nature. Hence, a natural question arises, why it is so difficult to establish a fully-decoupled and second-order
time-accurate scheme, since we all know that there are so many second-order energy-stable numerical schemes
for the phase-field models (for example, the linear stabilization [9—12], convex splitting [13—17], IEQ [5,18-22],
SAV [18,23-27], nonlinear derivative [28], nonlinear quadrature [29-31] methods, etc.), and the Navier—Stokes
equations (for example, the projection-type methods including pressure-correction, velocity-correction, Gauge-
method, etc., see [32—35]). Therefore, based on the above facts, it can be considered that simply combining these
methods can easily obtain the ideal scheme, that is, a completely decoupled and second-order time-accurate scheme.

However, unfortunately, the current situation is that we still lack sufficient skills to achieve such a scheme, where
the main difficulty lies in how to discretize the advection and surface tension terms. At present, for these two kinds
of terms, the most popular method is to discretize them by using the explicit and implicit combination method or
completely implicit method, which will inevitably lead to expensive nonlinear fully-coupled schemes or relatively
fast linear fully-coupled schemes, cf. [8,12,17,36—43]. Besides, a decoupling method was developed in [8], the main
idea of which is to add a stabilization term to the explicit advection velocity term, thereby decoupling the momentum
equation and the Cahn—Hilliard equation ingeniously. However, the disadvantage is that the added stabilization term
contains an implicitly processed chemical potential, which leads to the need to solve the Cahn-Hilliard equation
with variable coefficients at each time step, resulting in a higher computational cost than with constant coefficients.
Moreover, the scheme in [8] is only first-order time-accurate, and it seems to be difficult to generalize the idea of
stabilization to the second-order version.

Therefore, for the highly challenging three-phase flow-coupled model, this paper attempts to develop an effective
scheme from a novel perspective. We expect the scheme is not only unconditionally energy stable, linear, second-
order time accurate but also fully-decoupled. We also expect that only a few independent elliptic equations need to
be solved at each time step, thereby reducing the actual calculation cost. To this end, on the one hand, we combine
some effective methods, such as the projection method for solving the coupling of pressure and velocity, and the
SAV method that converts the nonlinear energy potential to the quadratic form of the auxiliary variable, thus a
linear scheme is obtained. On the other hand, we develop a novel decoupling method which makes full use of the
so-called “zero-energy-contribution” characteristics that are satisfied by the advection and surface tension, that is,
when deriving the energy law, these two types of terms, after performing the inner product with certain specific
functions, will cancel each other without entering the law of energy. Using this feature, we introduce a nonlocal
auxiliary variable and design an ordinary differential equation containing the inner product of these terms and
specific functions. This equation is trivial at the PDE level because through integrating by parts or using divergence-
free condition, all terms contained in the equation can be canceled or equal to zero. However, after discretization,
this ODE can help to eliminate all the troublesome nonlinear terms that are explicitly handled, thereby obtaining
unconditional energy stability. Moreover, the introduction of this auxiliary variable can decompose each discrete
equation into multiple sub-equations, which can be solved independently to achieve the fully-decoupling structure.

Combining all these numerical techniques, we propose a novel scheme that only requires solving several linear
and fully-decoupled elliptic equations with constant coefficients at each time step. We also give the rigorous proofs
of the unconditional energy stability and further simulate various numerical examples in 2D and 3D to demonstrate
stability and accuracy. It is worth noting that as long as the coupling term satisfies the “zero-energy-contribution”
characteristic, the decoupling technique proposed in this paper can be universally applied to achieve fully-decoupling
type schemes. To the author’s knowledge, the method developed in this paper is not only the first second-order fully-
decoupled scheme for the particular three-phase model, but also the first method to generate the fully-decoupled
scheme for coupled models with “zero-energy-contribution” terms.

The rest of the paper is organized as follows. In Section 2, we briefly describe the Cahn—Hilliard phase-field
model of three-phase incompressible flow and derive its associated PDE energy dissipation law. In Section 3, we
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introduce the numerical scheme, explain its implementations in detail, and prove its solvability and discrete energy
dissipation law rigorously. In Section 4, many numerical examples are given to illustrate the accuracy and efficiency
of the scheme. We finally give some concluding remarks in Section 5.

2. Model system

We briefly outline the Cahn—Hilliard phase-field system, which simulates the three immiscible fluid components
proposed in [2-4]. A domain {2 is an open bounded, connected, subset in R? of d = 2,3, with a sufficiently
smooth boundary. We assume ¢; (i = 1, 2, 3) to be the ith phase-field variable which represents the volume of the
ith component in the fluid mixture, such that

1 inside the ith component,
¢i(x, 1) = { 2.1

0 outside the ith component,

where x € (2, t is time in [0, T]. A smooth layer with the thickness € is used to connect the interface between
0 and 1. Assuming the mixture being perfect (called as free-leakage condition), the three unknowns ¢;, ¢,, ¢3 are
linked by the following relationship:

d1(x, 1) + ¢o(x, 1) + P3(x, 1) = 1. (2.2)

There are several ways to promote the two-phase model to the three-phase case, cf. [1-4]. In this article, we use
the model developed in [2—4] and assume the total free energy as

3e 12
E(¢1,¢2,¢3)=/ (_8 L(1. ¢2, $3) + —F(¢1,¢>2,¢3)>dx, (23)
0 €

where € is the order parameter to characterize the interfacial width, L(¢1, ¢», ¢3) is the linear part, and F(¢, ¢z, ¢3)
is the nonlinear part.
The linear part is given as

L(¢1, 2, §3) = 21|V 1> + 25|V |* + Z5| Vs, (2.4)

where the coefficient Y; represents the “spreading” coefficient of the ith at the interface between jth phase and
kth phase. One can deduce that the following conditions hold between the three surface tension parameters o;;
(012, 013, 023) and three spreading coefficients (X, X», 33) (see [2—4]):

2[ = 0jj + ojx — O‘jk,i = 1, 2, 3. (25)

Note X; might not be always positive. If X; > 0, it means that the spreading is “partial”, if Y; < 0, it is called
“total”.
The nonlinear potential F(¢;, ¢», ¢3) is given as:

F(¢1, ¢2, $3) =012¢795 + 0130703 + 023503
+ $10203(Z1d1 + Doty + Tss) + 3A¢TpIe3,

where A is a non-negative constant. Since ¢y, ¢,, ¢3 satisfy the free-leakage condition (2.2), F(¢1, ¢2, ¢3) can be
rewritten as

F(¢1, 42, ¢3) = Fo(d1, ¢2, $3) + P(d1, 2, $3), 2.7

where

(2.6)

X by by
Fo(¢1, ¢ ¢3) = 7%%(1 — 1)+ 72¢§<1 — ¢ + 73¢>§<1 — $3)%,
P(®1, b2, b3) = 3AP P33,

Regarding the total free energy and surface tension coefficients, some remarks are given as follows (see the
details in [4]):

(2.8)

Remark 2.1. Let 0y;, 013 and 0,3 be three positive numbers and Y, X, and X5 defined by (2.5). For any A > 0,
the bulk free energy F(¢i, ¢o, ¢3) defined in (2.7) is bounded from below if ¢y, ¢, ¢3 satisfies the free-leakage
condition (2.2).
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Remark 2.2. For any &, + & + & = 0, there exists a constant X' > 0 such that

Tlgi + Dlel + Hial = Z(1a P + &P + 161) = 0, 2.9)
if and only if the following conditions are valid:
2122+2123+2223>0,2‘[+2j>0,Vl';£j. (210)

Furthermore, the lower bound only depends on X, Y, X3 and A. Hence, if ¢y, ¢o, ¢3 satisfies the free-leakage
condition (2.2), we derive V¢, + V¢, + Vo3 = 0. Hence, from (2.9), we get

3 3
D TVeP = 2 IVeill® = o. @.11)
i=1 i=1

Remark 2.3. To form a meaningful physical system, the energy potential F (¢, ¢», ¢3) defined in (2.7) must be
bounded from below. For partial spreading case (J; > 0, Vi), one can assume that A = 0 since Fy(¢, ¢, ¢3) > 0 is
naturally fulfilled. For the total spreading case, /A has to be non-zero. Moreover, in order to ensure the non-negativity
of F, A must be large enough.

For the 3D case, it is shown in [4] that when P(¢1, ¢,, ¢3) takes the following form, the bulk energy F is
bounded from below:

P($1, ¢, $3) = 3API 303 (Pa(D1) + Pu(h2) + Pu(h3)) (2.12)

where ¢, (x) = m with0 <a <2

17
Since (2.8) is more commonly used in [2,4], we also adopt it for simplicity. It is clear that the numerical scheme

developed in this paper can handle (2.9) or (2.12) without any essential difficulties.

To couple the fluid momentum into the system, the total free energy becomes

I, 3e 12
Etaf(us ¢17 ¢27 ¢3) = / (§|u| + ?L(qslv ¢23 ¢3)+ _F(¢11 ¢23 ¢3))dxv (213)
] €

where u represents the fluid velocity.

Assuming that the fluid is incompressible and follows the generalized Fick’s law, that is, the mass flux is
proportional to the gradient of the chemical potential, we can derive the following three-phase Cahn—Hilliard model
coupled with hydrodynamics:

G+ V - (ugy) = MA%, (2.14)
3 12 .
Mi Z_ZGZAQSZ—F?(](I +ﬂL)’ 1= 1’2937 (215)
3
utu-Vu—vAu+Vp+ Y ¢V =0, (2.16)
i=1
V.u=0, (2.17)

where M is the mobility parameter, f; = 9; F, p is the pressure, v is the fluid viscosity, 8, is the Lagrange multiplier
to ensure the free-leakage condition (2.2) and it can be derived as

fl f2 f3 . 1 1 1 1
S VA N R £ A A T 2.18
IBL T(Zl 22 23) ' ZT Zl 22 23 ( )

The boundary conditions of the system are one of the following two types:
(i) all variables are periodic, or (ii) uly = Ind;il9e = mitilse =0,i=1,2,3, (2.19)
where n is the unit outward normal to the boundary (2. The initial conditions are given by
uli=0) = u’, plu=o = P°, dilu=0) = ¢}, (2.20)
where the initial condition also satisfies the free-leakage condition ¢? + qbg + ¢§) =1.

4
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Remark 2.4. It can be proved that the three-phase system (2.14)—(2.15) is equivalent to the following PDE system
using two variables

G+ V- (up) = MALL,
i
3 12 (2.21)
Wi = —ZEEI‘A@ + ?(fi +BL), i =12,
where ¢3 and w3 are given by the following explicit formula:

dr+dr+d3 =1, (2.22)
M1 M2 M3
—+—=+—==0. 2.23
5 TRy (2.23)

Since the proof is quite similar to Theorem 3.1, we omit the details here.

The model equations (2.14)—(2.17) follow a dissipative energy law. By taking the L? inner product of (2.14) with
Wi, of (2.15) with —¢;,, of (2.16) with u, and performing integration by parts, we can obtain

Vi |?
(Dirs i) = —M X; My / V- (ug)u;dx, (2.24)
i Q
3 12 12
—(1is dir) + géﬂidtllvfﬁillz + ?dt/ F(¢i)dx = —?(ﬂL, ®ir)s (2.25)
Q
1 2 2 :
Ed,||u|| +v|Vu|*=(p,V-u)=— | (u-V)u-udx — Z ¢V -udx. (2.26)
Q = /e

Then, we take the summation of (2.24) and (2.25) for i = 1,2, 3, and combine the obtained results with (2.26).
Using (2.17) for the pressure term and (8, (91 + ¢2 + ¢3);) = (BL, (1);) = 0 from (2.22), we obtain the energy
dissipative law as

d
EEM(U’ o1, P2, ¢3)

2 2 2

\J \%% Vs
=—V2—M(Z— N e 2—)
V(| Vul| 1” ) + 2 5 +2; 5, 2.27)
Vi > Vi P | Vs |
< —ivalP - me(| =)+ 2] + 2] )
5 > A

where the last inequality is derived by using (2.9) since (w1, 12, (43) satisfies the condition (2.23).

Remark 2.5. When deriving the PDE energy law (2.27), due to the divergence-free condition, the advection term
vanishes. The advection and surface tension terms are offset by using integration by parts, i.e.,

/(qs,-wi w4+ V- (ugp)dx =0,i =1,2,3. (2.28)
(9]

This means that the advection and surface tension terms do not contribute to the total free energy or energy
diffusivity, that is, they satisfy the “zero-energy-contribution” feature, which provides us with inspiration for
designing a fully-decoupled scheme given in the next section.

3. Numerical schemes

The purpose of this section is to construct a fully-decoupled numerical scheme to solve the flow-coupled phase-
field system of three components incompressible flow system (2.14)—(2.17). At the same time, considering the
efficiency and accuracy of the algorithm in practice, we also expect that the scheme can satisfy linearity, second-
order time accuracy, and unconditional energy stability. The detailed process for developing such a scheme is given
as follows.

First, we define the auxiliary function U(x, t) as

U =\//Q F(¢1, ¢2, ¢3)dx + B, 3.1
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where B is any constant such that the radicand is always positive (Note F(¢1, ¢», ¢3) is always bounded from below
from Remark 2.3).

Second, we define another nonlocal type scalar auxiliary variable: Q(¢) = 1 which is written as the solution of
a simple ordinary differential equation, that reads as

t=0,
{3 o (3.2)

Then, by combining the two nonlocal variables U and Q, and the trivial evolution Eq. (3.2), the system
(2.14)—(2.17) is reformulated to the following form:

dir + OV - (up) = MAL, (3.3)
3 12 .
i :_Z€2A¢l+_(Hl+ﬂ)U7 l =172737 (3'4)
€
1 3
Ur=5 ; /g Higirdx, 3-5)
3
U+ Qu-Vu—vAu+Vp+ QY ¢V =0, (3.6)
i=1
3 3
0, = Z/ V-(uqb,»),u,»dx—}—Z/ iV i -udx+/ u-Vu-udx, (3.7)
i=1 7% i=1 7% ©
V.u=0, (3.8)
where
H, H, H
==+ =+4+=2), 3.
B T(21+22+23> (3.9
H; = /i ) (3.10)
JJo F@1. 62, 69dx + B
Note (3.9) can be also written as the following form,
H H H
1+/3+ 2+,3+ stB _ (3.11)

2 25 23
The variables (u, p, ¢;, u;, U, Q) constitutes a closed PDE system. The initial conditions are given as follows,

0 0 0 .
Ulg—g) =", ply=oy = p, Qilg=0) = ¢;,i =1,2,3,

0 0 40 40 (.12)
Ul = U° = fQF«p 62, 60)dx + B, Qlgey = 1.

Note that since Eqgs. (3.5) and (3.7) are ODEs that change with time, the boundary conditions for U, Q are not
needed at all. So the boundary conditions of the system (3.3)—(3.8) are still (2.19).

Remarkably, in the new system (3.3)—(3.8), we multiply each term that satisfies the “zero-energy-contribution”
characteristic with the nonlocal variable Q. It is easy to find that, after using integration by parts and the divergence-
free condition, the combination of all nonlinear integrations in (3.7) is equal to zero, which means Q = 1 and thus
the new system (3.3)—(3.8) is equivalent to the original PDE system (2.14)—(2.17). Meanwhile, the new system
(3.3)—(3.8) also holds the law of energy dissipation that can be obtained through a similar process to obtain (2.27).
Since the discrete-level energy stability proof process follows the same principle, we introduce the following detailed
process to make it more clear.

We multiply the L? inner product of (3.3) with u; to get
Vi |?

(i, i) = —M X 5}

— Q/ V- (ug)uidx . (3.13)
Q

1§
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We multiply the L? inner product of (3.4) with —¢;, to get

3 5 12 12
— (Wi, i) + 5€2idi |V@ill” = — —U | Hipidx ——(B, ¢ir). (3.14)
8 € ) €
—_——
v,

We multiply (3.5) with 2?4U to derive

’;
12 ‘12
—d|UP =) —U/ Heidx . (3.15)
€ - € 0
iz
v,

By multiplying the L? inner product of (3.6) with u, we get

3
| :
Sl + v Vul? = (p, V- w) = —QZ/ $i Vi -udx——Q/ (u- V)u- udx. (3.16)
i=1 v 2

I, e

By multiplying (3.7) with Q, we get

1 3 3
d,<§|Q|2) - Q;/Qv-(u@)mderQ;/Q@vm ~udx+Q/Qu-Vu~udx. (3.17)

5 I, I,

Combining the above five Egs. (3.13)—(3.17), using (8, Z?zl ¢ir) = (B, (1);) = 0, and noting that the two terms
with the same Rome numerals under curly braces cancel each other out, we derive

d
EE(IL ¢1.¢2.93. U, Q)

2 2 2

Vu Vu Vu
= —vivulr - m(z |2+ | 52 s 2 (3.18)
IA 5
Vi | |V P || Vs |
< —v||Vu||2 —ME( M1 T M2 + M3 )
5] A A

where the two negative terms on the right end prescribe the energy diffusive rate and
1 3 12 1
EQ, 1,2, ¢5, U, 0) = Sllull* + 2 3 Tl Vei|* + ~UI + 510 (3.19)
i=1

Remark 3.1. After adding the simple ODE (3.7), we can see that the derivation of the law of energy becomes
slightly different from that of the original system. For example, we no longer need the term I; in (3.13) and II;
in (3.16) to cancel each other. Instead, I; is canceled by I, and II; is canceled by II,, where I, and II, are from
the new ODE (3.7). In other words, for the discrete case, we can use different methods to discretize the advection
(associated with I;) and surface tension (associated with II;), which makes it possible to design a fully-decoupled
scheme.

Now, it is ready to build up a numerical scheme to discretize the new system (3.3)—(3.8) by using the second-order
backward differentiation formula (BDF2). It reads as follows.
We compute (@, u, p, (¢, f4i)i=1.2,3. U, Q)"*' by

s+l hu” n—1 3
au u + cu + Qn+1(u* A V)u* _ VAﬁn+1 + Vpn + QI‘L+1 Z(ﬁfvllj — 0’ (320)
26t =
agi ™! —bo +edf pit!
i i i iy (wfo) = MAZEL , 3.21
261 +Q ;) b5 (3.21)

7
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3 12 S
it = —Zeﬂiﬂfl);”l + ?(Hi* + gHU! + ;Ei(qb;’*‘ —¢"), (3.22)

3

1

aU™! —pU" 4 cU" ! = 3 D Hiagi ' = be + el ), (3.23)

i=1

1 3 3
ﬁ(aQ”H —bQ"+cQ"H = Z/ V- o dx + Z/ (V) - dx (3.24)
i=1 7% i=1 v

—i—/ (u* - Viu* - 1" dx,
%)

a -
E(un+l _ uVH-l) + V(er-l _ pn) — 0’ (325)
V.utl =0, (3.26)

where
a=3b=4,c=1,u =2u" —u"! ¢} =2¢" — ¢!

i ’

M =2y — My Hy = i@y, @, P3), = o\ T 5 )

S > 0 is a stabilization parameter, and the boundary conditions of the scheme are either periodic for all variables,
or

"Moo =u" nl0 = 0,00 9o = ! o = 0,i = 1,2,3. (3.28)

In the next few remarks, we give some explanations of the scheme.

Remark 3.2. The scheme is linear and each nonlinear term is discretized using the implicit—explicit combination
method. For the hydrodynamical equations, we adopt the second-order pressure-correction scheme (3.20)—(3.25)-
(3.26) (cf. [44]) where w"*! is the intermediate velocity that follows the Dirichlet boundary conditions and the
final velocity field u"*! follows the divergence-free condition. To obtain the pressure, we just apply the divergence
operator to (3.25) and then obtain the following Poisson equation for p"*!, i.e.,

—Ap™ = — v @t - Ap, 3.29
b 251 P (3.29)
Once p"*! is computed from (3.29), we update u"*! by using (3.25), i.e.,
- 26t
un+1 — un+1 _ _v(er-l _ pn). (3.30)
a

Remark 3.3. Note that the coefficient H* actually contains explicitly processed terms f(¢i, ¢2, ¢3), so we add
the comparable stabilizer (S ~ O(1)) in (3.22). Although this term introduces an extra error of §8129,,¢;(-), whose
magnitude is comparable with the error caused by the second-order extrapolated of the nonlinear term f;(¢;, ¢2, ¢3).
In Section 4, we present enough numerical evidence to show that this stabilizer is critical to maintain the accuracy
and improve the energy stability while using large time steps, see the accuracy/stability tests shown in Figs. 4.2
and 4.3.

Remark 3.4. The initialization of the second-order scheme requires all values at t = ¢!, which can be obtained
by constructing the first-order scheme based on the backward Euler method. In the above second-order scheme
(3.20)—(3.26), as long as we set a = 2, b = 2,¢c = 0, ¥y* = " for any variable , the first-order scheme can be
easily obtained.

We first prove that the discrete solutions (¢;’H, 3’“, ;’H) computed by the scheme (3.20)—(3.26) also satisfy

the free-leakage condition, i.e., ¢’1’+1 + ¢’2’+1 + ¢§’+l = 1, that is, there is no volume loss at all time.

Theorem 3.1. The scheme (3.21)—(3.22) is equivalent to a scheme with two variables as follows:

agi ™! —bg +edi pit!
i i i n V- *AF) MAI_7
8 +0 (') 5

8

(3.31)
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g 4 pp g g

3 12 S
it = —Ze N AT + = (H] + BHUM + =@ =g i = 1,2, (332)
with
;L+1 —1_ ;H—l _ ¢;+1’ (3.33)
n+1 n+1 n+1
M3 My Ho
= — . 3.34
> ( 5 + > ) (3.34)

Proof. First, we derive (3.21)—(3.22) by assuming that (3.31)—(3.34) are satisfied. Taking the summation of (3.31)
for i = 1,2, applying (3.33) at t = o =1 and using (3.34), we obtain

n+1 n n—1 n+1
o5 —bpl +co o
4P 3 TP +Q”+1V~(u*¢§k) =MA=—.

(3.35)

25t 23
Furthermore, from (3.34), we derive
n+l1 n+1
n+l My M
=L 42
M3 3( ) + A )

12
—(
€

Hi+p"  Hi+°

3 3
- _y __An-H__An-H
3( J€A9 T gedh + ) A

Ut
£ 200 5™ 0 99)
= DA + 2 4 B 4 S - g,
where we use (3.33) and the definition of 8* in (3.27) (that is, H‘*;lﬂ* + H;;zﬂ* + H;Etﬁ* =0).

Second, we assume that Eqgs. (3.21)—(3.22) are satisfied and then derive (3.31)—(3.34). We use the mathematical
induction and assume that (3.33) is valid for ¢ = ¢" and ¢ = ¢"~! (the validity of (3.33) at t = ¢' can be shown by
performing a similar process to the first-order scheme, so the detailed proof is omitted here). For any m, we define

mo_m o m o m om _ MU MM
c" = , 0" = — 4 —= 4 —, 3.36
o1 + @5 + @3 4‘71+4‘72+4‘73 ( )
We take the summation of (3.21) for i = 1, 2, 3 to derive
3
— ("' - =MmA0", 3.37
25[( ) (3.37)

where the advective terms vanish satisfy V - (u* 21‘3:1 ¢7) =V -u* =0 since Z?:l ¢ =1 by the induction.
We take the summation of (3.22) fori =1, 2, 3 to get

3 S

et = —ZGAC"‘H + = = 1. (3.38)
€

Taking the L? inner product of (3.37) with —% "1, of (3.38) with C"*! — 1, and summing up the two obtained

equalities, we deduce

3 S 26t
Zenvc"“ 1%+ ;IIC”“ 1>+ TM||v9"+1||2 =0. (3.39)

Since all terms on the left hand side of (3.39) are non-negative, thus VC"*! = 0 and VO"*! = 0 that implies the
functions C"*!' and ©"+! are both constants. Then (3.37) leads to C"*! = 1 that means the (3.33) is valid. We also
derive ©"*! =0 from (3.38) that implies (3.34) is valid. [

Here we discuss how to implement the scheme (3.20)—(3.26) in practice. It seems that all unknown variables
are nonlocally coupled together, so from the appearance, the scheme (3.20)—(3.26) does not seem to achieve the
fully-decoupled structure that we expect. This reminds us that we cannot solve the scheme in any direct ways
because doing so will cause a lot of time consumption. Next, we introduce the implementation process in detail, in
which we make full use of the nonlocal features of the two additional variables U, Q, as shown below.

9
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First, we use the nonlocal scalar variable Q"*! to split (¢;, i, U)"*! into a linear combination that reads as

¢n+1 — ¢n+1 + Qn-‘r]qﬁlf'z‘rl’
/’L:H_l — M:L—l&-l Qn+lui}’42-1’ (3.40)
Un+1 — Uln-H + Qn+1U;+l.

Then the scheme (3.21)—(3.22) can be rewritten as

Wit 4 it g — et
n+1 n+1 gn+l n+l * gk il i,2 i i
— + V. N=MA

28t(¢ + 0" ¢, )+ 0 (u*¢;) 5 + 5

3 12
M:H[»l =+ QYH‘] n+1 — _ZGE A(¢I‘l+1 + Qn+l¢n+1) + ?(Hl* + ﬂ*)(Ui‘L+1 + Qn+lué1+l) (341)

’

+ = 2 (¢n+1 Qn+l¢n+l ¢ )

According to Q"*!, we split the system (3.41) into two sub-systems as follows,

+1 -1
gt g pta | b e
28" Py 26t (3.42)

3
M:H{l — _Zel\j A¢n+1 (H* +ﬁ )Ul’l+l + 2(¢Vl+l ¢*)’
'y
L = MA=EZ v (e,

251 Zi (3.43)

3
M;;l —_462A¢n+1 (H*+/3 )Un+1+ E¢n+1.
By applying procedures similar to the second-step proof in Theorem 3.1 to the two systems (3.42) and (3.43), we
derive

¢n+1 + ¢n+1 + ¢n+1 — ]

1
witt st N I o
2 by 2 '

n " " (3.44)
+1 + ¢ +1 + ¢3 -|2>l —
n+1 n+l1 n+1
M1+2 “22 /‘32 —0
i 2 25 '

Note that the two subsystems (3.42) and (3.43) have the same form, so we only need to introduce the method to
solve any of them, and the other follows the same line. Hence, we take the first subsystem (3.42) as an example. To
solve it, we continue to use the split technique, that is, the variables (¢; 1, ui,l)"“ are split into a linear combination
form by the nonlocal variable Ul"“, which reads as

n+l _ n+l n+1 yn+1
¢z | ¢z 1,1 + Ul ¢i,1,2’

n+1 n+1 n+1, n+l
Wit =M U i1,2°

By substituting the split form of all variables in (3.45) into (3.42) and decomposing the results according to the
nonlocal variable U {’“, we obtain the following independent subsystems that read as

(3.45)

¢n+1 _ A“:H‘rl‘ bgj — g™
28¢ LT X 28t ' (3.46)
3 S
Wity == 7B A + - L@ — 9D,
¢n+1 _ A'LL:[le
28¢ 7 BL2 b (3.47)
3 12 S
WA= SR AGTL+ Z(H! + B+~ Sl

10
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The boundary conditions for (3.46)—(3.47) are either periodic or

(@it Bit2s it1s min2) o = 0. (3.48)

We can directly solve (¢; 1.1, ¢i1.2, Hi1.1, /L,»,l,z)”“, i =1, 2,3 from the above sub-systems (3.46)—(3.47) since all
nonlinear terms are given explicitly; or we can solve (3.46)—(3.47) for i = 1, 2 and update i = 3 from the following
conditions

n+1 n+1 n+1
ntl ntl g Mivy  Haan | Maia 0
¢l,],l +¢2,1,1 +¢3,l,l - — Y
2 22 23 (3.49)
'un-&-l Iun-&-l Mn-H :
n+l1 n+l1 n+1 1,1,2 2,1,2 3,1,2
P, TPt 9351,=0 + + =0
1,1,2 2,1,2 3,1,2 ’ Z’z 22 23 ’

which can be easily obtained from (3.46)—(3.47) by performing a derivation process similar to the proof of the
second step of Theorem 3.1.

For the system (3.43), we implement it in a similar way. By splitting (¢; 2, u;.2)"+! into the following linear
combination form by the nonlocal variable U;’“, ie.,

n+l _ n+l n+1 yn+1
< ¢i,2 - ¢i,2,l + U2 ¢i,2,2’

n+l1 __ n+l n+1, n+l
Wip =M +U 1

(3.50)
i2,2°

Then the unknowns (¢; 2.1, ¢i2.2, Ki2.1, /VL,-,z,z)”“ can be obtained by solving another several sub-systems that are
similar to (3.46)—(3.47) with the same boundary conditions specified as (3.48).
Second, we rewrite (3.23) as the following form

3
1
Un+1 — E Z/;Z Hi*(f)i"Jrldx —i—g”, 3.51)
i=l1

where g" = %(bU” —cUH— ﬁ 21‘3:1 fn H} (b} — c¢;’_1)dx is the explicit form. By substituting the linear form

of (U, ¢! represented by Q"*! given in (3.40) into (3.51), we obtain

3

1

U]ﬂ+l + Qn+1U£Z+1 — E Z/;) Hl*((ﬁZTI + Qn+1¢£;1)dx + gn. (352)
i=1

Then, according to Q"*!, we decompose (3.52) into the following two equalities:

3
1
U{?Jrl — 52/ H,*(bl"frldx _i_gn’
— Jn
lgl (3.53)
1
uytt = / Hi ¢! 'dx.
2 2 ; o ¢;, dx
Substituting the linear form of (¢; i, ¢i,2)”+' given in (3.45) and (3.50) into (3.53), we get
3
1
U;1+l — 5 Z/ I_Il*((b:ftll + U;1+l¢ln-1i-’12)dx _'_gn’
— Jo
’;‘ (3.54)
1
upt =33 [ Hetl v ustorhas.
i=1 v
After applying a simple factorization to (3.54), we derive
Ut — 3 i Jo Hi*¢;ft11dx + 5"
1= P ’
1= 3300 [ Hi ¢l hdx (3.55)
3 o pntl ’
Ut — % Dici frz H; ¢i,11dx
2 - 3 * 4n :
L= 330 [o Hi¢)35dx



X. Yang Computer Methods in Applied Mechanics and Engineering 376 (2021) 113589

An important thing is to verify whether U f‘H and U;H are solvable. This can be obtained by applying simple
energy estimation to the subsystem (3.47). For any ¥ € L*({2) with fQ Ydx = 0, we define ¢ = A~y to be the
solution of the following Poisson equation

Ap =, / pdx =0, (3.56)
2

where the boundary condition is decided by the system (i.e., if the system is with periodic boundary condition, then
Y is periodic; if the system is with the boundary condition described in (2.19), then d,¢|50 = 0.)

By applying A~! to the first equation of (3.47) and combine the obtained result with the second equation of
(3.47), we obtain

a 1 .n+1 3 n+1 12 % % S
. = — QZIA . — H' _Zl l . 3.57
2MSt ¢z,1,2 46 ¢1,l,2 ( i lé ) € ¢ 1,2 ( )

By taking the L? inner product of (3.57) with ¢”+1 and taking the summation for i = 1, 2, 3, we derive
12 * pntl a < i, 3 - 2
- Z HO =5 D IVATI I + e Z SilVeiiall
i=1 i=1 i

3
S
+ =D TR+ § :03 P =
i=1

(3.58)

where the term 23 1(B%, ¢>I"T12 = 0 due to (3.49). Hence U, *1 js uniquely solvable. By performing similar energy
estimation on the two sub-systems split from (3.43) (according to U. "+') it can be easily shown that U} 71 s also
uniquely solvable. After calculating U "1 and Uy "1 from (3.55), we further obtain ¢1”T1, ,u:”{] from (3 45), and
o3, 13! from (3.50).

Third, for the velocity field @"*', u"*! and the pressure p"*! in the scheme (3.20) and (3.25)—(3.26), we also
use the nonlocal variable Q"*! to split them as the following linear combinations:

ﬁn+l — ~n+1 + Qn+lﬁg+l’

un+ — ur]H—l + Qn+l n+1 (359)
pn — pn+1 + Qn+1 n-H

In the scheme (3.20) and (3.25)—(3.26), using (3.59) to replace the variables (u, u, p)’”r1 and then splitting the
obtained equations according to Q"*!, we obtain several sub-equations, which can be solved independently. More

precisely, starting with (3.20), the two split variables & ’H'l and u'”rl satisfy the following equations:
ziatﬁ'f“ - vAﬁ'l”rl =0,
a -t At = (3.60)
281 el —vAau, = 03,
where o1, o, are explicit forms that are given by
. hu" — cu"!
o= — -
! P 261
3 (3.61)
o, =—" - Vu* — Zd)i*VMf.
i=1
For (3.25)—(3.26) using the two split variables u; ", pl'”rl i = 1,2, we obtain
251 @t - w4 Vpt =V, Y u’f“ =0, (3.62)
5 (un+1 ﬁg+1) + VpI21+l =0, V. ug+1 —0.

We require four split variables uthl u'”rl i = 1,2 follow the boundary conditions described in (3.28), i.e., they

are either periodic or satisfy:

M0 =u' -njp = 0. (3.63)
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Fourth, we solve the auxiliary variable Q"*!. Using the split form for the variables ,u”“ in (3.40) and @"*' in
(3.59), one can rewrite (3.24) as the following form:

R n+l _ L n __ n—1
(2& )Q" = 28t(bQ cQ" )+ b1, (3.64)

where ¥;,i = 1, 2 are given as:

3
B = Z/ V.t )u"+1dx+2/g(¢;‘w;" ”"+1dx+/ @ Vyu* - i@ dx,
i=1
(3.65)

3
0y = Z/ V-t ),L"+‘dx+2/(¢i*wj ~”+1dx+f(u*-V)u*-ﬁg“dx.
i=1 7%

We need to verify (3.64) is solvable. By taking the L? inner product of the second equation in (3.60) with @ ~”+l
we derive
/ " - Vyu* - @ dx — Z/ (Prvur) - wtdx = —||~"+1|| +v|vagt? > 0. (3.66)
We further take the L? inner product of the first equation in (3.43) with M"H to get
n+l1 2
B / Vet de = M5 | B2 | St . (3.67)
o i i,2 Zi 28t 1,2 i,2
and of the second equation in (3.43) with 55 qb"“ to get
E(qﬁ";l, wizh ——eZ Vi3I + —2 [CaenR
(3.68)
Un+1/ H n+1d Un+1 n+1 .
+—23t éin X+—28 B din)
Combining (3.67) and (3.68) and taking the summation for i = 1, 2, 3, we derive
Mn+1 2
—Zf V- ieHu s dx MZE i2 —l——eZE’HVqS”'H
i=1 i
Z n+1 Un+1 n+1 3.69
+ o5o Z 311> + (8. ,Zl¢ (3.69)
12a
Un+1 / H lH—ld
T st Z bz dx.
By using the third and fourth equality of (3.44) and applying (2.9), we derive
n+1 2 3 Mn-H 2 3
22 B bl IE ZEHW“ Z VeI 2
i=1 i=1 (3.70)

3
Z 5 ”¢n+1 Z n+1 Z 0, (B, Z¢n+1

From the second equation of (3.53), we derive

3 3 2
1
Uyt anHz‘W?ldx =5 <§ /Q Hi*fl’?’.z“dx) > 0. 3.71)
i=1 i=1

13
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Hence we have
3
-y / V- (W)t dx > 0. (3.72)
i=1 7%

Therefore, (3.66) and (3.72) imply that —v, > 0, thereby ensuring the solvability of (3.64).
Finally, we update ¢;’+1, M:’H fori =1,2,3 and U"*! from (3.40), @"*!, u"*!, and p"*! from (3.59).
We summarize the implementation of scheme (3.20)—(3.26) as follows:

e Step 1: Compute (¢i 1.1, Di.1.2, Li11 ,u,-,l,z)”“ fori =1,2,3 from (3.46)—(3.47), and compute (¢; 2.1, ¢i 2.2,
Wi, ,ui,z,z)”“ fori = 1, 2, 3 from another similar two sub-systems split from (3.43) using the variable Uﬁ’“;

e Step 2: Update U{’H, U;’“ from (3.55);

e Step 3: Update (¢;.1, pi1)"+! fori = 1,2, 3 from (3.45), and update (¢; 2, jt;2)" ! fori = 1,2, 3 from (3.50);

e Step 4: Compute @/, i = 1,2 from (3.60);

e Step 5: Compute ul”' and p?“, i =1,2 from (3.62);

e Step 6: Compute Q"*! from (3.64);

e Step 7: Update ¢!, ™' fori = 1,2, 3 and U"*' from (3.40), and update & *', u"*', and p"*! from (3.59).

Therefore, if third phase-field variable is always updated by using the relationship of the three phases (for instance,
(3.44), (3.49)), then the total computational cost needed by the scheme (3.20)—(3.26) at each time step includes
solving four independent elliptic linear systems in Step 1, two elliptic equations in Step 4, and two more Poisson
type equations in Step 5. All these equations have constant coefficients and are fully-decoupled, which means very
efficient calculations in practice.

Now the energy stability of the developed scheme (3.20)—(3.26) is shown as follows.

Theorem 3.2. The following discrete energy dissipation law holds for the scheme (3.20)—(3.26),

2
+1
vu!

1

3
1 3
g(Evi'H*l _ EI‘L) < _v||vﬁn+l||2 _ MZE

i=1

<0, (3.73)

where

E”l=lGMM+W”+huM“—ﬂﬂW)+§fﬂVf+W2
2\2 3

2
e o 1 1
- Ez N hvs {H—l 2 22V (H—l — V" 2
+ 3 E1< (2” o +2|| o; & 119
i= (3.74)
12 /1 2 1 2 1/1 | 2
(g Zpuntt _gn ) _<_ nt1 —po™t! — on )
+ = (G )+ 5510 + 520 - 07

3
S
— Tl = ¢1?) = 0.
by ;Zl( il b; o117 =

Proof. We multiply the inner product of (3.20) with 28:4"*! in the L? space to get

(3ﬁ}1+1 _ 4un + u"71 , ﬁn+1) + 2U8t||vﬁl‘l+1 ”2 + Zst(vpn’ ﬁl‘H»l)

3
3.75
= —28:Q""! / (u* - Vyu* - a"dx — 280! Z/ (P;vVur)-adx. (373)
2 i=1 v
From (3.25), for any variable v with V - v = 0, we have
"t v) = @, ). (3.76)
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We derive following equality

(3ﬁn+l —4u" + un—l , ﬁn+1)
— (Sﬁn+1 _ 4un + unfl’ un+1) + (3ﬁn+1 _ 4un + unfl’ ﬁn+1 _ un+1)
— (3un+1 _ 4un +un—l un+l) + (3ﬁn+1 ﬁn+1 _ un+l)

_ (3un+l —4u" + un—l’ un-H) + 3(ﬁn+l _ un-H’ it 4+ un-H)
= %(nu"+l I = "2 4 20" — u)? — 20" — "
+ o' —2u" 4w ||2) + 33— (),
where we use the following identity
23a —4b+c,a) = a* —b> + (2a —b)> — 2b —¢)* + (a — 2b + ¢)*.

We reformulate the projection step (3.25) as

iun"’l +Vpn+] — iﬁn-’rl +Vpn~

268t 268t

By taking the square of both sides of the above equation, we get
R VR = s 6 4 [ 4 @, V)
4512 4512 St ’ '

Hence, by multiplying 28¢2/3 of the above equation, we derive

3 N 2812 , 5 .
5<||u"+' I = @™ %) + T(Ilvp’“ I = IVp"I?) = 28t@™*!, vp™).

By taking the inner product of (3.25) with 28ru"*! in the L? space, we have
g(”unﬂ 12 = @2 + ot — @2 = 0.
We combine (3.75), (3.77), (3.81), and (3.82) to obtain
%(Ilu”“ I = oI + 20 — w2 — 20" — w72 4t - 20t )

3 bl snrig2, 2007 a2 ny2 ~nt1 )2
+ §||u —u" +T(||VP 1= = 1IVP"I7) + 2vde|| VA" ||

3
= 210" / (- Vyu* - @"dx — 280" Zf (@ Vb - i dx.
“ =179

Computing the inner product of (3.21) with 28t,ul'.’+' in the L? space, we have

2
+1
vu!

i

Bt —dgr + ¢ Wt + 28t M X

Computing the L? inner product of (3.22) with —(3¢" ! — 4¢" + ¢"~ "), we find
— 3 n n n—
—(uyt 3¢t —dgr + ¢ + 1E5 (V9] V@It — 4l + oY)
12
= 2y / (H? + BYGE™ — 4l + ¢ Vdx
2

— ST = 90,30 =g+ 9
15

=-28tQ"" [ V.o dx.
2

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)
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We multiply (3.23) with 26—4U"Jrl and use (3.78) to obtain

12
<|Un+1| _ |Un|2 + |2Ul’l+1 _ Ul’l|2 _ |2Un _ Un_l|2 + |Ul’l+1 _ 2Un + Un—l|2)
€
3 (3.86)
— ZUVL-H/ Hi*(3¢in+l _4¢ln +¢in71)dx'
S 2
We multiply (3.24) with 267 0"*! and use (3.78) to obtain
1 n 2 n n 112 n n— 2 n n n— 2
(101 = 10" P+120" = @' = 120" - " + 10" = 20" + 0" 7')
3 3
=261Q""' Y / Vg dx + 280 0" Y / (Prvur) - dx (3.87)
i=1 7% i=1 7%
+ 28t Q™! / (u* - Vyu*-a"dx.
]
Hence, by combining (3.83)—(3.87) and taking the summation for i = 1, 2, 3, we arrive at
L2 ny2 nt1 w2 n oty 2017 a2 ny2
E(Ilu 17— 17 + 120" —a"||” — [|20" —u""|| )+T(||Vp == 1vp I
3e _
+3 (E(IIV¢"+'II2 V6712 + V29! = gl = IV 29! — ¢/~)I)
i=1
12 n+1 2 n2 n+1 n 2 n n—1,2
+?(IU P U 4 Ut — Ut — Ut — U |)
1 n 2 n n n 2 n n— 2
+ 501 -1 P + 2o - @' - 120" - 0"7'T)
S 3
+ ZZ( (I97*" = o717 = ey — &7~'1))
1 n+1 n—1 3 n+l ~n+12 388
+ S -2 w4 S - (3.88)

3
3 12
+ N BIVE@ = 2¢ + ¢ HIP + — (U — 20 U
8 & €

3
1 n n n— 2 2S n n n—
#3101 =207+ 0 D S -2 4, ")

n+1 2

= —28tv ||V |? — 280 M Z 5

VMH+1
< 28ty Vart 2 — 28t M Y Z

i=1

<0,

l

where we use the following two identities
(Ba —4b+c)a —2b+¢)=(a—b)* — (b —c)* + 2(a — 2b + ¢)?,
and

ZU"*l / B (et —4¢! + ¢ Hdx = U / B (Z(qu"“ 49! + ¢ Ndx =0
i=1

which is due to (3.33).
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(a)

Fig. 4.1. (a) Initial interface contour of the three phase-field variables, (b) interface contour superimposed by the velocity field at the
steady-state, and (c) the color plot of the pressure p at the steady-state. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Finally, we obtain E"*! > 0 by using (2.9) and (3.33). Likewise, we obtain (3.73) after dropping the terms in
{ } of (3.88) since they are positive, i.e.,

3 3
Y TAV@IT =207 + ¢ HIP = 2 IV =267 + ¢ DI = 0,

i=1 i=1

3 N (3.89)
STl —2¢r + ¢l 1P =2 )l - 207 + 477 P =0 O

i=1 i=1
4. Numerical simulation

In this section, we use the proposed algorithm (3.20)—(3.26) to perform numerical simulations, including
stability/accuracy tests, 2D spinodal decomposition, 2D contact lens deposited between two stratified fluids, as well
as liquid droplet rising examples in 2D and 3D. In all numerical examples, we use the rectangular computational
domain. For directions with periodic boundary conditions, the Fourier-spectral method is used for discretization. For
directions with boundary conditions specified in (3.28), the Legendre—Galerkin method is adopted for discretization
where the inf—sup stable pair (Py, Py_2) is used for the velocity (1 and u) and pressure p, respectively, and Py is
used for the phase-field variables ¢, ¢, ¢3.

4.1. Stability and accuracy test
We first perform several stability tests in 2D to verify the unconditional energy stability of the fully-decoupled

scheme (3.20)—(3.26). We set the 2D computational domain to be [0, 2]%. The initial conditions for all variables are
given by

_ — x.)2 —v.)2
Vx xle) +(y — ) Vi=1.2. wh
¢9 =1—¢] — 3. u" = @, %) =(0,0), p° =0,

0 _ _ r
¢i(xv )’J _0) _tanh(

where € = 0.05, r = 0.35, x; = 1.35, x, = 0.65, and y; = y, = 1. The order parameters are set as
M =1e-3,A=17,B =10, (012, 013, 023) = 0.01(1, 1, 1), S = 4. 4.2)

The initial interface contours {¢? = %} of the three phase-field variables are shown in Fig. 4.1(a). We assume
that the boundary conditions are periodic and space is discretized by using the Fourier-spectral method where 257
Fourier modes are used to discretize each direction.

17
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Fig. 4.2. The time evolution of the total free energy (3.74) computed by using the scheme DSAV and SAV with different time steps, where
the initial conditions are given by (4.1) and model parameters are given by (4.2).

Using the above initial conditions and a time step of §¢t = 0%, we implement the algorithm until a steady-state

solution is obtained, and plot the fluid interface with the velocity field at the steady-state in Fig. 4.1(b). We can see
that due to the balanced surface tension coefficients of the three fluid components and coarsening effects, the two
droplets squeeze together to form a contact angle of 120°. In Fig. 4.1(c), we plot the profile of the pressure p at
the steady-state using a color diagram.

Next, we verify whether the scheme maintains energy stability unconditionally using any time step. For
convenience, we represent the developed decoupled scheme (3.20)—(3.26) using scalar auxiliary variables by DSAV.
Meanwhile, in order to illustrate the advantages of the developed decoupling technique and the added stabilizer in
improving energy stability, we also test the stability of the scheme DSAV, but the variable Q"*! and S are removed
(i.e., assume Q"T! =1 and S = 0). For convenience, we refer to this version as SAV.

In Fig. 4.2(a), we plot the evolution curves of the total free energy (3.74) calculated by the scheme DSAV using
different time steps. We find that all calculated energy curves show monotonic attenuation, which confirms the
unconditional stability of DSAV. When the time step is relatively large, the energy curve with a large time step has
an observable deviation from the energy curve with a small time step. This is because the errors obtained using

large time steps are also large. When the time step is less than 0%, the five energy curves obtained are very close,

which is why we use the time step size 02% to obtain the equilibrium solution shown in Fig. 4.1. For comparison,
in Fig. 4.2(b), we plot the energy evolution curves calculated by SAV, and observe that it blows up while a large
time step size is used, and only decays when §¢ < Oé%.

Through performing mesh refinement tests in time for the example above, we further test the convergence order of
the developed scheme DSAV. Since the exact solutions are unknown, the numerical solution obtained by the scheme
DSAV using a very small time step (6t = 1e—9) is regarded as an exact solution for calculating the approximate
error. Then, we plot the L? errors of all variables at + = 0.4 obtained by changing the time step size from 0.01
to % with a factor of 1/2. The convergence rate is shown in Fig. 4.3(a), where we find that the scheme DSAV
always exhibits almost perfect second-order accuracy. In Fig. 4.3(b), we compare the accuracy of DSAV and SAV
by plotting the arithmetic mean of L? numerical errors of the three phase-field variables. When the time step size
is large (6t > 0%), SAV completely loses the convergence order. When the time step size is small (6 < Oé%), it
has the second-order accuracy. For comparison, DSAV consistently shows good second-order accuracy in all tested
time steps. If we compare the size of the error when §t < 0%, we find that the error obtained by SAV is smaller

than that obtained by DSAV. This is because the stabilization terms increase some splitting errors.
4.2. Spinodal decomposition

In this example, we study the equilibrium pattern obtained after phase separation (or spinodal decomposition).
The initial conditions are set as a homogeneous ternary mixture but with some small perturbations, which read as
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Fig. 4.3. The numerical errors in L? of all variables that are computed using the schemes DSAV and SAV with various temporal resolutions.

follows,
Vi ;
Vi + Y+ Y3

where ;(x) = 0.54-0.001rand(x) and rand(x) is the random number in [—1, 1] that follows the normal distribution.
We use the 2D computational domain [0, 2]> and adopt periodic boundary conditions. The space is discretized
by using the Fourier-spectral methods with 257 Fourier modes for each direction. The model parameters are set to

u’(x) =0, p’(x) =0, ¢ (x) = =1,2,3, 4.3)

M=1e=2,v=1,A=7B=10€e =0.02, S = 4. 4.4)

We adjust the surface tension (012, 013, 023) to study how the three phases are separated.

We first perform simulations for two partial spreading cases with (013, 013, 023) = 0.1(1, 1, 1) and 0.1(1, 0.8, 1.4).
Snapshots of the profiles %q)l + ¢, at various times up to the steady-state are shown in Fig. 4.4(a) and (b). For the
case with three equal surface tension parameters, shown in Fig. 4.4(a), the final equilibrium solution is a hexagonal
pattern, and three contact angles all become 27” For the latter case, we find that the steady-state solution exhibits
different contact angles. The total spreading case with (o1, 013, 023) = 0.1(3, 1, 1) is shown in Fig. 4.4(c) and no
junction points are observed. In Fig. 4.5, we plot the time evolution of the logarithm of the free energy functional
(3.74) for all simulations in which all energy curves show the decay over time, thus confirming the developed
algorithm is unconditionally stable.

4.3. Liquid lens between two stratified fluids

In this example, we simulate the steady-state solutions of a liquid lens with different surface tension coefficients.
The initial condition is set to a circular lens, which is located at the interface between the other two stratified
immiscible fluids, see [2-4,6,7]. The 2D computed domain is set as (x, y) € 2 = [0, 1] x [0, 0.5] and the initial
conditions read as follows,

u’(x, y) =0, p°(x,y) =0,

1 1 4
PL(x, y) = (1 —¢?) <5 + 3 tanh(z(y - 0.25)))
PIx,y) =1—¢) — ¢3.

0.09 — \/(x — 0.5)2 + (y — 0.25)
€/2

(4.5)

92+, y) = - tanh( P
3 2 2
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(c¢) Snapshots taken at t =1,

5, 507 70 with (0'12,0'13,0'23):0.1(3, 1, 1) :

Fig. 4.4. Dynamical evolution of the profile %¢>1 +¢, for the spinodal decomposition examples with three different surface tension parameters.
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(a) Energy evolution over time.

Fig. 4.5. Time evolution of the logarithm of the

Time
(b) A close-up view for ¢ € (0, 20).

total free energy (3.74) of all spinodal decomposition examples.

We assume that the x-direction follows the periodic boundary conditions and use the Fourier-spectral method with
257 Fourier modes to discretize it. For the y-direction, we set the boundary conditions of the variables u = (u, v),

¢; and u; to

Ul(y=0.05) = 0, V|(y=0.05 = Inil(y=0,0.5 = Imiily=0.05 = 0. (4.6)
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Table 4.1

Surface tension parameters (o2, 013, 023) and the theoretical prediction of contact angles 6, 0, 63 derived from
(4.8).

(012, 013, 023) (1,1,1) (1,1,0.6) (1,0.6,0.6) (1,0.8,1.4)
(partial spreading) 0 =0, =03 01 > 0, =06; 0 =6, > 03 01 <03 <6y
(012, 013, 023) (1,1,3) 3,11

(total spreading) 0 =0,0p=03=m 0 =0, =m,03=0

Fig. 4.6. The schematic diagram of contact lens and contact angles.

) (012,013,023) = (1,1,1). (012,013,023) = (1,1,0.6). (012,013,023) = (1,0.6,0.6).

0'12,0'13,0’23 (1 08 14 0'1270'1370'23 1,173 (f) 0‘12,0’13,0’23) = 3,1,1

Fig. 4.7. The steady-state solutions of the contact lens with various surface tension parameters computed by the scheme DSAV.

Then the y-direction is discretized using the Legendre—Galerkin spectral method with the Legendre polynomials up
to the degree of 512. We set the model parameters to

M=1e-5A4=7,B=10,e =0.01,5 =4, 6t = le-3. 4.7)

In the limit ¢ — 0, the relationship between the contact angles of the equilibrium state (the schematic diagram of
the contact angles and three fluid components is shown in Fig. 4.6) and three surface tension parameters are given
by the Young’s relationship (cf. [1,2,45]),

sin 6; sinf, sinf;
= = i (4.8)
023 o013 o2

Therefore, we adjust the three surface tension parameters (o012, 013, 023) to investigate whether the contact angles
under steady-state follows the theoretical predictions from (4.8).

We use four partial spreading cases and two total spreading cases in the computations. Theoretical prediction
values of the contact angles according to the given surface tension parameters are shown in Table 4.1. In Fig. 4.7,
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Fig. 4.8. Time evolution of the logarithm of the total free energy (3.74) of all contact lens examples.

using the scheme DSAV, for each case, we plot the steady-state solution for the profile of %d:] + ¢». We can see
that the calculation can well verify the theoretical prediction of the contact angle. In addition, all these calculations
are consistent in quality with the numerical simulations provided in [2,4-7]. In Fig. 4.8, we plot the time evolution
of the total free energy in all simulated cases.

4.4. The dynamics of a rising liquid droplet

In this example, we study how a light liquid droplet rises and deforms as it passes through the liquid/liquid
interface under the influence of gravity and surface tensions. For simplicity, we consider the situation that the
density difference between the liquid droplet and the other two ambient fluids is small, so we can use the Boussinesq
approximation (see also in [42,46,47]) and replace the momentum equation as follows:

3
utu-Vu—vAu+Vp+ Y ¢V = gogs. (4.9)
i=1
where gy = (0, go) for 2D, gy = (0, 0, go) for 3D, and g is the pre-assumed gravity constant.

First, we perform several simulations in 2D, where the computational domain is set to (x, y) € 2 = [0, 2] x [0, 4].
Periodic boundary conditions are set for the x-direction, and we discretize it using the 257 Fourier modes. For the
y-direction, we use the boundary conditions specified in (3.28), and use the Legendre polynomials with the degree up
to 512 for discretization. The initial conditions for variables ¢; (the schematic diagram of the three fluid components
are shown in Fig. 4.9(a)), u, and p are set as follows,

1 1 4
Plx,y) = (1 — ¢ (5 +5 tanh(g(y - 2))) ,
Px, y) =1—¢¥ — ¢,

(4.10)

1 025 —/(x -2+ -12_ 1

0
= — tanh =
¢3(xvy) 2 an ( 6/2 )+ 25
u’(x, y) = (0,0), p(x, y) = 0.
The model parameters read as

M=1le—4,v=1,A=7,B=10,e =0.05, S =4, 6t = le—3. 4.11)

We vary the surface tension parameters (o},, 013, 023) and the gravity parameter gy to study how the droplet rises
and deforms with time.
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Fig. 4.9. Initial schematic diagram of a rising liquid droplet example in 2D and 3D.

Fig. 4.10. The dynamics of a 2D rising liquid droplet with (012, 013, 023) = 10(1, 1, 1) and gravity parameters go = 90. Snapshots of the
profile %4’1 + ¢y are taken at t = 1,1.2,1.4,1.6,1.8,2 and 14.

Fig. 4.11. The dynamics of a 2D rising liquid droplet with (o012, 013, 023) = 10(1, 1, 1) and gravity parameter go = 100. Snapshots of the
profile %¢1 + ¢ are taken at t =1,2,4,7,8,9, and 10.

We first set the three surface tension parameters to (oy2, 013, 023) = 10(1, 1, 1) and use two different gravity
parameters gop = 90 and 100. Figs. 4.10 and 4.11 shown numerical solutions at various times, of which snapshots
of the profiles of %¢>1 + ¢, are plotted. When the gravity constant is relatively weak (go = 90), we find that the
droplet is captured by the interface of the two layered fluids. When the gravity constant is large (go = 100), the
droplet passes through the interface and enters the upper fluid.

Furthermore, we change the surface tension parameter to (o2, 013, 023) = 10(1, 0.6, 0.6), and also use two
different gravity parameters go = 90 and 100, shown in Figs. 4.12 and 4.13. Similar to the previous two simulations,
similar phenomena are observed, including the low gravity parameter leading to capture and high gravity parameter
leading to interface penetration. In addition, when gy = 90, we see that the contact angle caused by the suspension
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Fig. 4.12. The dynamics of a 2D rising liquid droplet with (012, 013, 023) = 10(1, 0.6, 0.6) and gravity parameter gop = 90. Snapshots of the
profile %q&] + ¢, are taken at t =0.4,0.8,1, 1.8, 3,4, and 15.

Fig. 4.13. The dynamics of a 2D rising liquid droplet with (012, 013, 023) = 10(1, 0.6, 0.6) and gravity parameter go = 100. Snapshots of
the profile %¢1 + ¢ are taken at r =1,1.2,1.6,1.8,2,3,4,5,6,6.2,6.4,6.6,6.8, and 7.

of the droplet is different from the situation of (o1,, 013, 023) = 10(1, 1, 1). When gy = 120, we see that the liquid
rupture twice, the first rupture occurs at + = 1.6, which is due to the rise of the droplet and squeezes the lower
fluid, and the second occurs at + = 6.6 when the filament formed by the rising droplet breaks.

Finally, we perform 3D simulations by setting the computational domain is set as {2 = [0, 1] x [0, 1] x [0, 2].
Similar to the 2D simulations, the periodic boundary conditions in the x and y-directions are assumed, and 129
Fourier modes are adopted to discretize each direction. The z-direction follows the boundary conditions given in
(3.28), which is discretized by using Legendre polynomials up to the degree of 256. The initial conditions are set
as follows,

1

1 5.5
$r(x, y,2) = (1 = ¢3) (5 +5 tanh(T(Z - 1))) ,

PI(x,y,2)=1—¢) — ¢3,
0.25 — \/(x —0.5)2 + (y — 0.5)2 + (z — 0.6)2
€/2

4.12)

#(x )—ltanh( )+l
3 Y0 =75 2

u’(x, y,2) = (0,0,0), p°(x, y,2) = 0.
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(b) (o12,013,023) = 2(1,0.6,0.6), go = 50. Snapshots are taken at t =1,2.2,4.2,5,5.4,5.8, and 6.2.

Fig. 4.14. The dynamics of a 3D rising liquid droplet with (o712, 013, 023) = 2(1, 0.6, 0.6) and gravity parameter (a) go = 40 and (b) go = 50.
Snapshots of the isosurfaces {¢3 = 0.5} (yellow) and {¢; = 0.5} (red) are plotted in each subfigure. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

The initial condition for these three fluid components are outlined in Fig. 4.9(b). The model parameters read as
M=1le—-4,v=1,4=7,B=10,e =0.05, S =4, 5t = le-3. (4.13)

In Fig. 4.14(a) and (b), we adopt the surface tension parameter (o012, 013, 023) = 2(1,0.6,0.6) and different
gravity parameters go = 40 and gy = 50, respectively. We use different colors to plot the isosurfaces of {¢; = 0.5}
(yellow) and {¢3 = 0.5} (red). Similar to the 2D simulation, lower gravity causes the droplet to be captured by
the interface, while higher gravity cause the droplet to penetrate the interface. In addition to the capture/penetration
phenomenon, we also find that when the gravity constant is large, a long filament forms after the droplet penetrates
the interface, and then the rupture of the filament occurs (at ¢t = 5.4).

5. Concluding remarks

In this paper, with the help of two nonlocal auxiliary variables, a novel second-order fully-decoupled numerical
algorithm is developed to solve the highly nonlinear phase-field model of three-phase incompressible flow. The
scheme only needs to solve several decoupled linear elliptic equations with constant coefficients at each time step
to obtain a numerical solution with second-order time accuracy. Solvability and unconditional energy stability have
also been rigorously proven, and a large number of numerical simulations have been performed in 2D and 3D to
show the accuracy and stability of the scheme numerically. Moreover, the novel decoupling method proposed in
this paper can be widely applied to a large number of coupling models, as long as the nonlinear coupling terms
satisfy the so-called “zero-energy-contribution™ characteristic.
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