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Abstract

For the highly coupled and nonlinear Cahn–Hilliard phase-field model of three-phase incompressible flow, how to establish
fully-decoupled numerical scheme with second-order time accuracy has always been a very difficult and unsolved problem.

n this paper, we propose a novel decoupling method, which only needs to solve several decoupling linear elliptic equations
ith constant coefficients at each time step to obtain a numerical solution with second-order time accuracy. The key idea is

o introduce two nonlocal auxiliary variables into the system, one of which is used to linearize the nonlinear potential, and
he other is used to introduce an ordinary differential equation to deal with the nonlinear coupling terms with “zero-energy-

contribution” characteristics. We strictly prove the solvability and unconditional energy stability of the scheme, and conduct
numerical simulations in 2D and 3D to show the accuracy and stability of the scheme numerically. To the best of the author’s
knowledge, the method developed in this paper is the first second-order fully-decoupled scheme for the hydrodynamics coupled
phase-field model.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Unlike the phase-field model of the two-phase flow system that requires only one phase-field variable to represent
he volume fraction of two phases, the Cahn–Hilliard phase-field model of three-phase incompressible flows usually
equires three phase-field variables to formally represent the volume (or mass) of each component [1–4]. In the total
ree energy, the hydrophilic–hydrophobic tendency of each phase-field variable is independent, but to ensure the so-
alled free-leakage condition of the system, a Lagrange multiplier needs to be added in each Cahn–Hilliard equation,
hereby establishing a highly nonlinear and coupled system. Not only that, for some specific physical phenomena,
uch as the so-called “total spreading” situation, but it is also necessary to add some coupled higher-order terms to
he total free energy to ensure the well-posedness of the entire system. Finally, after combining the Navier–Stokes
quation describing the characteristics of the incompressible flow field, a highly coupled and nonlinear complex
ynamical system is obtained. Among them, the coupling terms can be divided into two categories, one is formulated
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from the energy variation, the other comes from fluid properties, including the advection and surface tension from
the three fluid components.

We recall that for this complex model, there are still some successful attempts to develop numerical algorithms
hat can achieve unconditional energy stability, or fully-decoupling structure, or both. Some are for the partial

odel without the flow field, such as the nonlinear method in [3,4], Invariant Energy Quadratization (IEQ) method
n [5], Scalar Auxiliary Variable (SAV) method in [6,7], etc. For the full model with the flow field, to the best of
he author’s knowledge, the only fully-decoupled scheme with unconditional energy stability is developed in [8],
owever, the scheme is only first-order in time, and its computational cost is relatively expensive due to the nonlinear
ature. Hence, a natural question arises, why it is so difficult to establish a fully-decoupled and second-order
ime-accurate scheme, since we all know that there are so many second-order energy-stable numerical schemes
or the phase-field models (for example, the linear stabilization [9–12], convex splitting [13–17], IEQ [5,18–22],
AV [18,23–27], nonlinear derivative [28], nonlinear quadrature [29–31] methods, etc.), and the Navier–Stokes
quations (for example, the projection-type methods including pressure-correction, velocity-correction, Gauge-
ethod, etc., see [32–35]). Therefore, based on the above facts, it can be considered that simply combining these
ethods can easily obtain the ideal scheme, that is, a completely decoupled and second-order time-accurate scheme.
However, unfortunately, the current situation is that we still lack sufficient skills to achieve such a scheme, where

the main difficulty lies in how to discretize the advection and surface tension terms. At present, for these two kinds
of terms, the most popular method is to discretize them by using the explicit and implicit combination method or
completely implicit method, which will inevitably lead to expensive nonlinear fully-coupled schemes or relatively
fast linear fully-coupled schemes, cf. [8,12,17,36–43]. Besides, a decoupling method was developed in [8], the main
idea of which is to add a stabilization term to the explicit advection velocity term, thereby decoupling the momentum
equation and the Cahn–Hilliard equation ingeniously. However, the disadvantage is that the added stabilization term
contains an implicitly processed chemical potential, which leads to the need to solve the Cahn–Hilliard equation
with variable coefficients at each time step, resulting in a higher computational cost than with constant coefficients.
Moreover, the scheme in [8] is only first-order time-accurate, and it seems to be difficult to generalize the idea of
stabilization to the second-order version.

Therefore, for the highly challenging three-phase flow-coupled model, this paper attempts to develop an effective
scheme from a novel perspective. We expect the scheme is not only unconditionally energy stable, linear, second-
order time accurate but also fully-decoupled. We also expect that only a few independent elliptic equations need to
be solved at each time step, thereby reducing the actual calculation cost. To this end, on the one hand, we combine
some effective methods, such as the projection method for solving the coupling of pressure and velocity, and the
SAV method that converts the nonlinear energy potential to the quadratic form of the auxiliary variable, thus a
linear scheme is obtained. On the other hand, we develop a novel decoupling method which makes full use of the
so-called “zero-energy-contribution” characteristics that are satisfied by the advection and surface tension, that is,
when deriving the energy law, these two types of terms, after performing the inner product with certain specific
functions, will cancel each other without entering the law of energy. Using this feature, we introduce a nonlocal
auxiliary variable and design an ordinary differential equation containing the inner product of these terms and
specific functions. This equation is trivial at the PDE level because through integrating by parts or using divergence-
free condition, all terms contained in the equation can be canceled or equal to zero. However, after discretization,
this ODE can help to eliminate all the troublesome nonlinear terms that are explicitly handled, thereby obtaining
unconditional energy stability. Moreover, the introduction of this auxiliary variable can decompose each discrete
equation into multiple sub-equations, which can be solved independently to achieve the fully-decoupling structure.

Combining all these numerical techniques, we propose a novel scheme that only requires solving several linear
and fully-decoupled elliptic equations with constant coefficients at each time step. We also give the rigorous proofs
of the unconditional energy stability and further simulate various numerical examples in 2D and 3D to demonstrate
stability and accuracy. It is worth noting that as long as the coupling term satisfies the “zero-energy-contribution”
characteristic, the decoupling technique proposed in this paper can be universally applied to achieve fully-decoupling
type schemes. To the author’s knowledge, the method developed in this paper is not only the first second-order fully-
decoupled scheme for the particular three-phase model, but also the first method to generate the fully-decoupled
scheme for coupled models with “zero-energy-contribution” terms.

The rest of the paper is organized as follows. In Section 2, we briefly describe the Cahn–Hilliard phase-field

model of three-phase incompressible flow and derive its associated PDE energy dissipation law. In Section 3, we
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introduce the numerical scheme, explain its implementations in detail, and prove its solvability and discrete energy
dissipation law rigorously. In Section 4, many numerical examples are given to illustrate the accuracy and efficiency
of the scheme. We finally give some concluding remarks in Section 5.

2. Model system

We briefly outline the Cahn–Hilliard phase-field system, which simulates the three immiscible fluid components
roposed in [2–4]. A domain Ω is an open bounded, connected, subset in Rd of d = 2, 3, with a sufficiently

smooth boundary. We assume φi (i = 1, 2, 3) to be the i th phase-field variable which represents the volume of the
th component in the fluid mixture, such that

φi (x, t) =

{
1 inside the i th component,
0 outside the i th component,

(2.1)

where x ∈ Ω , t is time in [0, T ]. A smooth layer with the thickness ϵ is used to connect the interface between
0 and 1. Assuming the mixture being perfect (called as free-leakage condition), the three unknowns φ1, φ2, φ3 are
inked by the following relationship:

φ1(x, t) + φ2(x, t) + φ3(x, t) = 1. (2.2)

There are several ways to promote the two-phase model to the three-phase case, cf. [1–4]. In this article, we use
he model developed in [2–4] and assume the total free energy as

E(φ1, φ2, φ3) =

∫
Ω

(3ϵ
8

L(φ1, φ2, φ3) +
12
ϵ

F(φ1, φ2, φ3)
)

dx, (2.3)

here ϵ is the order parameter to characterize the interfacial width, L(φ1, φ2, φ3) is the linear part, and F(φ1, φ2, φ3)
s the nonlinear part.

The linear part is given as

L(φ1, φ2, φ3) = Σ1|∇φ1|
2
+ Σ2|∇φ2|

2
+ Σ3|∇φ3|

2, (2.4)

here the coefficient Σi represents the “spreading” coefficient of the i th at the interface between j th phase and
th phase. One can deduce that the following conditions hold between the three surface tension parameters σi j
σ12, σ13, σ23) and three spreading coefficients (Σ1,Σ2,Σ3) (see [2–4]):

Σi = σi j + σik − σ jk, i = 1, 2, 3. (2.5)

ote Σi might not be always positive. If Σi > 0, it means that the spreading is “partial”, if Σi < 0, it is called
total”.

The nonlinear potential F(φ1, φ2, φ3) is given as:

F(φ1, φ2, φ3) =σ12φ
2
1φ

2
2 + σ13φ

2
1φ

2
3 + σ23φ

2
2φ

2
3

+ φ1φ2φ3(Σ1φ1 + Σ2φ2 + Σ3φ3) + 3Λφ2
1φ

2
2φ

2
3 ,

(2.6)

here Λ is a non-negative constant. Since φ1, φ2, φ3 satisfy the free-leakage condition (2.2), F(φ1, φ2, φ3) can be
ewritten as

F(φ1, φ2, φ3) = F0(φ1, φ2, φ3) + P(φ1, φ2, φ3), (2.7)

here⎧⎨⎩ F0(φ1, φ2, φ3) =
Σ1

2
φ2

1 (1 − φ1)2
+

Σ2

2
φ2

2 (1 − φ2)2
+

Σ3

2
φ2

3 (1 − φ3)2,

P(φ1, φ2, φ3) = 3Λφ2
1φ

2
2φ

2
3 .

(2.8)

Regarding the total free energy and surface tension coefficients, some remarks are given as follows (see the
etails in [4]):

emark 2.1. Let σ12, σ13 and σ23 be three positive numbers and Σ1,Σ2 and Σ3 defined by (2.5). For any Λ > 0,
he bulk free energy F(φ1, φ2, φ3) defined in (2.7) is bounded from below if φ1, φ2, φ3 satisfies the free-leakage

ondition (2.2).

3
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Remark 2.2. For any ξ1 + ξ2 + ξ3 = 0, there exists a constant Σ > 0 such that

Σ1|ξ1|
2
+ Σ2|ξ2|

2
+ Σ3|ξ3|

2
≥ Σ

(
|ξ1|

2
+ |ξ2|

2
+ |ξ3|

2
)

≥ 0, (2.9)

f and only if the following conditions are valid:

Σ1Σ2 + Σ1Σ3 + Σ2Σ3 > 0,Σi + Σ j > 0,∀i ̸= j. (2.10)

urthermore, the lower bound only depends on Σ1,Σ2,Σ3 and Λ. Hence, if φ1, φ2, φ3 satisfies the free-leakage
ondition (2.2), we derive ∇φ1 + ∇φ2 + ∇φ3 = 0. Hence, from (2.9), we get

3∑
i=1

Σi∥∇φi∥
2

≥ Σ

3∑
i=1

∥∇φi∥
2

≥ 0. (2.11)

Remark 2.3. To form a meaningful physical system, the energy potential F(φ1, φ2, φ3) defined in (2.7) must be
ounded from below. For partial spreading case (Σi > 0 ,∀i), one can assume that Λ = 0 since F0(φ1, φ2, φ3) ≥ 0 is
aturally fulfilled. For the total spreading case, Λ has to be non-zero. Moreover, in order to ensure the non-negativity
f F , Λ must be large enough.

For the 3D case, it is shown in [4] that when P(φ1, φ2, φ3) takes the following form, the bulk energy F is
ounded from below:

P(φ1, φ2, φ3) = 3Λφ2
1φ

2
2φ

2
3 (φα(φ1) + φα(φ2) + φα(φ3)) (2.12)

here φα(x) =
1

(1+x2)α
with 0 < α ≤

8
17 .

Since (2.8) is more commonly used in [2,4], we also adopt it for simplicity. It is clear that the numerical scheme
developed in this paper can handle (2.9) or (2.12) without any essential difficulties.

To couple the fluid momentum into the system, the total free energy becomes

Etot (u, φ1, φ2, φ3) =

∫
Ω

(1
2
|u|

2
+

3ϵ
8

L(φ1, φ2, φ3) +
12
ϵ

F(φ1, φ2, φ3)
)

dx, (2.13)

here u represents the fluid velocity.
Assuming that the fluid is incompressible and follows the generalized Fick’s law, that is, the mass flux is

roportional to the gradient of the chemical potential, we can derive the following three-phase Cahn–Hilliard model
oupled with hydrodynamics:

φi t + ∇ · (uφi ) = M∆
µi

Σi
, (2.14)

µi = −
3
4
ϵΣi∆φi +

12
ϵ

( fi + βL ), i = 1, 2, 3, (2.15)

ut + u · ∇u − ν∆u + ∇ p +

3∑
i=1

φi∇µi = 0, (2.16)

∇ · u = 0, (2.17)

here M is the mobility parameter, fi = ∂i F , p is the pressure, ν is the fluid viscosity, βL is the Lagrange multiplier
to ensure the free-leakage condition (2.2) and it can be derived as

βL = −ΣT (
f1

Σ1
+

f2

Σ2
+

f3

Σ3
) with

1
ΣT

=
1
Σ1

+
1
Σ2

+
1
Σ3
. (2.18)

The boundary conditions of the system are one of the following two types:

(i) all variables are periodic, or (ii) u|∂Ω = ∂nφi |∂Ω = ∂nµi |∂Ω = 0, i = 1, 2, 3, (2.19)

where n is the unit outward normal to the boundary ∂Ω . The initial conditions are given by

u|(t=0) = u0, p|(t=0) = p0, φi |(t=0) = φ0
i , (2.20)

where the initial condition also satisfies the free-leakage condition φ0
1 + φ0

2 + φ0
3 = 1.
4
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Remark 2.4. It can be proved that the three-phase system (2.14)–(2.15) is equivalent to the following PDE system
using two variables⎧⎪⎨⎪⎩

φi t + ∇ · (uφi ) = M∆
µi

Σi
,

µi = −
3
4
ϵΣi∆φi +

12
ϵ

( fi + βL ), i = 1, 2,
(2.21)

where φ3 and µ3 are given by the following explicit formula:

φ1 + φ2 + φ3 = 1, (2.22)
µ1

Σ1
+
µ2

Σ2
+
µ3

Σ3
= 0. (2.23)

ince the proof is quite similar to Theorem 3.1, we omit the details here.

The model equations (2.14)–(2.17) follow a dissipative energy law. By taking the L2 inner product of (2.14) with
i , of (2.15) with −φi t , of (2.16) with u, and performing integration by parts, we can obtain

(φi t , µi ) = −MΣi

∇µi

Σi

2

−

∫
Ω

∇ · (uφi )µi dx, (2.24)

−(µi , φi t ) +
3
8
ϵΣi dt∥∇φi∥

2
+

12
ϵ

dt

∫
Ω

F(φi )dx = −
12
ϵ

(βL , φi t ), (2.25)

1
2

dt∥u∥
2
+ ν∥∇u∥

2
− (p,∇ · u) = −

∫
Ω

(u · ∇)u · udx −

3∑
i=1

∫
Ω

φi∇µi · udx. (2.26)

Then, we take the summation of (2.24) and (2.25) for i = 1, 2, 3, and combine the obtained results with (2.26).
Using (2.17) for the pressure term and (βL , (φ1 + φ2 + φ3)t ) = (βL , (1)t ) = 0 from (2.22), we obtain the energy
dissipative law as

d
dt

Etot (u, φ1, φ2, φ3)

= −ν∥∇u∥
2
− M

(
Σ1

∇µ1

Σ1

2

+ Σ2

∇µ2

Σ2

2

+ Σ3

∇µ3

Σ3

2)
≤ −ν∥∇u∥

2
− MΣ

(∇µ1

Σ1

2

+

∇µ2

Σ2

2

+

∇µ3

Σ3

2)
,

(2.27)

here the last inequality is derived by using (2.9) since (µ1, µ2, µ3) satisfies the condition (2.23).

emark 2.5. When deriving the PDE energy law (2.27), due to the divergence-free condition, the advection term
anishes. The advection and surface tension terms are offset by using integration by parts, i.e.,∫

Ω

(
φi∇µi · u + ∇ · (uφi )µi

)
dx = 0, i = 1, 2, 3. (2.28)

his means that the advection and surface tension terms do not contribute to the total free energy or energy
iffusivity, that is, they satisfy the “zero-energy-contribution” feature, which provides us with inspiration for
esigning a fully-decoupled scheme given in the next section.

. Numerical schemes

The purpose of this section is to construct a fully-decoupled numerical scheme to solve the flow-coupled phase-
eld system of three components incompressible flow system (2.14)–(2.17). At the same time, considering the
fficiency and accuracy of the algorithm in practice, we also expect that the scheme can satisfy linearity, second-
rder time accuracy, and unconditional energy stability. The detailed process for developing such a scheme is given
s follows.

First, we define the auxiliary function U (x, t) as

U =

√∫
F(φ1, φ2, φ3)dx + B, (3.1)
Ω

5
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where B is any constant such that the radicand is always positive (Note F(φ1, φ2, φ3) is always bounded from below
rom Remark 2.3).

Second, we define another nonlocal type scalar auxiliary variable: Q(t) ≡ 1 which is written as the solution of
simple ordinary differential equation, that reads as{

Qt = 0,
Q|t=0 = 1.

(3.2)

Then, by combining the two nonlocal variables U and Q, and the trivial evolution Eq. (3.2), the system
2.14)–(2.17) is reformulated to the following form:

φi t + Q∇ · (uφi ) = M∆
µi

Σi
, (3.3)

µi = −
3
4
ϵΣi∆φi +

12
ϵ

(Hi + β)U, i = 1, 2, 3, (3.4)

Ut =
1
2

3∑
i=1

∫
Ω

Hiφi t dx, (3.5)

ut + Qu · ∇u − ν∆u + ∇ p + Q
3∑

i=1

φi∇µi = 0, (3.6)

Qt =

3∑
i=1

∫
Ω

∇ · (uφi )µi dx +

3∑
i=1

∫
Ω

φi∇µi · udx +

∫
Ω

u · ∇u · udx, (3.7)

∇ · u = 0, (3.8)

where

β = −ΣT

(
H1

Σ1
+

H2

Σ2
+

H3

Σ3

)
, (3.9)

Hi =
fi√∫

Ω F(φ1, φ2, φ3)dx + B
. (3.10)

Note (3.9) can be also written as the following form,
H1 + β

Σ1
+

H2 + β

Σ2
+

H3 + β

Σ3
= 0. (3.11)

The variables (u, p, φi , µi ,U, Q) constitutes a closed PDE system. The initial conditions are given as follows,⎧⎪⎨⎪⎩
u|(t=0) = u0, p|(t=0) = p0, φi |(t=0) = φ0

i , i = 1, 2, 3,

U |(t=0) = U 0
=

√∫
Ω

F(φ0
1 , φ

0
2 , φ

0
3 )dx + B, Q|(t=0) = 1.

(3.12)

ote that since Eqs. (3.5) and (3.7) are ODEs that change with time, the boundary conditions for U, Q are not
eeded at all. So the boundary conditions of the system (3.3)–(3.8) are still (2.19).

Remarkably, in the new system (3.3)–(3.8), we multiply each term that satisfies the “zero-energy-contribution”
characteristic with the nonlocal variable Q. It is easy to find that, after using integration by parts and the divergence-
ree condition, the combination of all nonlinear integrations in (3.7) is equal to zero, which means Q ≡ 1 and thus
he new system (3.3)–(3.8) is equivalent to the original PDE system (2.14)–(2.17). Meanwhile, the new system
3.3)–(3.8) also holds the law of energy dissipation that can be obtained through a similar process to obtain (2.27).
ince the discrete-level energy stability proof process follows the same principle, we introduce the following detailed
rocess to make it more clear.

We multiply the L2 inner product of (3.3) with µi to get

(φi t , µi ) = −MΣi

∇µi

Σi

2

− Q
∫
Ω

∇ · (uφi )µi dx   . (3.13)
I1

6
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We multiply the L2 inner product of (3.4) with −φi t to get

− (µi , φi t ) +
3
8
ϵΣi dt∥∇φi∥

2
= −

12
ϵ

U
∫
Ω

Hiφi t dx  
IV1

−
12
ϵ

(β, φi t ). (3.14)

e multiply (3.5) with 24
ϵ

U to derive

12
ϵ

dt |U |
2

=

3∑
i=1

12
ϵ

U
∫
Ω

Hφi t dx  
IV2

. (3.15)

By multiplying the L2 inner product of (3.6) with u, we get

1
2

dt∥u∥
2
+ ν∥∇u∥

2
− (p,∇ · u) = −Q

3∑
i=1

∫
Ω

φi∇µi · udx  
II1

− −Q
∫
Ω

(u · ∇)u · udx  
III1

. (3.16)

By multiplying (3.7) with Q, we get

dt

(1
2
|Q|

2
)

= Q
3∑

i=1

∫
Ω

∇ · (uφi )µi dx  
I2

+ Q
3∑

i=1

∫
Ω

φi∇µi · udx  
II2

+ Q
∫
Ω

u · ∇u · udx  
III2

. (3.17)

Combining the above five Eqs. (3.13)–(3.17), using (β,
∑3

i=1 φi t ) = (β, (1)t ) = 0, and noting that the two terms
ith the same Rome numerals under curly braces cancel each other out, we derive

d
dt

E(u, φ1, φ2, φ3,U, Q)

= −ν∥∇u∥
2
− M

(
Σ1

∇µ1

Σ1

2

+ Σ2

∇µ2

Σ2

2

+ Σ3

∇µ3

Σ3

2)
≤ −ν∥∇u∥

2
− MΣ

(∇µ1

Σ1

2

+

∇µ2

Σ2

2

+

∇µ3

Σ3

2)
,

(3.18)

here the two negative terms on the right end prescribe the energy diffusive rate and

E(u, φ1, φ2, φ3,U, Q) =
1
2
∥u∥

2
+

3
8
ϵ

3∑
i=1

Σi∥∇φi∥
2
+

12
ϵ

|U |
2
+

1
2
|Q|

2. (3.19)

emark 3.1. After adding the simple ODE (3.7), we can see that the derivation of the law of energy becomes
lightly different from that of the original system. For example, we no longer need the term I1 in (3.13) and II1

in (3.16) to cancel each other. Instead, I1 is canceled by I2, and II1 is canceled by II2, where I2 and II2 are from
he new ODE (3.7). In other words, for the discrete case, we can use different methods to discretize the advection
associated with I1) and surface tension (associated with II1), which makes it possible to design a fully-decoupled
cheme.

Now, it is ready to build up a numerical scheme to discretize the new system (3.3)–(3.8) by using the second-order
ackward differentiation formula (BDF2). It reads as follows.

We compute (ũ,u, p, (φi , µi )i=1,2,3,U, Q)n+1 by

aũn+1
− bun

+ cun−1

2δt
+ Qn+1(u∗

· ∇)u∗
− ν∆ũn+1

+ ∇ pn
+ Qn+1

3∑
i=1

φ∗

i ∇µ∗

i = 0, (3.20)

aφn+1
i − bφn

i + cφn−1
i

+ Qn+1
∇ · (u∗φ∗

i ) = M∆
µn+1

i , (3.21)

2δt Σi

7
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w

o

R
m
(
fi
o

R
t
m
I
a
a

R
b
(
e

t

T

µn+1
i = −

3
4
ϵΣi∆φ

n+1
i +

12
ϵ

(H∗

i + β∗)U n+1
+

S
ϵ
Σi (φn+1

i − φ∗

i ), (3.22)

aU n+1
− bU n

+ cU n−1
=

1
2

3∑
i=1

H∗

i (aφn+1
i − bφn

i + cφn−1
i ), (3.23)

1
2δt

(aQn+1
− bQn

+ cQn−1) =

3∑
i=1

∫
Ω

∇ · (u∗φ∗

i )µn+1
i dx +

3∑
i=1

∫
Ω

(φ∗

i ∇µ∗

i ) · ũn+1dx (3.24)

+

∫
Ω

(u∗
· ∇)u∗

· ũn+1dx,

a
2δt

(un+1
− ũn+1) + ∇(pn+1

− pn) = 0, (3.25)

∇ · un+1
= 0, (3.26)

here⎧⎨⎩
a = 3, b = 4, c = 1, u∗

= 2un
− un−1, φ∗

i = 2φn
i − φn−1

i ,

µ∗

i = 2µn
i − µn−1

i , H∗

i = Hi (φ∗

1 , φ
∗

2 , φ
∗

3 ), β∗
= −

1
ΣT

(
H∗

1

Σ1
+

H∗

2

Σ2
+

H∗

3

Σ3

)
,

(3.27)

S > 0 is a stabilization parameter, and the boundary conditions of the scheme are either periodic for all variables,
r

ũn+1
|∂Ω = un+1

· n|∂Ω = 0, ∂nφ
n+1
i |∂Ω = ∂nµ

n+1
i |∂Ω = 0, i = 1, 2, 3. (3.28)

In the next few remarks, we give some explanations of the scheme.

emark 3.2. The scheme is linear and each nonlinear term is discretized using the implicit–explicit combination
ethod. For the hydrodynamical equations, we adopt the second-order pressure-correction scheme (3.20)–(3.25)–

3.26) (cf. [44]) where ũn+1 is the intermediate velocity that follows the Dirichlet boundary conditions and the
nal velocity field un+1 follows the divergence-free condition. To obtain the pressure, we just apply the divergence
perator to (3.25) and then obtain the following Poisson equation for pn+1, i.e.,

− ∆pn+1
= −

a
2δt

∇ · ũn+1
− ∆pn. (3.29)

Once pn+1 is computed from (3.29), we update un+1 by using (3.25), i.e.,

un+1
= ũn+1

−
2δt
a

∇(pn+1
− pn). (3.30)

emark 3.3. Note that the coefficient H∗

i actually contains explicitly processed terms f (φ1, φ2, φ3), so we add
he comparable stabilizer (S ∼ O(1)) in (3.22). Although this term introduces an extra error of Sδt2∂t tφi (·), whose

agnitude is comparable with the error caused by the second-order extrapolated of the nonlinear term fi (φ1, φ2, φ3).
n Section 4, we present enough numerical evidence to show that this stabilizer is critical to maintain the accuracy
nd improve the energy stability while using large time steps, see the accuracy/stability tests shown in Figs. 4.2
nd 4.3.

emark 3.4. The initialization of the second-order scheme requires all values at t = t1, which can be obtained
y constructing the first-order scheme based on the backward Euler method. In the above second-order scheme
3.20)–(3.26), as long as we set a = 2, b = 2, c = 0, ψ∗

= ψn for any variable ψ , the first-order scheme can be
asily obtained.

We first prove that the discrete solutions (φn+1
1 , φn+1

2 , φn+1
3 ) computed by the scheme (3.20)–(3.26) also satisfy

he free-leakage condition, i.e., φn+1
1 + φn+1

2 + φn+1
3 = 1, that is, there is no volume loss at all time.

heorem 3.1. The scheme (3.21)–(3.22) is equivalent to a scheme with two variables as follows:

aφn+1
i − bφn

i + cφn−1
i

+ Qn+1
∇ · (u∗φ∗

i ) = M∆
µn+1

i , (3.31)

2δt Σi

8
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w
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f
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f
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w

µn+1
i = −

3
4
ϵΣi∆φ

n+1
i +

12
ϵ

(H∗

i + β∗)U n+1
+

S
ϵ
Σi (φn+1

i − φ∗

i ), i = 1, 2, (3.32)

ith

φn+1
3 = 1 − φn+1

1 − φn+1
2 , (3.33)

µn+1
3

Σ3
= −(

µn+1
1

Σ1
+
µn+1

2

Σ2
). (3.34)

Proof. First, we derive (3.21)–(3.22) by assuming that (3.31)–(3.34) are satisfied. Taking the summation of (3.31)
for i = 1, 2, applying (3.33) at t = tn+1, tn, tn−1, and using (3.34), we obtain

aφn+1
3 − bφn

3 + cφn−1
3

2δt
+ Qn+1

∇ · (u∗φ∗

3 ) = M∆
µn+1

3

Σ3
. (3.35)

Furthermore, from (3.34), we derive

µn+1
3 = −Σ3(

µn+1
1

Σ1
+
µn+1

2

Σ2
)

= −Σ3

(
−

3
4
ϵ∆φn+1

1 −
3
4
ϵ∆φn+1

2 +
12
ϵ

(
H∗

1 + β∗

Σ1
+

H∗

2 + β∗

Σ2
)U n+1

+
S
ϵ

(φn+1
1 + φn+1

2 − φ∗

1 − φ∗

2 )
)

= −
3
4
ϵΣ3∆φ

n+1
3 +

12
ϵ

(H∗

3 + β∗)U n+1
+

S
ϵ
Σ3(φn+1

3 − φ∗

3 ),

here we use (3.33) and the definition of β∗ in (3.27) (that is, H∗
1 +β∗

Σ1
+

H∗
2 +β∗

Σ2
+

H∗
3 +β∗

Σ3
= 0).

Second, we assume that Eqs. (3.21)–(3.22) are satisfied and then derive (3.31)–(3.34). We use the mathematical
nduction and assume that (3.33) is valid for t = tn and t = tn−1 (the validity of (3.33) at t = t1 can be shown by
erforming a similar process to the first-order scheme, so the detailed proof is omitted here). For any m, we define

Cm
= φm

1 + φm
2 + φm

3 , Θ
m

=
µm

1

Σ1
+
µm

2

Σ2
+
µm

3

Σ3
. (3.36)

e take the summation of (3.21) for i = 1, 2, 3 to derive
3

2δt
(Cn+1

− 1) = M∆Θn+1, (3.37)

where the advective terms vanish satisfy ∇ · (u∗
∑3

i=1 φ
∗

i ) = ∇ · u∗
= 0 since

∑3
i=1 φ

∗

i = 1 by the induction.
We take the summation of (3.22) for i = 1, 2, 3 to get

Θn+1
= −

3
4
ϵ∆Cn+1

+
S
ϵ

(Cn+1
− 1). (3.38)

Taking the L2 inner product of (3.37) with −
2δt
3 Θn+1, of (3.38) with Cn+1

− 1, and summing up the two obtained
qualities, we deduce

3
4
ϵ∥∇Cn+1

∥
2
+

S
ϵ
∥Cn+1

− 1∥
2
+

2δt
3

M∥∇Θn+1
∥

2
= 0. (3.39)

Since all terms on the left hand side of (3.39) are non-negative, thus ∇Cn+1
= 0 and ∇Θn+1

= 0 that implies the
unctions Cn+1 and Θn+1 are both constants. Then (3.37) leads to Cn+1

= 1 that means the (3.33) is valid. We also
erive Θn+1

= 0 from (3.38) that implies (3.34) is valid. □

Here we discuss how to implement the scheme (3.20)–(3.26) in practice. It seems that all unknown variables
re nonlocally coupled together, so from the appearance, the scheme (3.20)–(3.26) does not seem to achieve the
ully-decoupled structure that we expect. This reminds us that we cannot solve the scheme in any direct ways
ecause doing so will cause a lot of time consumption. Next, we introduce the implementation process in detail, in
hich we make full use of the nonlocal features of the two additional variables U, Q, as shown below.
9
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A
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B
n

First, we use the nonlocal scalar variable Qn+1 to split (φi , µi ,U )n+1 into a linear combination that reads as⎧⎪⎨⎪⎩
φn+1

i = φn+1
i,1 + Qn+1φn+1

i,2 ,

µn+1
i = µn+1

i,1 + Qn+1µn+1
i,2 ,

U n+1
= U n+1

1 + Qn+1U n+1
2 .

(3.40)

Then the scheme (3.21)–(3.22) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a
2δt

(φn+1
i,1 + Qn+1φn+1

i,2 ) + Qn+1
∇ · (u∗φ∗

i ) = M∆
µn+1

i,1 + Qn+1µn+1
i,2

Σi
+

bφn
i − cφn−1

i

2δt
,

µn+1
i,1 + Qn+1µn+1

i,2 = −
3
4
ϵΣi∆(φn+1

i,1 + Qn+1φn+1
i,2 ) +

12
ϵ

(H∗

i + β∗)(U n+1
1 + Qn+1U n+1

2 )

+
S
ϵ
Σi (φn+1

i,1 + Qn+1φn+1
i,2 − φ∗

i ).

(3.41)

ccording to Qn+1, we split the system (3.41) into two sub-systems as follows,⎧⎪⎪⎨⎪⎪⎩
a

2δt
φn+1

i,1 = M∆
µn+1

i,1

Σi
+

bφn
i − cφn−1

i

2δt
,

µn+1
i,1 = −

3
4
ϵΣi∆φ

n+1
i,1 +

12
ϵ

(H∗

i + β∗)U n+1
1 +

S
ϵ
Σi (φn+1

i,1 − φ∗

i ),

(3.42)

⎧⎪⎪⎨⎪⎪⎩
a

2δt
φn+1

i,2 = M∆
µn+1

i,2

Σi
− ∇ · (u∗φ∗

i ),

µn+1
i,2 = −

3
4
ϵΣi∆φ

n+1
i,2 +

12
ϵ

(H∗

i + β∗)U n+1
2 +

S
ϵ
Σiφ

n+1
i,2 .

(3.43)

By applying procedures similar to the second-step proof in Theorem 3.1 to the two systems (3.42) and (3.43), we
derive⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

φn+1
1,1 + φn+1

2,1 + φn+1
3,1 = 1,

µn+1
1,1

Σi
+
µn+1

2,1

Σ2
+
µn+1

3,1

Σ3
= 0,

φn+1
1,2 + φn+1

2,2 + φn+1
3,2 = 0,

µn+1
1,2

Σi
+
µn+1

2,2

Σ2
+
µn+1

3,2

Σ3
= 0.

(3.44)

Note that the two subsystems (3.42) and (3.43) have the same form, so we only need to introduce the method to
solve any of them, and the other follows the same line. Hence, we take the first subsystem (3.42) as an example. To
solve it, we continue to use the split technique, that is, the variables (φi,1, µi,1)n+1 are split into a linear combination
orm by the nonlocal variable U n+1

1 , which reads as{
φn+1

i,1 = φn+1
i,1,1 + U n+1

1 φn+1
i,1,2,

µn+1
i,1 = µn+1

i,1,1 + U n+1
1 µn+1

i,1,2.
(3.45)

y substituting the split form of all variables in (3.45) into (3.42) and decomposing the results according to the
onlocal variable U n+1

1 , we obtain the following independent subsystems that read as⎧⎪⎪⎨⎪⎪⎩
a

2δt
φn+1

i,1,1 = M∆
µn+1

i,1,1

Σi
+

bφn
i − cφn−1

i

2δt
,

µn+1
i,1,1 = −

3
4
ϵΣi∆φ

n+1
i,1,1 +

S
ϵ
Σi (φn+1

i,1,1 − φ∗

i ),

(3.46)

⎧⎪⎪⎨⎪⎪⎩
a

2δt
φn+1

i,1,2 = M∆
µn+1

i,1,2

Σi
,

µn+1
= −

3
ϵΣi∆φ

n+1
+

12
(H∗

+ β∗) +
S
Σiφ

n+1 .

(3.47)
i,1,2 4 i,1,2 ϵ i ϵ i,1,2

10
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The boundary conditions for (3.46)–(3.47) are either periodic or

∂n(φi,1,1, φi,1,2, µi,1,1, µi,1,2)n+1
|∂Ω = 0. (3.48)

e can directly solve (φi,1,1, φi,1,2, µi,1,1, µi,1,2)n+1, i = 1, 2, 3 from the above sub-systems (3.46)–(3.47) since all
onlinear terms are given explicitly; or we can solve (3.46)–(3.47) for i = 1, 2 and update i = 3 from the following
onditions⎧⎪⎪⎪⎨⎪⎪⎪⎩

φn+1
1,1,1 + φn+1

2,1,1 + φn+1
3,1,1 = 1,

µn+1
1,1,1

Σi
+
µn+1

2,1,1

Σ2
+
µn+1

3,1,1

Σ3
= 0,

φn+1
1,1,2 + φn+1

2,1,2 + φn+1
3,1,2 = 0,

µn+1
1,1,2

Σi
+
µn+1

2,1,2

Σ2
+
µn+1

3,1,2

Σ3
= 0,

(3.49)

hich can be easily obtained from (3.46)–(3.47) by performing a derivation process similar to the proof of the
econd step of Theorem 3.1.

For the system (3.43), we implement it in a similar way. By splitting (φi,2, µi,2)n+1 into the following linear
ombination form by the nonlocal variable U n+1

2 , i.e.,{
φn+1

i,2 = φn+1
i,2,1 + U n+1

2 φn+1
i,2,2,

µn+1
i,2 = µn+1

i,2,1 + U n+1
2 µn+1

i,2,2.
(3.50)

hen the unknowns (φi,2,1, φi,2,2, µi,2,1, µi,2,2)n+1 can be obtained by solving another several sub-systems that are
imilar to (3.46)–(3.47) with the same boundary conditions specified as (3.48).

Second, we rewrite (3.23) as the following form

U n+1
=

1
2

3∑
i=1

∫
Ω

H∗

i φ
n+1
i dx + gn, (3.51)

where gn
=

1
a (bU n

−cU n−1)− 1
2a

∑3
i=1

∫
Ω H∗

i (bφn
i −cφn−1

i )dx is the explicit form. By substituting the linear form
of (U, φn+1

i ) represented by Qn+1 given in (3.40) into (3.51), we obtain

U n+1
1 + Qn+1U n+1

2 =
1
2

3∑
i=1

∫
Ω

H∗

i (φn+1
i,1 + Qn+1φn+1

i,2 )dx + gn. (3.52)

Then, according to Qn+1, we decompose (3.52) into the following two equalities:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
U n+1

1 =
1
2

3∑
i=1

∫
Ω

H∗

i φ
n+1
i,1 dx + gn,

U n+1
2 =

1
2

3∑
i=1

∫
Ω

H∗

i φ
n+1
i,2 dx.

(3.53)

Substituting the linear form of (φi,1, φi,2)n+1 given in (3.45) and (3.50) into (3.53), we get⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
U n+1

1 =
1
2

3∑
i=1

∫
Ω

H∗

i (φn+1
i,1,1 + U n+1

1 φn+1
i,1,2)dx + gn,

U n+1
2 =

1
2

3∑
i=1

∫
Ω

H∗

i (φn+1
i,2,1 + U n+1

2 φn+1
i,2,2)dx.

(3.54)

fter applying a simple factorization to (3.54), we derive⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
U n+1

1 =

1
2

∑3
i=1

∫
Ω H∗

i φ
n+1
i,1,1dx + gn

1 −
1
2

∑3
i=1

∫
Ω H∗

i φ
n+1
i,1,2dx

,

U n+1
2 =

1
2

∑3
i=1

∫
Ω H∗

i φ
n+1
i,2,1dx

1 ∑3 ∫
∗ n+1

.

(3.55)
1 − 2 i=1 Ω Hi φi,2,2dx
11
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An important thing is to verify whether U n+1
1 and U n+1

2 are solvable. This can be obtained by applying simple
nergy estimation to the subsystem (3.47). For any ψ ∈ L2(Ω ) with

∫
Ω ψdx = 0, we define φ = ∆−1ψ to be the

olution of the following Poisson equation

∆φ = ψ,

∫
Ω

φdx = 0, (3.56)

here the boundary condition is decided by the system (i.e., if the system is with periodic boundary condition, then
is periodic; if the system is with the boundary condition described in (2.19), then ∂nφ|∂Ω = 0.)
By applying ∆−1 to the first equation of (3.47) and combine the obtained result with the second equation of

3.47), we obtain
a

2Mδt
∆−1φn+1

i,1,2 = −
3
4
ϵΣi∆φ

n+1
i,1,2 +

12
ϵ

(H∗

i + β∗) +
S
ϵ
Σiφi,1,2. (3.57)

By taking the L2 inner product of (3.57) with φn+1
i,1,2 and taking the summation for i = 1, 2, 3, we derive

−
12
ϵ

3∑
i=1

∫
Ω

H∗

i φ
n+1
i,1,2dx =

a
2Mδt

3∑
i=1

∥∇∆−1φn+1
i,1,2∥

2
+

3
4
ϵ

3∑
i=1

Σi∥∇φi,1,2∥
2

+
S
ϵ

3∑
i=1

Σi∥φ
n+1
i,1,2∥

2
+

3∑
i=1

(β∗, φn+1
i,1,2) ≥ 0,

(3.58)

here the term
∑3

i=1(β∗, φn+1
i,1,2) = 0 due to (3.49). Hence U n+1

1 is uniquely solvable. By performing similar energy
stimation on the two sub-systems split from (3.43) (according to U n+1

2 ), it can be easily shown that U n+1
2 is also

niquely solvable. After calculating U n+1
1 and U n+1

2 from (3.55), we further obtain φn+1
i,1 , µn+1

i,1 from (3.45), and
n+1
i,2 , µn+1

i,2 from (3.50).
Third, for the velocity field ũn+1,un+1 and the pressure pn+1 in the scheme (3.20) and (3.25)–(3.26), we also

se the nonlocal variable Qn+1 to split them as the following linear combinations:⎧⎪⎨⎪⎩
ũn+1

= ũn+1
1 + Qn+1ũn+1

2 ,

un+1
= un+1

1 + Qn+1un+1
2 ,

pn+1
= pn+1

1 + Qn+1 pn+1
2 .

(3.59)

n the scheme (3.20) and (3.25)–(3.26), using (3.59) to replace the variables (ũ,u, p)n+1 and then splitting the
btained equations according to Qn+1, we obtain several sub-equations, which can be solved independently. More
recisely, starting with (3.20), the two split variables ũn+1

1 and ũn+1
2 satisfy the following equations:⎧⎪⎨⎪⎩

a
2δt

ũn+1
1 − ν∆ũn+1

1 = σ1,

a
2δt

ũn+1
2 − ν∆ũn+1

2 = σ2,
(3.60)

here σ1, σ2 are explicit forms that are given by⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ1 = −∇ pn

+
bun

− cun−1

2δt
,

σ2 = −(u∗
· ∇)u∗

−

3∑
i=1

φ∗

i ∇µ∗

i .

(3.61)

For (3.25)–(3.26), using the two split variables un+1
i , pn+1

i , i = 1, 2, we obtain⎧⎪⎨⎪⎩
a

2δt
(un+1

1 − ũn+1
1 ) + ∇ pn+1

1 = ∇ pn, ∇ · un+1
1 = 0,

a
2δt

(un+1
2 − ũn+1

2 ) + ∇ pn+1
2 = 0, ∇ · un+1

2 = 0.
(3.62)

e require four split variables ũn+1
i ,un+1

i , i = 1, 2 follow the boundary conditions described in (3.28), i.e., they
are either periodic or satisfy:

˜
n+1 n+1
ui |∂Ω = ui · n|∂Ω = 0. (3.63)

12



X. Yang Computer Methods in Applied Mechanics and Engineering 376 (2021) 113589

(

a

C

Fourth, we solve the auxiliary variable Qn+1. Using the split form for the variables µn+1
i in (3.40) and ũn+1 in

3.59), one can rewrite (3.24) as the following form:

(
a

2δt
− ϑ2)Qn+1

=
1

2δt
(bQn

− cQn−1) + ϑ1, (3.64)

where ϑi , i = 1, 2 are given as:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ϑ1 =

3∑
i=1

∫
Ω

∇ · (u∗φ∗

i )µn+1
i,1 dx +

3∑
i=1

∫
Ω

(φ∗

i ∇µ∗

i ) · ũn+1
1 dx +

∫
Ω

(u∗
· ∇)u∗

· ũn+1
1 dx,

ϑ2 =

3∑
i=1

∫
Ω

∇ · (u∗φ∗

i )µn+1
i,2 dx +

3∑
i=1

∫
Ω

(φ∗

i ∇µ∗

i ) · ũn+1
2 dx +

∫
Ω

(u∗
· ∇)u∗

· ũn+1
2 dx.

(3.65)

We need to verify (3.64) is solvable. By taking the L2 inner product of the second equation in (3.60) with ũn+1
2 ,

we derive

−

∫
Ω

(u∗
· ∇)u∗

· ũn+1
2 dx −

3∑
i=1

∫
Ω

(φ∗

i ∇µ∗

i ) · ũn+1
2 dx =

a
2δt

∥ũn+1
2 ∥

2
+ ν∥∇ũn+1

2 ∥
2

≥ 0. (3.66)

We further take the L2 inner product of the first equation in (3.43) with µn+1
i,2 to get

−

∫
Ω

∇ · (u∗φ∗

i )µn+1
i,2 dx = MΣi

µ
n+1
i,2

Σi


2

+
a

2δt
(φn+1

i,2 , µn+1
i,2 ), (3.67)

nd of the second equation in (3.43) with a
2δt φ

n+1
i,2 to get

a
2δt

(φn+1
i,2 , µn+1

i,2 ) =
3a
8δt

ϵΣi∥∇φ
n+1
i,2 ∥

2
+

aS
2δtϵ

Σi∥φ
n+1
i,2 ∥

2

+
12a
2δtϵ

U n+1
2

∫
Ω

H∗

i φ
n+1
i,2 dx +

12a
2δtϵ

U n+1
2 (β, φn+1

i,2 ).
(3.68)

ombining (3.67) and (3.68) and taking the summation for i = 1, 2, 3, we derive

−

3∑
i=1

∫
Ω

∇ · (u∗φ∗

i )µn+1
i,2 dx =M

3∑
i=1

Σi

µ
n+1
i,2

Σi


2

+
3a
8δt

ϵ

3∑
i=1

Σi∥∇φ
n+1
i,2 ∥

2

+
aS

2δtϵ

3∑
i=1

Σi∥φ
n+1
i,2 ∥

2
+

12a
2δtϵ

U n+1
2 (β,

3∑
i=1

φn+1
i,2 )

+
12a
2δtϵ

U n+1
2

3∑
i=1

∫
Ω

H∗

i φ
n+1
i,2 dx.

(3.69)

By using the third and fourth equality of (3.44) and applying (2.9), we derive

3∑
i=1

Σi

µ
n+1
i,2

Σi


2

≥ Σ

3∑
i=1

µ
n+1
i,2

Σi


2

≥ 0,
3∑

i=1

Σi∥∇φ
n+1
i,2 ∥

2
≥ Σ

3∑
i=1

∥∇φn+1
i,2 ∥

2
≥ 0,

3∑
i=1

Σi∥φ
n+1
i,2 ∥

2
≥ Σ

3∑
i=1

∥φn+1
i,2 ∥

2
≥ 0, (β,

3∑
i=1

φn+1
i,2 ) = 0.

(3.70)

From the second equation of (3.53), we derive

U n+1
2

3∑∫
H∗

i φ
n+1
i,2 dx =

1
2

(
3∑∫

H∗

i φ
n+1
i,2 dx

)2

≥ 0. (3.71)

i=1 Ω i=1 Ω

13
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Hence we have

−

3∑
i=1

∫
Ω

∇ · (u∗φ∗)µn+1
i,2 dx ≥ 0. (3.72)

Therefore, (3.66) and (3.72) imply that −ϑ2 ≥ 0, thereby ensuring the solvability of (3.64).
Finally, we update φn+1

i , µn+1
i for i = 1, 2, 3 and U n+1 from (3.40), ũn+1, un+1, and pn+1 from (3.59).

We summarize the implementation of scheme (3.20)–(3.26) as follows:

• Step 1: Compute (φi,1,1, φi,1,2, µi,1,1, µi,1,2)n+1 for i = 1, 2, 3 from (3.46)–(3.47), and compute (φi,2,1, φi,2,2,
µi,2,1, µi,2,2)n+1 for i = 1, 2, 3 from another similar two sub-systems split from (3.43) using the variable U n+1

2 ;
• Step 2: Update U n+1

1 ,U n+1
2 from (3.55);

• Step 3: Update (φi,1, µi,1)n+1 for i = 1, 2, 3 from (3.45), and update (φi,2, µi,2)n+1 for i = 1, 2, 3 from (3.50);
• Step 4: Compute ũn+1

i , i = 1, 2 from (3.60);
• Step 5: Compute un+1

i and pn+1
i , i = 1, 2 from (3.62);

• Step 6: Compute Qn+1 from (3.64);
• Step 7: Update φn+1

i , µn+1
i for i = 1, 2, 3 and U n+1 from (3.40), and update ũn+1, un+1, and pn+1 from (3.59).

herefore, if third phase-field variable is always updated by using the relationship of the three phases (for instance,
3.44), (3.49)), then the total computational cost needed by the scheme (3.20)–(3.26) at each time step includes
olving four independent elliptic linear systems in Step 1, two elliptic equations in Step 4, and two more Poisson
ype equations in Step 5. All these equations have constant coefficients and are fully-decoupled, which means very
fficient calculations in practice.

Now the energy stability of the developed scheme (3.20)–(3.26) is shown as follows.

heorem 3.2. The following discrete energy dissipation law holds for the scheme (3.20)–(3.26),

1
δt

(En+1
− En) ≤ −ν∥∇ũn+1

∥
2
− MΣ

3∑
i=1

∇µn+1
i

Σi


2

≤ 0, (3.73)

where

En+1
=

1
2

(1
2
∥un+1

∥
2
+

1
2
∥2un+1

− un
∥

2
)

+
δt2

3
∥∇ pn+1

∥
2

+
3ϵ
8

3∑
i=1

(
Σi (

1
2
∥∇φn+1

i ∥
2
+

1
2
∥2∇φn+1

i − ∇φn
i ∥

2)
)

+
12
ϵ

(1
2
|U n+1

|
2
+

1
2
|2U n+1

− U n
|
2
)

+
1
2

(1
2
|Qn+1

|
2
+

1
2
|2Qn+1

− Qn
|
2
)

+
S
2ϵ

3∑
i=1

(Σi∥φ
n+1
i − φn

i ∥
2) ≥ 0.

(3.74)

Proof. We multiply the inner product of (3.20) with 2δt ũn+1 in the L2 space to get

(3ũn+1
− 4un

+ un−1, ũn+1) + 2νδt∥∇ũn+1
∥

2
+ 2δt(∇ pn, ũn+1)

= −2δt Qn+1
∫
Ω

(u∗
· ∇)u∗

· ũn+1dx − 2δt Qn+1
3∑

i=1

∫
Ω

(φ∗

i ∇µ∗

i ) · ũn+1dx.
(3.75)

From (3.25), for any variable v with ∇ · v = 0, we have

n+1
˜

n+1
(u , v) = (u , v). (3.76)

14
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w

We derive following equality

(3ũn+1
− 4un

+ un−1, ũn+1)

= (3ũn+1
− 4un

+ un−1,un+1) + (3ũn+1
− 4un

+ un−1, ũn+1
− un+1)

= (3un+1
− 4un

+ un−1,un+1) + (3ũn+1, ũn+1
− un+1)

= (3un+1
− 4un

+ un−1,un+1) + 3(ũn+1
− un+1, ũn+1

+ un+1)

=
1
2

(
∥un+1

∥
2
− ∥un

∥
2
+ ∥2un+1

− un
∥

2
− ∥2un

− un−1
∥

2

+ ∥un+1
− 2un

+ un−1
∥

2
)

+ 3(∥ũn+1
∥

2
− ∥un+1

∥
2),

(3.77)

here we use the following identity

2(3a − 4b + c, a) = a2
− b2

+ (2a − b)2
− (2b − c)2

+ (a − 2b + c)2. (3.78)

We reformulate the projection step (3.25) as

3
2δt

un+1
+ ∇ pn+1

=
3

2δt
ũn+1

+ ∇ pn. (3.79)

By taking the square of both sides of the above equation, we get

9
4δt2 ∥un+1

∥
2
+ ∥∇ pn+1

∥
2

=
9

4δt2 ∥ũn+1
∥

2
+ ∥∇ pn

∥
2
+

3
δt

(ũn+1,∇ pn). (3.80)

Hence, by multiplying 2δt2/3 of the above equation, we derive

3
2

(∥un+1
∥

2
− ∥ũn+1

∥
2) +

2δt2

3
(∥∇ pn+1

∥
2
− ∥∇ pn

∥
2) = 2δt(ũn+1,∇ pn). (3.81)

By taking the inner product of (3.25) with 2δtun+1 in the L2 space, we have

3
2

(∥un+1
∥

2
− ∥ũn+1

∥
2
+ ∥un+1

− ũn+1
∥

2) = 0. (3.82)

We combine (3.75), (3.77), (3.81), and (3.82) to obtain

1
2

(∥un+1
∥

2
− ∥un

∥
2
+ ∥2un+1

− un
∥

2
− ∥2un

− un−1
∥

2
+ ∥un+1

− 2un
+ un−1

∥
2)

+
3
2
∥un+1

− ũn+1
∥

2
+

2δt2

3
(∥∇ pn+1

∥
2
− ∥∇ pn

∥
2) + 2νδt∥∇ũn+1

∥
2

= −2δt Qn+1
∫
Ω

(u∗
· ∇)u∗

· ũn+1dx − 2δt Qn+1
3∑

i=1

∫
Ω

(φ∗

i ∇µ∗

i ) · ũn+1dx.

(3.83)

Computing the inner product of (3.21) with 2δtµn+1
i in the L2 space, we have

(3φn+1
i − 4φn

i + φn−1
i , µn+1

i ) + 2δt MΣi

∇µn+1
i

Σi


2

= −2δt Qn+1
∫
Ω

∇ · (u∗φ∗

i )µn+1
i dx. (3.84)

Computing the L2 inner product of (3.22) with −(3φn+1
− 4φn

+ φn−1), we find

−(µn+1
i , 3φn+1

i − 4φn
i + φn−1

i ) +
3
4
ϵΣi (∇φn+1

i ,∇(3φn+1
i − 4φn

i + φn−1
i ))

= −
12
ϵ

U n+1
∫
Ω

(H∗

i + β∗)(3φn+1
i − 4φn

i + φn−1
i )dx

−
S

(Σi (φn+1
− φ∗), 3φn+1

− 4φn
+ φn−1).

(3.85)
ϵ i i i i i

15



X. Yang Computer Methods in Applied Mechanics and Engineering 376 (2021) 113589

a

w

We multiply (3.23) with 24
ϵ

U n+1 and use (3.78) to obtain

12
ϵ

(
|U n+1

|
2
− |U n

|
2
+ |2U n+1

− U n
|
2
− |2U n

− U n−1
|
2
+ |U n+1

− 2U n
+ U n−1

|
2
)

=
12
ϵ

3∑
i=1

U n+1
∫
Ω

H∗

i (3φn+1
i − 4φn

i + φn−1
i )dx.

(3.86)

We multiply (3.24) with 2δt Qn+1 and use (3.78) to obtain

1
2

(
|Qn+1

|
2
− |Qn

|
2
+|2Qn+1

− Qn
|
2
− |2Qn

− Qn−1
|
2
+ |Qn+1

− 2Qn
+ Qn−1

|
2
)

=2δt Qn+1
3∑

i=1

∫
Ω

∇ · (u∗φ∗

i )µn+1
i dx + 2δt Qn+1

3∑
i=1

∫
Ω

(φ∗

i ∇µ∗

i ) · ũn+1dx

+ 2δt Qn+1
∫
Ω

(u∗
· ∇)u∗

· ũn+1dx.

(3.87)

Hence, by combining (3.83)–(3.87) and taking the summation for i = 1, 2, 3, we arrive at

1
2

(∥un+1
∥

2
− ∥un

∥
2
+ ∥2un+1

− un
∥

2
− ∥2un

− un−1
∥

2) +
2δt2

3
(∥∇ pn+1

∥
2
− ∥∇ pn

∥
2)

+
3ϵ
8

3∑
i=1

(
Σi (∥∇φn+1

i ∥
2
− ∥∇φn

i ∥
2
+ ∥∇(2φn+1

i − φn
i )∥2

− ∥∇(2φn
i − φn−1

i )∥2)
)

+
12
ϵ

(
|U n+1

|
2
− |U n

|
2
+ |2U n+1

− U n
|
2
− |2U n

− U n−1
|
2
)

+
1
2

(
|Qn+1

|
2
− |Qn

|
2
+ |2Qn+1

− Qn
|
2
− |2Qn

− Qn−1
|
2
)

+
S
ϵ

3∑
i=1

(
Σi
(
∥φn+1

i − φn
i ∥

2
− ∥φn

i − φn−1
i ∥

2))
+

{1
2
∥un+1

− 2un
+ un−1

∥
2
+

3
2
∥un+1

− ũn+1
∥

2

+
3ϵ
8

3∑
i=1

Σi∥∇(φn+1
i − 2φn

i + φn−1
i )∥2

+
12
ϵ

|U n+1
− 2U n

+ U n−1
|
2

+
1
2
|Qn+1

− 2Qn
+ Qn−1

|
2
+

2S
ϵ

3∑
i=1

Σi∥φ
n+1
i − 2φn

i + φn−1
i ∥

2
}

= −2δtν∥∇ũn+1
∥

2
− 2δt M

3∑
i=1

Σi

∇µn+1
i

Σi


2

≤ −2δtν∥∇ũn+1
∥

2
− 2δt MΣ

3∑
i=1

∇µn+1
i

Σi


2

≤ 0,

(3.88)

where we use the following two identities

(3a − 4b + c)(a − 2b + c) = (a − b)2
− (b − c)2

+ 2(a − 2b + c)2,

nd
3∑

i=1

U n+1
∫
Ω

β∗(3φn+1
i − 4φn

i + φn−1
i )dx = U n+1

∫
Ω

β∗(
3∑

i=1

(3φn+1
i − 4φn

i + φn−1
i ))dx = 0

hich is due to (3.33).
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Fig. 4.1. (a) Initial interface contour of the three phase-field variables, (b) interface contour superimposed by the velocity field at the
steady-state, and (c) the color plot of the pressure p at the steady-state. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Finally, we obtain En+1
≥ 0 by using (2.9) and (3.33). Likewise, we obtain (3.73) after dropping the terms in

{ } of (3.88) since they are positive, i.e.,
3∑

i=1

Σi∥∇(φn+1
i − 2φn

i + φn−1
i )∥2

≥ Σ

3∑
i=1

∥∇(φn+1
i − 2φn

i + φn−1
i )∥2

≥ 0,

3∑
i=1

Σi∥φ
n+1
i − 2φn

i + φn−1
i ∥

2
≥ Σ

3∑
i=1

∥φn+1
i − 2φn

i + φn−1
i ∥

2
≥ 0. □

(3.89)

. Numerical simulation

In this section, we use the proposed algorithm (3.20)–(3.26) to perform numerical simulations, including
tability/accuracy tests, 2D spinodal decomposition, 2D contact lens deposited between two stratified fluids, as well
s liquid droplet rising examples in 2D and 3D. In all numerical examples, we use the rectangular computational
omain. For directions with periodic boundary conditions, the Fourier-spectral method is used for discretization. For
irections with boundary conditions specified in (3.28), the Legendre–Galerkin method is adopted for discretization
here the inf–sup stable pair (PN , PN−2) is used for the velocity (ũ and u) and pressure p, respectively, and PN is
sed for the phase-field variables φ1, φ2, φ3.

.1. Stability and accuracy test

We first perform several stability tests in 2D to verify the unconditional energy stability of the fully-decoupled
cheme (3.20)–(3.26). We set the 2D computational domain to be [0, 2]2. The initial conditions for all variables are
iven by⎧⎨⎩φ0

i (x, y, t = 0) = tanh(
r −

√
(x − xi )2 + (y − yi )2

ϵ
), i = 1, 2,

φ0
3 = 1 − φ0

1 − φ0
2 ,u0

= (u0, v0) = (0, 0), p0
= 0,

(4.1)

here ϵ = 0.05, r = 0.35, x1 = 1.35, x2 = 0.65, and y1 = y2 = 1. The order parameters are set as

M = 1e−3,Λ = 7, B = 10, (σ12, σ13, σ23) = 0.01(1, 1, 1), S = 4. (4.2)

he initial interface contours {φ0
i =

1
2 } of the three phase-field variables are shown in Fig. 4.1(a). We assume

that the boundary conditions are periodic and space is discretized by using the Fourier-spectral method where 257
Fourier modes are used to discretize each direction.
17
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Fig. 4.2. The time evolution of the total free energy (3.74) computed by using the scheme DSAV and SAV with different time steps, where
he initial conditions are given by (4.1) and model parameters are given by (4.2).

Using the above initial conditions and a time step of δt =
0.01
23 , we implement the algorithm until a steady-state

solution is obtained, and plot the fluid interface with the velocity field at the steady-state in Fig. 4.1(b). We can see
that due to the balanced surface tension coefficients of the three fluid components and coarsening effects, the two
droplets squeeze together to form a contact angle of 120◦. In Fig. 4.1(c), we plot the profile of the pressure p at
the steady-state using a color diagram.

Next, we verify whether the scheme maintains energy stability unconditionally using any time step. For
convenience, we represent the developed decoupled scheme (3.20)–(3.26) using scalar auxiliary variables by DSAV.
Meanwhile, in order to illustrate the advantages of the developed decoupling technique and the added stabilizer in
improving energy stability, we also test the stability of the scheme DSAV, but the variable Qn+1 and S are removed
(i.e., assume Qn+1

≡ 1 and S = 0). For convenience, we refer to this version as SAV.
In Fig. 4.2(a), we plot the evolution curves of the total free energy (3.74) calculated by the scheme DSAV using

ifferent time steps. We find that all calculated energy curves show monotonic attenuation, which confirms the
nconditional stability of DSAV. When the time step is relatively large, the energy curve with a large time step has
n observable deviation from the energy curve with a small time step. This is because the errors obtained using
arge time steps are also large. When the time step is less than 0.01

23 , the five energy curves obtained are very close,
which is why we use the time step size 0.01

23 to obtain the equilibrium solution shown in Fig. 4.1. For comparison,
n Fig. 4.2(b), we plot the energy evolution curves calculated by SAV, and observe that it blows up while a large
ime step size is used, and only decays when δt ≤

0.01
25 .

Through performing mesh refinement tests in time for the example above, we further test the convergence order of
he developed scheme DSAV. Since the exact solutions are unknown, the numerical solution obtained by the scheme
SAV using a very small time step (δt = 1e−9) is regarded as an exact solution for calculating the approximate

rror. Then, we plot the L2 errors of all variables at t = 0.4 obtained by changing the time step size from 0.01
o 0.01

27 with a factor of 1/2. The convergence rate is shown in Fig. 4.3(a), where we find that the scheme DSAV
always exhibits almost perfect second-order accuracy. In Fig. 4.3(b), we compare the accuracy of DSAV and SAV
by plotting the arithmetic mean of L2 numerical errors of the three phase-field variables. When the time step size
is large (δt > 0.01

26 ), SAV completely loses the convergence order. When the time step size is small (δt ≤
0.01
26 ), it

has the second-order accuracy. For comparison, DSAV consistently shows good second-order accuracy in all tested
time steps. If we compare the size of the error when δt ≤

0.01
26 , we find that the error obtained by SAV is smaller

than that obtained by DSAV. This is because the stabilization terms increase some splitting errors.

4.2. Spinodal decomposition

In this example, we study the equilibrium pattern obtained after phase separation (or spinodal decomposition).
The initial conditions are set as a homogeneous ternary mixture but with some small perturbations, which read as
18
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Fig. 4.3. The numerical errors in L2 of all variables that are computed using the schemes DSAV and SAV with various temporal resolutions.

ollows,

u0(x) = 0, p0(x) = 0, φ0
i (x) =

ψi

ψ1 + ψ2 + ψ3
, i = 1, 2, 3, (4.3)

where ψi (x) = 0.5+0.001rand(x) and rand(x) is the random number in [−1, 1] that follows the normal distribution.
We use the 2D computational domain [0, 2]2 and adopt periodic boundary conditions. The space is discretized

y using the Fourier-spectral methods with 257 Fourier modes for each direction. The model parameters are set to

M = 1e−2, ν = 1,Λ = 7, B = 10, ϵ = 0.02, S = 4. (4.4)

e adjust the surface tension (σ12, σ13, σ23) to study how the three phases are separated.
We first perform simulations for two partial spreading cases with (σ12, σ13, σ23) = 0.1(1, 1, 1) and 0.1(1, 0.8, 1.4).

napshots of the profiles 1
2φ1 + φ2 at various times up to the steady-state are shown in Fig. 4.4(a) and (b). For the

ase with three equal surface tension parameters, shown in Fig. 4.4(a), the final equilibrium solution is a hexagonal
attern, and three contact angles all become 2π

3 . For the latter case, we find that the steady-state solution exhibits
different contact angles. The total spreading case with (σ12, σ13, σ23) = 0.1(3, 1, 1) is shown in Fig. 4.4(c) and no
unction points are observed. In Fig. 4.5, we plot the time evolution of the logarithm of the free energy functional
3.74) for all simulations in which all energy curves show the decay over time, thus confirming the developed
lgorithm is unconditionally stable.

.3. Liquid lens between two stratified fluids

In this example, we simulate the steady-state solutions of a liquid lens with different surface tension coefficients.
he initial condition is set to a circular lens, which is located at the interface between the other two stratified

mmiscible fluids, see [2–4,6,7]. The 2D computed domain is set as (x, y) ∈ Ω = [0, 1] × [0, 0.5] and the initial
conditions read as follows,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0(x, y) = 0, p0(x, y) = 0,

φ0
1 (x, y) = (1 − φ0

3 )
(

1
2

+
1
2

tanh
(4
ϵ

(y − 0.25)
))

φ0
2 (x, y) = 1 − φ0

1 − φ0
3 ,

φ0
3 (x, y) =

1
tanh(

0.09 −
√

(x − 0.5)2 + (y − 0.25)2
) +

1
.

(4.5)
2 ϵ/2 2
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Fig. 4.4. Dynamical evolution of the profile 1
2φ1+φ2 for the spinodal decomposition examples with three different surface tension parameters.

Fig. 4.5. Time evolution of the logarithm of the total free energy (3.74) of all spinodal decomposition examples.

We assume that the x-direction follows the periodic boundary conditions and use the Fourier-spectral method with
257 Fourier modes to discretize it. For the y-direction, we set the boundary conditions of the variables u = (u, v),
φi and µi to
u|(y=0,0.5) = 0, v|(y=0,0.5) = ∂nφi |(y=0,0.5) = ∂nµi |(y=0,0.5) = 0. (4.6)

20
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Table 4.1
Surface tension parameters (σ12, σ13, σ23) and the theoretical prediction of contact angles θ1, θ2, θ3 derived from
(4.8).

(σ12, σ13, σ23) (1,1,1) (1,1,0.6) (1,0.6,0.6) (1,0.8,1.4)
(partial spreading) θ1 = θ2 = θ3 θ1 > θ2 = θ3 θ1 = θ2 > θ3 θ1 < θ3 < θ2

(σ12, σ13, σ23) (1,1,3) (3,1,1)
(total spreading) θ1 = 0, θ2 = θ3 = π θ1 = θ2 = π, θ3 = 0

Fig. 4.6. The schematic diagram of contact lens and contact angles.

Fig. 4.7. The steady-state solutions of the contact lens with various surface tension parameters computed by the scheme DSAV.

Then the y-direction is discretized using the Legendre–Galerkin spectral method with the Legendre polynomials up
to the degree of 512. We set the model parameters to

M = 1e−5,Λ = 7, B = 10, ϵ = 0.01, S = 4, δt = 1e−3. (4.7)

n the limit ϵ → 0, the relationship between the contact angles of the equilibrium state (the schematic diagram of
he contact angles and three fluid components is shown in Fig. 4.6) and three surface tension parameters are given
y the Young’s relationship (cf. [1,2,45]),

sin θ1

σ23
=

sin θ2

σ13
=

sin θ3

σ12
. (4.8)

Therefore, we adjust the three surface tension parameters (σ12, σ13, σ23) to investigate whether the contact angles
nder steady-state follows the theoretical predictions from (4.8).

We use four partial spreading cases and two total spreading cases in the computations. Theoretical prediction
alues of the contact angles according to the given surface tension parameters are shown in Table 4.1. In Fig. 4.7,
21
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Fig. 4.8. Time evolution of the logarithm of the total free energy (3.74) of all contact lens examples.

sing the scheme DSAV, for each case, we plot the steady-state solution for the profile of 1
2φ1 + φ2. We can see

hat the calculation can well verify the theoretical prediction of the contact angle. In addition, all these calculations
re consistent in quality with the numerical simulations provided in [2,4–7]. In Fig. 4.8, we plot the time evolution
f the total free energy in all simulated cases.

.4. The dynamics of a rising liquid droplet

In this example, we study how a light liquid droplet rises and deforms as it passes through the liquid/liquid
nterface under the influence of gravity and surface tensions. For simplicity, we consider the situation that the
ensity difference between the liquid droplet and the other two ambient fluids is small, so we can use the Boussinesq
pproximation (see also in [42,46,47]) and replace the momentum equation as follows:

ut + u · ∇u − ν∆u + ∇ p +

3∑
i=1

φi∇µi = g0φ3, (4.9)

where g0 = (0, g0) for 2D, g0 = (0, 0, g0) for 3D, and g0 is the pre-assumed gravity constant.
First, we perform several simulations in 2D, where the computational domain is set to (x, y) ∈ Ω = [0, 2]×[0, 4].

Periodic boundary conditions are set for the x-direction, and we discretize it using the 257 Fourier modes. For the
y-direction, we use the boundary conditions specified in (3.28), and use the Legendre polynomials with the degree up
to 512 for discretization. The initial conditions for variables φi (the schematic diagram of the three fluid components
are shown in Fig. 4.9(a)), u, and p are set as follows,

φ0
1 (x, y) = (1 − φ0

3 )
(

1
2

+
1
2

tanh
(4
ϵ

(y − 2)
))
,

φ0
2 (x, y) = 1 − φ0

1 − φ0
3 ,

φ0
3 (x, y) =

1
2

tanh(
0.25 −

√
(x − 1)2 + (y − 1)2

ϵ/2
) +

1
2
,

u0(x, y) = (0, 0), p0(x, y) = 0.

(4.10)

The model parameters read as

M = 1e−4, ν = 1,Λ = 7, B = 10, ϵ = 0.05, S = 4, δt = 1e−3. (4.11)

e vary the surface tension parameters (σ12, σ13, σ23) and the gravity parameter g0 to study how the droplet rises
nd deforms with time.
22
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Fig. 4.9. Initial schematic diagram of a rising liquid droplet example in 2D and 3D.

Fig. 4.10. The dynamics of a 2D rising liquid droplet with (σ12, σ13, σ23) = 10(1, 1, 1) and gravity parameters g0 = 90. Snapshots of the
profile 1

2φ1 + φ2 are taken at t = 1, 1.2, 1.4, 1.6, 1.8, 2 and 14.

Fig. 4.11. The dynamics of a 2D rising liquid droplet with (σ12, σ13, σ23) = 10(1, 1, 1) and gravity parameter g0 = 100. Snapshots of the
rofile 1

2φ1 + φ2 are taken at t = 1, 2, 4, 7, 8, 9, and 10.

We first set the three surface tension parameters to (σ12, σ13, σ23) = 10(1, 1, 1) and use two different gravity
parameters g0 = 90 and 100. Figs. 4.10 and 4.11 shown numerical solutions at various times, of which snapshots
of the profiles of 1

2φ1 + φ2 are plotted. When the gravity constant is relatively weak (g0 = 90), we find that the
droplet is captured by the interface of the two layered fluids. When the gravity constant is large (g0 = 100), the

roplet passes through the interface and enters the upper fluid.
Furthermore, we change the surface tension parameter to (σ12, σ13, σ23) = 10(1, 0.6, 0.6), and also use two

ifferent gravity parameters g0 = 90 and 100, shown in Figs. 4.12 and 4.13. Similar to the previous two simulations,
imilar phenomena are observed, including the low gravity parameter leading to capture and high gravity parameter

eading to interface penetration. In addition, when g0 = 90, we see that the contact angle caused by the suspension

23
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Fig. 4.12. The dynamics of a 2D rising liquid droplet with (σ12, σ13, σ23) = 10(1, 0.6, 0.6) and gravity parameter g0 = 90. Snapshots of the
rofile 1

2φ1 + φ2 are taken at t = 0.4, 0.8, 1, 1.8, 3, 4, and 15.

Fig. 4.13. The dynamics of a 2D rising liquid droplet with (σ12, σ13, σ23) = 10(1, 0.6, 0.6) and gravity parameter g0 = 100. Snapshots of
he profile 1

2φ1 + φ2 are taken at t = 1, 1.2, 1.6, 1.8, 2, 3, 4, 5, 6, 6.2, 6.4, 6.6, 6.8, and 7.

f the droplet is different from the situation of (σ12, σ13, σ23) = 10(1, 1, 1). When g0 = 120, we see that the liquid
upture twice, the first rupture occurs at t = 1.6, which is due to the rise of the droplet and squeezes the lower
uid, and the second occurs at t = 6.6 when the filament formed by the rising droplet breaks.

Finally, we perform 3D simulations by setting the computational domain is set as Ω = [0, 1] × [0, 1] × [0, 2].
imilar to the 2D simulations, the periodic boundary conditions in the x and y-directions are assumed, and 129
ourier modes are adopted to discretize each direction. The z-direction follows the boundary conditions given in
3.28), which is discretized by using Legendre polynomials up to the degree of 256. The initial conditions are set
s follows,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ0
1 (x, y, z) = (1 − φ0

3 )
(

1
2

+
1
2

tanh
(5.5
ϵ

(z − 1)
))
,

φ0
2 (x, y, z) = 1 − φ0

1 − φ0
3 ,

φ0
3 (x, y, z) =

1
2

tanh(
0.25 −

√
(x − 0.5)2 + (y − 0.5)2 + (z − 0.6)2

ϵ/2
) +

1
2
,

0 0

(4.12)
u (x, y, z) = (0, 0, 0), p (x, y, z) = 0.
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Fig. 4.14. The dynamics of a 3D rising liquid droplet with (σ12, σ13, σ23) = 2(1, 0.6, 0.6) and gravity parameter (a) g0 = 40 and (b) g0 = 50.
napshots of the isosurfaces {φ3 = 0.5} (yellow) and {φ1 = 0.5} (red) are plotted in each subfigure. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

The initial condition for these three fluid components are outlined in Fig. 4.9(b). The model parameters read as

M = 1e−4, ν = 1,Λ = 7, B = 10, ϵ = 0.05, S = 4, δt = 1e−3. (4.13)

In Fig. 4.14(a) and (b), we adopt the surface tension parameter (σ12, σ13, σ23) = 2(1, 0.6, 0.6) and different
ravity parameters g0 = 40 and g0 = 50, respectively. We use different colors to plot the isosurfaces of {φ1 = 0.5}

yellow) and {φ3 = 0.5} (red). Similar to the 2D simulation, lower gravity causes the droplet to be captured by
he interface, while higher gravity cause the droplet to penetrate the interface. In addition to the capture/penetration
henomenon, we also find that when the gravity constant is large, a long filament forms after the droplet penetrates
he interface, and then the rupture of the filament occurs (at t = 5.4).

. Concluding remarks

In this paper, with the help of two nonlocal auxiliary variables, a novel second-order fully-decoupled numerical
lgorithm is developed to solve the highly nonlinear phase-field model of three-phase incompressible flow. The
cheme only needs to solve several decoupled linear elliptic equations with constant coefficients at each time step
o obtain a numerical solution with second-order time accuracy. Solvability and unconditional energy stability have
lso been rigorously proven, and a large number of numerical simulations have been performed in 2D and 3D to
how the accuracy and stability of the scheme numerically. Moreover, the novel decoupling method proposed in
his paper can be widely applied to a large number of coupling models, as long as the nonlinear coupling terms
atisfy the so-called “zero-energy-contribution” characteristic.
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