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Abstract

We construct a novel second-order time marching scheme with the full decoupling structure to solve a highly coupled
nonlinear two-phase fluid flow system consisting of the nonlocal mass-conserved Allen—Cahn equation where two types of
flow regimes are considered (Navier—Stokes and Darcy). We achieve the full decoupled structure by introducing a nonlocal
variable and designing an additional ordinary differential equation for it which plays the key role to maintain the unconditional
energy stability. The whole scheme is built upon the pressure correction/ quadratization approach for the fluid equation and
nonlinear double-well potential, respectively. At each time step, one only needs to solve several independent elliptic equations
with constant coefficients illustrating the high practical efficiency. We strictly prove that the scheme satisfies the unconditional
energy stability, and carry out various numerical simulations to prove its stability and accuracy numerically, such as spinodal
decomposition and fingering instability due to the continuous injection flow, etc.
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1. Introduction

This paper develops a new completely decoupled second-order time-marching numerical method for solving
two-phase incompressible fluid flow systems, in which the moving interface is governed by the nonlocal mass-
conserved Allen—Cahn-type phase-field model. To show the versatility of the decoupling method, we consider two
types of fluid flow models, one of which is the Navier—Stokes equation, and the other is the Darcy equation confined
in the Hele-Shaw cell. The phase-field method generally includes two gradient flow models, in which the first
is the Cahn-Hilliard dynamics, and the second is the Allen—Cahn dynamics. The former can conserve the mass
automatically while the latter cannot. The nonlocal conserved Allen—Cahn model (abbreviated as CAC) derived
from [1] which had been widely used to simulate the two-phase fluid flow problems or other situations (cf. [2-11]),
is a modified version of Allen—Cahn dynamics, where the shortcoming of non-conservation of mass is removed.
Formally, the accurate mass conservation is realized through the use of a very simple technique in which a nonlocal
term is added to eliminate mass variance caused by the chemical potential. Compared with other versions of the
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mass-conserved Allen—Cahn type models (cf. [6,12—14]) or the fourth-order Cahn—Hilliard equation with automatic
mass-conservation property, the CAC model proposed in [1] has some obvious advantages. First, it can achieve
an accurate conserved mass like the Cahn—Hilliard equation, but it is relatively simple to solve because it is a
second-order equation. Second, since it follows the law of energy dissipation, it is more suitable for the design of
energy stable schemes

Remarkably, we recall there exist many effective methods for the two components of the flow-coupled phase-
field models. For example, the well-known projection type methods can efficiently solve the incompressible
Navier—Stokes equations and Darcy equations, see [15-24]. Numerous methods, e.g., stabilization method [25-30],
convex splitting method [31-35], Invariant Energy Quadratization (IEQ) [36—39], Scalar Auxiliary Variable (SAV)
method [40—42]), or others [43—49] compose a large pool to deal with the phase-field type models. However, after
coupling the phase-field model with the flow field, the synthetic model (cf. [S0-54]) turns to a highly coupled
nonlinear dynamical system which is very challenging for algorithm developments especially the energy-stable
schemes. In the model, the stiffness is not only from the small interfacial width in the phase-field equation, but
also due to the nonlinear couplings between the phase-field variable and the velocity field through the advection
and surface tension terms (abbreviated as adv-surf). For highly coupled nonlinear systems with large stiffness
issue problems, the simple discretization for nonlinear terms may lead to fully coupled/nonlinear schemes with
considerable instability, or suffer from expensive computational costs, which is the motivation to develop a stable
scheme (especially a linear, fully-decoupled scheme that can maintain energy stability unconditionally is preferred).
To this end, one of the most challenging problems in algorithm designs is how to find an appropriate discretization
method for the adv-surf terms.

Here, we briefly review the numerical schemes of the coupled phase-field models with Navier—Stokes equations
and Darcy equations. For the Navier—Stokes coupled phase-field model, as far as the author knows, the only available
energy-stable fully-decoupled scheme was developed in [22,29,55], in which the way to achieve the full decoupling
structure is to add a stabilization term to the explicit advection velocity term (abbreviated as Stab-method, see
the details of the scheme (3.48) given in Remark 3.6). However, this decoupling type scheme is only first-order
accurate in time, and it requires more calculations at each time step because the scheme for the phase-field model has
variable coefficients. For the Darcy coupled phase-field model, the situation is much better (in terms of accuracy)
and a second-order fully-decoupled scheme was developed in [23], in which the adv-surf terms are discretized
through explicit and implicit combination method (abbreviated as Exp—Imp method, see the details of the scheme
(3.66)—(3.67) given in Remark 3.7). It should be emphasized that for the Navier—Stokes coupling system, the Exp—
Imp method can only generate a fully-coupled scheme, see [24,35,56-62]. Hence, a natural question arises: why
can we get a fully-decoupled scheme when using the Exp—Imp method to deal with the Darcy coupling model, but
can only get a fully-coupled scheme when using the same method to deal with the Navier—Stokes coupling model?

The answer is due to the special format of the Darcy equation, where the pressure gradient and the velocity field
satisfy an explicit linear relationship that does not involve any spatial derivatives. Therefore, one can use the pressure
gradient and surface tension to express the fluid velocity explicitly and linearly, thereby achieving a completely
decoupled type of scheme. However, if we use the same method to process the Navier—Stokes equation, the advective
and viscous terms containing spatial derivatives will prevent us from obtaining similar linear relationships, so we
cannot obtain a fully-decoupled scheme. Moreover, although the scheme given in [23] is fully-decoupled, there is
some other notable shortcoming. For example, its computational cost is high because it needs to solve the phase-field
equation with variable coefficients at each time step (see Fig. 4.3).

Therefore, the focus of this paper to develop a scheme that maintains energy stability unconditionally and the
second-order time accuracy, while also achieving the full decoupling calculations. We expect this scheme is not
only suitable for the Darcy coupling model, but also for the Navier—Stokes coupling model. Meanwhile, when the
novel scheme is applied to either Navier—Stokes or Darcy coupled model, we hope that compared with the scheme
in [23] that requires solving the variable-coefficient equations, the schemes given in this article are more efficient,
that is, only the constant-coefficient equations are needed to be solved. To this goal, when developing numerical
algorithms, we do not intend to use the specific form of the Darcy equation, but instead, turn our attention to
using the obvious but usually ignored property of “zero-energy-contribution” satisfied by the adv-surf terms. In
other words, it can be seen easily that the adv-surf terms do not impact the total free energy or energy diffusivity,
which means their contribution to the free energy is zero. This is a well-known property, but it has never been
used to design numerical algorithms. In this paper, we introduce a nonlocal variable and apply this property to
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design a special ordinary differential equation (ODE) that contains the inner products of the adv-surf terms with
some specific functions. In this way, the system can be rewritten into a new form, and the adv-surf terms can be
discretized in a simple explicit manner. The original system and the newly modified system are equivalent, because
the added ODE is trivial at the continuous level and all items contained in it are zero. But after discretization, the
new variable and its associated ODE will play a key role. First, the ODE can help eliminate all the troublesome
nonlinear terms to obtain provable stability. Second, the nonlocal property of the new variable can be used to
decompose each unknown variable into a linear combination form and thus all equations can be decomposed into
multiple independent equations, thereby obtaining a fully-decoupled structure.

This decoupling method is then combined other proven effective methods (projection/SAV methods) to form the
expected scheme. The implementation of this scheme is very simple. It only needs to solve a few linear independent
elliptic equations with constant coefficients at each time step, which means that computation is very efficient. We
also give a rigorous proof of the solvability and unconditional energy stability of the scheme and further simulate
various numerical examples in 2D and 3D to show its numerical effectiveness. In addition to the above-mentioned
benefits, another important advantage of the new decoupling method is that it is universally applicable. For instance,
first, it can be combined with other linear methods (such as the linear stabilization, IEQ methods, etc.) to form
various types of fully-decoupled energy-stable schemes. Second, it can also be applied to any nonlinear coupling
type model to form an effective full decoupling scheme (especially gradient flow type models coupled with other
fields), for example, the temperature-coupled dendritic crystal growth model [63,64], the magnetic/electric-coupled
model [65-67], the flow-coupled nematic/smectic liquid crystal model [68-70], etc.

We organize the rest of this article as follows. We briefly introduce the two models in Section 2, namely the
Navier—Stokes equations coupled with the CAC model (NS-CAC, for short) and the Darcy equations coupled with
the CAC model (D-CAC, for short). In Section 3, numerical schemes are constructed for solving these two models
and introduce the practical implementation process in detail. We prove the unconditional energy stability rigorously
(implementation and solvability are given in the Appendix). In Section 4, we implement the numerical simulations
numerically to demonstrate the stability, accuracy of the developed schemes. In Section 5, we give some concluding
remarks.

2. NS-CAC model and D-CAC model

We first briefly introduce the two models, the NS-CAC model, and the D-CAC model. Both models have been
often applied to simulate the two-phase flow system, where the latter focuses on the fluid dynamics in porous media.
We introduce some notations here. The L? inner product of any two functions ¢(x) and ¥ (x) is expressed as

(p(x), ¥(x)) = fQ ¢ (x)¥(x)dx, and the L? norm of ¢(x) is denoted as ||¢]|> = (¢, ¢).
2.1. NS-CAC model

Suppose that {2 is a smooth, bounded, and connected domain in R?, d = 2, 3. We define ¢(x, ¢) as a phase-field
variable (macro labeling function) to represent the mass (or volume) fraction of two different fluid components in
the fluid mixture, i.e.,

1 fluid 1
X, 1) = ’ 2.1
o 1) {—l fluid 2. @1
The discontinuity between the two distinct values &1 is smoothed by a thin transition region of width O(e) where
€ < 1. In terms of the variable ¢ and the average velocity field u for the fluid mixture, the postulated total free
energy reads as

(PO TR
E(u,¢)=/ (EIUI +?»(§|V¢| + F(¢)))dx, (2.2)
2

which is a combination of the kinetic energy, gradient potential, and the Ginzburg-Landau functional. Here, the
nonlinear potential F(¢) is chosen to be the double-well form, i.e., F(¢) = ﬁ(d)z —1)%, A is related to the surface

tension parameter, and the surface tension is defined as 2*75’%, see [71].
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Then, by applying the L? gradient flow method to the total free energy (that is, the Allen—-Cahn relaxation
dynamics), the NS-CAC model reads as:

b+ V- (ug) + M (1t - |—}2| de) =0, 2.3)
w=Ar(—Ap+ F(9). 2.4)
w4+ - Viu—vAu+Vp+oVu =0, (2.5)
V.u=0, (2.6)

where M, v, A are all positive parameters M 1is the mobility parameter, p is the pressure, v is the fluid viscosity,
f(@) = F'(¢) = €L2(¢3 ¢), 4 = % is the variational derivative or chemical potential, and the nonlocal term

—ﬁ f o Mdx is added in (2.3) to ehmlnate the total variance of mass (cf. [1]). We assume the boundary conditions

are either periodic or

ulye =0,0¢2 =0, 2.7
where n is the unit outward normal on the boundary df2. The initial conditions read as

uli—0) = u’, plu=oy = p°, dlu=o) = ¢°. (2.8)

One can easily obtain mass conservation property for the model. By taking the L? inner product of (2.3) with 1,
and applying the divergence theorem and the boundary conditions (2.7), the mass conservation property reads as:

j—t /Q pdx = 0. 2.9)

It is also easy to see that the system (2.3)—(2.6) follows a dissipation law of energy by performing the following
process of energy estimate. We multiply the inner product of (2.3) by u in L? to derive

(1. 1) = —MHM— i /deHz—/QV(uqb)udx, 2.10)

where we use

1
= — udx, )

2]

(1 1/d)+(1 dI/d)
B— — x.u—— | pdx)+(uw—— | pdx, — [ pdx
0l 2] 2] 21/,

2
ik, Fru

since (u — ﬁ [ ndx, ﬁ [ dx) = 0. Taking the inner product of (2.4) with —¢, in L? and using integration
by parts, we get

— (. @) = —— f (GIVOI* + AF(¢)dx. 2.11)
Taking the inner product of (2.5) with u in L2, using integration by parts and (2.6), we obtain

L. 2
= | Slulax +15vul? + <¢V,u~u+(u V- u)dx —o. 2.12)
Q
Combining the above three Eqgs. (2.10)—(2.12) and noticing some terms are canceled out, we obtain the energy law
as follows:

d 2
—E(,¢p)=—-M Hu - — ;1d ” - Vul?, 2.13
7 (u, @) |Q| x I/ vVl ( )

where two of the negative terms spemfy the diffusion rate of the total free energy E(u, ¢).
Remarkably, during the process of obtaining the energy law (2.13), the two integrals originated from the advection
and surface tension terms finally vanish due to the following two identities hold:

/ (¢Vu-u+ V- (up)u)dx =0, / (u-Vu-udx =0. (2.14)
Q Q
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One can easily verify the above two equalities by using integration by parts, (2.6) and (2.7). The final disappearance
of these nonlinear terms can be regarded as they do not impact the total free energy of the system. Therefore, we
refer them as “zero-energy-contribution” terms. In next subsection, this well-known but often overlooked property
will be used to develop the numerical scheme with full decoupling structure.

2.2. D-CAC model

The D-CAC model follows the same framework as the NS-CAC model expect that the fluid momentum equation
follows the Darcy’s law. The D-CAC model reads as

¢,+V~(u¢)+M(u— |—(12| Q,udx) —0, 2.15)
n=rM—=A4¢ + f(9)), (2.16)
u, +avu+Vp+¢Vu =0, 2.17)
V.u=0, (2.18)

where u represents the nondimensionalized seepage velocity, T is a positive parameter, > 0 is the dimensionless
hydraulic conductivity. Note the time derivative of the seepage velocity u is retained for flows in porous medium,
cf. [23,24,72,73].

The boundary conditions are either periodic or

u-njye = ddlye =0. (2.19)
The initial conditions read as
Plu=0) = ¢°, uly=o) = u’, plu=o) = p°. (2.20)

The D-CAC system (2.15)—(2.18) also follows energy dissipation property. Since the derivation process is quite
similar to the NS-CAC model, we omit the details and only present the energy law is as follows:

d 1 2
w9 =—M|u—— | pdx| - alvul?, @.21)
dt 12| Jo

where the two negative terms on the right end specify the diffusion rate of the total free energy, and the total energy
reads as

1
Sw.0) = [ (G0 +4G; V9P + F@)ds. 222

3. Numerical scheme

In this section, we develop numerical schemes for the two coupled nonlinear systems, the NS-CAC model
(2.3)-(2.6) and the D-CAC model (2.15)—(2.18).

3.1. NS-CAC model

3.1.1. Reformulation
We introduce a nonlocal variable Q(¢) and an ODE system related to it, that reads as:

0 = fg (V- @p)pt + (@V) - u+ (- Vyu-w)dx,
V.u=0, (3.1

Olu=0) =1,
uly, = 0 or all variables are periodic.

By utilizing the “zero-energy-contribution” property (2.14) satisfied by the adv-surf terms, it is easy to derive that
the ODE (3.1) is equivalent to an ODE (Q; = 0, Q|;=0) = 1) with the trivial solution of Q(t) = 1.

5



X. Yang Computer Methods in Applied Mechanics and Engineering 377 (2021) 113597

We introduce another nonlocal auxiliary variable U(¢) such that

U@)= \/ (F(p) — %qﬂ)dx + B, 3.2)
? €

where s is a positive stabilization parameter, and B is a constant to guarantee that the radicand is positive. Note that
F(¢) is a quartic polynomial, so no matter how big s is, the term | o(F(9) — 2‘%2(]52)dx can always be guaranteed
to be bounded from below.

Then, by using the two variables Q and U, and combining the ODE (3.1) with the NS-CAC system (2.3)—(2.6),
we get a modified system as:

1
¢+ 0OV -(up)=-M (M - de> ) (3.3)
2] Ja
H=M=Ap+ 59+ HU), (3.4)
U = l/ Hedx, (3.5)
2Ja
w+0u-Vu—vAu+Vp+ QoVu =0, (3.6)
V.u=0, (3.7)
0= [ (- @+ @V -u+@- Vu-u)dx, (38)
where
f@)— 5¢
H() = : (3.9)
JIo(F@) = 55¢7dx + B
The transformed system (3.3)—(3.8) satisfies the following initial conditions,
uli=0) = u’, plu=o) = p°, dlu=o) = ¢°,
(3.10)

Oli=0) =1, Ulg=0) = \/fQ(F(fﬁo) - %(d’o)z)dx + B.

and the boundary conditions are either periodic or

In the next two comments, we will give some detailed explanations of the above reformulation.

Remark 3.1. When we combine the ODE (3.8) with the original system (2.3)—(2.6), we make some modifications
to the resulting model. The first modification is made to the chemical potential w, in which the nonlocal variable
U is used, and (3.6) is obtained by taking the time derivative for U. This modification will not change the system,
because we can restore the chemical potential (2.4) by integrating (3.6) over time. The second modification is made
to the adv-surf terms where we multiply them by Q. Since the variable Q is equal to 1, the PDE system is not
changed by this modification as well. In summary, the above description illustrates the equivalence between the two
PDE systems, (2.3)—(2.6) and (3.3)—(3.8).

Remark 3.2. The modified system (3.3)—(3.8) still holds the property of mass conservation. By taking the L? inner
product of (3.3) with 1, and using the nonlocal property of the variable Q, we get

/ QV - (up)dx = Q[ V- (up)dx =0, (3.12)
Q 2

which is due the boundary condition u - n|y, = 0. This means % f P ¢dx = 0, that is, the mass is conserved over
time. Moreover, for the discrete scheme, since the discrete solution of Q is also nonlocal, as long as the numerical
solution of u has a similar boundary condition, the mass conservation property of the discrete solution of ¢ still
holds.
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The transformed system (3.3)—(3.8) also follows an energy dissipative law that can be derived by a similar
procedure to obtain (2.13). We present the detailed process since the energy stability proof in the discrete level
follows the same line.

By taking the L? inner product of (3.3) with ,u, we derive

2
(G 1) + Q/ V- (udr = —M|n - - o1 [ x| (3.13)
By taking the L? inner product of (3.4) with ¢,, we obtain
d 1 s
—(n, ¢+ A—/ ~|VoI* + = I¢I* ) dx +/\U/ H¢,dx = 0. (3.14)
dt 0 2 2¢2 0
By taking the L? inner product of (3.5) with 2AU, we obtain
d
r—(UP) — w/ He,dx = 0. (3.15)
dt 19}
By taking the L? inner product of (3.6) with u and using (3.7), we obtain
d
- |u|2dx+v||Vu|| + Q/ u-Vu-udx + Q/ ¢V -udx = 0. (3.16)
By multlplymg (3.8) with Q, we obtain
d (107
(XD 2o (v () + (GV) - u+ (u- Vu- u)dx. (3.17)
dt \ 2 Q

By combining the above five equalities and noticing that the three nonlocal terms with Q in (3.13) and (3.16)
are canceled by the three nonlocal terms in (3.17), we obtain the energy law as follows,

d

1 A A 2
E(/ (§|u|2+—|w>|2+—s|¢| Yax + aUp + 2! )
N (3.18)

2
i — a1 [ pdx| = IVl <o.
3.1.2. Decoupled numerical scheme for the NS-CAC model
Now we develop a numerical scheme for (3.3)—(3.8) based on the second-order backward differential formula
(BDF2) as follows. Let " be the numerical approximation to the analytic function ¥ (-, t)|,—~. Let § > O be a
time step size and set 1" = ndt for 0 <n < N with T = Nét.

Assuming (i, u, p, ¢, u, Q, U)" and (i, u, p, ¢, u, @, U)"~! are known, we update (i, u, p, ¢, u, Q, UY"*! by

a¢n+1 _ b¢n + C¢n71 " 1
1y (wre*) = — M n+l _ _— n+l g , 3.19
o5 +0 (") I o A (3.19)
n+1 =M~ A¢n+l+ ¢"+1+H Un+1) (3.20)
aU™' —pU" + cU"_l = 5/ H*G¢""! —4¢" + ¢" dx, (.21
Q
sn+l b n n—1
= 2:;; T 0wt Vyut — v AR 4+ V! 4 MVt =0, (3.22)
n+l _ b n n—1
aQ Q" +cQ :/ (v LW+ (VY @ - Vut .ﬁnH)dx, (3.23)
26t Q
and
a -~
ﬁ(un-ﬁ-l — @Y+ V(! — py =0, (3.24)
V.t =0, (3.25)
where

a=3’b=4’C2l’u*=2un_un71’¢*=2¢n_¢n71

* n n—1 * * (326)
wt=2u" = p" HY = H(¢").
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The boundary conditions for the unknown variables u"*!, @"*! and ¢"*! are either periodic or the following
iMoo = 0,u"™" - nlse = 9d" oo = 0. (3.27)

We give the details on how to obtain the decoupling structure and implementation details, see Appendix A.l. In
the following remarks, we give some detailed descriptions of the above scheme.

Remark 3.3. The computations of the second-order scheme (3.19)—(3.25) require all values of ¢ = ¢!. In practice,
we can obtain these values by constructing a similar first-order scheme based on the backward Euler method
(e.g. setting a = 2,b = 2,¢c = 0,¢* = 1#0, Vi, the scheme becomes first order). Meanwhile, similar to the
continuous case, the mass-conserved property of ¢"*! still holds. By taking the L? inner product with 1 for (3.19),
using integration by parts, the boundary condition of u* - n|; = 0, and noticing that Q"*! is a nonlocal scalar, we
derive [, ¢"'dx = [, de. By using the math induction (since it is easy to derive [, ¢'dx = [, ¢°dx
from the first-order scheme), it is easy to obtain [, ¢""'dx = [, ¢"dx = --- = [, $"dx.

Remark 3.4. We use the second-order pressure-correction method to solve the Navier—Stokes equations. In this
way, the calculation of the pressure is separated from the calculation of the velocity field. The variable u is an
intermediate velocity field that only meets the homogeneous Dirichlet boundary condition but does not verify
the divergence-free condition. (3.24)—(3.25) is the projection step to obtain the final velocity field u"*', which is
divergence-free, but only partially meets the homogenous Dirichlet boundary condition. To solve the pressure p"*!
and u"*!, by applying the divergence operator V- to (3.24) and using the divergence-free conditions for u"*!, then
the following Poisson equation for p"*! with the periodic boundary conditions or homogenous Neumann boundary
conditions, is obtained, i.e.,

3
—Ap"t = ——v.at - Ap". 3.28
p T p (3.28)
Once p"*! is computed from (3.28), we update u"*! by using (3.24), i.e.,
26t
un+1 — ﬁn-H _ 3 V(pn-H _ pn) (3.29)

Remark 3.5. Energy stability can be improved by effectively using the stabilization term (the term related to s in
(3.20)). This had been demonstrated by numerous numerical tests given in [74,75] for a series of phase-field models
with high stiffness while using larger time steps for simulations. For models with very high stiffness issue due to
the model parameters or strong anisotropy so that spatial oscillations can induce severe constraints on the time step,
while the SAV method applied to these models are formally unconditionally energy stable, but exceedingly small
time steps are needed to achieve reasonable accuracy. To fix such an inherent deficiency, the stabilization technique
is often combined with the SAV method to form the so-called stabilized-SAV (S-SAV) method. More precisely,
by adding one or several suitable linear stabilization terms and treating involved nonlinear terms in a semi-explicit
way, we can construct an unconditionally energy stable scheme which is easy to solve and can produce accurate
results with reasonable time steps. About the details of how to apply various effective stabilization terms to different
highly stiff models, we refer to some recent review works in [74,75].

3.1.3. Unconditional energy stability
Now we prove that the scheme (3.19)—(3.25) is unconditionally energy stable as follows.

Theorem 3.1. The time-discrete scheme (3.19)—(3.25) satisfies the discrete energy dissipation law as follows

1
_(En+1 _ Enfl) < _||ﬁvﬁn+1||2 _ MHM’,+1

2
- W dx ” <0, (3.30)

1921 o
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where
1/1 1 512
En :_<_ nt2 o Dot gt 2) Oy 2
22||u ||+2IIll u’|| +3||p l
Al 1
+ SGIVE P + S129¢" T = VoY)
(3.31)
+ 22 A4 Spaem - g
2€2°2 2
1 1 11 1
Ao U2 Lyttt gty 4 (210" 2 4 pont — on Ry,
+(2| |+2| I)+2(2|Q |+2|Q Q")
Proof. After taking the inner product of (3.22) with 28¢@"*! in the L? space, we arrive at the following equation:
Gu — 4o +u" A 4 28tV T2 4+ 280(V pt, @t

3.32
+ 28t Q™! (/ (" - Vyu' - a"tHdx +/ (qb*V,u*)~ﬁ”+ldx) =0. (3-32)
Q Q
From (3.24), for any variable v with V- v =0 and v - n|y, = 0, we have
Wy =@, ). (3.33)
We derive following equality
(3 n+1 4“ + un 1 n+1)
— (3un+l —4u" + un—l’ un+l) 4 (3ﬁ"+1 —4u" + un—l’ ﬁn+l _ urH-I)
— (3un+1 — 4u" +un71’ n+1) + (3ﬁ"+1, ﬁn+1 _ un+1)
— (3 n+1 4ll +un l’ n+l) + 3(ﬁn+1 + un+1’ﬁn+l _ un+1) (334)

1
= 3 (I = i 2 — w2 —
+ ||un+1 _ 2un + u"71 ”2 ) +3(”un+l ”2 ” n+1 ”2)’
where we use the following identity
2(3a —4b + ¢, a) = a* — b* + (2a — b)* — 2b — ¢)* + (a — 2b + ¢)*. (3.35)

We reformulate the projection step (3.24) as

3
n+1 n+l1 nntl n
— \Y% = — vp". 3.36
28tu +Vp 28tu +Vp ( )

By taking the square of both sides of the above equation, we get

a2+ VP R = — [ R+ VP IIT + t(ﬁ”“,Vp”). (3.37)

4812 4512
Hence, by multiplying 28¢2/3 of the above equation, we derive

%(Ilu”“llz — ) + %ﬂnw“ 1> = IVp"I?) = 28 @™, V). (3.38)
By taking the inner product of (3.24) with 28¢u”*! in the L? space, we have

SR @ ) =0, (3.39)
We combine (3.32), (3.34), (3.38), and (3.39) to obtain

1
E(Illl”+1 1P = w12+ 20—t — 20" — " -2t )

3 ~n 28t2 n n ~n
+ Enu"+l — a7+ —(Ivp 2 — IV I?) + 26t | /v vt ? (3.40)

+ 281 Q™! (f (u* - Vyu* - a"Hdx +/ (@*Vu*) - ﬁ"“dx> =0.
2 2

9
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By taking the L? inner product of (3.19) with 28¢,4"*! in the L? space, we have

(3¢n+1 _ 4¢n _|_¢n—1’ M”+l) +28th+1 \vAR (u*¢*)ﬂn+ldx
2

5 (341
n 25tM‘ Wt — — | urtax H —0.
2] Ja
By taking the L? inner product of (3.20) with —B" ! — 49" + ¢" 1), we find
_(Mn+173¢n+1 _ 4¢n + ¢n—l) + )\’(V¢Vl+l’ V(3¢n+l _ 4¢n + (pn—l))
3.42
4 )\,U’H_l/ H*(3¢n+l _4¢n +¢n—1)dx +)\iz(¢n+lv 3¢n+l _4¢n +¢n—l) —0. ( )
0 €
By taking the L? inner product of (3.21) with 2AU"*! and using (3.35), we obtain
A ( |Un+l|2 _ |Un|2 + |2Un+l _ Un|2 _ |2Un _ Un—l|2
(3.43)
+ (Ut —2u" + U ): AU / H*3¢" T — 49" + ¢" Ndx.
Q
By multiplying (3.23) with 26 Q"*! and using (3.35), we obtain
1
5 ( |Qn+1|2 _ |Qn|2 + |2Qn+1 _ Qn|2 _ |2Qn _ Qn—1|2 + IQn+l _ 2Qn + Qn—l|2 )
(3.44)
— 28th+l / (V . (u*¢*)ﬂn+l + (¢*V/~L*) . ﬁn+l + (ll* . V)ll* . ﬁ"“)dx.
Q
Hence, by combining (3.40)—(3.44), we arrive at
1 2812
ST — 7 4 120 — ) — 20" — ")+ ==V = V)
A
+ SUVETHE = IV P + V2" = ¢MI* = IVQ2¢" = 6" DI
+ )\‘(|Un+l|2 _ |Un|2 + |2Un+1 _ Un|2 _ |2Un _ Un—1|2)
1
+ E(IQ"”I2 — Q"+ 20" — Q" — 20" — 0"
AS _
+ oz U I = 19717 + 12¢" " — "1 — 126" — ¢"111%) (3.45)

1 3 )
+ [ EHuVH—l —2u” +un—1”2+ 5||un+l _u”+l”2

)‘ — )‘S n n n—
- 5||V(q>"+1 —2¢" +¢" HII* + Sl o 2¢m 49"
1
+)\.|Un+1 _ 2Un + UVL—1|2 + §|Qn+l _ 2Qn + Qn—l|2 }

7

2
— 28tV — 28tM”,u"“ — gy H .

121 Jo
Finally, we obtain (3.30) after dropping the positive terms of (3.45) in {}. [

Remark 3.6. For the sake of completeness, here we present the commonly used temporal discretization methods
for the nonlinearly coupled adv-surf terms, see also in [23,29,35,52,55,76-79]. For simplicity, we only discretize the
related terms while other terms remain unchanged continuously so that readers can understand them more clearly.
These schemes read as

(,bt + V. (uil+1¢l’l) +M (MYH—]
—_—

Exp—Imp method
n+1 __

- — ,u”“dx):O,
2] Jo

(3.46)

n

+@-Vyu—vAu+Vp+ ¢"Vu'l =0,
———

ot —

u u

Exp—Imp method
10



X. Yang Computer Methods in Applied Mechanics and Engineering 377 (2021) 113597

or
1
¢+ V- @+ M <u"+' ~ o u”“dx> =0,
—,_J
Implicit method “
un+1 —u” (347)
+@-Vu—vAu+ Vp+¢"tvpurtt =0,
St —_———
Implicit method
or
¢+ V- (W' =81¢" V") + M (u”*‘ ~ G u"“dx) =0,
[ —
Stab—method @
urH—l —u" (348)
+@-Vu—vAu+Vp+ ¢"vut! =0.
ot S——
explicit since w't1 s obtained above

We can see that the scheme (3.46) is a coupled linear scheme because the adv-surf terms are handled by the Exp—Imp
method; the scheme (3.47) is a coupled nonlinear scheme because the adv-surf terms are implicitly processed; and
the scheme (3.48) is a fully-decoupled and linear scheme developed by the Stab-method, but the extra stabilization
term (—6t¢"Vu"*1) added in the advection contains the implicit processed potential p"*!, so it is necessary to
solve the phase-field equation with variable coefficients at each time step. In addition, (3.46) and (3.47) have a
second-order time-accurate version, while (3.48) only has a first-order version so far.

Compared with the above schemes that either have a coupling structure, or variable coefficients, or only have
first-order time accuracy, the scheme (3.19)—(3.25) developed in this article is linear, fully-decoupled, second-order
time-accurate, and unconditionally energy stable, which illustrates very high efficiency in practice.

3.2. D-CAC model

Now we develop the numerical scheme to solve the D-CAC model (2.15)—(2.18). Since the nonlinear coupling
terms in the D-CAC model are the same as that in the NS-CAC model, we ignore the duplication steps for simplicity.

3.2.1. Reformulation
We still introduce a nonlocal variable Q(¢) and an ODE system related to it that reads as:

0, = /Q (V- ()it + ($V10) - w) dx,

Olu=0) =1,
u-nl|yp =0, or all variables are periodic.
The ODE (3.49) is still equivalent to a trivial ODE (Q; = 0, Q|;=0) = 1) which has the solution of Q(¢) = 1. The

other nonlocal variable U is still defined as (3.2). Then, by using the two variables Q, U, and combining the ODE
(3.49), the D-CAC system (2.15)—(2.18) is reformulated to the following equivalent form:

(3.49)

!
¢+ 0V - -(up)=-M (l«t - — de> , (3.50)
121 Jo
u:k(—A¢+:—2¢>+HU), (3.51)
v =L / He,dx, (3.52)
2 Ja
w, +avu+ Vp+ QdVu =0, (3.53)
V.ou=0, (3.54)

0O, =/ <V~(u¢)u+(¢Vu)~u)dx, (3.55)
2
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f)—5¢ C . ..
where H(¢) = £ . The initial conditions read as
JIa(F@)= 27 ¢7dx+B

0 0 0
U=y =0, ple=oy =p , dlo=0) = ¢,

s (3.56)
Olumoy = 1. Uliegy = / (F(@) — ~—(@")dx + B.
I?) 2€
and the boundary conditions are either periodic or
u-njye =0, h¢lse =0. (3.57)

3.2.2. Decoupled scheme for the d-CAC model
Similar to the scheme (3.19)—(3.25) for the NS-CAC model, we develop the BDF2 scheme to solve the equivalent
D-CAC model (3.50)—(3.55) as follows. We update (a, u, p, ¢, u, Q, U+l by

ntl _ pan n—1 1
ap Q" +c L O™Vt = —M [ — — | urtlax ), (3.58)
261 1921 Jo
W = A=A 4 S¢  HUT, (3-59)
1
aU"™! —pU" + U = o / H*(3¢""! — 49" + ¢" D, (3.60)
2
s+l bu” n—1
I @ V4 07 =0, (3.61)
n+l _ b n n—1
aQ" —b0" +c0" / (V- @t + @ vy -5 )dx, (362)
26t 2
and
tzi(gt(unle _ ﬁn+1) 4 V(anrl _ pn) — 0’ (363)
V.utl =0, (3.64)
where the boundary conditions are either periodic or the following
Wl = g™ g = 0. (3.65)

We give the details on how to obtain the decoupling structure and implementation details, see Appendix A.2.

Remark 3.7. For the sake of completeness, here we present the fully-decoupled scheme developed in [23] applied
to the D-CAC model. We know that method in [23] deals with the Darcy coupled Cahn—Hilliard model, so we just
apply its decoupling method to the Darcy coupled CAC model. For simplicity, only the first-order version is given
here, since the second-order version follows the same line. The scheme in [23] reads as

1
¢+ V@t + M (,ﬂ“ - — /L”“dx> =0, (3.66)
12| Jo
n+l _ [yn
r% F o™ £V 4 ¢V = 0. (3.67)

Note that the adv-surf terms are just discretized using the traditional Exp—Imp method, similar to (3.46). Due to
the special format of the Darcy equations, by using the explicit linear relationship between u"*! and other items,
the decoupling structure of the above scheme can be obtained. More precisely, one can rewrite (3.67) as

1 T
n+1 n n n n+l
= —u" —=Vp"+¢"V ) 3.68
u é o (&u p ¢"Vu ( )

Then, the scheme (3.66) can be reformulated as

¢ +

T
V. ((a_z“n —-Vp'+ d)"Vu"“)fb”) +M (u”“ -—= /Q u”“dx) = 0. (3.69)

12

T
5 “+ av
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This scheme does achieve a full decoupling structure, however, it is necessary to solve the phase-field equation
with variable coefficients (for x"*') at each time step, which increases the practical computational cost (as shown
in Fig. 4.3).

3.2.3. Unconditional energy stability
Now we prove that the scheme (3.58)—(3.64) is unconditionally energy stable as follows.

Theorem 3.2. The time-discrete scheme (3.58)—(3.64) satisfies the discrete energy dissipation law as follows
1 1 2
—(E" — E") < —a| Vvt — MHM”“ - —/ wtdx H <0, (3.70)
8t 121 Jo

where

/1 1 5t?
g+l =_(_ ntL2 4 ottt gt 2) o vt 2
2 2||u I +2||ll u’|| +3TII P

| 1
+ 5(5”%"“”2 - Euzw"“ — V¢"|I*) .
As 1 n+12 1 n+1 ny2 ( )
+ oGl P+ 5120 = ")

+ A(%|Un+1|2 + %|2Un+1 — U+ %(%|Qn+l|2 + %|2Qn+1 —0"P).
Proof. After taking the inner product of (3.61) with 28¢@"*! in the L? space, we arrive at the following equation:
TR —4u” + o WY 4 ast| o2 4 280V pt, Wt
+ 281 Q™! /Q ¢Vt - dx = 0. (3.72)
Since the schemes (3.63)—(3.64) are the same as (3.24)—(3.25), by taking the same process as the proof in
Theorem 3.1, we can also obtain (3.34), (3.38), and (3.39). Therefore, by combining them with (3.72), we obtain

T n n n n n n— n n n—
7l 2= a1 + 20" — w2 = 20" — o A et - 20t - ut )
37 - 2512 -
+ 7||u"+1 — a7+ 3—T(||Vpn+l I = IVP"II%) + 2e8t || /v || (3.73)
+ 28tQ”+1/ o'Vt - tdx = 0.
2

By taking the L? inner product of (3.58) with 28t ! in the L? space, we have

(3¢n+1 _ 4¢n +¢n71’ Mn+1) +28[Qn+1/ V- (u*¢*)ﬂn+ldx
2

) (3.74)
n 261M‘ W= [ urtax H —0.
120 Jo
By taking the L? inner product of (3.59) with —(3¢™*! — 4¢" + ¢"~ "), we find
_(Mn+1’ 3¢n+1 _ 4¢n + ¢n71) +A‘(v¢ﬂ+1’ V(3¢n+l _ 4¢n + ¢n71))
+ AU”+1f H*(3¢n+l _ 4¢n +¢n71)dbx (375)
I7)
4 Aiz(¢n+l’ 3¢n+l _ 4¢n + (pn—l) =0.
€
By taking the L? inner product of (3.60) with 2AU"*! and using (3.35), we obtain
A ( |Un+]|2 _ |Un|2 + |2Un+l _ Un|2 _ |2Un _ Un—1|2
(3.76)

+ |Un+l _ 2Un + Un—l|2 )= A.UVH_I/ H*(3¢n+1 _ 4¢n +¢n_l)dx
2

13
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By multiplying (3.62) with 28¢Q"+! and using (3.35), we obtain

1
5 (101 =107 + 120" = 0" = 120" = " [" + 10" —20" + 0"[")

3.77)
=2000"" [ (Ve + (¢ V) @ )dx,
2
Hence, by combining (3.73)—(3.77), we arrive at
T 2 ny2 nt+1 ny2 n nely2y , 2817 ntl 2 w2
S U — a1 20— w2 = j2u = 4 ==V T = VP
A _
+ E(nw"“nz — V"> + V29" — ¢ — IV(29" — ¢" )%
+ )\.(|Un+1|2 _ |Un|2 + |2Un+1 _ Un|2 _ |2Un _ Un71|2)
1 n n n n n n— 2
+ 500 210" + 20" — Q" — 120" — 0"7')
AS _
+ oz (9" 2 = 1" I7 + 126" — ¢"117 — 126" — ¢"711%) (3.78)

T 3t ~
+ { E”ulH—l _ 2un +un—l”2 + 7||un-‘r1 _ un+1||2

A _ AS " " e
+§||V(¢"+‘ —2¢" +¢" 1)||2+2—62||¢ H_2¢" + "2
n+1 n n—1 2 1 n+1 n n—1 2
+ AU 20"+ U""| +§|Q —-20"+ 0" ]
= —2ast| /ot |? — 25;MHM"+1

2
o MVlJrldxH .
121 Jo

Finally, we obtain (3.70) after dropping the positive terms of (3.78) in { }. O

4. Numerical simulations

In this section, we first verify the stability/accuracy of the proposed schemes (3.19)—(3.25) and (3.58)—(3.64).
Then we implement several simulations, including the spinodal decompositions for the NS-CAC model and the
fingering instability due to the continuous injection flow for the D-CAC model.

The computational domain is set to be a rectangular type with (x,y) € 2 = [0, L,] x [0, L,] for 2D, and
(x,y,2) € 2 =10, L,] x [0, Ly] x [0, L;] for 3D. The Fourier spectral method is used to discretize the direction
satisfying the periodic boundary conditions. The Legendre—Galerkin method (cf. [80]) is used to discretize the
directions with physical boundary conditions given by (3.27) and (3.65), in which Py is used for ¢, u, and the
inf—sup stable pair (Py, Py_») is used for the velocity field and pressure p, respectively,

4.1. Accuracy and stability

In this subsection, we implement numerical tests to verify the accuracy and energy stability of the schemes
(3.19)—(3.25) for solving the NS-CAC model, (3.58)—(3.64) for solving the D-CAC model. For convenience, we
abbreviate them as DSAV.

We set the 2D computational domain to be 2 = [0, 2712, and assume that the x-direction satisfies the periodic
boundary condition. The physical boundary conditions (3.27) and (3.65) are assumed along the y-direction for the
NS-CAC model and D-CAC model, respectively. We set the initial conditions to two circles with different radii that
read as follows:

VE—x)? + (- yi>2)
1.5¢ ’ 4.1)

2
¢°Cr,y) = 1+ Y tanh("—

i=l1
u’(x,y) =0, p°(x, y) =0,

where r; = 1.4, r, =05, x; =7 — 0.8, x, = 7 4+ 1.7, y; = y, = m. For the NS-CAC model, we set the model
parameters as v = 1, A = 0.01, ¢ = 0.05, M = 10, B = 10, and S = 2. For the D-CAC model, we set the model

14
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104 T . S 1072
j;DS:V@ i f"‘// S DSAV:¢
— DSAV:average of (u,v e 7~ DSAV:average of (u,v)
10°5 b ~<I-DSAV:p i //K’l’/ E 4 _?I_DSAV:IJ =
—>-DSAV:Q T //ﬁ 107 [ > Dsav:Q < ]
-~~~ ref-slope 1 - ,/Xi —-—- ref-slope 2 < = ~ //'ii
o8k ref-slope 2 Q’///Q/ // | g /<]/ S&///// =
< %/ v = 1001 P e 1
5 - 5 =
0 107t i A e s
o & — 108} & ./'//"l;//ﬁ/
0ol e
=
10 | 2
100 10 >
e ‘ d ‘ 10712 - ,
10 10° 10 10° 10° 10°
Time step size Time step
(a) DSAV scheme for NS-CAC model. (b) DSAV scheme for D-CAC model.

Fig. 4.1. Accuracy tests computed by the DSAV scheme where the L? numerical errors are plotted at r = 0.2 for the phase-field variable
¢, the average of the two velocity components (u, v), the pressure p, and the auxiliary variable Q for (a) NS-CAC model and (b) D-CAC
model.

23 S ———— 23 ——
—— Original energy &t = 0.1/23 —1:;& = 0.1/
; _ 3 25t =0.1/2
----Modified Energy §t = 0.1/2 | 36t —01/2 |
G 1 —— it =0.1/2°
\( 5:0t = 0.1/2*
~ 6:6t = 0.1/2° |
SN Tat=0ay2
\\ 2 N —— 86t =10.1/27
) ) WV .
L L !
N\
N\
\
\
1.8} \] 4
| . N
17 P L P e 17 ‘ AR e e
0 05 1 15 2 25 3 35 4 45 5 o 05 1 15 2 25 3 35 4 45 5
Time Time
(a) Energy evolution using ot = 0.1/2%. (b) Energy evolution with various 6t.

Fig. 4.2. (a) The comparisons of the energy (2.2) in the original form and the energy (3.31) in the modified form computed by using the
time step 87 = 0.1/2, and (b) the evolutions of energy (2.2) computed with different &z.

parameters as ¢« = 100, v = 1, A = 0.01, ¢ = 0.05, M = 10, B = 10, and S = 2. We discretize the x-direction
by using 257 Fourier modes and use Legendre polynomials with the degree up to 256 to discretize the y-direction.
Using this sufficient fine grid, the interface can be well resolved, so that the spatial errors are negligible compared
with the temporal errors. We use the numerical solutions calculated by using the scheme DSAV with a very tiny
time step size §t = le—8 as the exact solutions.

In Fig. 4.1(a) and (b), for the DSAV schemes of the NS-CAC model and the D-CAC model, respectively, by
using different time step sizes, we plot the numerical errors of L? at t = 0.2 between the obtained solutions and the
exact solutions. We notice that for both models, the DSAV schemes provide second-order accuracy for the variables
(¢, u, Q). For the NS-CAC model, the pressure accuracy is first-order, and for the D-CAC model, the pressure
accuracy is the second-order.

In Fig. 4.2(a), we show the difference between the original free energy (2.2) and the discrete energy (3.31)
computed using the time step size 8t = 0.1/23. We see that there is almost no visible difference between them. We
also append the small inset figures for the phase-field ¢ at the initial moment and the steady-state where we can
see that the small circle is finally absorbed into the big circle due to the coarsening effect.
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10 ; 800
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(a) Accuracy of DSAV and CS for ¢. (b) Average number of iterations needed by DSAV and

CS for each time step.

Fig. 4.3. The comparisons of L? errors for ¢, and the average number of iterations needed by the scheme DSAV and scheme CS (developed
in [23]) per time step for the D-CAC model.

Furthermore, we use different time steps to test the energy stability of the scheme DSAV. Since there is no visible
difference between the original energy (2.2) and (3.31) shown in Fig. 4.2(a), in this test, we plot the evolution curves
of the total free energy in the original form (2.2) calculated by DSAV using different time steps in Fig. 4.2(b) for
the NS-CAC model. It can be seen that the obtained energy evolution curves always show monotonic decays, which
means that DSAV is unconditionally energy stable. Moreover, as the time step gets smaller and smaller, the obtained
energy curves overlap with each other, indicating that the obtained solution is getting closer and closer to the exact
solution.

To show the effectiveness of the scheme DSAYV, in Fig. 4.3, for the D-CAC model, we compare the scheme DSAV
with another type of fully-decoupled scheme developed in [23] (see also Remark 3.7) where the convex-splitting
scheme is used for the double-well potential and implicit—explicit combination method is used for the adv-surf
terms (denoted by CS, for short). In Fig. 4.3(a), we compare the L? error obtained by DSAV and CS. For each §¢,
the error obtained by CS is slightly less than DSAV since the scheme CS handles many terms implicitly which can
give better accuracy. However, if we further test the average number of iterations of these two schemes, as shown
in Fig. 4.3(b), we immediately find the scheme DSAV is much more efficient than CS.

4.2. Spinodal decomposition

In this example, for the NS-CAC model, we investigate the spinodal decomposition (phase separation). The initial
conditions are set as follows,

u’(x) =0, p°(x) = 0, p(x) = ¢y + 0.001rand(x), 4.2)

where the rand(x) is the random number in [—1, 1] that follows the normal distribution.

We perform 3D simulations and set the computational domain to be 2 = [0, 27r]>. We set the model parameters
asv=1,1=001,e =004 M =100, B =10, S = 2, and set §t = Se—4 for better accuracy. The periodic
boundary conditions are assumed and the space is discretized using the Fourier-spectral method where 256* Fourier
modes are adopted. We vary the initial average ¢y, and plot the steady-state contour in Fig. 4.4, where, to get a
more accurate view, we plot the steady-state for the domain of [0, 47]® (8 periods) for all simulated cases. The
equilibrium solution presents the P-Schwarz surface phase (¢_>0 = (), Lamella phase (q_ﬁo = 0.1), Lawson surface
phase ((]30 = 0.3, 0.35, 0.45), cylindrical phase (q_bo = 0.4), and spherical phase (q30 = (.55). These simulations show
qualitatively consistent features with the numerical/experimental results obtained in [81-83]. In Fig. 4.5, the total
free energy functional (scaled by applying the logarithm function) (3.31) is plotted.
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(b) ¢o = 0.1 (Lamella).

(d) ¢o = 0.35 (Lawson).

(¢) ¢o = 0.3 (Lawson).

(g) ¢o = 0.55 (Spherical).

(e) ¢o = 0.4 (Cylindrical).

Fig. 4.4. The isosurfaces of {¢ = 0} for eight periods [0, 47]? for the equilibrium solutions of 3D spinodal decompositions example with
¢0 =0, 0.1, 0.3, 0.35, 0.4, 0.45, and 0.55 for the NS-CAC model.

6 _@Ozo 1
o Go=0.1
55 —¢=0.3 1
; —— §=0.35
5 Hi ~~¢7>0:O.4 1
= — $y=0.45
> P
5 4.5 ¢$0=0.55 :
c
w
2
350
3t 3+ 1
25 i . L ) 3 . ) 25 i A A . . : i i i
05 1 1.5 2 25 3 35 4 0o 05 1 15 2 25 3 35 4 0 05
Time Time

(a) Energy evolutions.

Fig. 4.5. Time evolutions of the logarithm of total free energy (3.31) for all 3D spinodal decomposition examples with various initial values

of ¢0.

17

(b) A close-up view.
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4.3. Fingering instability of D-CAC model

In this subsection, using the D-CAC model, we simulate the viscous fingering pattern instability problem
(Saffman—Taylor instability), which is one of the most in-depth studied research problems in fluid dynamic systems,
which demonstrate the formation and evolution of elaborate patterned structures. It considers the development of
interfacial instabilities when a fluid displaces another of higher viscosity between the narrowly spaced plates of a
Hele—-Shaw cell, see [84-86]. An extensively investigated version of the problem is the so-called radial fingering
flow driven by injection. It considers the radial intrusion of a fluid of low-viscosity that is injected under a constant
injection rate against a more viscous liquid that initially occupies the entire cell. Experiments involving the injection-
driven radial flow for immiscible fluids show that as the size of the fluid—fluid interface grows outward, fingers form,
spread out, and start to split at their tips, creating complex branched patterns [84—86].

We implement numerical simulations in 2D where {2 = [0,27]? is the computed domain. To represent the
injection flow, we adopt the Gaussian method designed in [85] where a potential radial velocity u,,, is imposed in
the momentum equation and the phase-field equation, namely, the D-CAC model is revised as

@+V-mphm@m+wdu—3% Qwu)zo, 4.3)
w=M=A¢ + f(¢)), 4.4)
Tu, +av(@)u+u,,) +Vp+dVu =0, 4.5)
V.u=0, (4.6)

with
N2/ R2\F(x.v
upot(xv )’) = _C(l - e—4r(x,}) /Ro)r(x,))’

r,y) =V =2+ (y — )2,

L x-m y-m @4.7)
r(x,y) (r(x,y)+n’r(x,y)+n)’

1— 1
v(p) = v; 2¢+V2 —12-¢,

where C is the injection strength, Ry is the radius of the circular injection region, n is a small quantity such that
r(x, y)+n # 0 for any (x, y) € £2, v; is the viscosity of the displaced fluid, v, is the viscosity of the injected fluid,
and v; > v;.

We set the initial conditions as follows:

o _ 2 _ _ 2
(s, ) = tanh(- =Y ”6) =)

), u’(x, y) = (0, 0), p°(x, y) =0, (4.8)

where 7 = rg + 0.001(1 + cos(kf)) and 6 = arctan(g) and k the wave number of the perturbation. We assume
periodic boundary conditions and discretize the space by using the Fourier-spectral method, where each direction
is discretized using 1025 Fourier modes. The model parameters read as

ro=Ryp=02,C=25,1=1,aa =1000, v, =20,v, =1,
M =10,e =0.008, A =0.01, B =10, 5 =2,n = le—6, 6t = le—5.

In Fig. 4.6(a)—(c), by using different wave numbers k = 6, 14 and 36, we plot the phase-field variable ¢ at
different times (to be clearer, we use the grayscale snapshots). We observe that the droplet forms a clear fingering
pattern over time. When the wave number increases, we can see a larger number of fingers forming, and on each
finger, more bifurcations are formed.

Next, we test the effect of the viscosity of the displaced fluid on the formation of the fingering pattern. We set
the model parameters as

ro=Ryp=08k=60,C=251=1,a=1000,v, =1,

M =10,e =0.008, A =0.01, B =10, S =2,n = le—6, 5t = le—5.
In Fig. 4.7, we plot the phase-field variable ¢ by varying the viscosity of the displaced fluid v; such that it is
increased from 2 to 200. When v; = 2, that is, the viscosity of the two fluids is very close, no fingering pattern

(4.9)

(4.10)
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8 R

(a) k = 6 and snapshots are taken at ¢t = 0,0.02,0.04, 0.06,0.08,0.1 and 0.12.

| |

) k = 14 and snapshots are taken at ¢t = 0,0.02,0.04,0.06,0.08,0.1 and 0.13.

o [ 4 e

= 36 and snapshots are taken at ¢ = 0,0.02,0.04,0.06,0.08,0.1 and 0.12.

Fig. 4.6. Snapshots of the phase-field variable ¢ at different times which show the formation of fingering patterns where various wave
numbers of the perturbation are used with (a) k = 6, (b) k = 16, and (c) k = 36. Blank and dark regions represent the injected fluid with
less viscosity and the displaced fluid with higher viscosity, respectively.

is formed, shown in Fig. 4.7(a). With the increases of v; that means the viscosity contrast becomes larger, while
the number of main fingers remains roughly the same (see ¢+ = 0.04, the third subfigure in each of Fig. 4.7(b)-
(e)), we can observe extremely complex patterns formed during the evolution of time. For example, the length
of the branched fingers becomes uneven, some fingers grow up, become long, straight, or even bifurcated again;
some fingers become short, bended, or even are pinched-off, as shown in Fig. 4.7(b)—(e) for v; = 5, 20, 100, 200,
respectively.

5. Concluding remarks

In this article, for the two-phase flow model that couples the mass-conserved Allen—Cahn equation with two
fluid flow systems (the incompressible Navier—Stokes equations and the Darcy equations), we develop a new full
decoupling method, and combine it with other proven effective numerical methods, to form an efficient numerical
scheme with full decoupling structure and second-order time accuracy. The scheme is highly efficient and only
needs to solve linear elliptic equations with constant coefficients. The specialty of the new decoupling method is
that by adding an additionally designed ODE to the PDE system, the nonlinear coupling term can be explicitly
handled while still ensuring unconditional energy stability. We also conduct numerous numerical tests in 2D and
3D to demonstrate the accuracy and stability of the scheme.
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- 00000

) v1 =2 and t =0,0.04,0.08,0.1,0.12,0.14.

c0/0000

) v1 =5 and t = 0.02,0.04,0.08,0.1,0.12,0.14.

cejb8ee

) v1 =20 and t = 0.02,0.04,0.08,0.1,0.11, 0.12.

DO

) v1 =100 and ¢ = 0.02,0.04,0.08,0.09,0.1,0.11.

|8 %

) v1 =200 and t = 0.02,0.04,0.08,0.09,0.1,0.11.

Fig. 4.7. Snapshots of the phase-field variable ¢ at different times which show the formation of fingering patterns where the viscosity of
displaced fluid v; is varied with (a) vi =2, (b) vi =5, (¢) v =20, (d) vi =100, and (e) v; = 200. Blank and dark regions represent the
injected fluid with less viscosity and the displaced fluid with higher viscosity, respectively.

Appendix. Decoupled implementation of schemes

A.l. Implementation of scheme (3.19)—(3.25)

We discuss how to obtain the decoupled structure of the scheme (3.19)—(3.25) where the key idea is the nonlocal
property of the variable Q"*!.
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Step 1: we split (¢, i, U)"*! into a linear combination form
¢n+1 — ¢11+1 + Qn+1 n+1’ M _ M7+1 + Qn-&-lMg-H’ Un-H — Uer—l + Qn+lU2n+l, (A])

and solve (¢1, 2, w1, pa, Uy, Up)" ™.
Using (A.1), the system (3‘19)—(3.20) can be split into the following two subsystems:

¢n+1 - _ n+1 / n+1 ¢ c¢n !
2Mst SNT] o 2Mst (A2)
Mrltﬂ ( A¢n+l +H Un+l + ¢n+1)

and

2M5t 12|
M;-H _)\‘< A¢n+l +H Un+] + ¢n+l>.

a 1 1
i = (,uﬁ“ u’z’“a’x) - —MV S(ug"),
(A.3)

The boundary conditions described in (3.27) are requested to be periodic or satisfy
! oo = dady oo = 0. (A.4)

We consider the mass of q)i”“ and obtain it by taking the L? inner product with 1 for the first equation of (A.2)
and the first equation of (A.3), and using Remark 3.3. Then we get

/(ﬁi’“dx:/¢"dx:/¢"_ldx:/¢0dx,/qﬁ;“dxzo, (AS)
2 2 2

which implies the ¢]* ! maintain the total mass.
To solve (¢1, i1, ¢z, 2)"+!, we continue to split them using the two nonlocal variables U”Jr1 and U”H
respectively, namely

¢(t+l — ¢11+1 + Uin+l¢n+l’ Mln-H — Mln]-H + Uin-H lnz-H’i — 1 2. (A6)

Replacing (¢1, ¢2, 11, w2)™1 in the two subsystems (A.2) and (A.3) using (A.6), decomposing the obtained
equations according to U™ and Uj*', we get

a 1
¢ = (Mfm M"de> + G,
e o 121 (A7)
M:l]+1 <_A¢l”;+l + 6_2¢;lj+l)’ l,j — 1’ 2,
where Gy = P ~.Gn = Gn = 0.Gy = —2-V - (u*¢*) and the boundary conditions are either

¢ |az = 0 or periodic.
The mass of ¢i"j+l can be obtained by taking the L? inner product with 1 for the first equation of the four
subsystems of (A.7), that is

/d){'lﬂdx =/ ¢"dx =/ q)"_ldx:/ ¢'dx,
Q Q Q Q

/ ¢i’2+1dx :/ qﬁ;rldx :/ (pg;ldx :O

Q Q Q

To solve the four sub-systems (A.7), after combining the two equations in each sub-system together and using
(A.8), we derive

(A.8)

_2M8 oIt + M—Aglt! + - ¢”“) =Gij, i, j=1,2, (A.9)
where
A ¢ C¢n ' / n+l
G x,
S ToMer e2 ),

(A.10)
N 1
G =Gyn=—MH*— —/ H*dx), Gy = ——V - (u¥¢*).

12| Jo M
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It is very easy to solve (A.9) since all four equations are just elliptic equations with constant coefficients (note that

o I = g !, thus we only need to solve three elliptic equations here).

Step 2: we further solve U™+, We rewrite (3.21) to be the following form:
1
UI’H-] — _'/ H*¢n+]dx _’_gn’ (All)
2Ja
where g" = 1(bU" — cU"™") — § [, H*(b¢" — c¢"")dx, and replace (U, )" using (A.1) to get
1
Ut ottt = o / H* @ + Q"5 dx + ¢". (A-12)
¢;
According to Q"*!, we get
1 )
urtt = 5/ H*¢" dx + G i =1,2, (A.13)
10

where G} = g", G2 = 0. We continue to replace (¢;, ¢2)"*! in (A.13) using (A.6) and apply a simple factorization
to derive

1 /Q H*¢! dx + G
) > Jo H*¢i2+ldx
We can directly solve UZ”H i = 1,2 from (A.14) under the premise of (A.14) is always solvable. To show that,

for the equation of ¢, = 1,2 in (A.9), by taking the L? inner product of them with ¢’5"' and using (A.8), we
deduce

nt+l _
Ui

,i=1,2, (A.14)

-2 / H*¢;3+‘dx— ||¢>”+'|| + AV ? + ||¢”+‘|| >0,i=1,2. (A.15)
2

Hence, the denominator in (A.14) is always non-zero which means it is always solvable. After (U, U,)"*! are
computed, (@1, i1, ¢2, 42)" ! can be updated from (A.6) directly.
Step 3: we solve the velocity field "*! in (3.22). We write @"*! as

! = n+1+Qn+l ntl (A.16)

After replacing the variable @"*! in (3.22) with (A.16), we split the obtained equation in terms of Q"*! to obtain
two sub-systems:
a

Eﬁy“ —vAW =R i=1,2, (A.17)
where R} = —Vp" + % R2 = —(u*- V)u* — ¢*Vu*. The boundary conditions of two variables (@, i)""!
are either periodic or satisfy u”“la = u”“la o = 0. It is very easy to solve (A.17) since they are just elliptic

equations with constant coefficients.
Step 4: we solve the auxiliary variable Q"*!. Using the split form for the variables "', W"*!, one can rewrite
(3.23) as the following form:

- n+l _ L n __ n—1
(2& n2)Q"" = 28t(4Q 0" )+, (A.18)
where

n = / (v ST+ (V) -7 4+ (- Vur ﬁ;’“)dx, i=1,2. (A.19)
2

It can be seen that the nonlocal equation (A.18) is very easy to be solved since n; and 5, are all known terms
obtained from Step 1-Step 3 under the premise of % — 12 # 0. Once Q™! is computed from (A.18), we update
a"*! from (A.16), and (¢, p, U from (A.1).

The premise of - 25 - — 2 # 0 (solvability of (A.18)) can be obtained by performing the following simple energy
estimates. By taking the L? inner product of the equation in (A.17) for i = 2 with u'”'1 we deduce

f (@ Vi) @+ @ Ve @) = SR+ VAV = 0 (A20)
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By takmg the L? inner product of the first equation in (A.3) with /L"“, of the second equation in (A.3) with
¢”+] and combining the two obtained equalities, we get

2M8t
1 2
~ v ") dx = ‘Mg“ T u;“dx
\V4 n+1 n+1 (A21)
+ _2M8 IVes > +2M8t Sl 1P
+ Un+1 / H*¢>"+1dx.
oMst 2 Jg 2

From (A.13) for i =2, we get Uy*' [, H*¢3'dx = 1([, H*¢5"'dx)* > 0, which implies

- / V- o) dx > 0. (A.22)
2

From (A.20) and (A.22), we get —n, > 0. Thus (A.18) is uniquely solvable.

Step 5: we update u"*! and p"*! from (3.24) and (3.25) using the method given in Remark 3.4.

The above implementation process shows that the calculation of all unknown variables can be completely
decoupled. At each time step, the total cost of includes the solution of three linear elliptic equations of (A.9),
two linear elliptic equations in (A.17), and one Poisson-type equation in step 5. The decoupling of all equations
and the characteristic of having only constant coefficients means very efficient calculations in practice.

A.2. Implementation of scheme (3.58)—(3.64)

The implementation of the scheme (3.58)—(3.65) is also quite similar to the scheme (3.19)—(3.23) except Step 3.
Hence we only give step 3 here.
Step 3: we split ! using Q"*! as:

ﬁn+1 — ﬁrltJrl + Qn-Hﬁngl- (A.23)

We replace the variable @' in (3.61) by using the split form given in (A.23), and then split the obtained equation
in terms of Q"*! to get

La L v n_i_bu”—cu"_1
av — —_—
26t p 28t (A.24)
a n+1 ~n+1 __ * *
T—u, +ava,’ =-—¢"Vu®.

25t

We use the split form for the variables w1 from (A.1) and "t from (A.23) to rewrite (3.62) as the following
form:

(— — 00" = ! —@Q"— 0" H+6, (A.25)
25t 25t

where
6, = / (v (W + (@7 - ﬁ;‘“)dx. (A.26)
To show (A.25) is solvable, we take the L? inner product of (A.24) with u"Jrl we obtain
— [ ot = e e i) (A27)

Meanwhile — f P (u*¢>*),u§+1dx > 0 still holds from (A.22). Thus (A.25) is uniquely solvable.

Similar to scheme (3.58)—(3.65), the implementation of the scheme (3.58)—(3.65) is also very simple, where
the total expense at each time step includes solving three linear elliptic equations in step 1, and one Poisson-type
equation in step 5, and all equations have constant coefficients, thereby implying very efficient practical calculations.
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