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accurate volume conservation is first established. Then, for its coupling system with the
incompressible flow, we design a highly efficient scheme which is linear and energy stable.
More importantly, this scheme is second-order time-accurate and fully-decoupled and it only
needs to solve several independent linear equations with constant coefficients at each

gﬁﬁ‘;ﬁgid time step to obtain a numerical solution with second-order time accuracy. The key idea
Fully-decoupled is to introduce two types of nonlocal auxiliary variables, one of which is linearize the
Second-order nonlinear potential, and the other is used to introduce an ordinary differential equation
Allen-Cahn to deal with the nonlinear coupling terms that satisfy the “zero-energy-contribution”
Nonlocal feature. We strictly prove the solvability and unconditional energy stability and conduct

Unconditional energy stability numerical simulations in 2D and 3D to demonstrate the accuracy and stability of the

scheme numerically. To the best of the author’s knowledge, the decoupling method developed in
this paper is the first second-order fully-decoupled scheme for the flow-coupled phase-field model.
© 2020 Published by Elsevier Inc.

1. Introduction

In cell biology, vesicles refer to a class of relatively small intracellular cystic structures. The periphery of vesicles is
composed of at least one lipid bilayer molecular membrane, which is used to store, digest, or transport substances (such
as cell products or waste). Starting from the classic work of Du et al. in [8-10], the phase-field (diffusive interface) method
has been used to simulate the structural deformation of lipid vesicles under various situations, see [1,12,22,33,35,39]. The
main idea of the phase-field approach is to use a scalar variable to represent the two fluid components separated by a
vesicle membrane, and use the bending energy formulation to replace the average curvature of the membrane surface. By
minimizing the total free energy in some specific space (usually using the L2 space, called Allen-Cahn relaxation dynamics or
mean curvature flow), the so-called phase-field elastic bending energy model is derived (PFEBE model, for short). Besides, if
the fluid characteristics of the vesicle and its surrounding fluid (such as the flow behavior driven by shear or gravity) need
to be considered, the Navier-Stokes equation and the PFEBE model are coupled through the elastic stress and advection
terms to form a full flow-coupled model.
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It is worth noting that in order to ensure the conservation of volume and surface area over time, in the classic PFEBE
model proposed by Du et al. [8-10], two penalty energy potentials are added into the total free energy of the system, so
the total volume and surface area can be approximately preserved. Therefore, in practice, if a good conservation effect of
the surface area and volume is desired, a large penalty parameter needs to be adopted. However, such a penalty method
has some disadvantages which are described as follows by taking the volume conservation as an example since it is much
simpler to conserve the volume than the surface area. First, no matter how large the penalty parameter is, the volume can
only remain roughly the same. Second, using a larger penalty parameter will increase the stiffness of the system, resulting
in severe time-step constraints and higher computational costs. Some efforts have been made in this direction to conserve
the volume precisely. The Lagrange multiplier method is developed in [1,36], but because the model does not follow the
energy structure, it is very challenging to develop efficient numerical schemes. Another effort was made in [17], which
uses the well-known volume conservation system Cahn-Hilliard dynamics to reconstruct the model. However, it brings up a
disadvantage that the generated system has two more orders than the Allen-Cahn system, so it is relatively difficult to solve.
Therefore, in this paper, the first goal is to use Allen-Cahn dynamics to reconstruct the PFEBE model so that the volume can
be conserved accurately over time. To this end, we eliminate the penalty potential for volume in the free energy and add
a nonlocal term directly to the original PDE system. This term not only eliminates the volume change but also helps to
retrieve almost the same energy dissipation format as the original system.

Next, we consider the numerical approximation of the new vesicle model coupled with the hydrodynamics. We remem-
ber so far that for the classical PFEBE model, many successful attempts have been made in algorithm design or numerical
simulation, such as the Invariant Energy Quadratization (IEQ) method [38], Scalar Auxiliary Variable (SAV) method [5],
linear stabilization method [6], nonlinear functional derivative method [17], Exponential Time Differencing (ETD) method
[36], etc. However, compared with the partial model containing only one phase-field equation, the full flow-coupled vesicle
model has received less attention due to its highly nonlinear coupling nature. As we all know, as the main component of
the full flow-coupled vesicle model, the Navier-Stokes equation has many effective numerical methods, such as the pro-
jection/Gauge/penalty methods (cf. [13-16,24,25,29]). Thus, one might think that as long as the above-mentioned known
methods for the PFEBE model are combined with the methods for the Navier-Stokes equations, an effective numerical
method for the full flow coupling model can be obtained.

However, unfortunately, the current situation is that, not only for the full flow-coupled vesicle model discussed in this
paper, but also for almost all hydrodynamically coupled phase-field models, to the best of the author’s knowledge, there are
currently no numerical schemes with the second-order time-accuracy, fully-decoupling, and energy stability. There is a lack of suf-
ficient skills to achieve such a scheme, and the main difficulty lies in how to discretize the advection and stress terms that
are common in almost all hydrodynamically coupled phase-field models. For these two terms, the popular discretization
method is to use fully-implicit or semi-implicit methods, but they inevitably lead to expensive fully-coupled schemes, see
[3,7,11,18,19,31]. As far as the author knows, the only fully-decoupled scheme was developed in [23] and some follow-up
works in [17,30-32]. Its main idea is to add a stabilization term to the explicit advection velocity so that the momentum
equation and phase-field equation can be decoupled. However, the disadvantage of this method is that the added stabi-
lization term contains implicitly processed chemical potential, which leads to the need to solve the phase-field equation
with variable coefficients at each time step, resulting in higher calculation costs than that with constant coefficients. Mean-
while, the scheme developed in [17,23,30-32] is only first-order time-accurate, and it seems quite challenging to extend the
stabilization idea to the second-order version.

Therefore, the second purpose of this paper is to develop a new numerical scheme for the full flow-coupled volume-
conserved phase-field model for lipid vesicles, so that it is not only unconditionally energy stable, linear, and second-
order time accurate, but also fully-decoupled. We expect that the designed scheme only needs to solve several linearly
independent equations with constant coefficients at each time step, thereby reducing the actual calculation cost. To this
end, based on the existing effective methods (including the projection method to solve the coupling of pressure and velocity,
and the SAV method that linearizes the nonlinear energy potential), we make full use of an obvious but often overlooked
property, the so-called “zero-energy-contribution” feature satisfied by the advection and stress to construct a new type of
fully-decoupled scheme. Thus, from a new perspective, we introduce a novel idea of introducing a nonlocal variable and
designing an ordinary differential equation related to it, which contains the inner products of the advection/stress and some
specific functions. This ODE is trivial at the continuous level because all the terms contained therein are zero terms. But
after discretization, it can help eliminate all the troublesome nonlinear terms that are explicitly handled, thereby obtaining
unconditional energy stability. Besides, the introduction of the nonlocal variable can decompose each discrete equation
into multiple sub-equations that can be solved independently. Therefore, a fully-decoupled structure is obtained. We also
give a rigorous proof of unconditional energy stability and further simulate various numerical examples in 2D and 3D to
demonstrate stability and accuracy numerically. To the best of the author’s knowledge, the decoupling method developed in this
paper is not only the first second-order fully-decoupled scheme for the particular flow-coupled vesicle model but also applicable to any
coupling type models with “zero-energy-contribution” terms.

We organize the rest of the article in the following way. In Section 2, we develop the new flow-coupled volume-
conserved vesicle model and then present its energy law. In Section 3, we propose a fully-decoupled, second-order time-
marching numerical method and give a detailed implementation method. We prove the solvability and unconditional energy
stability as well. In Section 4, numerous numerical experiments in 2D and 3D are conducted to demonstrate the effective-
ness of the model and the proposed numerical scheme. Section 5 gives some concluding remarks.
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2. The full flow-coupled volume-conserved PFEBE model

Based on the total free energy given in Du et al.’s classic PFEBE model [8-10], we develop a new flow-coupled model

that can guarantee the volume conservation over time. First, we define the phase-field variable as ¢ (x) = tanh (d(—;i

x € , where d(x) is the signed distance between a point ¥ and the membrane surface I', and ¢ is the width of the diffusive
interface. In such a framework, the postulated total free energy for the hydrodynamically-coupled PFEBE model is given as
follows [9]:

for all

Bw.g)= [ Siupdetr | [ Sao- 1@ des sma@ -2 ). 1)
Q Q

where u is the average velocity field (u = (uq, uy) for 2D, and u = (uy, up,us3) for 3D), A is a normalization constant

that characterizes the magnitude of bending energy, F(¢) = 41?(¢2 —1)? is the double-well potential, f(¢) = F'(¢) =

61—2¢(¢2 — 1), and A(¢) is the surface area function that is defined as

1
A =e [ (31708 +F@) dx. (.2)

Q

The surface area can be given as A(¢). M > 1 is a positive penalty parameter. 8 denotes a constant related to the initial

2f
surface area, and we set 8 = A(¢°) with ¢ = ¢(t =0) in the paper.

By using the L? gradient flow approach (i.e., the Allen-Cahn relaxation dynamics), we obtain the following dynamical
system:

1
¢+ - Vg +y /«L—@ pdx | =0, (2.3)
n=e(A— f'(P)(Ad — f(¢)) +eM(A(p) — B)(—=Ad + f(9)), (24)
u+ (u-V)u+Vp—vAu—AuVe =0, (2.5)
V.u=0, (2.6)

is the scaled variational derivative or chemical
V)¢ is the fluid advection.

where f’(¢) = El2(3¢2 —1), y is the relaxation mobility parameter, u =

13E
* %
potential, £ V¢ is the induced stress using the generalized Fick’s law, and (u

Remark 2.1. Note that the volume of the vesicle is defined as fQ L9 dx, see [1,8-10], hence, by computing the L%-inner
product of (2.3) with 1, and using the integration by parts and the dlvergence free condition (2.6), we derive

— / pdx =0, (2.7)

which means the model (2.3) retains the exact volume. It can be seen that the nonlocal term _I%\ fQ pdx added in (2.3)
plays a key role in maintaining the total volume of ¢. This idea was originally ingeniously proposed in [27], with the aim
of developing the conservative Allen-Cahn equation.

We consider one of the following two types of boundary conditions:
(i) all variables are periodic, or (ii) u|3o = 0, 9n¢|s0 = InAd|se =0, (2.8)

where n is the unit outward normal on the boundary 9€2. The initial conditions read as

u|(t=0) = u°, pl=0) = p°, Plt=0) = ¢°. (2.9)

The system (2.3)-(2.6) admits the law of energy dissipation, which can be obtained by the following process. We multiply
the inner product of (2.3) by Au in L? to derive

Ao 1) ==y | - @ udtz —a / (u- V)gudx, (210)
Q

where we use
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1
(M= = | ndx, u)
IQI

1 1
1 + i [ pdx = [ pa
= |sz| e, |sz|/ )+ ) |s2|9/‘“‘)

2
= M—— udxH ,
H |sz|

since (( — Ilﬁl fQ wdx, 1) = 0. Taking the inner product of (2.4) with —A¢; in L2, we get

d € 2 1 2,0\
~hpt o+ ([ 500 = £@)2 dx+ SMA@) - i) =o. 211)

Q

Taking the inner product of (2.5) with u in L%, and using integration by parts and (2.6), we obtain

%/%mlzdx—i— V|| Vu|? :x/uws.udx— /(u-V)u-udx. (212)
Q Q Q
Combining the above three equations (2.10)-(2.12), we obtain the energy dissipation law as
9 b, g) = —ay|p-— udtz —v|Vul?,
dt |Q| (2.13)

where the two negative terms on the right end specify the diffusion rate of the total free energy E(u, ¢).

Remark 2.2. We note that when deriving (2.13), the nonlinear integrals related to advection, advection, and stress are all
canceled out. More precisely, the following two identities hold

f(p,w-u— (u-V)pu)dx =0, /(u-V)u-udx:O, (2.14)
Q

where the second one is due to the divergence-free condition (2.6) and integration by parts. The two identities mean that
these nonlinear terms do not contribute to the total free energy or energy diffusivity, that is, they satisfy the “zero-energy-
contribution” property. We will take advantage of it when developing the decoupling type scheme in the next section.

Remark 2.3. For the sake of completeness, here we provide the classical PFEBE model with the volume potential, which
was developed in [8-10]. The model uses two penalization potentials to enforce the surface area and volume conservation
approximately. Therefore, the postulated free energy reads as

- 1~
E(u,¢)=EM,¢)+ MV (@)~ V(9%))?, (215)

where V(¢) = fQ 2+ 4x, and M > 1 is the penalty parameter. Note that no matter how big M is, the volume can only be
conserved approx1mately

3. Numerical scheme

We are now developing a numerical scheme to solve the volume-conserved flow-coupled PFEBE model (2.3)-(2.6). The
main challenge is how to construct the decoupling method. Moreover, considering the efficiency and accuracy of the al-
gorithm in practice, we also expect the scheme to satisfy linearity, second-order time accuracy, and unconditional energy
stability. The detailed process for developing this scheme is given as follows.

3.1. Reformulation to an equivalent system

First, we introduce a nonlocal variable Q (t) and design a special time-evolving ODE that reads as

Q= [ (ru- Vi~ 179 -+ (- Vyu- u)dx,
Q
Ql¢=0) =1,

(31)
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with V-u =0 and u satisfy the boundary conditions (2.8). Using (2.14), the ODE is equivalent to the trivial ODE that reads

as
Qt = 07 (3.2)
Ql¢=0 = 1.

It is obvious that Q (t) =1 is the solution.
Second, we introduce another nonlocal variable U (t) such that:

1 1
u = /E(A¢—f(¢))2dx+ EM(A(¢)—5)2+B, (3.3)
Q

where B > 0. This is the so-called SAV method [4,5,28,40,41] which is an efficient method to linearize the nonlinear terms
induced by the energy potentials.
Then, we rewrite the PDE system (2.3)-(2.6) using the variables (u, p, u, ¢, U, Q) as:

1
¢ +Qu-V)p+y u—@ pdx | =0, (34)
Q
w=eHU, (3.5)
U+ Qu-VYu+Vp—vAu—1QuVe =0, (3.6)
V. u=0, (3.7)
U= % / Hprdx, (3.8)
Q
Qt:/(A(u-V)¢M—AMV¢-u+(u-V)u-u)dx, (3.9)
Q

where the function H(¢) is defined as:
(A= [ (P)(AP — [($) + M(A(®) — B)(—=A¢ + f(9))
Vo 1(Ag — F@)? dx+ LM(A@) — )2 + B

H(¢) =

(3.10)

Remark 3.1. We make some modifications to the original system (2.3)-(2.6) to obtain the new system (3.4)-(3.9). First,
we rewrite (2.4) with the new variables U, and take the time derivative of U to obtain (3.8). Second, we add three inner
products containing advection and stress with some specific functions into the ODE (3.2) to obtain (3.9). The two ODEs, (3.9)
and (3.2), are equivalent because the integral terms in (3.9) are simply equal to zero from (2.14). Third, for the advection
and stress terms satisfying the “zero-energy-contribution” feature, we multiply them with the nonlocal variable Q in (3.4)
and (3.6) since Q = 1. Therefore, the new system using the variables (u, p, i, ¢, U, Q) is equivalent to the original system
(2.3)-(2.6) using the variables (u, p, i, ¢).

The boundary conditions of the new system (3.4)-(3.9) are still (2.8). Note that the equations (3.8) and (3.9) for the new
variables U and Q are only time-dependent, so no boundary conditions are needed. The initial conditions of the system
(3.4)-(3.9) are set as follows,

uf=0) = u’, ple=0) = p°, Pl (=0) = ¢°,

1 1
Ule=y = | | 5(A¢° — f(¢°)2dx + -—M(A(@°) — $)* + B, Q|t=0) = 1. (3.11)
2 2¢€
Q

The new system (3.4)-(3.9) also holds the energy dissipation law that can be obtained through a similar process obtaining
(2.13). Since the discrete energy stability proof process follows the same principle, we show the following detailed process
to make it clear. We multiply the L? inner product of (3.4) with A to get

1

Ao 1) ==y | - o udxHZ ~12.Q /(u - V)pudx. (312)
Q Q

[ —)
i
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Taking the inner product of (3.5) with —A¢; in L2, we get

—A(M,¢t):—eAU/H¢tdx. (3.13)
Q

Taking the inner product of (3.6) with u in L%, and using integration by parts and (3.7), we obtain

d 1
@ 5|u|2dx+ v||Vu||2:kQ/qub-udx—Q/(u-V)u-udx. (3.14)
Q Q Q

1 LR

Multiplying (3.8) with 21eU, we get

d
Aea(|U|2) :ew/mptdx. (3.15)
Q
Multiplying (3.9) with Q, we get

%(%|Q|2):AQ/(u-V)q&,udx—kQ/qu&-udx—kQf(u~V)u-udx. (3.16)
Q Q Q

I I 11l

Combining (3.12)-(3.16) and noting that all two terms marked with the same Greek letters are canceled, we derive the
energy law as follows:

EE(uaﬁ U,Q)=-4x H L dx”z—v||Vu||2
TR [ToTH M ’ (317)
Q
where
1 1
E(u,¢>,u,Q>=/5|u|2dx+xew|2+5|Q|2. (318)

Q

Remark 3.2. In the process of deriving the energy law for the new model (3.4)-(3.9), we no longer need the two integral
terms formed by the advection and stress to cancel each other as (2.14), because the newly added ODE (3.9) contains
corresponding terms that can cancel them separately. In other words, when developing a stable discrete scheme, we can
discretize the advection and stress using different methods, which makes it possible to design a fully-decoupled scheme.

3.2. Numerical scheme
We are now ready to develop a second-order semi-discrete scheme to solve the system (3.4)-(3.9). Given (u, p, u, ¢, U,

Q)™ ' and (u, p, 1, ¢, U, Q)", we calculate (u, p, i, ¢, U, Q)™ as follows.
Step 1: we compute (i1, i, ¢, U, Q)" by

a¢n+1 _ b¢n + C(])"*l 1
T + Qﬂ+1 (u* . V)¢* + y Mn-‘r] _ ﬁ / Mn-‘r]dx — O, (319)
Q
S
Mn+] — EH*uTl+1 + E_;’(¢n+1 _ ¢*) (320)

—%A@”H — ") +€S3A% (" — ™),

aﬁ”‘H — bu" + Cun—]

1
aU™! —bU" U = 5 / H*(ag"*" — bg" 4 c¢" "), (3.22)
Q
n+1 _ pon n—1
aQ Z%t +cQ =/ ()\(u* . V)¢*//Ln+l _ )»M*V(ﬁ* T 1 (u* - V)u* - fl““)dx. (3.23)
Q
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Step 2: we compute p"t1 w1 by
a

25t

vV.utl =0. (3.25)

(uﬂ+1 _ ﬁn"rl) + V(pn+] _ pl’l) — 0’ (3.24)

In the above scheme,

a=3,b=4,c=1,u" =2u" —u""!, ¢p* =2¢" — p" !,
H* = H(¢*), p* =2u" — "',

S1, S2, S3 are positive stabilization parameters, and the boundary conditions are either periodic or the physical boundary
conditions as

" ag = AP so =0, 0" 5o =0, u! . njye = 0. (3.26)

We explain some details of the scheme (3.19)-(3.25) in the following remarks.

Remark 3.3. The scheme is linear, and it uses implicit and explicit combination method to deal with all nonlinear terms.
For the hydrodynamical equations, we use the second-order pressure correction scheme (3.21)-(3.24)-(3.25) (cf. [34]), of
which @"*! is the intermediate velocity following the Dirichlet boundary conditions (or periodic) and the final velocity field
u™! follows the divergence-free condition. To obtain the pressure, we just apply the divergence operator to (3.24) and then
obtain the following Poisson equation for p™*1, i.e.,

a

V.ot — Ap", 3.27
o p (3.27)

_Apn—H —
with the periodic boundary condition or d,p™"*!|3q = 0. Once p™*! is computed from (3.27), we update u"*! by using
(3.24), i.e,

26t

un+1 — ﬁn+1 o
a

V(" —p". (3.28)

Note that the homogeneous Neumann boundary condition is assumed for the pressure p"*!. Some recent work in [2,
20]can preserve the second-order accuracy by employing Neumann boundary conditions for the velocity with the projection
method.

Remark 3.4. The initialization of the second-order scheme requires all values at t =t!, which can be obtained by construct-
ing the first-order scheme based on the backward Euler method. In the above second-order scheme (3.19)-(3.25), as long as
we set a=2,b=2,c=0, v* =" for any variable v, the first-order scheme can be easily obtained. Moreover, by using
mathematical induction, it is easy to conclude that the following volume conservation property holds:

/¢"+1dx=/¢"dx=..-=/¢0dx. (3.29)
Q Q

Q

Remark 3.5. Three extra second-order linear stabilizers (associated with S1, S», and S3) are added in the scheme. Note that
the coefficient H(¢) contains almost all explicitly processed terms, including the fourth-order term AZ¢. As we all know,
the explicit processing method used for high-order linear terms is unstable, so we have to restore the higher-order terms
by using the second-order stabilizer with the comparable magnitude, which is why the S3 term is added. The use of S; and
S is due to the similar reasons and these two terms are used to balance the explicit processed terms f2(¢) and A f(¢)
contained in H(¢), respectively. In Section 4, we provide numerical evidence to show that these stabilizers are critical for
enhancing the stability of the numerical scheme while using large time steps, see Fig. 4.8 (e).

3.3. Implementation process and solvability

Now, we discuss how to implement the scheme (3.19)-(3.25). Since (3.24)~(3.25) in step 2 is the standard step of the
projection method, we only need to consider the implementation of step 1. The scheme (3.19)-(3.23) in step 1 does not look
like the fully-decoupled scheme we expect, because in each step, the unknowns are still coupled together. Furthermore,
the scheme also contains a large number of nonlocal operations, which may bring difficulties to the actual calculation.
Therefore, in practice, we need to decouple all variables and get rid of all nonlocal computations, which can be achieved by
the following steps.
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First, we use the nonlocal variable Q™+ to split (¢, i, U)"*! into a linear combination form that reads as

¢n+1 ¢n+1 + Qn+l¢n+1’
put = MrlH-l Qn+! g—s—l’ (3.30)
Un+l — U?-H + Qn+l Ur21+1.
Then the scheme (3.19)-(3.20) can be rewritten as
a(¢n+l Qn+l¢n+1) o
u*.-V)op*
o +Q7( )¢
b¢n _ C(])"*l
+y Mr11+l + Qn+1ur21+1 |Q| /(MHH + Qn+]Mg+])dX — T’
(3.31)
n+l Qn+l ZEH*(UTH Qn+1 Un+1)
3 (¢n+1 Qn+]¢g+1 ¢ ) A(¢n+l Qn+1¢g+1 _ ¢*)
+653A2(¢”“ +QM st g X
According to Q"*1, the system (3.31) can be split into two sub-systems as
¢n+1 Mn+1 / n+1 ¢ ¢n 1
‘l E)
26t |Q| 25t (3.32)
MT]IJrl GH*Ull’l+l 3 (¢n+1 ¢*) A(¢n+1 ¢ ) + €S3A2(¢n+] ¢>|<)7
and
1
= ¢n+1 y |t - o /,uﬁ“dx — - V)p,
(3.33)
2

By taking the L% inner product of the first equation in (3.32) and (3.33) with 1, using (3.29), and noting V - u* =0, we
immediately get

[ oi+iax= [ ran= / ¢””dx=f N G349
Q Q Q

The boundary conditions of the qb”“ and ¢”+1 are either periodic or

ondi ! loe = AT M oa =0, gyt lag = dnAPSH |ag = 0. (3.35)

Un+l Un+1

Second, using the nonlocal variables and , we split the variables (¢1, ¢2, L1, uz)”“ as the following form

(3.36)

n+1 n+1 n+1 ,n+1 n+1 n+1 n+1, n+1
¢ =1 FUTT O My =Mqp H U Mgy
n+1 n+1 n+1 ,n+1 n+1 n+1 n+1, n+1
by =y FU dyy s My =gy H U Uy,

Replacing (¢1, ¢2, i1, 2)™! in (3.32) and (3.33) using (3.36), and according to U?“ and U’Z’H, we obtain the following
four subsystems,

= ¢n+1 y | - |glz| WM | = b¢ ;;;p" 1 |
(3.37)
um = 3¢n+1 _ _A¢n+1 +653A2¢n+1 (i—;¢* _ %Aq&* +€53A2¢*> ’
¢n+1 v 1 wHlax | =0
28t 12 |Q| 12 ’ (3.38)
Wit = g ¢n+] _ _A¢n+1 +eS3AZP 1 eH”,
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1
n+1 n+1 _ g | = —u* . V)o*
28t¢ Moq |Q| Moq ( Vo™,
(3.39)
Mg;rl — 63 ¢n+1 _ _A¢n+1 + €S3A2¢)"+1,
and
¢n+1 Mn+1 1 Mn-de -0
28t 22 |Q| 22 ’
(3.40)
Mg;l — 63 ¢n+] _ _A¢n+1 —|—€S3A2¢)"+1 +eH*.
The boundary conditions of the above four system read as
On(@11, P12, 921, $22)" o = 0, n A(¢11, $12, 621, 622)" s = 0. (341)

By taking the L? inner product of the first equation in the above four subsystems with 1, using (3.29), and noting
V - u* =0, we immediately get

/d)ﬁ“ldx:fgb”dx:/¢”_1dx=/¢*dx,
@ @ @ @ (3.42)
/¢7;‘dx=/¢gl+ldx=/¢3;1dx=0.
Q Q Q

To solve the above four systems (3.37)-(3.40), we simply combine the two equations in each subsystem to get the
following four equations

n+1 n+1 _ 22\ o+l n+1
2y8t¢ €3¢ A¢ +653A ¢ le
- ¢n+l = ¢n+] _ _A¢n+1 +eS3A ¢n+1 =Gy,
V‘St < (3.43)
a_ o nt1 514 +1 2 n+1 '
m(]}g] + 63 (]531 — —A¢n +€S3A ¢n =Gs3,
n+l n+1 _ 22 n+1 n+1
2 8t¢ €3¢ A¢ +653A ¢ G47
where
S1 S> 5 bp" — ™!
Gi=|—=¢"——=A €S3A B u—
1 <e3¢ " + ¢ >+ 25t
1
Gy=G4=—€(H*"— — | H*dx), G3=—(u*-V)¢"*.

IQI

n+1

Note G, = G4 implies ¢, gb”“ One can easily solve the four independent equations in (3.43) to get (¢11, 912, P21,

¢22)" 1.
Third, we rewrite (3.22) into the following form

1
Ul = 5 / H*¢" ldx + Gs, (3.44)
Q
where G5 = 1(bU" — cU™™ ") — L [ H*(bg" — c¢"1)dx. Replacing U™ and ¢"*! using the split form given in (3.30), we
get

1
e S / H (@1 + Q"¢ dx + Gs. (345)
Q

We split the above result according to Q"t! to derive
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1
Uttt = 5/H*¢?+]dx+65,

@ (3.46)
Uttt = 5 / H*¢) ™ dx.
Q

Replacing (¢1, ¢2)" ! with the split form given in (3.36), we get

1
UqH_l Z/H*(¢ﬂ+1 +Un+1¢n+l)dx+ GS:
- (3.47)
U = 2fH*(¢n+1 U g,
Q

By applying the simple factorization for each equality in (3.47), we derive

+1
U = 3 Jo H*917 'dx+Gs
1,
l_ifszH*‘z’?z dx
1 +1
yn+l — 3 Jo H ¢y dx
2 = 1 A gy
— 3 JoH ¢y, dx

We need to verify (3.48) is solvable by showing the denominator 1 — 5 fQ *qb’g]dx # 0 (note ¢”+1 ¢"+1) By taking the

L2 inner product of the fourth equation in (3.43) with ¢>§2“, and using [, gbgz“dx =0, we get

(3.48)

/ H g = Z—MW“ I+ = Lol + —||V¢>"+l I” + €Sl agh; I* =0, (349)
Q
which implies (3.48) is solvable. After we get U’i’“ and Ug“ from (3.48), we update (¢1, ¢, (41, 2)™ ! from (3.36).
Fourth, we use the nonlocal variable Q"*! to split the velocity field @"*! as the following form:

~ ~n+1 ~n+1

u"t =alth et (3.50)
By replacing the variables @"*! in (3.21), and then splitting the obtained equation according to Q"*!, we arrive at a system
that includes two linear elliptic sub-equations with constant coefficients as follows:

. bu" — cu™!
YN LA, oL L
26t 26t (3.51)
a . -
Z_&ugH — vAug” =—Uu*-V)u* +2u*Ve*.

1

The two split variables u”Jr ”“ follow the boundary conditions described in (3.26), i.e., they are either periodic or satisfy:

il o =) he =0. (3.52)

Fifth, we solve the auxiliary variable Q"*!. Using the split form for the variables @"*! in (3.50) and p"*! in (3.30), one
can rewrite the scheme (3.23) as the following form:

— nJﬂ_L n__ n—1
(2& 2)Q _28t(bQ cQ") + 9, (3.53)

where

5 (3.54)
9y = / (A(u V)G — AVt W+ (- V)u* - ”“)dx
Q

We need to verify the solvability of (3.53) by showing 55z — 92 # 0 as follows. By multiplying the L? inner product of
the second equation in (3.51) with u’1le we get

f (—(u VW Ve u"“) ||~"“||2+v||V”"“||Zzo- (3.55)
Q

10
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n+1 n+1

By taking the L2 inner product of the first equation in (3.33) with Aus™, of the second equation with —A5%¢0™", and

combining the two obtained equations, we derive

2
1
—/A(u* . V)(b*/Lngldx =iy MZH _ @ ,bLngX
Q Q
ar (St n1p2 520 ntl 2 nt12 (3.56)
+2—5t<6—3“¢2 I +?||V¢2 I +eSsllAag, ™ |l
are
_Un+1/H* n+1dx.
* s 2 %2
Q
From the second equation in (3.46), we derive
2
1
UQ“/H*¢§“dx: > /H*¢g+]dx : (3.57)
Q Q
which implies
—/k(u* -V)¢*uitdx > 0. (3.58)

Q

Therefore, from (3.55) and (3.56), we derive —1, > 0, and the solvability of (3.53) is then verified.

Finally, we update ¢™+1, pu"+1, U™ from (3.30), 4"*! from (3.50), and obtain u™*!, p"*! from (3.24)-(3.25) using the
process described in Remark 3.3.

In summary, the scheme (3.19)-(3.25) can be implemented in the following way:

Stage 1: Compute (¢11, P12, P21, qbzz)"“ from (3.43);

Stage 2: Update (U1, U)™*! from (3.48);

Stage 3: Update (¢1, ¢, 41, 2)™+! from (3.36);

Stage 4: Compute (U, Uiz)"*! from (3.51);

Stage 5: Compute Q™! from (3.53);

Stage 6: Update ¢"+1, ™1, U™ from (3.30), and ™! from (3.50);

Stage 7: Compute u™*! and p"*! from (3.24)-(3.25) using the process described in Remark 3.3.

Hence, the total cost of solving the scheme (3.19)-(3.25) at each time step includes solving three independent biharmonic
equations in Stage 1 (note ¢>?; 1— d)g; 1y, two elliptic type equations in Stage 4, and one Poisson type equation in Step 7.
All these equations have constant coefficients and are completely decoupled, which means very effective calculations in
practice.

3.4. Unconditional energy stability

The following theorem ensures that the developed scheme (3.19)-(3.25) satisfies the energy stability unconditionally.

Theorem 3.1. The following discrete energy dissipation law holds for the scheme (3.19)-(3.25),

2

1 - 1

g(El‘H—] _ En—l) < - v“vun-‘rl “2 _ )\‘y Mn+1 _ @/Mn-ﬁ-]dx < 0’ (359)
Q

where
1,1 1 st?
En+ :_<_ a2 4+ S et — ot 2) o vty 2
5 2I|1 I +2I|1 II“) + 31||119 Il 1
+k€(§|un+1|2+ §|2Un+1 _Un|2)+§(§|Qn+l|2+ 5|2(2l’l-‘1-1 _ Ql’l|2) (360)
1.5 1.5 1
+ 5A6—3||¢"“ — "1 + ik?llvw”“ —¢MI*+ ExesgnA(qs"“ — M.

11
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Proof. We multiply the inner product of (3.21) with 25t@"*! in the L2 space, we obtain
(Bﬁn+] _ 4u11 + un71 , ﬁn+1) + 2U5t||Vl~ln+1 ”2 + 28t(vpn’ ﬁn+])

— _zthn-H [(ll* X V)l.l* .ﬁn-de_i_ than+1 fu*v¢* -ﬁ”“dx. (3.61)
Q Q

From (3.24), for any variable v with V - v =0, we have

n+1 n+1

@ v)y=@@"", v). (3.62)
We derive following equality

(3ﬁn+1_ 4un+ un—l, ﬁn+1)
— (3ﬁ”+1_ 4un+un—1, un-H) 4 (3fln+]— 4un+ un—l, ﬁn+1_ un+l)
— (3un+1_ 4un+un—1, un+1) 4 (3ﬁn+1’ ﬁn-H_ un-H)
— (3un+l — 4" + un—l , un+1) 4 3(ﬁn+1 _ un-H7 ﬁn-H 4 un-H) (3.63)

1
= 5 (1012 = 2+ 2 - — 2 —
T ™! — 20" u! ”2) £3(a 2 — ut ),
where we use the following identity

23a—4b+c,a) =a® —b*>+ (2a — b)? — (2b — ©)® + (a — 2b +¢)?. (3.64)

We reformulate the projection step (3.24) as

3 a1 1 3 -1
—u" 4 vp"t = —u"t! 4 vp" 3.65
24t P 28t P ( )
By taking the square of both sides of the above equation, we get
9 n+1,2 n+1,2 9 ontig2 ng2 3 ent n
WIIu 1=+ 1vp™ I Zmllu 1<+ 1IvVp~l +§(u ,Vpo). (3.66)

Hence, by multiplying 25t%/3 of the above equation, we derive

3 N 25t2 .

U™ — @2 + == (VP2 — Vp"H) =25t @" T, V", (3.67)
By taking the inner product of (3.24) with 28tu™! in the L? space, we have

3 - -

S U2 — a2 4 - @Y%) =0, (3.68)
We combine (3.61), (3.63), (3.67), and (3.68) to obtain

1 _ _

30 i1 cnaty2, 268 41,2 n2 Sn 2
+ EIIu —u|T + T(IIVP == IVp"I9) + 2vét|va" || (3.69)

=—25tQ"! /(u* VOt - w™ dx + 25tAQ ! /(M*qu*) S dx.
Q Q
Computing the inner product of (3.19) with 248tu™*! in the L2 space, we have
2
AGP™ — agn + "1, M) 4 2ny st | unt — |13| udx
Q (3.70)

=—228tQ "] / (u* - V)¢ u"ldx.
Q

12
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Computing the L2 inner product of (3.20) with —A(3¢™t! — 4¢™ + ¢"~1), we find
_}L(Mn+1’3¢n+l 4¢ +¢Tl ])_,’_)L (¢ﬂ+1 ¢*73¢n+1 _4¢n+¢n71)

A;(W«p"“ — "), V@™ — 4" + "))
+2€S3(A(P"T — ¢*), AGBP™TT — 49" + "))

— —6AU"+1/H*(3¢n+1 _4¢n +¢n—1)dx.
Q

(3.71)

By multiplying (3.22) with 21eU™! and using (3.64), we obtain
A6(|Un+1|2 _ |Un|2 + |2Uﬂ+1 _ Ul’l|2 _ |2Un _ Un71|2 + |UT1+] _ ZUn + Uﬂ71|2)

:E)\.U"H—]/H*(Bd)n-’—] _4¢n +¢n—1)dx' (372)
Q

By multiplying (3.23) with 28tQ"*! and using (3.64), we obtain
1 _ _
E<|Qn+1|2_|Qn|2+|2Qn+]_Qn|2_|2Qn_Qn 1|2+|Qn+]_2Qn+Qn 1|2)

Q Q '

+25¢Q "1 / (u* - Vyu* - a"Hdx.

Hence, by combining (3.69)-(3.73), we arrive at
1 n+1p2 npj2 n+1 n2 n n—1p,2 25t2 n+12 nyn2
o (e = a4 20 — w20 —u )+—(||VP I“=1vp™i9)

S
AE—§<||¢>”“—¢>”||2—||¢” ¢”1||>+x 21V — V"2 — |Vg" — Ve 1?)

FAESI AT — oI — [A@" — 4" HIP)
+k€(|uﬂ+1|2 _ |U11|2 _"_ |2Un+1 _ Un|2 _ |2Un _ Uﬂ—1|2)

1 _
+ 5(|Q”“|2 — Q"2+ 2Q"™ - Q"2 - 12Q" - Q" P
1 3 -
+ [§||un+1 —ou" U 4 _”un+1 _un+1 2 (3.74)
+2A SllgmT — 29" + ¢ 12 +2A 2V (@™ = 29" + 9" )2

+2Aesg||A(¢"“—2¢ +o" 1)||
+A€|U"+1 2Un+Un 1| + = |Qn+1 2Q”+Qn71|2}

s 1
= —28tv ||V T2 — 28tay ||utt — ﬁ/M"“dx ,

where we use the following identity:
(Ba—4b+c)a—2b+c)=(@—b)? — (b—0c)? +2(a—2b+c). (3.75)
Finally, we obtain (3.59) from (3.74) after dropping the positive terms in {} and dividing both sides by 2. O

4. Numerical simulations

In this section, we use numerical examples to verify the accuracy and energy stability of the proposed fully-decoupled
scheme using scalar auxiliary variables (3.19)-(3.25) (referred to as DSAV for short). Numerical simulations include accu-
racy/stability tests, multiple vesicle deformation in 2D and 3D, as well as a rising vesicle under the action of gravity force
in 2D and 3D. In all numerical examples, we set the computational domain to be rectangular. For directions with periodic

13
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107! ‘ 107" ]
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M=1e3 g5 =t M=1e5
102} ﬁi::f"/ d 10?
10°F s . 2l T - 3 10% ¢
— ;ﬁf//;;::/ " ks o B ==
g0 g < o 10 F @{///g
L - i -
Y100k <>////<> 108 O///Q
1000 108} —#DSAV-¢
& DSAV-u, v & DSAV-u, v
107 F -5-DSAV-p 1 107 F 5-DSAV-p 4
——ref-slope 2 ——ref-slope 2
& | ’ [
1010-4 10 102 10130-4 10 102
Time step size Time step size
(a) M = 1e3. (b) M = 1e5.

Fig. 4.1. Accuracy tests. The numerical errors in L? for all variables computed by using the scheme DSAV with different time steps, where two surface area
parameters are used, (a) M = 1e3, and (b) M = 1e5. (For the velocity field u = (u, v), we plot the mean of the errors of the two velocity components.)

0.45 ‘ ‘ - ‘ ‘ o K10 ‘ - ‘ ‘ ‘ - ‘ -
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| 3:5t = 0.01/22 Al L o 36t=0.01/22
0.35 | 4:0t = 0.01/23 - M/~ - ——4:6t = 0.01/23
\ 5:5t = 0.01/2! sl ) 5:6t = 0.01/2* |
03} 6:5t = 0.01/2° 1 = | 6:0t = 0.01/2°
> ‘ 1 = 5 { .
o / £ 7
o© 0.25 q £
T (L “ ° 1
02| 1
| / 3-6 3 1
| L 4 —
0.15 % 1 2} . |
041t \\\;\\\; 1 1k B ]
0.05 : ‘ : : I— ol : ‘ : : ‘ ‘ : : ‘
0 0.5 1 1.5 2 25 3 o o5 1 15 2 25 3 35 4 45 5
Time Time
(a) Energy evolution with various dt. (b) Sratio(t) computed with various dt.

Fig. 4.2. Stability tests. (a) The time evolution curves of the total free energy (2.1) calculated by the scheme DSAV with different time steps, where the
surface area parameter is M = 1e5. (b) Time evolution curves of Spqtjo(t) computed with various time steps. (For interpretation of the colors in the
figure(s), the reader is referred to the web version of this article.)

boundary conditions, the Fourier-spectral method is used for discretization. For directions with boundary conditions speci-
fied in (3.26), the Legendre-Galerkin method is adopted for discretization, where the inf-sup stable pair (Py, Py_2) is used
for the velocity (i1 and u) and pressure p, respectively, and Py is used for variables ¢, .

4.1. Accuracy and stability tests

We perform the convergence tests by refining the time step. We set the 2D domain as (x, y) € 2 = [0, 27r]*> and assume
the periodic boundary conditions where 129 Fourier modes are used for each direction, so the error in spatial directions
can be ignored. We set the model parameters as

€=007,v=1,y=01,B=1,51=4,5,=4,53=1,A=0.01, (4.1)

and assume the initial condition as follows (the profile of ¢ is shown in Fig. 4.3(a)),

2
r—=Vx—x0)2+ (y — yi)?
$(X, Y)le=o = y_tanh
i—1 ( V2e

where r =0.287, (x1,x2) = (7w, ), (¥1,¥2) = (1.297, —1.297).

)+1,u(x, y)=0,p° =0, (42)

14
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(a) Time evolution of the original and modified energy. (b) Time evolution of Q(¢) with various dt.

Fig. 4.3. (a) The time evolution curves of the original total free energy (2.1) and the modified energy (3.60) calculated by the developed scheme DSAV with
St = @ for M = 1e5 (snapshots of ¢ at various times are superimposed). (b) The time evolution of the auxiliary variable Q (t) over time using different
time st

ime steps.
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Fig. 4.4. Time evolution of S;qo(t), where two penalty parameters are used: (a) M =0 and (b) M = 1e5. In each figure, the interface contour of ¢ at
different times are plotted in the small inset subfigure. (Example 4.2.1: deformation of a 2D narrow elliptical vesicle.)

We compute the L? error of the variables ¢, u, p when t = 0.2. Since the exact solution is not yet known, the numerical
solution calculated by DSAV with a small time step §t = 1e — 8 is used as an approximate exact solution. We change the
time step from 0.01 to 0.01/28 with a factor of 1/2 for each computation. The convergence rate of DSAV is shown in Fig. 4.1
(a)-(b), where two different surface area penalty parameters M = 1e3 and M = 1e5 are used. We find that the scheme DSAV
always shows second-order accuracy for all cases and all variables.

Next, we perform energy stability tests using different time steps. In Fig. 4.2 (a), we plot six energy evolution curves
calculated using DSAV, with time steps ranging from &t = 0.01 to 0.01/2> with a factor of 1/2. All the obtained curves

display very good monotonic attenuation. In Fig. 4.2 (b), we plot the time evolution of the function S;4o(t) := %&f)‘(d’o)'

(ratio of the surface area difference) computed using different time steps. It can be seen that the surface area variation is
around the scale of 9e — 4. When the time step is relatively small, S;4jo becomes smaller, indicating that the scheme is
more accurate. In Fig. 4.3 (a), using the time step 5t = %_ we plot the evolution curve of original energy (2.1) and the
modified energy (3.60) with time. We find that the two energies match very well. Meanwhile, we attach the profiles of the
phase variable ¢ at different times in the figure. It can be seen that the two vesicles, which were very close at the initial
moment, eventually become a steady capsule shape with a thinner center and thicker ends. In Fig. 4.3 (b), we plot the

evolution of the auxiliary variable Q with time. When the time step is small, Q is very close to 1.
4.2. Deformation of stacked vesicles in 2D and 3D

In the following examples, we set the initial condition to one or more stacked vesicles with different shapes to study
their dynamical topological changes, including the fusion of multiple stacked vesicles, and the shape change caused the shear

15



X. Yang Journal of Computational Physics 432 (2021) 110015

SIS
eeeesTiIoaan
 —t !
5””"”’"::_»“»&\\ it
e N NN
TINT7TIIN 2 s \
(7 mma\\ s
IR e W e RN
{””«\ (o ”M i V1111111100 e et N
TR R KRR S I eanN /o
N l\v;////////////,”,,, N NN i \nl-‘\\\\HHHHHHHHH
[EEEEENRNRNNNNRRSS N M A AR T e TR Lt
A “««._;// NN st NS A
sennrsss1 b o
NN - e~
SRRDINNMIAL L vrrrrrssl, 2 SOSS SN .
SRR TN PR O O O
A AR JEEC ATV
NN Conee e NN N 2
[EEEREERERERRERNRNNS Ly AR RN NN
T S
" g e A 20§ IQ

T
AR
AR e

v

(a) M =0. (b) M = 1e5.

Fig. 4.5. The velocity field of the final equilibrium solutions, which is superimposed by the interface contour of the phase-field variable ¢, where (a) M =0
and (b) M = 1e5. (Example 4.2.1: deformation of a 2D narrow elliptical vesicle).
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Fig. 4.6. Time evolution of the total free energy (3.60) with (a) M =0 and (b) M = 1e5. In each figure, the color graph of the pressure p at the steady state
is plotted in the small inset subfigure. (Example 4.2.1: deformation of a 2D narrow elliptical vesicle).

flow on the boundary. For all 2D simulations, we use rectangular region (x, y) € Q =[0, L1] x [0, L2], where the x direction
is assumed to satisfy periodic boundary conditions, and the y direction is assumed to be non-periodic boundary conditions
(3.26). For all 3D simulations, the computational domain is set to (x,y,z) €  =[0,L{] x [0, Ly] x [0, L3], where the x
and y directions are assumed to satisfy periodic boundary conditions, and the z direction is assumed to be non-periodic
boundary conditions (3.26). For the direction with periodic boundary conditions, we adopt the Fourier spectral method for
discretization, and for the direction with non-periodic boundary conditions (3.26), we adopt the Legendre-Galerkin method
for spatial discretization.

4.2.1. Deformation of a narrow 2D elliptical vesicle

In this example, we set the initial shape of the vesicle to be a narrow ellipse to study its deformation the final equi-
librium shape under different surface area parameter M. We set the computational domain to Q = [0, 27712, and the initial
conditions are set as

047 —/(x —m)2/0.3 4+ (y —m)2/3

— = = 0 = 4.3
§ (X, ¥)le=o = tanh( 5 ) utx ) =0,p°=0. (43)
The following model parameters are used:

€e=0.1,v=1,y=01,B=1,51=4,5,=4,53=1,A.=0.01,6t = 1e — 3. (4.4)

We adopt 257 Fourier modes to discretize the x direction, and the Legendre polynomial up to the degree of 256 to discretize
the y direction.
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M=1e5, no shear

(a) Interface contour with M = 0 (left), M = le5 without shear (middle), and M = le5 with
shear (right).

(b) The pressure p with M = 0 (left), M = 1e5 without shear (middle), and M = 1leb with
shear (right).
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(c) Sratio(t) for M =0, M = 1eb (without shear), and M = 1e5 (with shear).

Fig. 4.7. Deformations of two 2D stacked circular vesicles (Example 4.2.2) where (a) interface contour of ¢ with M =0, M = 1e5 (without shear), and
M = 1e5 (with shear); (b) color plots of steady-state pressure p; and (c) time evolution of Syqo(t) for these three cases.
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Fig. 4.10. Deformations of a narrow ellipsoid vesicle (Example 4.2.4) using two surface area parameters where (a) M =0 and (b) M = 1e5. In each subfigure,
we plot Syqrio(t) with time, which is superimposed by the isosurface of {¢ =0} at different times.

We run the simulation using two surface area parameters M = 0 (non-conserved surface area) and M = 1e5 (approxi-
mately conserved surface area) until the steady-state solutions are obtained. In Fig. 4.4, we plot S,qio(t) that changes with
time, and attach the interface contour of {¢ =0} at different times therein. It can be seen that when M =0, S;40(t) even-
tually increases to 30%, and the shape of vesicle changes from the initial ellipse to an approximate circle. When M = 1e5,
Sratio (t) remains near 3e — 3, and the final shape of the vesicle becomes a capsule shape with a thinner center and thicker
ends. In Fig. 4.5, we plot the steady-state velocity field. In Fig. 4.6, we plot the time evolution of the total free energy
(3.60), and attach the color graph of the steady-state pressure p as well. It can be seen that the energy decreases with time
monotonically, and the contour of the pressure profile is consistent with the interface of the vesicle.

4.2.2. Deformation of two stacked circular vesicles in 2D

In this example, we study the dynamical deformation of two stacked vesicles. We set the computational domain as
Q =1[0,27]? and use the initial conditions given in (4.2). We use 257 Fourier modes to discretize the x direction, and use
the Legendre polynomials up to the degree of 256 to discretize the y direction. The following parameters are used:

€=004,v=1,y=01,B=1,51=4,5,=4,53=1,1.=0.01,6t =1e — 3. (4.5)

In Fig. 4.7 (a), we plot the interface contours at different times under three different situations, where M =0, M = 1e5,
and M = 1e5 with imposed shear. For the third case, we set the boundary condition of the two components of u= (u, v) as
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Fig. 4.11. Deformations of two 3D stacked spherical vesicles in the Example 4.2.5. In subfigures (a)-(c), we plot we plot the time evolution of Sy, (t) and
superimpose the isosurfaces of {¢) =0} at various times where (a) M =0, (b) M = 1e5, and (c) M = 1e5. In subfigure (d), we plot the energy evolution of
the two cases without shear.

uly—az = —10,uly—o = 10, v|y—0,27 = 0. It can be seen that when M = 0, the two vesicles merge and eventually converge
into a wide ellipse. When M = 1e5, the two vesicles eventually become a capsule shape with a thinner center and thicker
ends. When M = 1e5 and a shear flow is applied, the vesicles merge and then tilt along the flow direction, while maintaining
the shape of the capsule. In Fig. 4.7 (b), we plot the color map of pressure p at the steady state. In Fig. 4.7 (c), we plot
Sratio (t) that changes with time. It can be seen that for these three simulations, S;gi,(t) finally becomes around 20% (for
M =0), 3e — 4 (for M = 1e5 without shear), and 6e — 4 (for M = 1e5 with shear).

4.2.3. Deformation of five stacked circular vesicles in 2D
In this example, we set the initial conditions to five stacked circular vesicles of different sizes to study the deformation
and final shape of these vesicles. The computational domain is set as [0, 277]% and the initial conditions are set as follows:

+4,u°=0,p° =0, (4.6)
V2 ) P

where (r1,r2,13,14,15) = (0.37,0.27,0.27,0.27,0.27), (X1,X2,X3,X4,X5) = (77,1.57,0.57, 7, 7), (¥1.Y2,¥3.Y4.Y5) =
(m,m,m,1.5m,0.57). We use the following parameters

5 L EPRY) — o2
¢0:Ztanh(n VE=x)2+(y —yi)
i=1

€=0.08,v=1,y=0.1,B=1,51=4,5,=4,53=1,

2 (4.7)
A=0.01,8t =0.01/2°,M = 1e5.
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Fig. 4.12. Deformations of four 3D stacked spherical vesicles in the Example 4.2.5, where two surface area parameters are used with M =0 and M = 1e5.
In each subfigure, we plot the time evolution of S;4o(t) which are superimposed by the isosurfaces of {¢) =0} at various times.

We adopt 257 Fourier modes to discretize the x direction, and the Legendre polynomials up to the degree of 256 to dis-
cretize the y direction.

In Fig. 4.8 (a), we plot the time evolution curves of the original energy (2.1) and the modified energy (3.60). These two
curves have always coincided. We impose the profiles of ¢ at three moments in Fig. 4.8 (a). It can be seen that the vesicles
fuse to form a cross shape. In Fig. 4.8 (b), we plot S;4io(t) computed using different time steps 6t. In Fig. 4.8 (c) and (d),
we plot the velocity field and pressure at the steady state.

To show the effects of the stabilizers (S;,i =1,2,3), and the developed decoupling technology on improving energy
stability, we perform some stability tests in which the stabilizers in (3.20) are removed and Q™! is assumed to be equal to
1 (i.e., the advection and stress are all dealt with explicitly). For convenience, we use SAV to denote this version. In Fig. 4.8
(e), we plot the energy evolutions curves computed by DSAV and SAV using different time steps. We find that all obtained
energy curves computed by DSAV show monotonic attenuation. However, only when the time step is very small, the energy
curve calculated by SAV decay. This illustrates the effect of stabilizers and decoupling techniques on improving stability.

4.2.4. Deformation of wide/narrow ellipsoid in 3D
In this example, we study the deformation of 3D vesicles, where the initial shape is wide ellipsoid or narrow ellipsoid
respectively. The computational domain is [0, 2771 and the initial conditions are set as follows:

1=V —m?/r + (g 72/ + (z—n)Z/rz),uo —0.p°=0, (48)
€

where r{ =ry =5,r3 =1 is the wide ellipsoid, and r{ =1, =0.45,r3 =4 is the narrow ellipsoid. We use the following
parameters

o0 = tanh(

€=013,v=1,y=0.1,B=1,51=4,5,=4,53=1,A=0.01,6t =1e — 3. (4.9)

We use 129 Fourier modes to discretize each of the x and y directions, and use the Legendre polynomials up to the degree
of 128 to discretize the z direction.

For the wide ellipsoid vesicle, in Fig. 4.9, we plot the time evolution of S;4(t) under two surface area parameters
M, and attach the snapshots of isosurface of {¢ = 0} at different times to each subfigure. When M = 0, although the
volume remains unchanged accurately, the ellipsoid gradually shrinks and S;4,(t) eventually becomes around 14%. When
M = 1e5, the final shape of the ellipsoid vesicle becomes the pancake shape, but the middle region is slightly thinner, and
Sratio (t) ~ 3e — 5. For the narrow ellipsoid vesicle shown in Fig. 4.10, we observe that when M = 0, the vesicle contracts and
Sratio (t) eventually becomes around 20%; when M = 1e5, the vesicle changes into the capsule shape with a thinner center
and thicker ends, and S;qsio(t) is around 1e — 4.

4.2.5. Deformation of multiple stacked spherical vesicles in 3D

In this example, we study the dynamic deformation of multiple stacked vesicles under the action of different surface
area parameter M or the shear flow applied on the domain boundary, as shown in Figs. 4.11-Fig. 4.14, respectively. We set
the computational domain to [0, L]> where L = 1.5, and the initial conditions are given as follows:
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Fig. 4.13. Deformations of six 3D stacked spherical vesicles in the Example 4.2.5, where two surface area parameters are used with M =0 and M = 1e5. In
the subfigure (a), we plot the time evolution of S, (t) which are superimposed by the isosurfaces of {¢p = 0} at various times. In the subfigure (b), we
plot the time evolution of the total free energy (2.1) which are superimposed by the isosurfaces of {¢p =0} of half of the vesicles.

¢° = Zn:tanh(r"i — V(X — xni)? +%; Yni)? 4 (2 — zni)?

where n is the number of vesicles. For n = 2, we set ry1 =13 = 0.14L. x31 = X232 = Y21 = Y22 =L, 221 = 0.642L, z» = 0.358L.
For n =4, we set r41 =r4p =143 =0.14L, 144 = 0.125L, x41 = 0.3L, x4p = 0.67L, x43 = 0.48L, x44 =0.48L, y41 = yap = Y43 =
0.5L, y44 =0.715L, z41 = 242 = 243 = 0.5L, z44 = 0.27L. For n =6, we set 1¢j, j—1,.. .6 = 0.14L, X61 = X62 = Xp5 = Xg6 = 0.5L,
X3 = 0.76L, x4 = 0.24L, Y6j,j=1,--,4 = 0.5L, Y65 = 0.76L, Y66 = 0.24L, zg1 = 0.65L, zg; = 0.35L, 26j,j=3,.,6 = 0.5L. For
n=7, we set r7;1 =0.18L, r7j j—2,.. 7 =0.12L, X7j j—1,23 = 0.5L, x74 =0.2L, X75 = 0.8L, X76 = 0.2L, x77 = 0.8L, y7j j=1,...5 =
0.5L, y76 =0.2L, y77 = 0.8L, z71 =0.5L, z72 = 0.2L, z73 = 0.8L, z7j j—4, .. 7 = 0.5L. The model parameters are set as follows:

>+n—1,u0:0,p0:0, (4.10)

i=1

€=008,v=1,y=01,B=1,51=4,5,=4,53=1,1.=0.01,6t =1e — 3. (411)

We use 129 Fourier modes to discretize each of the x and y directions, and use the Legendre polynomials up to the degree
of 128 to discretize the z direction.

For n =2 (two stacked vesicles), as shown in Fig. 4.11, we can see that when M = 0, the vesicles fuse and shrink, and
Sratio (t) changes up to 14%; when M = 1e5, the steady-state shape appears as a capsule and S;q:i,(t) is roughly around
le — 4. In Fig. 4.11 (c), the shear flow is imposed on the boundary (u|y—; = —10, u|y—o = 10), and we can see that the
vesicle is tilted in the same direction as the flow field. We plot the time evolution of the total energy for the two cases
without the shear flow, as shown in Fig. 4.11 (d). For n =4 (four stacked vesicles), as shown in Fig. 4.12, we can see that
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Fig. 4.14. Deformations of seven 3D stacked spherical vesicles in the Example 4.2.5, where M = 1e5 where (a) is the case without shear and (b) is with
shear. In each subfigure, we plot the time evolution of S, (t) which are superimposed by the isosurfaces of {¢p = 0} at various times.

when M =0, the vesicles fuse and shrink to form a structure with multiple poles, and S,qio(t) changes up to 14%; when
M = 1e5, the steady-state shape forms a ring and S;q,(t) is roughly around 2e — 4. For n = 6 (six stacked vesicles), we
plot the time evolutions of S,qio(t) and the total free energy (2.1) in Fig. 4.13. To see the internal structure of the vesicle
more clearly, we plot the isosurfaces of the half vesicle at various times in Fig. 4.13 (b). For n =7 (seven stacked vesicles),
in Fig. 4.14, we plot S;qo(t) over time and the isosurface {¢ =0} at different times. We apply shear flow at the boundary
(u]y=r = —10, u|y—o = 10), which greatly affects the topological change of the vesicles, as shown in Fig. 4.14 (b).

4.3. Dynamics of a rising vesicle driven by the gravity force

In this example, we simulate the rising process of a vesicle under the action of gravity. We use the following formula to
replace the momentum equation (2.5):

u+ - Vu—vAu+Vp — uVe =gso, (412)
where g5 = (0, gy) for 2D, g = (0,0, g) for 3D, and gy is the pre-assumed gravity force constant. The new momentum
equation (4.12) is the so-called Boussinesq approximation, where the density difference between the vesicle and the ambient
fluid is assumed to be small, see [21,26,30,37].

We still perform 2D simulations first, and then perform 3D simulations. The 2D computational domain is set to be
(x,y) € =10, 2m] x [0, 47]. We set periodic boundary conditions along the x-direction and discretize it using 257 Fourier
modes. For the y-direction, we use the boundary conditions given in (3.26) and use the Legendre-Galerkin method of
Legendre polynomials to the degree of 512 to discretize it. The initial conditions are set as follows,

0.47 — /(x — )2 — )2
9 = tanh ST TVEZ TG =T o g g oo (413)
V2e
The other model parameters are set as
€=008,v=1,y=0.1,B=1,51=4,5,=4,53=1,A=0.01,t =1e — 3. (4.14)

In Fig. 415 (a)-(c), we plot the interface contour {¢ = 0} every 0.4 time units with different surface area parameters and
gravity force constants to view the complete rising process of a vesicle. It can be seen that when M =0 and gy = 10, shown
in Fig. 4.15 (a), the vesicle eventually shows a curved shape. When we apply M = 1e5 and gy = 10, shown in Fig. 4.15 (b),
the vesicles are only slightly deforms and rises to the top in an oval shape. In Fig. 4.15 (c), we set M = 1e5 and gy = 50.
We find that the vesicle rises significantly faster, and its deformation is still very slight. In Fig. 4.15 (d), we plot the velocity
field with the interface contour before the vesicle contacts the top wall. In Fig. 4.16, the change of S;4io(t) with time is
plotted as well where S;q:;, increases to 90% for M =0 and keeps roughly around O (1e —4) for M = 1e5.

We continue to simulate the dynamical rising process of a 3D vesicle under the action of gravity. We set the calculation
domain to (x,y,z) € =10, 2] x [0,27] x [0,4m] and the initial conditions as

T—Va—m? + (y—m)? + (v —7)?

),u®=(0,0,0),p°=0
V2e P

0.5
¢°(x, y, z) = tanh(
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Fig. 4.15. The dynamical motions of a rising vesicle under the action of gravity where the interface contour is plotted every 0.4 time units, where (a)
M=0,gr =10, (b) M =1e5, gf =10, (c) M =1e5, gy =50, and (d) the velocity field with the interface contour before the vesicle touches the top wall.

All other model parameters are the same as the 2D case. Along the x and y directions, we set periodic boundary conditions
and use the 257 Fourier modes to discretize each direction. For the z direction, we use the boundary conditions given
in (3.26) which is discretized by using the Legendre-Galerkin method with the Legendre polynomials up to the degree
of 256. In Fig. 4.17, we plot the isosurfaces of {¢ = 0} at different times. The 3D rising dynamics is similar to the 2D
simulation. When M =0, g5 = 50, the vesicle finally becomes an extremely bending shape, shown in Fig. 4.17 (b), but when
M =1e5, g =50, it can be seen that the bending of the vesicle is very small, shown in Fig. 4.17 (c).

5. Concluding remarks

We first establish a volume-conserved flow-coupled elastic bending energy model for lipid vesicles and construct a novel
numerical scheme for solving it. This scheme has almost all desired properties, including linearity, second-order accuracy
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Fig. 417. 3D simulations of a rising vesicle with different surface area parameters, where (a) initial shape of the vesicle at t =0, and snapshots of the

vesicles at different times with (b) M =0 and (c) M = 1e5.

in time, fully-decoupling, and unconditionally energy stability. It is based on the combination of the projection method of
the Navier-Stokes equation, the SAV method of the nonlinear potential, and a new decoupling technique that deals with the
coupling term with the “zero-energy-contribution” feature. We provide detailed practical methods and the rigorous proof
of the unconditional energy stability and solvability. Through the simulation of many numerical examples in 2D and 3D
(including convergence/stability tests, deformation of multiple stacked vesicles under the shear flow or the gravity force),
the effectiveness of the model and the developed scheme are demonstrated numerically.
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