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Different from the classical phase-field elastic bending model of lipid vesicles that uses 
a penalty term to conserve volume approximately, in this paper, a new model with 
accurate volume conservation is first established. Then, for its coupling system with the 
incompressible flow, we design a highly efficient scheme which is linear and energy stable. 
More importantly, this scheme is second-order time-accurate and fully-decoupled and it only 
needs to solve several independent linear equations with constant coefficients at each 
time step to obtain a numerical solution with second-order time accuracy. The key idea 
is to introduce two types of nonlocal auxiliary variables, one of which is linearize the 
nonlinear potential, and the other is used to introduce an ordinary differential equation 
to deal with the nonlinear coupling terms that satisfy the “zero-energy-contribution” 
feature. We strictly prove the solvability and unconditional energy stability and conduct 
numerical simulations in 2D and 3D to demonstrate the accuracy and stability of the 
scheme numerically. To the best of the author’s knowledge, the decoupling method developed in 
this paper is the first second-order fully-decoupled scheme for the flow-coupled phase-field model.

© 2020 Published by Elsevier Inc.

1. Introduction

In cell biology, vesicles refer to a class of relatively small intracellular cystic structures. The periphery of vesicles is 
composed of at least one lipid bilayer molecular membrane, which is used to store, digest, or transport substances (such 
as cell products or waste). Starting from the classic work of Du et al. in [8–10], the phase-field (diffusive interface) method 
has been used to simulate the structural deformation of lipid vesicles under various situations, see [1,12,22,33,35,39]. The 
main idea of the phase-field approach is to use a scalar variable to represent the two fluid components separated by a 
vesicle membrane, and use the bending energy formulation to replace the average curvature of the membrane surface. By 
minimizing the total free energy in some specific space (usually using the L2 space, called Allen-Cahn relaxation dynamics or 
mean curvature flow), the so-called phase-field elastic bending energy model is derived (PFEBE model, for short). Besides, if 
the fluid characteristics of the vesicle and its surrounding fluid (such as the flow behavior driven by shear or gravity) need 
to be considered, the Navier-Stokes equation and the PFEBE model are coupled through the elastic stress and advection 
terms to form a full flow-coupled model.
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It is worth noting that in order to ensure the conservation of volume and surface area over time, in the classic PFEBE 
model proposed by Du et al. [8–10], two penalty energy potentials are added into the total free energy of the system, so 
the total volume and surface area can be approximately preserved. Therefore, in practice, if a good conservation effect of 
the surface area and volume is desired, a large penalty parameter needs to be adopted. However, such a penalty method 
has some disadvantages which are described as follows by taking the volume conservation as an example since it is much 
simpler to conserve the volume than the surface area. First, no matter how large the penalty parameter is, the volume can 
only remain roughly the same. Second, using a larger penalty parameter will increase the stiffness of the system, resulting 
in severe time-step constraints and higher computational costs. Some efforts have been made in this direction to conserve 
the volume precisely. The Lagrange multiplier method is developed in [1,36], but because the model does not follow the 
energy structure, it is very challenging to develop efficient numerical schemes. Another effort was made in [17], which 
uses the well-known volume conservation system Cahn-Hilliard dynamics to reconstruct the model. However, it brings up a 
disadvantage that the generated system has two more orders than the Allen-Cahn system, so it is relatively difficult to solve. 
Therefore, in this paper, the first goal is to use Allen-Cahn dynamics to reconstruct the PFEBE model so that the volume can 
be conserved accurately over time. To this end, we eliminate the penalty potential for volume in the free energy and add 
a nonlocal term directly to the original PDE system. This term not only eliminates the volume change but also helps to 
retrieve almost the same energy dissipation format as the original system.

Next, we consider the numerical approximation of the new vesicle model coupled with the hydrodynamics. We remem-
ber so far that for the classical PFEBE model, many successful attempts have been made in algorithm design or numerical 
simulation, such as the Invariant Energy Quadratization (IEQ) method [38], Scalar Auxiliary Variable (SAV) method [5], 
linear stabilization method [6], nonlinear functional derivative method [17], Exponential Time Differencing (ETD) method 
[36], etc. However, compared with the partial model containing only one phase-field equation, the full flow-coupled vesicle 
model has received less attention due to its highly nonlinear coupling nature. As we all know, as the main component of 
the full flow-coupled vesicle model, the Navier-Stokes equation has many effective numerical methods, such as the pro-
jection/Gauge/penalty methods (cf. [13–16,24,25,29]). Thus, one might think that as long as the above-mentioned known 
methods for the PFEBE model are combined with the methods for the Navier-Stokes equations, an effective numerical 
method for the full flow coupling model can be obtained.

However, unfortunately, the current situation is that, not only for the full flow-coupled vesicle model discussed in this 
paper, but also for almost all hydrodynamically coupled phase-field models, to the best of the author’s knowledge, there are 
currently no numerical schemes with the second-order time-accuracy, fully-decoupling, and energy stability. There is a lack of suf-
ficient skills to achieve such a scheme, and the main difficulty lies in how to discretize the advection and stress terms that 
are common in almost all hydrodynamically coupled phase-field models. For these two terms, the popular discretization 
method is to use fully-implicit or semi-implicit methods, but they inevitably lead to expensive fully-coupled schemes, see 
[3,7,11,18,19,31]. As far as the author knows, the only fully-decoupled scheme was developed in [23] and some follow-up 
works in [17,30–32]. Its main idea is to add a stabilization term to the explicit advection velocity so that the momentum 
equation and phase-field equation can be decoupled. However, the disadvantage of this method is that the added stabi-
lization term contains implicitly processed chemical potential, which leads to the need to solve the phase-field equation 
with variable coefficients at each time step, resulting in higher calculation costs than that with constant coefficients. Mean-
while, the scheme developed in [17,23,30–32] is only first-order time-accurate, and it seems quite challenging to extend the 
stabilization idea to the second-order version.

Therefore, the second purpose of this paper is to develop a new numerical scheme for the full flow-coupled volume-
conserved phase-field model for lipid vesicles, so that it is not only unconditionally energy stable, linear, and second-
order time accurate, but also fully-decoupled. We expect that the designed scheme only needs to solve several linearly 
independent equations with constant coefficients at each time step, thereby reducing the actual calculation cost. To this 
end, based on the existing effective methods (including the projection method to solve the coupling of pressure and velocity, 
and the SAV method that linearizes the nonlinear energy potential), we make full use of an obvious but often overlooked 
property, the so-called “zero-energy-contribution” feature satisfied by the advection and stress to construct a new type of 
fully-decoupled scheme. Thus, from a new perspective, we introduce a novel idea of introducing a nonlocal variable and 
designing an ordinary differential equation related to it, which contains the inner products of the advection/stress and some 
specific functions. This ODE is trivial at the continuous level because all the terms contained therein are zero terms. But 
after discretization, it can help eliminate all the troublesome nonlinear terms that are explicitly handled, thereby obtaining 
unconditional energy stability. Besides, the introduction of the nonlocal variable can decompose each discrete equation 
into multiple sub-equations that can be solved independently. Therefore, a fully-decoupled structure is obtained. We also 
give a rigorous proof of unconditional energy stability and further simulate various numerical examples in 2D and 3D to 
demonstrate stability and accuracy numerically. To the best of the author’s knowledge, the decoupling method developed in this 
paper is not only the first second-order fully-decoupled scheme for the particular flow-coupled vesicle model but also applicable to any 
coupling type models with “zero-energy-contribution” terms.

We organize the rest of the article in the following way. In Section 2, we develop the new flow-coupled volume-
conserved vesicle model and then present its energy law. In Section 3, we propose a fully-decoupled, second-order time-
marching numerical method and give a detailed implementation method. We prove the solvability and unconditional energy 
stability as well. In Section 4, numerous numerical experiments in 2D and 3D are conducted to demonstrate the effective-
ness of the model and the proposed numerical scheme. Section 5 gives some concluding remarks.
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2. The full flow-coupled volume-conserved PFEBE model

Based on the total free energy given in Du et al.’s classic PFEBE model [8–10], we develop a new flow-coupled model 
that can guarantee the volume conservation over time. First, we define the phase-field variable as φ(x) = tanh

(
d(x)√

2ε

)
for all 

x ∈ �, where d(x) is the signed distance between a point x and the membrane surface �, and ε is the width of the diffusive 
interface. In such a framework, the postulated total free energy for the hydrodynamically-coupled PFEBE model is given as 
follows [9]:

E(u, φ) =
∫
�

1

2
|u|2dx + λ

⎛⎝∫
�

ε

2
(�φ − f (φ))2 dx + 1

2
M(A(φ) − β)2

⎞⎠ , (2.1)

where u is the average velocity field (u = (u1, u2) for 2D, and u = (u1, u2, u3) for 3D), λ is a normalization constant 
that characterizes the magnitude of bending energy, F (φ) = 1

4ε2 (φ2 − 1)2 is the double-well potential, f (φ) = F ′(φ) =
1
ε2 φ(φ2 − 1), and A(φ) is the surface area function that is defined as

A(φ) = ε

∫
�

(1

2
|∇φ|2 + F (φ)

)
dx. (2.2)

The surface area can be given as 3
2
√

2
A(φ). M � 1 is a positive penalty parameter. β denotes a constant related to the initial 

surface area, and we set β = A(φ0) with φ0 = φ(t = 0) in the paper.
By using the L2 gradient flow approach (i.e., the Allen-Cahn relaxation dynamics), we obtain the following dynamical 

system:

φt + (u · ∇)φ + γ

⎛⎝μ − 1

|�|
∫
�

μdx

⎞⎠= 0, (2.3)

μ = ε(� − f ′(φ))(�φ − f (φ)) + εM(A(φ) − β)(−�φ + f (φ)), (2.4)

ut + (u · ∇)u + ∇p − ν�u − λμ∇φ = 0, (2.5)

∇ · u = 0, (2.6)

where f ′(φ) = 1
ε2 (3φ2 − 1), γ is the relaxation mobility parameter, μ = 1

λ
δE
δφ

is the scaled variational derivative or chemical 
potential, μ∇φ is the induced stress using the generalized Fick’s law, and (u · ∇)φ is the fluid advection.

Remark 2.1. Note that the volume of the vesicle is defined as 
∫
�

1+φ
2 dx, see [1,8–10], hence, by computing the L2-inner 

product of (2.3) with 1, and using the integration by parts and the divergence-free condition (2.6), we derive

d

dt

∫
�

φdx = 0, (2.7)

which means the model (2.3) retains the exact volume. It can be seen that the nonlocal term − 1
|�|
∫
�

μdx added in (2.3)
plays a key role in maintaining the total volume of φ. This idea was originally ingeniously proposed in [27], with the aim 
of developing the conservative Allen-Cahn equation.

We consider one of the following two types of boundary conditions:

(i) all variables are periodic,or (ii) u|∂� = 0, ∂nφ|∂� = ∂n�φ|∂� = 0, (2.8)

where n is the unit outward normal on the boundary ∂�. The initial conditions read as

u|(t=0) = u0, p|(t=0) = p0 , φ|(t=0) = φ0. (2.9)

The system (2.3)-(2.6) admits the law of energy dissipation, which can be obtained by the following process. We multiply 
the inner product of (2.3) by λμ in L2 to derive

λ(φt,μ) = −λγ
∥∥∥μ − 1

|�|
∫
�

μdx
∥∥∥2 − λ

∫
�

(u · ∇)φμdx, (2.10)

where we use
3
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(μ − 1

|�|
∫
�

μdx,μ)

= (μ − 1

|�|
∫
�

μdx,μ − 1

|�|
∫
�

μdx) + (μ − 1

|�|
∫
�

μdx,
1

|�|
∫
�

μdx)

=
∥∥∥μ − 1

|�|
∫
�

μdx
∥∥∥2

,

since (μ − 1
|�|
∫
�

μdx, 1) = 0. Taking the inner product of (2.4) with −λφt in L2, we get

−λ(μ,φt) + d

dt
λ
(∫

�

ε

2
(�φ − f (φ))2 dx + 1

2
M(A(φ) − β)2dx

)
= 0. (2.11)

Taking the inner product of (2.5) with u in L2, and using integration by parts and (2.6), we obtain

d

dt

∫
�

1

2
|u|2dx + ν‖∇u‖2 = λ

∫
�

μ∇φ · udx −
∫
�

(u · ∇)u · udx. (2.12)

Combining the above three equations (2.10)-(2.12), we obtain the energy dissipation law as

d

dt
E(u, φ) = − λγ

∥∥∥μ − 1

|�|
∫
�

μdx
∥∥∥2 − ν‖∇u‖2, (2.13)

where the two negative terms on the right end specify the diffusion rate of the total free energy E(u, φ).

Remark 2.2. We note that when deriving (2.13), the nonlinear integrals related to advection, advection, and stress are all 
canceled out. More precisely, the following two identities hold∫

�

(
μ∇φ · u − (u · ∇)φμ

)
dx = 0,

∫
�

(u · ∇)u · udx = 0, (2.14)

where the second one is due to the divergence-free condition (2.6) and integration by parts. The two identities mean that 
these nonlinear terms do not contribute to the total free energy or energy diffusivity, that is, they satisfy the “zero-energy-
contribution” property. We will take advantage of it when developing the decoupling type scheme in the next section.

Remark 2.3. For the sake of completeness, here we provide the classical PFEBE model with the volume potential, which 
was developed in [8–10]. The model uses two penalization potentials to enforce the surface area and volume conservation 
approximately. Therefore, the postulated free energy reads as

Ẽ(u, φ) = E(u, φ) + 1

2
M̃(V (φ) − V (φ0))2, (2.15)

where V (φ) = ∫
�

φ+1
2 dx, and M̃ � 1 is the penalty parameter. Note that no matter how big M̃ is, the volume can only be 

conserved approximately.

3. Numerical scheme

We are now developing a numerical scheme to solve the volume-conserved flow-coupled PFEBE model (2.3)-(2.6). The 
main challenge is how to construct the decoupling method. Moreover, considering the efficiency and accuracy of the al-
gorithm in practice, we also expect the scheme to satisfy linearity, second-order time accuracy, and unconditional energy 
stability. The detailed process for developing this scheme is given as follows.

3.1. Reformulation to an equivalent system

First, we introduce a nonlocal variable Q (t) and design a special time-evolving ODE that reads as⎧⎪⎨⎪⎩
Q t =

∫
�

(
λ(u · ∇)φμ − λμ∇φ · u + (u · ∇)u · u

)
dx,

Q | = 1,

(3.1)
(t=0)

4
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with ∇ · u = 0 and u satisfy the boundary conditions (2.8). Using (2.14), the ODE is equivalent to the trivial ODE that reads 
as {

Q t = 0,

Q |(t=0) = 1.
(3.2)

It is obvious that Q (t) = 1 is the solution.
Second, we introduce another nonlocal variable U (t) such that:

U (t) =
√√√√∫

�

1

2
(�φ − f (φ))2dx + 1

2ε
M(A(φ) − β)2 + B, (3.3)

where B > 0. This is the so-called SAV method [4,5,28,40,41] which is an efficient method to linearize the nonlinear terms 
induced by the energy potentials.

Then, we rewrite the PDE system (2.3)-(2.6) using the variables (u, p, μ, φ, U , Q ) as:

φt + Q (u · ∇)φ + γ

⎛⎝μ − 1

|�|
∫
�

μdx

⎞⎠= 0, (3.4)

μ = εHU , (3.5)

ut + Q (u · ∇)u + ∇p − ν�u − λQ μ∇φ = 0, (3.6)

∇ · u = 0, (3.7)

Ut = 1

2

∫
�

Hφtdx, (3.8)

Q t =
∫
�

(
λ(u · ∇)φμ − λμ∇φ · u + (u · ∇)u · u

)
dx, (3.9)

where the function H(φ) is defined as:

H(φ) = (� − f ′(φ))(�φ − f (φ)) + M(A(φ) − β)(−�φ + f (φ))√∫
�

1
2 (�φ − f (φ))2 dx + 1

2ε M(A(φ) − β)2 + B
. (3.10)

Remark 3.1. We make some modifications to the original system (2.3)-(2.6) to obtain the new system (3.4)-(3.9). First, 
we rewrite (2.4) with the new variables U , and take the time derivative of U to obtain (3.8). Second, we add three inner 
products containing advection and stress with some specific functions into the ODE (3.2) to obtain (3.9). The two ODEs, (3.9)
and (3.2), are equivalent because the integral terms in (3.9) are simply equal to zero from (2.14). Third, for the advection 
and stress terms satisfying the “zero-energy-contribution” feature, we multiply them with the nonlocal variable Q in (3.4)
and (3.6) since Q ≡ 1. Therefore, the new system using the variables (u, p, μ, φ, U , Q ) is equivalent to the original system 
(2.3)-(2.6) using the variables (u, p, μ, φ).

The boundary conditions of the new system (3.4)-(3.9) are still (2.8). Note that the equations (3.8) and (3.9) for the new 
variables U and Q are only time-dependent, so no boundary conditions are needed. The initial conditions of the system 
(3.4)-(3.9) are set as follows,⎧⎪⎪⎨⎪⎪⎩

u|(t=0) = u0, p|(t=0) = p0, φ|(t=0) = φ0,

U |(t=0) =
√√√√∫

�

1

2
(�φ0 − f (φ0))2dx + 1

2ε
M(A(φ0) − β)2 + B, Q |(t=0) = 1.

(3.11)

The new system (3.4)-(3.9) also holds the energy dissipation law that can be obtained through a similar process obtaining 
(2.13). Since the discrete energy stability proof process follows the same principle, we show the following detailed process 
to make it clear. We multiply the L2 inner product of (3.4) with λμ to get

λ(φt,μ) = −λγ
∥∥∥μ − 1

|�|
∫
�

μdx
∥∥∥2 − λQ

∫
�

(u · ∇)φμdx

︸ ︷︷ ︸
. (3.12)
I1

5
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Taking the inner product of (3.5) with −λφt in L2, we get

−λ(μ,φt) = −ελU

∫
�

Hφtdx. (3.13)

Taking the inner product of (3.6) with u in L2, and using integration by parts and (3.7), we obtain

d

dt

∫
�

1

2
|u|2dx + ν‖∇u‖2 = λQ

∫
�

μ∇φ · udx

︸ ︷︷ ︸
II1

− Q

∫
�

(u · ∇)u · udx

︸ ︷︷ ︸
III1

. (3.14)

Multiplying (3.8) with 2λεU , we get

λε
d

dt
(|U |2) = ελU

∫
�

Hφtdx. (3.15)

Multiplying (3.9) with Q , we get

d

dt
(

1

2
|Q |2) = λQ

∫
�

(u · ∇)φμdx

︸ ︷︷ ︸
I2

−λQ

∫
�

μ∇φ · udx

︸ ︷︷ ︸
II2

+ Q

∫
�

(u · ∇)u · udx

︸ ︷︷ ︸
III2

. (3.16)

Combining (3.12)-(3.16) and noting that all two terms marked with the same Greek letters are canceled, we derive the 
energy law as follows:

d

dt
E(u, φ, U , Q ) = − λγ

∥∥∥μ − 1

|�|
∫
�

μdx
∥∥∥2 − ν‖∇u‖2, (3.17)

where

E(u, φ, U , Q ) =
∫
�

1

2
|u|2dx + λε|U |2 + 1

2
|Q |2. (3.18)

Remark 3.2. In the process of deriving the energy law for the new model (3.4)-(3.9), we no longer need the two integral 
terms formed by the advection and stress to cancel each other as (2.14), because the newly added ODE (3.9) contains 
corresponding terms that can cancel them separately. In other words, when developing a stable discrete scheme, we can 
discretize the advection and stress using different methods, which makes it possible to design a fully-decoupled scheme.

3.2. Numerical scheme

We are now ready to develop a second-order semi-discrete scheme to solve the system (3.4)-(3.9). Given (u, p, μ, φ, U , 
Q )n−1 and (u, p, μ, φ, U , Q )n , we calculate (u, p, μ, φ, U , Q )n+1 as follows.

Step 1: we compute (ũ, μ, φ, U , Q )n+1 by

aφn+1 − bφn + cφn−1

2δt
+ Q n+1(u∗ · ∇)φ∗ + γ

⎛⎝μn+1 − 1

|�|
∫
�

μn+1dx

⎞⎠= 0, (3.19)

μn+1 = εH∗Un+1 + S1

ε3
(φn+1 − φ∗) (3.20)

− S2

ε
�(φn+1 − φ∗) + εS3�

2(φn+1 − φ∗),

aũn+1 − bun + cun−1

2δt
+ Q n+1(u∗ · ∇)u∗ − ν�ũn+1 + ∇pn − λQ n+1μ∗∇φ∗ = 0, (3.21)

aUn+1 − bUn + cUn−1 = 1

2

∫
�

H∗(aφn+1 − bφn + cφn−1)dx, (3.22)

aQ n+1 − bQ n + c Q n−1

2δt
=
∫ (

λ(u∗ · ∇)φ∗μn+1 − λμ∗∇φ∗ · ũn+1 + (u∗ · ∇)u∗ · ũn+1
)

dx. (3.23)
�

6
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Step 2: we compute pn+1, un+1 by

a

2δt
(un+1 − ũn+1) + ∇(pn+1 − pn) = 0, (3.24)

∇ · un+1 = 0. (3.25)

In the above scheme,

a = 3,b = 4, c = 1,u∗ = 2un − un−1, φ∗ = 2φn − φn−1,

H∗ = H(φ∗),μ∗ = 2μn − μn−1,

S1, S2, S3 are positive stabilization parameters, and the boundary conditions are either periodic or the physical boundary 
conditions as

∂nφn+1|∂� = ∂n�φn+1|∂� = 0, ũn+1|∂� = 0, un+1 · n|∂� = 0. (3.26)

We explain some details of the scheme (3.19)-(3.25) in the following remarks.

Remark 3.3. The scheme is linear, and it uses implicit and explicit combination method to deal with all nonlinear terms. 
For the hydrodynamical equations, we use the second-order pressure correction scheme (3.21)-(3.24)-(3.25) (cf. [34]), of 
which ũn+1 is the intermediate velocity following the Dirichlet boundary conditions (or periodic) and the final velocity field 
un+1 follows the divergence-free condition. To obtain the pressure, we just apply the divergence operator to (3.24) and then 
obtain the following Poisson equation for pn+1, i.e.,

−�pn+1 = − a

2δt
∇ · ũn+1 − �pn, (3.27)

with the periodic boundary condition or ∂n pn+1|∂� = 0. Once pn+1 is computed from (3.27), we update un+1 by using 
(3.24), i.e.,

un+1 = ũn+1 − 2δt

a
∇(pn+1 − pn). (3.28)

Note that the homogeneous Neumann boundary condition is assumed for the pressure pn+1. Some recent work in [2,
20]can preserve the second-order accuracy by employing Neumann boundary conditions for the velocity with the projection 
method.

Remark 3.4. The initialization of the second-order scheme requires all values at t = t1, which can be obtained by construct-
ing the first-order scheme based on the backward Euler method. In the above second-order scheme (3.19)-(3.25), as long as 
we set a = 2, b = 2, c = 0, ψ∗ = ψn for any variable ψ , the first-order scheme can be easily obtained. Moreover, by using 
mathematical induction, it is easy to conclude that the following volume conservation property holds:∫

�

φn+1dx =
∫
�

φndx = · · · =
∫
�

φ0dx. (3.29)

Remark 3.5. Three extra second-order linear stabilizers (associated with S1, S2, and S3) are added in the scheme. Note that 
the coefficient H(φ) contains almost all explicitly processed terms, including the fourth-order term �2φ. As we all know, 
the explicit processing method used for high-order linear terms is unstable, so we have to restore the higher-order terms 
by using the second-order stabilizer with the comparable magnitude, which is why the S3 term is added. The use of S1 and 
S2 is due to the similar reasons and these two terms are used to balance the explicit processed terms f 2(φ) and � f (φ)

contained in H(φ), respectively. In Section 4, we provide numerical evidence to show that these stabilizers are critical for 
enhancing the stability of the numerical scheme while using large time steps, see Fig. 4.8 (e).

3.3. Implementation process and solvability

Now, we discuss how to implement the scheme (3.19)-(3.25). Since (3.24)-(3.25) in step 2 is the standard step of the 
projection method, we only need to consider the implementation of step 1. The scheme (3.19)-(3.23) in step 1 does not look 
like the fully-decoupled scheme we expect, because in each step, the unknowns are still coupled together. Furthermore, 
the scheme also contains a large number of nonlocal operations, which may bring difficulties to the actual calculation. 
Therefore, in practice, we need to decouple all variables and get rid of all nonlocal computations, which can be achieved by 
the following steps.
7
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First, we use the nonlocal variable Q n+1 to split (φ, μ, U )n+1 into a linear combination form that reads as⎧⎪⎨⎪⎩
φn+1 = φn+1

1 + Q n+1φn+1
2 ,

μn+1 = μn+1
1 + Q n+1μn+1

2 ,

Un+1 = Un+1
1 + Q n+1Un+1

2 .

(3.30)

Then the scheme (3.19)-(3.20) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(φn+1
1 + Q n+1φn+1

2 )

2δt
+ Q n+1(u∗ · ∇)φ∗

+ γ

⎛⎝μn+1
1 + Q n+1μn+1

2 − 1

|�|
∫
�

(μn+1
1 + Q n+1μn+1

2 )dx

⎞⎠= bφn − cφn−1

2δt
,

μn+1
1 + Q n+1μn+1

2 = εH∗(Un+1
1 + Q n+1Un+1

2 )

+ S1

ε3
(φn+1

1 + Q n+1φn+1
2 − φ∗) − S2

ε
�(φn+1

1 + Q n+1φn+1
2 − φ∗)

+ εS3�
2(φn+1

1 + Q n+1φn+1
2 − φ∗).

(3.31)

According to Q n+1, the system (3.31) can be split into two sub-systems as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a

2δt
φn+1

1 + γ

⎛⎝μn+1
1 − 1

|�|
∫
�

μn+1
1 dx

⎞⎠= bφn − cφn−1

2δt
,

μn+1
1 = εH∗Un+1

1 + S1

ε3
(φn+1

1 − φ∗) − S2

ε
�(φn+1

1 − φ∗) + εS3�
2(φn+1

1 − φ∗),

(3.32)

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a

2δt
φn+1

2 + γ

⎛⎝μn+1
2 − 1

|�|
∫
�

μn+1
2 dx

⎞⎠= −(u∗ · ∇)φ∗,

μn+1
2 = εH∗Un+1

2 + S1

ε3
φn+1

2 − S2

ε
�φn+1

2 + εS3�
2φn+1

2 .

(3.33)

By taking the L2 inner product of the first equation in (3.32) and (3.33) with 1, using (3.29), and noting ∇ · u∗ = 0, we 
immediately get∫

�

φn+1
1 dx =

∫
�

φndx =
∫
�

φn−1dx =
∫
�

φ∗dx,

∫
�

φn+1
2 dx = 0. (3.34)

The boundary conditions of the φn+1
1 and φn+1

2 are either periodic or

∂nφn+1
1 |∂� = ∂n�φn+1

1 |∂� = 0, ∂nφn+1
2 |∂� = ∂n�φn+1

2 |∂� = 0. (3.35)

Second, using the nonlocal variables Un+1
1 and Un+1

2 , we split the variables (φ1, φ2, μ1, μ2)
n+1 as the following form{

φn+1
1 = φn+1

11 + Un+1
1 φn+1

12 , μn+1
1 = μn+1

11 + Un+1
1 μn+1

12 ,

φn+1
2 = φn+1

21 + Un+1
2 φn+1

22 , μn+1
2 = μn+1

21 + Un+1
2 μn+1

22 .
(3.36)

Replacing (φ1, φ2, μ1, μ2)
n+1 in (3.32) and (3.33) using (3.36), and according to Un+1

1 and Un+1
2 , we obtain the following 

four subsystems,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a

2δt
φn+1

11 + γ

⎛⎝μn+1
11 − 1

|�|
∫
�

μn+1
11 dx

⎞⎠= bφn − cφn−1

2δt
,

μn+1
11 = S1

ε3
φn+1

11 − S2

ε
�φn+1

11 + εS3�
2φn+1

11 −
(

S1

ε3
φ∗ − S2

ε
�φ∗ + εS3�

2φ∗
)

,

(3.37)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a

2δt
φn+1

12 + γ

⎛⎝μn+1
12 − 1

|�|
∫
�

μn+1
12 dx

⎞⎠= 0,

μn+1
12 = S1

3
φn+1

12 − S2
�φn+1

12 + εS3�
2φn+1

12 + εH∗,

(3.38)
ε ε

8
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a

2δt
φn+1

21 + γ

⎛⎝μn+1
21 − 1

|�|
∫
�

μn+1
21 dx

⎞⎠= −(u∗ · ∇)φ∗,

μn+1
21 = S1

ε3
φn+1

21 − S2

ε
�φn+1

21 + εS3�
2φn+1

21 ,

(3.39)

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a

2δt
φn+1

22 + γ

⎛⎝μn+1
22 − 1

|�|
∫
�

μn+1
22 dx

⎞⎠= 0,

μn+1
22 = S1

ε3
φn+1

22 − S2

ε
�φn+1

22 + εS3�
2φn+1

22 + εH∗.

(3.40)

The boundary conditions of the above four system read as

∂n(φ11, φ12, φ21, φ22)
n+1|∂� = 0, ∂n�(φ11, φ12, φ21, φ22)

n+1|∂� = 0. (3.41)

By taking the L2 inner product of the first equation in the above four subsystems with 1, using (3.29), and noting 
∇ · u∗ = 0, we immediately get∫

�

φn+1
11 dx =

∫
�

φndx =
∫
�

φn−1dx =
∫
�

φ∗dx,

∫
�

φn+1
12 dx =

∫
�

φn+1
21 dx =

∫
�

φn+1
22 dx = 0.

(3.42)

To solve the above four systems (3.37)-(3.40), we simply combine the two equations in each subsystem to get the 
following four equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a

2γ δt
φn+1

11 + S1

ε3
φn+1

11 − S2

ε
�φn+1

11 + εS3�
2φn+1

11 = G1,

a

2γ δt
φn+1

12 + S1

ε3
φn+1

12 − S2

ε
�φn+1

12 + εS3�
2φn+1

12 = G2,

a

2γ δt
φn+1

21 + S1

ε3
φn+1

21 − S2

ε
�φn+1

21 + εS3�
2φn+1

21 = G3,

a

2γ δt
φn+1

22 + S1

ε3
φn+1

22 − S2

ε
�φn+1

22 + εS3�
2φn+1

22 = G4,

(3.43)

where⎧⎪⎪⎪⎨⎪⎪⎪⎩
G1 =

(
S1

ε3
φ∗ − S2

ε
�φ∗ + εS3�

2φ∗
)

+ bφn − cφn−1

2δt
,

G2 = G4 = −ε(H∗ − 1

|�|
∫
�

H∗dx), G3 = −(u∗ · ∇)φ∗.

Note G2 = G4 implies φn+1
12 = φn+1

22 . One can easily solve the four independent equations in (3.43) to get (φ11, φ12, φ21,

φ22)
n+1.

Third, we rewrite (3.22) into the following form

Un+1 = 1

2

∫
�

H∗φn+1dx + G5, (3.44)

where G5 = 1
a (bUn − cUn−1) − 1

2a

∫
�

H∗(bφn − cφn−1)dx. Replacing Un+1 and φn+1 using the split form given in (3.30), we 
get

Un+1
1 + Q n+1Un+1

2 = 1

2

∫
�

H∗(φn+1
1 + Q n+1φn+1

2 )dx + G5. (3.45)

We split the above result according to Q n+1 to derive
9
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Un+1

1 = 1

2

∫
�

H∗φn+1
1 dx + G5,

Un+1
2 = 1

2

∫
�

H∗φn+1
2 dx.

(3.46)

Replacing (φ1, φ2)
n+1 with the split form given in (3.36), we get⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Un+1
1 = 1

2

∫
�

H∗(φn+1
11 + Un+1

1 φn+1
12 )dx + G5,

Un+1
2 = 1

2

∫
�

H∗(φn+1
21 + Un+1

2 φn+1
22 )dx.

(3.47)

By applying the simple factorization for each equality in (3.47), we derive⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Un+1

1 =
1
2

∫
�

H∗φn+1
11 dx + G5

1 − 1
2

∫
�

H∗φn+1
12 dx

,

Un+1
2 =

1
2

∫
�

H∗φn+1
21 dx

1 − 1
2

∫
�

H∗φn+1
22 dx

.

(3.48)

We need to verify (3.48) is solvable by showing the denominator 1 − 1
2

∫
�

H∗φn+1
22 dx 
= 0 (note φn+1

12 = φn+1
22 ). By taking the 

L2 inner product of the fourth equation in (3.43) with φn+1
22 , and using 

∫
�

φn+1
22 dx = 0, we get

−ε

∫
�

H∗φn+1
22 = a

2γ δt
‖φn+1

22 ‖2 + S1

ε3
‖φn+1

22 ‖2 + S2

ε
‖∇φn+1

22 ‖2 + εS3‖�φn+1
22 ‖2 ≥ 0, (3.49)

which implies (3.48) is solvable. After we get Un+1
1 and Un+1

2 from (3.48), we update (φ1, φ2, μ1, μ2)
n+1 from (3.36).

Fourth, we use the nonlocal variable Q n+1 to split the velocity field ũn+1 as the following form:

ũn+1 = ũn+1
1 + Q n+1ũn+1

2 . (3.50)

By replacing the variables ũn+1 in (3.21), and then splitting the obtained equation according to Q n+1, we arrive at a system 
that includes two linear elliptic sub-equations with constant coefficients as follows:⎧⎪⎨⎪⎩

a

2δt
ũn+1

1 − ν�ũn+1
1 = −∇pn + bun − cun−1

2δt
,

a

2δt
ũn+1

2 − ν�ũn+1
2 = −(u∗ · ∇)u∗ + λμ∗∇φ∗.

(3.51)

The two split variables ũn+1
1 , ̃un+1

2 follow the boundary conditions described in (3.26), i.e., they are either periodic or satisfy:

ũn+1
1 |∂� = ũn+1

2 |∂� = 0. (3.52)

Fifth, we solve the auxiliary variable Q n+1. Using the split form for the variables ũn+1 in (3.50) and μn+1 in (3.30), one 
can rewrite the scheme (3.23) as the following form:

(
a

2δt
− ϑ2)Q n+1 = 1

2δt
(bQ n − c Q n−1) + ϑ1, (3.53)

where⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ϑ1 =

∫
�

(
λ(u∗ · ∇)φ∗μn+1

1 − λμ∗∇φ∗ · ũn+1
1 + (u∗ · ∇)u∗ · ũn+1

1

)
dx,

ϑ2 =
∫
�

(
λ(u∗ · ∇)φ∗μn+1

2 − λμ∗∇φ∗ · ũn+1
2 + (u∗ · ∇)u∗ · ũn+1

2

)
dx.

(3.54)

We need to verify the solvability of (3.53) by showing a
2δt − ϑ2 
= 0 as follows. By multiplying the L2 inner product of 

the second equation in (3.51) with ũn+1
2 , we get∫ (

− (u∗ · ∇)u∗ · ũn+1
2 + λμ∗∇φ∗ · ũn+1

2

)
dx = a

2δt
‖ũn+1

2 ‖2 + ν‖∇ũn+1
2 ‖2 ≥ 0. (3.55)
�

10
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By taking the L2 inner product of the first equation in (3.33) with λμn+1
2 , of the second equation with −λ a

2δt φ
n+1
2 , and 

combining the two obtained equations, we derive

−
∫
�

λ(u∗ · ∇)φ∗μn+1
2 dx =λγ

∥∥∥∥∥∥μn+1
2 − 1

|�|
∫
�

μn+1
2 dx

∥∥∥∥∥∥
2

+ aλ

2δt

(
S1

ε3
‖φn+1

2 ‖2 + S2

ε
‖∇φn+1

2 ‖2 + εS3‖�φn+1
2 ‖2

)
+ aλε

2δt
Un+1

2

∫
�

H∗φn+1
2 dx.

(3.56)

From the second equation in (3.46), we derive

Un+1
2

∫
�

H∗φn+1
2 dx = 1

2

⎛⎝∫
�

H∗φn+1
2 dx

⎞⎠2

, (3.57)

which implies

−
∫
�

λ(u∗ · ∇)φ∗μn+1
2 dx ≥ 0. (3.58)

Therefore, from (3.55) and (3.56), we derive −ϑ2 ≥ 0, and the solvability of (3.53) is then verified.
Finally, we update φn+1, μn+1, Un+1 from (3.30), ũn+1 from (3.50), and obtain un+1, pn+1 from (3.24)-(3.25) using the 

process described in Remark 3.3.
In summary, the scheme (3.19)-(3.25) can be implemented in the following way:

• Stage 1: Compute (φ11, φ12, φ21, φ22)
n+1 from (3.43);

• Stage 2: Update (U1, U2)
n+1 from (3.48);

• Stage 3: Update (φ1, φ2, μ1, μ2)
n+1 from (3.36);

• Stage 4: Compute (ũ1, ̃u2)
n+1 from (3.51);

• Stage 5: Compute Q n+1 from (3.53);
• Stage 6: Update φn+1, μn+1, Un+1 from (3.30), and ũn+1 from (3.50);
• Stage 7: Compute un+1 and pn+1 from (3.24)-(3.25) using the process described in Remark 3.3.

Hence, the total cost of solving the scheme (3.19)-(3.25) at each time step includes solving three independent biharmonic 
equations in Stage 1 (note φn+1

12 = φn+1
22 ), two elliptic type equations in Stage 4, and one Poisson type equation in Step 7. 

All these equations have constant coefficients and are completely decoupled, which means very effective calculations in 
practice.

3.4. Unconditional energy stability

The following theorem ensures that the developed scheme (3.19)-(3.25) satisfies the energy stability unconditionally.

Theorem 3.1. The following discrete energy dissipation law holds for the scheme (3.19)-(3.25),

1

δt
(En+1 − En−1) ≤ − ν‖∇ũn+1‖2 − λγ

∥∥∥∥∥∥μn+1 − 1

|�|
∫
�

μn+1dx

∥∥∥∥∥∥
2

≤ 0, (3.59)

where

En+1 =1

2

(1

2
‖un+1‖2 + 1

2
‖2un+1 − un‖2

)
+ δt2

3
‖∇pn+1‖2

+ λε(
1

2
|Un+1|2 + 1

2
|2Un+1 − Un|2) + 1

2
(

1

2
|Q n+1|2 + 1

2
|2Q n+1 − Q n|2)

+ 1
λ

S1
3
‖φn+1 − φn‖2 + 1

λ
S2 ‖∇(φn+1 − φn)‖2 + 1

λεS3‖�(φn+1 − φn)‖2.

(3.60)
2 ε 2 ε 2

11
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Proof. We multiply the inner product of (3.21) with 2δtũn+1 in the L2 space, we obtain

(3ũn+1 − 4un + un−1, ũn+1) + 2νδt‖∇ũn+1‖2 + 2δt(∇pn, ũn+1)

= −2δt Q n+1
∫
�

(u∗ · ∇)u∗ · ũn+1dx + 2δtλQ n+1
∫
�

μ∗∇φ∗ · ũn+1dx. (3.61)

From (3.24), for any variable v with ∇ · v = 0, we have

(un+1, v) = (ũn+1, v). (3.62)

We derive following equality

(3ũn+1− 4un+ un−1, ũn+1)

= (3ũn+1− 4un+ un−1,un+1) + (3ũn+1− 4un+ un−1, ũn+1− un+1)

= (3un+1− 4un+ un−1,un+1) + (3ũn+1, ũn+1− un+1)

= (3un+1 − 4un + un−1,un+1) + 3(ũn+1 − un+1, ũn+1 + un+1)

= 1

2

(
‖un+1‖2 − ‖un‖2 + ‖2un+1 − un‖2 − ‖2un − un−1‖2

+ ‖un+1 − 2un + un−1‖2
)

+ 3(‖ũn+1‖2 − ‖un+1‖2),

(3.63)

where we use the following identity

2(3a − 4b + c,a) = a2 − b2 + (2a − b)2 − (2b − c)2 + (a − 2b + c)2. (3.64)

We reformulate the projection step (3.24) as

3

2δt
un+1 + ∇pn+1 = 3

2δt
ũn+1 + ∇pn. (3.65)

By taking the square of both sides of the above equation, we get

9

4δt2
‖un+1‖2 + ‖∇pn+1‖2 = 9

4δt2
‖ũn+1‖2 + ‖∇pn‖2 + 3

δt
(ũn+1,∇pn). (3.66)

Hence, by multiplying 2δt2/3 of the above equation, we derive

3

2
(‖un+1‖2 − ‖ũn+1‖2) + 2δt2

3
(‖∇pn+1‖2 − ‖∇pn‖2) = 2δt(ũn+1,∇pn). (3.67)

By taking the inner product of (3.24) with 2δtun+1 in the L2 space, we have

3

2
(‖un+1‖2 − ‖ũn+1‖2 + ‖un+1 − ũn+1‖2) = 0. (3.68)

We combine (3.61), (3.63), (3.67), and (3.68) to obtain

1

2
(‖un+1‖2 − ‖un‖2 + ‖2un+1 − un‖2 − ‖2un − un−1‖2 + ‖un+1 − 2un + un−1‖2)

+ 3

2
‖un+1 − ũn+1‖2 + 2δt2

3
(‖∇pn+1‖2 − ‖∇pn‖2) + 2νδt‖∇ũn+1‖2

= −2δt Q n+1
∫
�

(u∗ · ∇)u∗ · ũn+1dx + 2δtλQ n+1
∫
�

(μ∗∇φ∗) · ũn+1dx.

(3.69)

Computing the inner product of (3.19) with 2λδtμn+1 in the L2 space, we have

λ(3φn+1 − 4φn + φn−1,μn+1) + 2λγ δt

∥∥∥∥∥∥μn+1 − 1

|�|
∫
�

μn+1dx

∥∥∥∥∥∥
2

= −2λδt Q n+1
∫

(u∗ · ∇)φ∗μn+1dx.

(3.70)
�

12
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Computing the L2 inner product of (3.20) with −λ(3φn+1 − 4φn + φn−1), we find

−λ(μn+1,3φn+1 − 4φn + φn−1) + λ
S1

ε3
(φn+1 − φ∗,3φn+1 − 4φn + φn−1)

+ λ
S2

ε
(∇(φn+1 − φ∗),∇(3φn+1 − 4φn + φn−1))

+ λεS3(�(φn+1 − φ∗),�(3φn+1 − 4φn + φn−1))

= −ελUn+1
∫
�

H∗(3φn+1 − 4φn + φn−1)dx.

(3.71)

By multiplying (3.22) with 2λεUn+1 and using (3.64), we obtain

λε(|Un+1|2 − |Un|2 + |2Un+1 − Un|2 − |2Un − Un−1|2 + |Un+1 − 2Un + Un−1|2)
= ελUn+1

∫
�

H∗(3φn+1 − 4φn + φn−1)dx. (3.72)

By multiplying (3.23) with 2δt Q n+1 and using (3.64), we obtain

1

2

(
|Q n+1|2 − |Q n|2 + |2Q n+1 − Q n|2 − |2Q n − Q n−1|2 + |Q n+1 − 2Q n + Q n−1|2

)
= 2λδt Q n+1

∫
�

(u∗ · ∇)φ∗μn+1 − 2λδt Q n+1
∫
�

(μ∗∇φ∗) · ũn+1dx

+ 2δt Q n+1
∫
�

(u∗ · ∇)u∗ · ũn+1dx.

(3.73)

Hence, by combining (3.69)-(3.73), we arrive at

1

2
(‖un+1‖2 − ‖un‖2 + ‖2un+1 − un‖2 − ‖2un − un−1‖2) + 2δt2

3
(‖∇pn+1‖2 − ‖∇pn‖2)

+ λ
S1

ε3
(‖φn+1 − φn‖2 − ‖φn − φn−1‖2) + λ

S2

ε
(‖∇φn+1 − ∇φn‖2 − ‖∇φn − ∇φn−1‖2)

+ λεS3(‖�(φn+1 − φn)‖2 − ‖�(φn − φn−1)‖2)

+ λε(|Un+1|2 − |Un|2 + |2Un+1 − Un|2 − |2Un − Un−1|2)
+ 1

2
(|Q n+1|2 − |Q n|2 + |2Q n+1 − Q n|2 − |2Q n − Q n−1|2)

+
{1

2
‖un+1 − 2un + un−1‖2 + 3

2
‖un+1 − ũn+1‖2

+ 2λ
S1

ε3
‖φn+1 − 2φn + φn−1‖2 + 2λ

S2

ε
‖∇(φn+1 − 2φn + φn−1)‖2

+ 2λεS3‖�(φn+1 − 2φn + φn−1)‖2

+ λε|Un+1 − 2Un + Un−1|2 + 1

2
|Q n+1 − 2Q n + Q n−1|2

}
= −2δtν‖∇ũn+1‖2 − 2δtλγ

∥∥∥∥∥∥μn+1 − 1

|�|
∫
�

μn+1dx

∥∥∥∥∥∥
2

,

(3.74)

where we use the following identity:

(3a − 4b + c)(a − 2b + c) = (a − b)2 − (b − c)2 + 2(a − 2b + c)2. (3.75)

Finally, we obtain (3.59) from (3.74) after dropping the positive terms in { } and dividing both sides by 2. �
4. Numerical simulations

In this section, we use numerical examples to verify the accuracy and energy stability of the proposed fully-decoupled 
scheme using scalar auxiliary variables (3.19)-(3.25) (referred to as DSAV for short). Numerical simulations include accu-
racy/stability tests, multiple vesicle deformation in 2D and 3D, as well as a rising vesicle under the action of gravity force 
in 2D and 3D. In all numerical examples, we set the computational domain to be rectangular. For directions with periodic 
13
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Fig. 4.1. Accuracy tests. The numerical errors in L2 for all variables computed by using the scheme DSAV with different time steps, where two surface area 
parameters are used, (a) M = 1e3, and (b) M = 1e5. (For the velocity field u = (u, v), we plot the mean of the errors of the two velocity components.)

Fig. 4.2. Stability tests. (a) The time evolution curves of the total free energy (2.1) calculated by the scheme DSAV with different time steps, where the 
surface area parameter is M = 1e5. (b) Time evolution curves of Sratio(t) computed with various time steps. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

boundary conditions, the Fourier-spectral method is used for discretization. For directions with boundary conditions speci-
fied in (3.26), the Legendre-Galerkin method is adopted for discretization, where the inf-sup stable pair (P N , P N−2) is used 
for the velocity (ũ and u) and pressure p, respectively, and P N is used for variables φ, μ.

4.1. Accuracy and stability tests

We perform the convergence tests by refining the time step. We set the 2D domain as (x, y) ∈ � = [0, 2π ]2 and assume 
the periodic boundary conditions where 129 Fourier modes are used for each direction, so the error in spatial directions 
can be ignored. We set the model parameters as

ε = 0.07, ν = 1, γ = 0.1, B = 1, S1 = 4, S2 = 4, S3 = 1, λ = 0.01, (4.1)

and assume the initial condition as follows (the profile of φ is shown in Fig. 4.3(a)),

φ(x, y)|t=0 =
2∑

i=1

tanh
( r −√(x − xi)

2 + (y − yi)
2

√
2ε

)
+ 1,u(x, y) = 0, p0 = 0, (4.2)

where r = 0.28π , (x1, x2) = (π, π), (y1, y2) = (1.29π, −1.29π).
14
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Fig. 4.3. (a) The time evolution curves of the original total free energy (2.1) and the modified energy (3.60) calculated by the developed scheme DSAV with 
δt = 0.01

23 for M = 1e5 (snapshots of φ at various times are superimposed). (b) The time evolution of the auxiliary variable Q (t) over time using different 
time steps.

Fig. 4.4. Time evolution of Sratio(t), where two penalty parameters are used: (a) M = 0 and (b) M = 1e5. In each figure, the interface contour of φ at 
different times are plotted in the small inset subfigure. (Example 4.2.1: deformation of a 2D narrow elliptical vesicle.)

We compute the L2 error of the variables φ, u, p when t = 0.2. Since the exact solution is not yet known, the numerical 
solution calculated by DSAV with a small time step δt = 1e − 8 is used as an approximate exact solution. We change the 
time step from 0.01 to 0.01/26 with a factor of 1/2 for each computation. The convergence rate of DSAV is shown in Fig. 4.1
(a)-(b), where two different surface area penalty parameters M = 1e3 and M = 1e5 are used. We find that the scheme DSAV 
always shows second-order accuracy for all cases and all variables.

Next, we perform energy stability tests using different time steps. In Fig. 4.2 (a), we plot six energy evolution curves 
calculated using DSAV, with time steps ranging from δt = 0.01 to 0.01/25 with a factor of 1/2. All the obtained curves 
display very good monotonic attenuation. In Fig. 4.2 (b), we plot the time evolution of the function Sratio(t) := |A(φ(t))−A(φ0)|

A(φ0)

(ratio of the surface area difference) computed using different time steps. It can be seen that the surface area variation is 
around the scale of 9e − 4. When the time step is relatively small, Sratio becomes smaller, indicating that the scheme is 
more accurate. In Fig. 4.3 (a), using the time step δt = 0.01

23 , we plot the evolution curve of original energy (2.1) and the 
modified energy (3.60) with time. We find that the two energies match very well. Meanwhile, we attach the profiles of the 
phase variable φ at different times in the figure. It can be seen that the two vesicles, which were very close at the initial 
moment, eventually become a steady capsule shape with a thinner center and thicker ends. In Fig. 4.3 (b), we plot the 
evolution of the auxiliary variable Q with time. When the time step is small, Q is very close to 1.

4.2. Deformation of stacked vesicles in 2D and 3D

In the following examples, we set the initial condition to one or more stacked vesicles with different shapes to study 
their dynamical topological changes, including the fusion of multiple stacked vesicles, and the shape change caused the shear 
15



Fig. 4.5. The velocity field of the final equilibrium solutions, which is superimposed by the interface contour of the phase-field variable φ , where (a) M = 0
and (b) M = 1e5. (Example 4.2.1: deformation of a 2D narrow elliptical vesicle).

Fig. 4.6. Time evolution of the total free energy (3.60) with (a) M = 0 and (b) M = 1e5. In each figure, the color graph of the pressure p at the steady state 
is plotted in the small inset subfigure. (Example 4.2.1: deformation of a 2D narrow elliptical vesicle).

flow on the boundary. For all 2D simulations, we use rectangular region (x, y) ∈ � = [0, L1] × [0, L2], where the x direction 
is assumed to satisfy periodic boundary conditions, and the y direction is assumed to be non-periodic boundary conditions 
(3.26). For all 3D simulations, the computational domain is set to (x, y, z) ∈ � = [0, L1] × [0, L2] × [0, L3], where the x
and y directions are assumed to satisfy periodic boundary conditions, and the z direction is assumed to be non-periodic 
boundary conditions (3.26). For the direction with periodic boundary conditions, we adopt the Fourier spectral method for 
discretization, and for the direction with non-periodic boundary conditions (3.26), we adopt the Legendre-Galerkin method 
for spatial discretization.

4.2.1. Deformation of a narrow 2D elliptical vesicle
In this example, we set the initial shape of the vesicle to be a narrow ellipse to study its deformation the final equi-

librium shape under different surface area parameter M . We set the computational domain to � = [0, 2π ]2, and the initial 
conditions are set as

φ(x, y)|t=0 = tanh
(0.4π −√(x − π)2/0.3 + (y − π)2/3√

2ε

)
,u(x, y) = 0, p0 = 0. (4.3)

The following model parameters are used:

ε = 0.1, ν = 1, γ = 0.1, B = 1, S1 = 4, S2 = 4, S3 = 1, λ = 0.01, δt = 1e − 3. (4.4)

We adopt 257 Fourier modes to discretize the x direction, and the Legendre polynomial up to the degree of 256 to discretize 
the y direction.
X. Yang Journal of Computational Physics 432 (2021) 110015
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Fig. 4.7. Deformations of two 2D stacked circular vesicles (Example 4.2.2) where (a) interface contour of φ with M = 0, M = 1e5 (without shear), and 
M = 1e5 (with shear); (b) color plots of steady-state pressure p; and (c) time evolution of Sratio(t) for these three cases.
17
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Fig. 4.8. The deformation of five 2D stacked circular vesicles (Example 4.2.3) where (a) energy evolution curves superimposed with φ at different times; 
(b) time evolution of Sratio(t) computed by using various time steps; (c) the velocity field at the steady state; (d) the pressure p at the stead state; and (e) 
energy evolution curves computed by using schemes DSAV and SAV with various time steps.
18
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Fig. 4.9. Deformations of a wide ellipsoid vesicle (Example 4.2.4) using two surface area parameters where (a) M = 0 and (b) M = 1e5. In each subfigure, 
we plot Sratio(t) with time, which is superimposed by the isosurface of {φ = 0} at different times.

Fig. 4.10. Deformations of a narrow ellipsoid vesicle (Example 4.2.4) using two surface area parameters where (a) M = 0 and (b) M = 1e5. In each subfigure, 
we plot Sratio(t) with time, which is superimposed by the isosurface of {φ = 0} at different times.

We run the simulation using two surface area parameters M = 0 (non-conserved surface area) and M = 1e5 (approxi-
mately conserved surface area) until the steady-state solutions are obtained. In Fig. 4.4, we plot Sratio(t) that changes with 
time, and attach the interface contour of {φ = 0} at different times therein. It can be seen that when M = 0, Sratio(t) even-
tually increases to 30%, and the shape of vesicle changes from the initial ellipse to an approximate circle. When M = 1e5, 
Sratio(t) remains near 3e − 3, and the final shape of the vesicle becomes a capsule shape with a thinner center and thicker 
ends. In Fig. 4.5, we plot the steady-state velocity field. In Fig. 4.6, we plot the time evolution of the total free energy 
(3.60), and attach the color graph of the steady-state pressure p as well. It can be seen that the energy decreases with time 
monotonically, and the contour of the pressure profile is consistent with the interface of the vesicle.

4.2.2. Deformation of two stacked circular vesicles in 2D
In this example, we study the dynamical deformation of two stacked vesicles. We set the computational domain as 

� = [0, 2π ]2 and use the initial conditions given in (4.2). We use 257 Fourier modes to discretize the x direction, and use 
the Legendre polynomials up to the degree of 256 to discretize the y direction. The following parameters are used:

ε = 0.04, ν = 1, γ = 0.1, B = 1, S1 = 4, S2 = 4, S3 = 1, λ = 0.01, δt = 1e − 3. (4.5)

In Fig. 4.7 (a), we plot the interface contours at different times under three different situations, where M = 0, M = 1e5, 
and M = 1e5 with imposed shear. For the third case, we set the boundary condition of the two components of u = (u, v) as 
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Fig. 4.11. Deformations of two 3D stacked spherical vesicles in the Example 4.2.5. In subfigures (a)-(c), we plot we plot the time evolution of Sratio(t) and 
superimpose the isosurfaces of {φ = 0} at various times where (a) M = 0, (b) M = 1e5, and (c) M = 1e5. In subfigure (d), we plot the energy evolution of 
the two cases without shear.

u|y=2π = −10, u|y=0 = 10, v|y=0,2π = 0. It can be seen that when M = 0, the two vesicles merge and eventually converge 
into a wide ellipse. When M = 1e5, the two vesicles eventually become a capsule shape with a thinner center and thicker 
ends. When M = 1e5 and a shear flow is applied, the vesicles merge and then tilt along the flow direction, while maintaining 
the shape of the capsule. In Fig. 4.7 (b), we plot the color map of pressure p at the steady state. In Fig. 4.7 (c), we plot 
Sratio(t) that changes with time. It can be seen that for these three simulations, Sratio(t) finally becomes around 20% (for 
M = 0), 3e − 4 (for M = 1e5 without shear), and 6e − 4 (for M = 1e5 with shear).

4.2.3. Deformation of five stacked circular vesicles in 2D
In this example, we set the initial conditions to five stacked circular vesicles of different sizes to study the deformation 

and final shape of these vesicles. The computational domain is set as [0, 2π ]2 and the initial conditions are set as follows:

φ0 =
5∑

i=1

tanh
( ri −√(x − xi)

2 + (y − yi)
2

√
2ε

)
+ 4,u0 = 0, p0 = 0, (4.6)

where (r1, r2, r3, r4, r5) = (0.3π, 0.2π, 0.2π, 0.2π, 0.2π), (x1, x2, x3, x4, x5) = (π, 1.5π, 0.5π, π, π), (y1, y2, y3, y4, y5) =
(π, π, π, 1.5π, 0.5π). We use the following parameters

ε = 0.08, ν = 1, γ = 0.1, B = 1, S1 = 4, S2 = 4, S3 = 1,

λ = 0.01, δt = 0.01/22, M = 1e5.
(4.7)
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Fig. 4.12. Deformations of four 3D stacked spherical vesicles in the Example 4.2.5, where two surface area parameters are used with M = 0 and M = 1e5. 
In each subfigure, we plot the time evolution of Sratio(t) which are superimposed by the isosurfaces of {φ = 0} at various times.

We adopt 257 Fourier modes to discretize the x direction, and the Legendre polynomials up to the degree of 256 to dis-
cretize the y direction.

In Fig. 4.8 (a), we plot the time evolution curves of the original energy (2.1) and the modified energy (3.60). These two 
curves have always coincided. We impose the profiles of φ at three moments in Fig. 4.8 (a). It can be seen that the vesicles 
fuse to form a cross shape. In Fig. 4.8 (b), we plot Sratio(t) computed using different time steps δt . In Fig. 4.8 (c) and (d), 
we plot the velocity field and pressure at the steady state.

To show the effects of the stabilizers (Si, i = 1, 2, 3), and the developed decoupling technology on improving energy 
stability, we perform some stability tests in which the stabilizers in (3.20) are removed and Q n+1 is assumed to be equal to 
1 (i.e., the advection and stress are all dealt with explicitly). For convenience, we use SAV to denote this version. In Fig. 4.8
(e), we plot the energy evolutions curves computed by DSAV and SAV using different time steps. We find that all obtained 
energy curves computed by DSAV show monotonic attenuation. However, only when the time step is very small, the energy 
curve calculated by SAV decay. This illustrates the effect of stabilizers and decoupling techniques on improving stability.

4.2.4. Deformation of wide/narrow ellipsoid in 3D
In this example, we study the deformation of 3D vesicles, where the initial shape is wide ellipsoid or narrow ellipsoid 

respectively. The computational domain is [0, 2π ]3 and the initial conditions are set as follows:

φ0 = tanh
(1 −√(x − π)2/r1 + (y − π)2/r2 + (z − π)2/r3√

2ε

)
,u0 = 0, p0 = 0, (4.8)

where r1 = r2 = 5, r3 = 1 is the wide ellipsoid, and r1 = r2 = 0.45, r3 = 4 is the narrow ellipsoid. We use the following 
parameters

ε = 0.13, ν = 1, γ = 0.1, B = 1, S1 = 4, S2 = 4, S3 = 1, λ = 0.01, δt = 1e − 3. (4.9)

We use 129 Fourier modes to discretize each of the x and y directions, and use the Legendre polynomials up to the degree 
of 128 to discretize the z direction.

For the wide ellipsoid vesicle, in Fig. 4.9, we plot the time evolution of Sratio(t) under two surface area parameters 
M , and attach the snapshots of isosurface of {φ = 0} at different times to each subfigure. When M = 0, although the 
volume remains unchanged accurately, the ellipsoid gradually shrinks and Sratio(t) eventually becomes around 14%. When 
M = 1e5, the final shape of the ellipsoid vesicle becomes the pancake shape, but the middle region is slightly thinner, and 
Sratio(t) ∼ 3e − 5. For the narrow ellipsoid vesicle shown in Fig. 4.10, we observe that when M = 0, the vesicle contracts and 
Sratio(t) eventually becomes around 20%; when M = 1e5, the vesicle changes into the capsule shape with a thinner center 
and thicker ends, and Sratio(t) is around 1e − 4.

4.2.5. Deformation of multiple stacked spherical vesicles in 3D
In this example, we study the dynamic deformation of multiple stacked vesicles under the action of different surface 

area parameter M or the shear flow applied on the domain boundary, as shown in Figs. 4.11-Fig. 4.14, respectively. We set 
the computational domain to [0, L]3 where L = 1.5π , and the initial conditions are given as follows:
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Fig. 4.13. Deformations of six 3D stacked spherical vesicles in the Example 4.2.5, where two surface area parameters are used with M = 0 and M = 1e5. In 
the subfigure (a), we plot the time evolution of Sratio(t) which are superimposed by the isosurfaces of {φ = 0} at various times. In the subfigure (b), we 
plot the time evolution of the total free energy (2.1) which are superimposed by the isosurfaces of {φ = 0} of half of the vesicles.

φ0 =
n∑

i=1

tanh
( rni −√(x − xni)

2 + (y − yni)
2 + (z − zni)

2
√

2ε

)
+ n − 1,u0 = 0, p0 = 0, (4.10)

where n is the number of vesicles. For n = 2, we set r21 = r22 = 0.14L. x21 = x22 = y21 = y22 = L, z21 = 0.642L, z22 = 0.358L. 
For n = 4, we set r41 = r42 = r43 = 0.14L, r44 = 0.125L, x41 = 0.3L, x42 = 0.67L, x43 = 0.48L, x44 = 0.48L, y41 = y42 = y43 =
0.5L, y44 = 0.715L, z41 = z42 = z43 = 0.5L, z44 = 0.27L. For n = 6, we set r6 j, j=1,··· ,6 = 0.14L, x61 = x62 = x65 = x66 = 0.5L, 
x63 = 0.76L, x64 = 0.24L, y6 j, j=1,··· ,4 = 0.5L, y65 = 0.76L, y66 = 0.24L, z61 = 0.65L, z62 = 0.35L, z6 j, j=3,··· ,6 = 0.5L. For 
n = 7, we set r71 = 0.18L, r7 j, j=2,··· ,7 = 0.12L, x7 j, j=1,2,3 = 0.5L, x74 = 0.2L, x75 = 0.8L, x76 = 0.2L, x77 = 0.8L, y7 j, j=1,··· ,5 =
0.5L, y76 = 0.2L, y77 = 0.8L, z71 = 0.5L, z72 = 0.2L, z73 = 0.8L, z7 j, j=4,··· ,7 = 0.5L. The model parameters are set as follows:

ε = 0.08, ν = 1, γ = 0.1, B = 1, S1 = 4, S2 = 4, S3 = 1, λ = 0.01, δt = 1e − 3. (4.11)

We use 129 Fourier modes to discretize each of the x and y directions, and use the Legendre polynomials up to the degree 
of 128 to discretize the z direction.

For n = 2 (two stacked vesicles), as shown in Fig. 4.11, we can see that when M = 0, the vesicles fuse and shrink, and 
Sratio(t) changes up to 14%; when M = 1e5, the steady-state shape appears as a capsule and Sratio(t) is roughly around 
1e − 4. In Fig. 4.11 (c), the shear flow is imposed on the boundary (u|y=L = −10, u|y=0 = 10), and we can see that the 
vesicle is tilted in the same direction as the flow field. We plot the time evolution of the total energy for the two cases 
without the shear flow, as shown in Fig. 4.11 (d). For n = 4 (four stacked vesicles), as shown in Fig. 4.12, we can see that 
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Fig. 4.14. Deformations of seven 3D stacked spherical vesicles in the Example 4.2.5, where M = 1e5 where (a) is the case without shear and (b) is with 
shear. In each subfigure, we plot the time evolution of Sratio(t) which are superimposed by the isosurfaces of {φ = 0} at various times.

when M = 0, the vesicles fuse and shrink to form a structure with multiple poles, and Sratio(t) changes up to 14%; when 
M = 1e5, the steady-state shape forms a ring and Sratio(t) is roughly around 2e − 4. For n = 6 (six stacked vesicles), we 
plot the time evolutions of Sratio(t) and the total free energy (2.1) in Fig. 4.13. To see the internal structure of the vesicle 
more clearly, we plot the isosurfaces of the half vesicle at various times in Fig. 4.13 (b). For n = 7 (seven stacked vesicles), 
in Fig. 4.14, we plot Sratio(t) over time and the isosurface {φ = 0} at different times. We apply shear flow at the boundary 
(u|y=L = −10, u|y=0 = 10), which greatly affects the topological change of the vesicles, as shown in Fig. 4.14 (b).

4.3. Dynamics of a rising vesicle driven by the gravity force

In this example, we simulate the rising process of a vesicle under the action of gravity. We use the following formula to 
replace the momentum equation (2.5):

ut + (u · ∇)u − ν�u + ∇p − μ∇φ = g f φ, (4.12)

where g f = (0, g f ) for 2D, g f = (0, 0, g f ) for 3D, and g f is the pre-assumed gravity force constant. The new momentum 
equation (4.12) is the so-called Boussinesq approximation, where the density difference between the vesicle and the ambient 
fluid is assumed to be small, see [21,26,30,37].

We still perform 2D simulations first, and then perform 3D simulations. The 2D computational domain is set to be 
(x, y) ∈ � = [0, 2π ] × [0, 4π ]. We set periodic boundary conditions along the x-direction and discretize it using 257 Fourier 
modes. For the y-direction, we use the boundary conditions given in (3.26) and use the Legendre-Galerkin method of 
Legendre polynomials to the degree of 512 to discretize it. The initial conditions are set as follows,

φ0(x, y) = tanh(
0.4π −√(x − π)2 + (y − π)2

√
2ε

),u0 = (0,0), p0 = 0. (4.13)

The other model parameters are set as

ε = 0.08, ν = 1, γ = 0.1, B = 1, S1 = 4, S2 = 4, S3 = 1, λ = 0.01, δt = 1e − 3. (4.14)

In Fig. 4.15 (a)-(c), we plot the interface contour {φ = 0} every 0.4 time units with different surface area parameters and 
gravity force constants to view the complete rising process of a vesicle. It can be seen that when M = 0 and g f = 10, shown 
in Fig. 4.15 (a), the vesicle eventually shows a curved shape. When we apply M = 1e5 and g f = 10, shown in Fig. 4.15 (b), 
the vesicles are only slightly deforms and rises to the top in an oval shape. In Fig. 4.15 (c), we set M = 1e5 and g f = 50. 
We find that the vesicle rises significantly faster, and its deformation is still very slight. In Fig. 4.15 (d), we plot the velocity 
field with the interface contour before the vesicle contacts the top wall. In Fig. 4.16, the change of Sratio(t) with time is 
plotted as well where Sratio increases to 90% for M = 0 and keeps roughly around O (1e − 4) for M = 1e5.

We continue to simulate the dynamical rising process of a 3D vesicle under the action of gravity. We set the calculation 
domain to (x, y, z) ∈ � = [0, 2π ] × [0, 2π ] × [0, 4π ] and the initial conditions as

φ0(x, y, z) = tanh(
0.5π −√(x − π)2 + (y − π)2 + (y − π)2

√ ),u0 = (0,0,0), p0 = 0,

2ε
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Fig. 4.15. The dynamical motions of a rising vesicle under the action of gravity where the interface contour is plotted every 0.4 time units, where (a) 
M = 0, g f = 10, (b) M = 1e5, g f = 10, (c) M = 1e5, g f = 50, and (d) the velocity field with the interface contour before the vesicle touches the top wall.

All other model parameters are the same as the 2D case. Along the x and y directions, we set periodic boundary conditions 
and use the 257 Fourier modes to discretize each direction. For the z direction, we use the boundary conditions given 
in (3.26) which is discretized by using the Legendre-Galerkin method with the Legendre polynomials up to the degree 
of 256. In Fig. 4.17, we plot the isosurfaces of {φ = 0} at different times. The 3D rising dynamics is similar to the 2D 
simulation. When M = 0, g f = 50, the vesicle finally becomes an extremely bending shape, shown in Fig. 4.17 (b), but when 
M = 1e5, g f = 50, it can be seen that the bending of the vesicle is very small, shown in Fig. 4.17 (c).

5. Concluding remarks

We first establish a volume-conserved flow-coupled elastic bending energy model for lipid vesicles and construct a novel 
numerical scheme for solving it. This scheme has almost all desired properties, including linearity, second-order accuracy 
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Fig. 4.16. Time evolution of Sratio(t) for a rising vesicle in 2D, where (a) M = 0, g f = 10, (b) M = 1e5, g f = 10 and g f = 50.

Fig. 4.17. 3D simulations of a rising vesicle with different surface area parameters, where (a) initial shape of the vesicle at t = 0, and snapshots of the 
vesicles at different times with (b) M = 0 and (c) M = 1e5.

in time, fully-decoupling, and unconditionally energy stability. It is based on the combination of the projection method of 
the Navier-Stokes equation, the SAV method of the nonlinear potential, and a new decoupling technique that deals with the 
coupling term with the “zero-energy-contribution” feature. We provide detailed practical methods and the rigorous proof 
of the unconditional energy stability and solvability. Through the simulation of many numerical examples in 2D and 3D 
(including convergence/stability tests, deformation of multiple stacked vesicles under the shear flow or the gravity force), 
the effectiveness of the model and the developed scheme are demonstrated numerically.
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