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In this paper, we establish a new hydrodynamically coupled phase-field model for three
immiscible fluid components system. The model consists of the Navier–Stokes equations
and three coupled nonlinear Allen–Cahn type equations, to which we add nonlocal type
Lagrange multipliers to conserve the volume of each phase accurately. To solve the
model, a linear and energy stable time-marching method is constructed by combining
the stabilized-Invariant Energy Quadratization (S-IEQ) approach and the projection
method. The well-posedness of the scheme and its unconditional energy stability are
rigorously proved. Several numerical simulations in 2D and 3D are carried out, including
spinodal decomposition, dynamical deformations of a liquid lens and rising liquid drops,
to validate the model and demonstrate the efficiency and energy stability of the proposed
scheme, numerically.
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1. Introduction

The phase-field method (diffusive interface approach) had been widely applied to

model and simulate the multiphase fluid flow and a variety of multiple-component

materials, see Refs. 1, 3, 7, 13, 14, 17, 18, 20 and 34 and the references therein. Its

essential modeling framework is to adopt a certain number of independent phase

variables to label each material component and then postulate the total free energy

in terms of them. For instance, the commonly-used total free energy for simulating

the two-phasic fluid flow system that consists of two immiscible fluid components

usually includes two parts where one is the bulk potential (double-well or loga-

rithmic Flory–Huggins) that yields a hydrophobic contribution, and the other one
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is the conformational capillary entropic term that demands a hydrophilic prop-

erty. The competition between these two types of energy potentials enables the

coexistence of two distinct phases in the immiscible two-phasic system. we refer to

Refs. 1,8–14,16,18,19,21,22 and 25 concerning the theoretical analysis, algorithm

developments and numerical simulations for the two-phasic model.

Remarkably, it is not straightforward to extend the existing works of the two-

phasic model to the multi-phase scenario. For example, a modeling approach

adopted in Ref. 15 is to postulate the total free energy as a simple summation

of the original biphasic energy for each variable. In this way, the obtained system

consists of three nonlinear coupled Cahn–Hilliard type equations of the same for-

mat where the coupling term is induced by a Lagrangian multiplier term in each

equation to enforce the no-volume loss condition. However, as illustrated in Refs. 2

and 4, such a simple system is not well-posed for the total spreading case (some

coefficient of gradient term is negative) and thus some nonphysical instabilities at

interfaces may occur. To fix this problem, in Refs. 2 and 4, a sixth-order polynomial

type coupling potential is added into the free energy which can ensure the system

to be well-posed as long as a specific consistency condition for the surface ten-

sion parameters is satisfied. But the sixth-order polynomial potential causes more

sophisticated nonlinear couplings of all three phase-field variables. The consequence

is that a highly complicated, coupled and nonlinear system arrives which brings

up many substantial difficulties to design efficient and stable schemes to solve it

numerically. As far as the authors know, the only energy stable, linear numerical

schemes with second-order accuracy are developed based on the recently developed

so-called Invariant Energy Quadratization (IEQ)36 and Scalar Auxiliary Variable

(SAV)38,39 approaches. Except for these two methods, most of the existing methods

are either first-order accurate in time, or energy unstable, or highly nonlinear, or

even the combinations of these features (see Refs. 2,4 and 23).

Meanwhile, even though the three-phasic phase-field fluid flow model had been

developed for more than a decade, we note almost all the numerical work (algo-

rithm developments or simulations) were focused on the partial model (no flow-field

coupled) instead of the full hydrodynamically coupled model. It is well known that

when the Navier–Stokes equations are coupled into the system, a far more compli-

cated model for algorithm developments arrives. This is because remarkably more

nonlinear coupling terms between the flow field and the phase-field variables appear

in addition to the stiffness issues induced by nonlinear terms. To the best of the

authors knowledge, the only scheme with unconditional energy stability for solving

the hydrodynamics coupled three-phasic model is developed in Ref. 23, however,

their scheme is only first-order in time, and its computational cost is relatively

expensive due to the nonlinear nature.

In this paper, we consider numerical approximations for solving the hydrody-

namically coupled three components phase-field model. First, instead of solving

the multiple coupled nonlinear fourth-order Cahn–Hilliard equations, we formulate

the ternary phase-field model by using the Allen–Cahn equation. It is well known
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that the second-order Allen–Cahn system is relatively easier to solve numerically

in comparison with the fourth-order Cahn–Hilliard system. But an intrinsic bot-

tleneck using the Allen–Cahn model is that the volume cannot be conserved when

time evolves. To fix this issue, we modify the model by adding a nonlocal Lagrange

multiplier to each of the phase equations. This term helps to maintain the original

energy law and preserve the volume accurately. Second, we develop a linear scheme

that can possess unconditional energy stability and second-order accuracy by com-

bining the IEQ approach with the stabilization technique, the projection method,

as well as a subtle implicit–explicit treatment. The developed method can efficiently

solve the nonlinear couplings between the velocity and phase function through the

nonlinear convective and stress terms. The combination of these proved efficient

methods enables one to solve a linear elliptic system for the phase-field variables

and the velocity field, and a Poisson equation for the pressure at each time step.

We give rigorous proofs of the well-posedness of the linear system together with the

energy stability, and further demonstrate the stability and accuracy numerically in

simulating some classical benchmark numerical examples in 2D and 3D including

the spinodal decomposition, dynamical deformations of a liquid lens and a rising

liquid drop.

The rest of the paper is organized as follows. In Sec. 2, we briefly describe

the hydrodynamically coupled, volume-conserved, three components Allen–Cahn

phase-field model and derive its associated PDE energy dissipation law. In Sec. 3, we

present the numerical scheme and prove the well-posedness of the semi-discretized

linear system and its discrete energy dissipation law rigorously. In Sec. 4, we present

various numerical examples to illustrate the accuracy and efficiency of the proposed

schemes. Some concluding remarks are given in Sec. 5.

2. Model System

We now develop the volume-conserved, hydrodynamically coupled Allen–Cahn

phase-field model for the three components fluid flows system. Let Ω be a smooth,

rectangular, open bounded, connected domain in R
d, d = 2, 3. Let φi, i=1,2,3 be the

ith phase-field variable which represents the volume fraction of the ith component

in the fluid mixture, i.e.

φi =

⎧⎨
⎩1 inside the ith component,

0 outside the ith component.
(2.1)

A smooth layer with the thickness ε is used to connect the interface between 0

and 1. Assuming the mixture being perfect (no volume leaking), thus the three

unknowns φ1, φ2, φ3 satisfy

φ1 + φ2 + φ3 = 1. (2.2)

This is the so-called perfect mixture or hyperplane link condition, see Refs. 2,4

and 23.
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Remarkably, there exist several generalizations from the two-phasic model to

the three-phasic model (cf. Refs. 2–4,16 and 23). In this paper, we adopt below

the total free energy developed in Refs. 2–4,23. Hence, after coupling with the

hydrodynamics, the total free energy reads as

E(u, φ1, φ2, φ3) =

∫
Ω

1

2
|u|2dx︸ ︷︷ ︸
I

+

∫
Ω

3ε

8

(
Σ1|∇φ1|2 +Σ2|∇φ2|2 +Σ3|∇φ3|2

)
dx︸ ︷︷ ︸

II

+

∫
Ω

12

ε
F (φ1, φ2, φ3)dx︸ ︷︷ ︸

III

. (2.3)

We give a brief introduction for all three parts of the total free energy in (2.3), I,

II, and III, as follows.

Part I is the kinetic energy for the fluid where u is the fluid velocity. Part II is

the linear gradient part in the well-known mixing energy potential for each of the

phase-field variable that contributes to the hydrophilic type (tendency of mixing) of

interactions between the fluid components. The coefficients Σi, i = 1, 2, 3 are called

the “spreading” coefficient of the phase i at the interface between phases j and k.

Part III is a nonlinear potential that reads as

F (φ1, φ2, φ3) =
Σ1

2
φ21(1− φ1)

2 +
Σ2

2
φ22(1− φ2)

2 +
Σ3

2
φ23(1 − φ3)

2

+P (φ1, φ2, φ3), (2.4)

where

P (φ1, φ2, φ3) = 3Λφ21φ
2
2φ

2
3, (2.5)

and Λ is a non-negative constant. The potential F represents the hydrophobic type

(tendency of separation) of interactions. The parameter ε � 1 is related to the

width of the interface. As a consequence of the competition between parts II and

III, the equilibrium configuration will include a diffusive interface.

The parameters, σij (σ12, σ13, σ23), prescribe surface tension parameter between

the different pairs of phases, for example, σ12 is the surface tension parameter

between the fluid 1 and fluid 2. To be algebraically consistent with the two-phasic

systems, σij (σ12, σ13, σ23) should verify the following conditions:

Σi = σij + σik − σjk, i = 1, 2, 3. (2.6)

Note Σi might not be always positive. If Σi > 0, the spreading is said to be “partial”,

and if Σi < 0, it is called “total”.

Assuming that the fluid is incompressible and follows a generalized Fick’s law

that the mass flux be proportional to the gradient of the chemical potential, we

can derive the following hydrodynamically coupled Allen–Cahn model based on the

L2-gradient flow approach

φit +∇ · (uφi) = −M μi

Σi
, (2.7)
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μi = −3

4
εΣiΔφi +

12

ε
(fi + βL), i = 1, 2, 3, (2.8)

ut + u · ∇u− νΔu+∇p+
3∑

i=1

φi∇μi = 0, (2.9)

∇ · u = 0, (2.10)

where μi =
δE
δφi

is the variational derivative or chemical potential,M is the mobility

parameter, fi = ∂iF , p is the pressure, ν is the fluid viscosity, βL is the Lagrange

multiplier to ensure the hyperplane link condition (2.2) and it can be derived as

βL = − 1

ΣT

(
f1
Σ1

+
f2
Σ2

+
f3
Σ3

)
, (2.11)

with ΣT = 1
Σ1

+ 1
Σ2

+ 1
Σ3

. We consider in this paper either of the two type boundary

conditions below:

(i) all variables are periodic, or (ii) u|∂Ω = 0, ∂nφi|∂Ω = 0, i = 1, 2, 3,

(2.12)

where n is the unit outward normal on the boundary ∂Ω.

However, the Allen–Cahn dynamics (2.7) does not conserve the total volume

of
∫
Ω
φidx for any i. To fix it, we modify the system (2.7)–(2.10) to the following

form:

φit + (u · ∇)φi + (∇ · u)φi = −M μ̄i

Σi
, (2.13)

μi = −3

4
εΣiΔφi +

12

ε
(fi + βL), i = 1, 2, 3, (2.14)

ut + u · ∇u− νΔu+∇p−
3∑

i=1

μ̄i∇φi +
3∑

i=1

∇(φiμ̄i) = 0, (2.15)

∇ · u = 0, (2.16)

with

μ̄i = μi − 1

|Ω|
∫
Ω

μidx. (2.17)

Here we use a nonlocal Lagrange multiplier term in (2.13) to cancel the variance of

the volume of phase i. By taking the L2 inner product of (2.13) with 1, we obtain

the volume conservation property that reads as

d

dt

∫
Ω

φidx = 0. (2.18)
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Meanwhile, the convective terms in (2.13) and the stress terms in (2.15) are identical

to those in (2.7) and (2.9).

Remark 2.1. The system (2.13)–(2.14) is equivalent to the following two phase-

field variables system⎧⎪⎪⎨
⎪⎪⎩
φit + (u · ∇)φi + (∇ · u)φi = −M μ̄i

Σi
,

μi = −3

4
εΣiΔφi +

12

ε
(fi + βL), i = 1, 2,

(2.19)

where φ3 and μ3 are given by the following explicit formula:

φ1 + φ2 + φ3 = 1, (2.20)

μ1

Σ1
+
μ2

Σ2
+
μ3

Σ3
= 0. (2.21)

Since the proof is quite similar to Theorem 3.1, we omit the details here.

We now show the model equations (2.13)–(2.16) follow a dissipative energy law.

By taking the L2 inner product of (2.13) with μ̄i, of (2.14) with −φit, of (2.15)

with u, performing integration by parts, we obtain

(φit, μ̄i) + ((u · ∇)φi, μ̄i) + ((∇ · u)φi, μ̄i) = −MΣi

∥∥∥∥ μ̄i

Σi

∥∥∥∥2 , (2.22)

− (μi, φit) = −3

8
εΣidt‖∇φi‖2 − 12

ε
(fi + βL, φit), (2.23)

1

2
dt‖u‖2 + ν‖∇u‖2 − (p,∇ · u)−

3∑
i=1

(μ̄i∇φi,u)−
3∑

i=1

(φiμ̄i,∇ · u) = 0. (2.24)

Then, by taking the summation of (2.22), (2.23), and (2.24) for i = 1, 2, 3, using

(2.16) for the pressure term, the equality (βL, (φ1 +φ2 +φ3)t) = (βL, (1)t) = 0 due

to (2.20), and the equality (φit, μ̄i) = (φit, μi) due to (2.18), we obtain the following

identity as

d

dt
E(u, φ1, φ2, φ3) = χ, (2.25)

where

χ = −ν‖∇u‖2 −M

(
Σ1

∥∥∥∥ μ̄1

Σ1

∥∥∥∥2 +Σ2

∥∥∥∥ μ̄2

Σ2

∥∥∥∥2 +Σ3

∥∥∥∥ μ̄3

Σ3

∥∥∥∥2
)
. (2.26)

It appears that the inequality (2.25) forms like the energy dissipation law, but in

fact since Σi may not be always positive, one still needs to show the total free

energy E(u, φ1, φ2, φ3) given in (2.3) is bounded from below and the energy decay

rate χ ≤ 0 which can be ensured by the following Lemmas (cf. Ref. 2).

Lemma 2.1. For any ξ1 + ξ2 + ξ3 = 0, there exists a constant Σ > 0 such that

Σ1|ξ1|2 +Σ2|ξ2|2 +Σ3|ξ3|2 ≥ Σ(|ξ1|2 + |ξ2|2 + |ξ3|2), (2.27)
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if and only if the following condition holds :

Σ1Σ2 +Σ1Σ3 +Σ2Σ3 > 0, Σi +Σj > 0, ∀ i �= j. (2.28)

Lemma 2.2. Let σ12, σ13 and σ23 be three positive numbers and Σ1,Σ2 and Σ3

defined by (2.6) (Note Σi might not be positive for some i). For any Λ > 0, the bulk

free energy F (φ1, φ2, φ3) defined in (2.4) is bounded from below if φ1, φ2, φ3 is on

the hyperplane S in 2D with S = {φ1+φ2+φ3 = 1}. Furthermore, the lower bound

only depends on Σ1,Σ2,Σ3 and Λ.

From Lemma 2.1, when (2.28) holds, the summation of the gradient entropy

term is bounded from below since ∇(φ1 + φ2 + φ3) = 0 by (2.20), i.e.

3∑
i=1

Σi‖∇φi‖2 ≥ Σ

3∑
i=1

‖∇φi‖2 ≥ 0. (2.29)

Therefore, we derive E(u, φ1, φ2, φ3) is bounded from below from (2.29) and Lemma

2.2. To show the decay rate χ ≤ 0, from (2.21), we derive

μ̄1

Σ1
+
μ̄2

Σ2
+
μ̄3

Σ3
= 0. (2.30)

By applying Lemma 2.1, when (2.28) holds, we have

−
(
Σ1

∥∥∥∥ μ̄1

Σ1

∥∥∥∥2 +Σ2

∥∥∥∥ μ̄2

Σ2

∥∥∥∥2 +Σ3

∥∥∥∥ μ̄3

Σ3

∥∥∥∥2
)

≤ −Σ

(∥∥∥∥ μ̄1

Σ1

∥∥∥∥2 +
∥∥∥∥ μ̄2

Σ2

∥∥∥∥2 +
∥∥∥∥ μ̄3

Σ3

∥∥∥∥2
)
,

(2.31)

that implies the energy decay rate χ ≤ 0.

Remark 2.2. The bulk part energy F (φ1, φ2, φ3) defined in (2.4) has to be

bounded from below in order to form a meaningful physical system. For partial

spreading case (Σi > 0, ∀ i), one can drop the six-order polynomial term by assum-

ing Λ = 0 since F0(φ1, φ2, φ3) ≥ 0 is naturally satisfied. For the total spreading

case, Λ has to be nonzero. Moreover, to ensure the non-negativity for F , Λ has to

be large enough.

For 3D case, it is shown in Ref. 2 that the bulk energy F is bounded from below

when P (φ1, φ2, φ3) takes the following form:

P (φ1, φ2, φ3) = 3Λφ21φ
2
2φ

2
3(φα(φ1) + φα(φ2) + φα(φ3)), (2.32)

where φα(x) =
1

(1+x2)α with 0 < α ≤ 8
17 .

Since (2.5) is commonly used in literatures (cf. Refs. 2 and 4), we adopt it as well

for convenience. Nonetheless, it will be clear that the numerical schemes we develop

in this paper can deal with either (2.4) or (2.32) without any essential difficulties.
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3. Numerical Schemes

Before we construct the numerical scheme to solve the model (2.13)–(2.16), we

introduce some notations here. Let δt > 0 be a time step size and set tn = nδt for

0 ≤ n ≤ N with T = Nδt. The L2 inner product of any two functions φ(x) and

ψ(x) is denoted by (φ, ψ) =
∫
Ω φ(x)ψ(x)dx, and the L2 norm of φ(x) is denoted

by ‖φ‖2 = (φ, φ). Let ψn be the numerical approximation to the analytic function

ψ(·, t)|t=tn .

Since we expect to develop linear type schemes, we use the IEQ approach to

handle the nonlinear potential F (φ1, φ2, φ3). The IEQ method was recently devel-

oped in Refs. 5,6,28–30,35 and 37, where its essential idea is to transform the bulk

potential into a quadratic form (since the nonlinear potential is usually bounded

from below) using a set of new variables. For the reformulated model, all nonlinear

terms are treated semi-explicitly, which in turn yields a linear and unconditionally

energy stable system. This method bypasses those typical challenges such as the

justification/adjustment of convexity or implicit/explicit terms, and provides many

flexibilities to treat the complicated nonlinear terms since the only request for the

nonlinear potential is bounded from below. Here we give a slight modification to it

by adding some stabilization terms. Remarkably, the extra added linear stabiliza-

tion term is particularly effective to improve the energy stability while keeping the

required accuracy. The projection method is used to discretize the Navier–Stokes

equations thus the computations of the velocity can be decoupled from the pressure.

For the coupled nonlinear terms like the stress and convective terms, we discretize

them by using the implicit–explicit combination. The detailed procedure to develop

the scheme is presented as follows:

We define an auxiliary function U(x, t) as

U =
√
F (φ1, φ2, φ3) +B, (3.1)

where B is any constant that ensures the radicand positive (in all numerical exam-

ples, we let B = 10). Then, we rewrite the system (2.13)–(2.16) to the following

equivalent form with unknown variables (u, p, φi, μi, U):

φit + (u · ∇)(φi − φ̂0i ) + (∇ · u)(φi − φ̂0i ) = −M μ̄i

Σi
, (3.2)

μi = −3

4
εΣiΔφi +

12

ε
(Hi + β)U, i = 1, 2, 3, (3.3)

Ut =
1

2

3∑
i=1

Hiφit, (3.4)

ut +B(u,u)− νΔu+∇p−
3∑

i=1

μ̄i∇(φi − φ̂0i ) +

3∑
i=1

∇((φi − φ̂0i )μ̄i) = 0, (3.5)

∇ · u = 0, (3.6)
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where

B(u,v) = (u · ∇)v +
1

2
(∇ · u)v, (3.7)

φ̂0i =
1

|Ω|
∫
Ω

φ0i dx, (3.8)

β = − 1

ΣT

(
H1

Σ1
+
H2

Σ2
+
H3

Σ3

)
, (3.9)

Hi =
fi√

F (φ1, φ2, φ3) +B
. (3.10)

The transformed system (3.2)–(3.6) in terms with the variables (u, φi, μi, U, p) form

a closed PDE system with the following initial conditions:⎧⎨
⎩
u|(t=0) = u0, p|(t=0) = p0, φi|(t=0) = φ0i , i = 1, 2, 3,

U |(t=0) = U0 =
√
F (φ01, φ

0
2, φ

0
3) +B.

(3.11)

Note the boundary conditions for U are not needed at all since Eq. (3.4) is only an

ODE with time. Thus, the boundary conditions of the new system (3.2)–(3.6) are

still (2.12).

We have made several modifications to the PDE model and thus we list some

detailed remarks as follows.

Remark 3.1. We replace the advection term by the skew-symmetric form B(u,v)

in the momentum equation. Even though ∇ · u �= 0, the identity (B(u,v),v) = 0

still holds as long as the boundary condition u · n|∂Ω = 0 is valid, which helps to

preserve the discrete energy stability.

Remark 3.2. It is easy to see the convective terms in (3.2) and the stress terms

in (3.5) are equivalent to that their original forms in (2.13) and (2.15) due to the

divergence-free condition. These modified formulations help to ensure the perfect

mixture condition (2.2) of the numerical solutions and the energy stability when

developing discrete schemes. Because while using the projection methods to deal

with the Navier–Stokes equations, the velocity used to discretize the convective

term may not follow the divergence-free condition. Hence, the numerical solutions

of φi may violate the condition (2.2) if we use the original convective term in (2.7).

For comparisons, after taking the new convective terms in (2.13), by taking the

summation for (2.13) for i = 1, 2, 3, the convective terms turn into

(u · ∇)

(
3∑

i=1

φi −
3∑

i=1

φ̂0i

)
+ (∇ · u)

(
3∑

i=1

φi −
3∑

i=1

φ̂0i

)
, (3.12)

which vanishes as long as
∑3

i=1 φi = 1 (since
∑3

i=1 φ̂
0
i = 1) even if the divergence-

free condition of u does not hold.
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Using the second-order backward differentiation formula (BDF2), we now con-

struct a time marching scheme to discretize the new system (3.2)–(3.6), that

includes the following two steps:

Step 1. We compute ũn+1, φn+1
i , μn+1

i , Un+1 by

3ũn+1 − 4un + un−1

2δt
+B(u∗, ũn+1)− νΔũn+1 +∇pn

−
3∑

i=1

μ̄n+1
i ∇(φ∗i − φ̂0i ) +

3∑
i=1

∇((φ∗i − φ̂0i )μ̄
n+1
i ) = 0, (3.13)

3φn+1
i − 4φni + φn−1

i

2δt
+ (ũn+1 · ∇)(φ∗i − φ̂0i ) + (∇ · ũn+1)(φ∗i − φ̂0i )

= −M μ̄n+1
i

Σi
, (3.14)

μn+1
i = −3

4
εΣiΔφ

n+1
i +

12

ε
(H∗

i + β∗)Un+1 +
S

ε
Σi(φ

n+1
i − φ∗i ), i = 1, 2, 3,

(3.15)

3Un+1 − 4Un + Un−1 =
1

2

3∑
i=1

H∗
i (3φ

n+1
i − 4φni + φn−1

i ), (3.16)

where ⎧⎪⎨
⎪⎩
u∗ = 2un − un−1, φ∗ = 2φn − φn−1,

H∗ = H(φ∗1, φ∗2, φ∗3), β∗ = − 1

ΣT

(
H∗

1

Σ1
+
H∗

2

Σ2
+
H∗

3

Σ3

)
,

(3.17)

S is a positive stabilization parameter, and the boundary conditions are either

periodic or

ũn+1|∂Ω = 0, ∂nφ
n+1
i |∂Ω = 0. (3.18)

Step 2. We compute pn+1,un+1 as follows:

3

2δt
(un+1 − ũn+1) +∇(pn+1 − pn) = 0, (3.19)

∇ · un+1 = 0, (3.20)

where the boundary condition is either periodic or

un+1 · n|∂Ω = 0. (3.21)

Remarkably, we add an extra linear, second-order stabilization term associated

with S in (3.15). This term introduces an error in the scale of S(δt)2∂ttφi(·) which
is comparable with the error introduced by the second-order extrapolation of the

nonlinear term (see also in Refs. 5,27,29–32). In Sec. 4, we present enough numerical

evidence to show that this stabilizer is critical to maintain the accuracy and improve
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the energy stability while using large time steps, see the accuracy/stability tests

shown in Figs. 1 and 2.

Remark 3.3. The computations of the second-order scheme (3.13)–(3.21) need

the values of φ1i , U
1, p1, u1. In practice, we obtain these values by constructing a

first-order scheme based on the backward Euler method that reads as the following.

Step 1. We compute ũ1, φ1i , μ
1
i , U

1 by

ũ1 − u0

2δt
+B(u0, ũ1)− νΔũ1 +∇p0 −

3∑
i=1

μ̄1
i∇(φ0i − φ̂0i )

+

3∑
i=1

∇((φ0i − φ̂0i )μ̄
1
i ) = 0, (3.22)

(a) S-IEQ/IEQ, (σ12, σ13, σ23) = 0.01(1, 1, 1). (b) S-IEQ/IEQ, (σ12, σ13, σ23) = 0.01(1, 1, 3).

(c) S-IEQ/Implicit, (σ12, σ13, σ23) = 0.01(1, 1, 3).

Fig. 1. The L2 numerical errors of unknown variables computed by using the schemes S-IEQ,
IEQ, and implicit with various temporal resolutions, where (a) S-IEQ and IEQ for all unknown
variables with surface tension parameters (σ12, σ13, σ23) = 0.01(1, 1, 1), (b) S-IEQ and IEQ with

(σ12, σ13, σ23) = 0.01(1, 1, 3), and (c) S-IEQ and implicit with (σ12, σ13, σ23) = 0.01(1, 1, 3).



May 19, 2021 11:25 WSPC/103-M3AS 2150018

764 X. Yang

(a) S-IEQ. (b) IEQ.

Fig. 2. Time evolution of the total free energy with various time steps computed by using the

scheme (a) S-IEQ and (b) IEQ with various time steps from δt = 0.01 to δt = 0.01/28 with a
factor of 1/2 for each variance, where the surface tension parameters are set as (σ12, σ13, σ23) =
0.01(1, 1, 3) (In (b), the energy evolution curves with larger time steps computed by IEQ are
plotted, and it can be seen that they blow up).

φ1i − φ0i
δt

+ (ũ1 · ∇)(φ0i − φ̂0i ) + (∇ · ũ1)(φ0i − φ̂0i ) = −M μ̄1
i

Σi
, (3.23)

μ1
i = −3

4
εΣiΔφ

1
i +

12

ε
(H0

i + β0)U1 +
S

ε
Σi(φ

1
i − φ0i ), i = 1, 2, 3, (3.24)

U1 − U0 =
1

2

3∑
i=1

H0
i (φ

1
i − φ0i ). (3.25)

Step 2. We compute p1,u1 as follows:

1

δt
(u1 − ũ1) +∇(p1 − p0) = 0, (3.26)

∇ · u1 = 0. (3.27)

The boundary condition for ũ1,u1, φ1i , μ
1
i follows the same boundary conditions as

the scheme (3.13)–(3.21).

The following theorem ensures the numerical solutions (φn+1
1 , φn+1

2 , φn+1
3 ) com-

puted by the scheme (3.13)–(3.21) always satisfy the hyperplane link condition∑3
i=1 φ

n+1
i = 1, namely, no volume loss for the whole discrete scheme.

Theorem 3.1. The system (3.14)–(3.15) is equivalent to the following scheme with

two phase-field variables,

3φn+1
i − 4φni + φn−1

i

2δt
+ (ũn+1 · ∇)(φ∗i − φ̂0i ) + (∇ · ũn+1)(φ∗i − φ̂0i )

= −M μ̄n+1
i

Σi
, (3.28)
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μn+1
i = −3

4
εΣiΔφ

n+1
i +

12

ε
(H∗

i + β∗)Un+1

+
S

ε
Σi(φ

n+1
i − φ∗i ), i = 1, 2, (3.29)

with

φn+1
3 = 1− φn+1

1 − φn+1
2 , (3.30)

μn+1
3

Σ3
= −

(
μn+1
1

Σ1
+
μn+1
2

Σ2

)
. (3.31)

Proof. First, assuming that (3.28)–(3.31) are satisfied, we derive (3.14)–(3.15).

From (3.31), we derive

μ̄n+1
3

Σ3
= −

(
μ̄n+1
1

Σ1
+
μ̄n+1
2

Σ2

)
. (3.32)

Taking the summation of (3.28) for i = 1, 2, applying (3.30) at t = tn+1, tn, tn−1,

using (3.32) and
∑3

i=1 φ̂
0
i = 1, we obtain

3φn+1
3 − 4φn3 + φn−1

3

2δt
+ (ũn+1 · ∇)(φ∗3 − φ̂03)

+ (∇ · ũn+1)(φ∗3 − φ̂03) = −M μ̄n+1
3

Σ3
. (3.33)

Furthermore, from (3.31), (3.30) and the definition of β∗ in (3.17), we derive

μn+1
3 = −Σ3

(
μn+1
1

Σ1
+
μn+1
2

Σ2

)

= −Σ3

(
−3

4
εΔφn+1

1 − 3

4
εΔφn+1

2 +
12

ε

(
H∗

1 + β∗

Σ1
+
H∗

2 + β∗

Σ2

)
Un+1

+
S

ε
(φn+1

1 + φn+1
2 − φ∗1 + φ∗2)

)

= −3

4
εΣ3Δφ

n+1
3 +

12

ε
(H∗

3 + β∗)Un+1 +
S

ε
Σ3(φ

n+1
3 − φ∗3).

Second, we then assume that Eqs. (3.14)–(3.15) are satisfied and derive (3.28)–

(3.31). We use the math induction and assume (3.30) are valid for t = tn and

t = tn−1 (the validity of (3.30) at t = t1 can be shown by taking the similar

procedure of proof for the first-order scheme (3.22)–(3.27)). For any m, we define

Φm = φm1 + φm2 + φm3 , μm =
μm
1

Σ1
+
μm
2

Σ2
+
μm
3

Σ3
. (3.34)

By taking the summation of (3.14) for i = 1, 2, 3, we derive

3

2δt
(Φn+1 − 1) = −Mμ̄n+1, (3.35)
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where the combination of three convective terms vanishes since

(ũn+1 · ∇)

(
3∑

i=1

φ∗i −
3∑

i=1

φ̂0i

)
+ (∇ · ũn+1)

(
3∑

i=1

φ∗i −
3∑

i=1

φ̂0i

)
= 0, (3.36)

where we use
∑3

i=1 φ
∗
i = 1 by the induction.

By taking the summation of (3.15) for i = 1, 2, 3, we derive

μn+1 = −3

4
εΔΦn+1 +

S

ε
(Φn+1 − 1). (3.37)

By taking the L2 inner product of (3.35) with − 2δt
3 μ̄

n+1, of (3.37) with Φn+1 − 1,

and taking the summation of the two obtained equalities, we derive

3

4
ε‖∇Φn+1‖2 + S

ε
‖Φn+1 − 1‖2 + 2δt

3
M‖μ̄n+1‖2 = 0, (3.38)

where we use
∫
Ω
(Φn+1 − 1)dx =

∫
Ω
μ̄n+1dx = 0. Since the left-hand side of (3.38)

is a sum of non-negative terms, thus μ̄n+1 = 0 that implies Φn+1 = 1, i.e. (3.30) is

valid. Hence, from (3.37), we get μn+1 = 0 that implies (3.31).

The practical implementation process is described here. In fact, the new variable

Un+1 is not needed to be solved together with φn+1
i . We rewrite (3.16) as

Un+1 =
1

2

3∑
i=1

H∗
i φ

n+1
i + gn, (3.39)

where

gn =
4Un − Un−1

3
− 1

2

3∑
i=1

H∗
i

4φni − φn−1
i

3
. (3.40)

Thus, the system (3.13)–(3.16) can be rewritten as

ũn+1 +
2δt

3
B(u∗, ũn+1)− 2δt

3
νΔũn+1,

− 2δt

3

3∑
i=1

μ̄n+1
i ∇(φ∗i − φ̂0i ) +

2δt

3

3∑
i=1

∇((φ∗i − φ̂0i )μ̄
n+1
i ) = g1, (3.41)

φn+1
i +

2δt

3
(ũn+1 · ∇)(φ∗i − φ̂0i ) +

2δt

3
(∇ · ũn+1)(φ∗i − φ̂0i ) +

2δt

3

μ̄n+1
i

Σi
= gi2,

(3.42)

−μn+1
i − 3

4
εΣiΔφ

n+1
i +

6

ε
(H∗

i + β∗)
3∑

i=1

H∗
i φ

n+1
i +

S

ε
Σiφ

n+1
i = gi3, (3.43)

where g1, g
i
2, g

i
3 include all explicit terms in each corresponding equation. Note the

new auxiliary variable Un+1 disappears in the above scheme, hence we solve the

system (3.41)–(3.43) first and update Un+1 by (3.39).
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We develop the associated weak form of the system (3.41)–(3.43) and show its

well-posedness. For simplicity, the periodic boundary conditions are only considered

in this paper. For the physical boundary conditions (3.18)–(3.21), the proof can be

derived similarly without any essential difficulties. We define three Sobolev spaces

as follows:

Hk
per(Ω) = {φ ∈ Hk(Ω) : φ is periodic},

H̄k(Ω) =

{
φ ∈ Hk

per(Ω) :

∫
Ω

φdx = 0

}
,

Hk
u(Ω) = {u ∈ [Hk

per(Ω)]
d},

where Ω is the computed domain that is a smooth, open bounded, connected domain

in Rd, d = 2, 3.

By integrating (3.42), we obtain∫
Ω

φn+1
i dx =

∫
Ω

φni dx = · · · =
∫
Ω

φ0i dx, (3.44)

for i = 1, 2, 3. We let

u = ũn+1, φi = φn+1
i − 1

|Ω|
∫
Ω

φ0i dx, μi = μ̄n+1
i . (3.45)

Hence, we derive
∑3

i=1 φi = 0 from Theorem 3.1.

The weak form of (3.41)–(3.43) can be formulated as follows. Find φi ∈ H̄1(Ω),

μi ∈ H̄0(Ω), u ∈ H1
u(Ω) via

(u,v) +
2δt

3
(B(u∗,u),v) +

2δt

3
ν(∇u,∇v)

− 2δt

3

(
3∑

i=1

μi∇(φ∗i − φ̂0i ),v

)
− 2δt

3

3∑
i=1

((φ∗i − φ̂0i )μi,∇ · v)

= (g̃1,v), (3.46)

(φi, wi) +
2δt

3
((u · ∇)(φ∗i − φ̂0i ), wi) +

2δt

3
((∇ · u)(φ∗i − φ̂0i ), wi)

+
2δt

3

M

Σi
(μi, wi) = (g̃i2, wi), (3.47)

−(μi, ψi) +
3

4
εΣi(∇φi,∇ψi) +

6

ε
(H∗

i + β∗)

(
3∑

i=1

H∗
i φi, ψi

)

+
S

ε
Σi(φi, ψi) = (g̃i3, ψi), (3.48)

for any ψi ∈ H̄1(Ω), wi ∈ H̄0(Ω), v ∈ H1
u(Ω), where g̃1, g̃

i
2, g̃

i
3 include corresponding

explicit terms in each equation.
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We denote the above linear system (3.46)–(3.48) as

(L(X),Y ) = (B,Y ), (3.49)

where X = (u, μi, φi)
T , Y = (v, wi, ψi)

T , X, Y ∈ (H1
u, H̄

0, H̄1)(Ω), and

B = (g̃1, g̃
i
2, g̃

i
3)

T .

Next, we will show the well-posedness of the linear system (3.49).

Theorem 3.2. There exists a unique solution (u, μi, φi) ∈ (H1
u, H̄

0, H̄1)(Ω) for

the linear system (3.49).

Proof. (i). By setting X = (u, μi, φi)
T and Y = (v, wi, ψi)

T where X,Y ∈ (H1
u,

H̄0, H̄1)(Ω), we obtain

(L(X),Y ) ≤ C1

(
‖u‖H1 +

3∑
i=1

‖μi‖H0 +

3∑
i=1

‖φi‖H1

)

×
(
‖v‖H1 +

3∑
i=1

‖wi‖H0 +

3∑
i=1

‖ψi‖H1

)
,

where C1 is some constant that may depend on δt,M, ν,Σi, S, ε, ‖∇u∗‖L∞ , ‖u∗‖L∞ ,

‖φ∗i ‖L∞ , ‖φ0i ‖L∞ ,‖∇φ∗i ‖L∞ , ‖∇φ0i ‖L∞ , ‖β∗‖L∞ , and ‖H∗‖L∞ .

(ii). It is easy to find that

(L(X),X) = ‖u‖2 + 2δt

3
ν‖∇u‖2

+
3∑

i=1

(
2δt

3
MΣi

∥∥∥∥μi

Σi

∥∥∥∥2 + 3

4
εΣi‖∇φi‖2 + S

ε
Σi‖φi‖2

)

+
6

ε
‖H∗

1φ1 +H∗
2φ2 +H∗

3φ3‖2

≥ ‖u‖2 + 2δt

3
ν‖∇u‖2

+

3∑
i=1

(
2δt

3
MΣ

∥∥∥∥μi

Σi

∥∥∥∥2 + 3

4
εΣ‖∇φi‖2 + S

ε
Σ‖φi‖2

)

+
6

ε
‖H∗

1φ1 +H∗
2φ2 +H∗

3φ3‖2

≥ C2

(
‖u‖2H1 +

3∑
i=1

(‖φi‖2H1 + ‖μi‖2H0)

)
,

where we use Lemma 2.1 since
∑3

i=1
μi

Σi
= 0 from (3.31) and

∑3
i=1 φi = 0. The

constant C2 depends on δt,M,Σ, ν, S, ε.

Therefore, we conclude that the linear system (3.49) admits a unique solution

X = (u, μi, φi)
T ∈ (H1

u, H̄
0, H̄1)(Ω) by using the Lax–Milgram theorem.
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The unconditional energy stability of the scheme (3.13)–(3.21) is shown as

follows.

Theorem 3.3. The time-discrete scheme (3.13)–(3.21)satisfies the discrete energy

dissipation law as follows :

1

δt
(En+1 − En) ≤ −ν‖∇ũn+1‖2 −MΣ

3∑
i=1

∥∥∥∥ μ̄n+1
i

Σi

∥∥∥∥
2

≤ 0, (3.50)

where En+1 ≥ 0 is defined as

En+1 =
1

2

(
1

2
‖un+1‖2 + 1

2
‖2un+1 − un‖2

)
+

(δt)2

3
‖∇pn+1‖2

+
3ε

8

3∑
i=1

(
Σi

(
1

2
‖∇φn+1

i ‖2 + 1

2
‖2∇φn+1

i −∇φni ‖2
))

+
12

ε

(
1

2
‖Un+1‖2 + 1

2
‖2Un+1 − Un‖2

)

+
S

2ε

3∑
i=1

(Σi‖φn+1
i − φni ‖2). (3.51)

Proof. It is easy to see that En+1 ≥ 0 by using Lemma 2.1 and (3.30).

By taking the inner product of (3.13) with 2δtũn+1 in the L2 space, we obtain

(3ũn+1 − 4un + un−1, ũn+1) + 2νδt‖∇ũn+1‖2 + 2δt(∇pn, ũn+1)

− 2δt
3∑

i=1

(μ̄n+1
i ∇(φ∗i − φ̂0i ), ũ

n+1)

− 2δt

3∑
i=1

(φ∗i − φ̂0i )μ̄
n+1
i ,∇ · ũn+1) = 0. (3.52)

From (3.19), for any variable v with ∇ · v = 0, we have

(un+1,v) = (ũn+1,v). (3.53)

We derive following equality

(3ũn+1− 4un+ un−1, ũn+1)

= (3ũn+1− 4un+ un−1,un+1) + (3ũn+1− 4un+ un−1, ũn+1− un+1)

= (3un+1− 4un+ un−1,un+1) + (3ũn+1, ũn+1− un+1)

= (3un+1 − 4un + un−1,un+1) + 3(ũn+1 − un+1, ũn+1 + un+1)
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=
1

2
(‖un+1‖2 − ‖un‖2 + ‖2un+1 − un‖2 − ‖2un − un−1‖2

+ ‖un+1 − 2un + un−1‖2
)
+ 3(‖ũn+1‖2 − ‖un+1‖2),

(3.54)

where we use the following identity

2(3a− 4b+ c, a) = ‖a‖2 − ‖b‖2 + ‖2a− b‖2 − ‖2b− c‖2 + ‖a− 2b+ c‖2. (3.55)

We reformulate the projection step (3.19) as

3

2δt
un+1 +∇pn+1 =

3

2δt
ũn+1 +∇pn. (3.56)

By taking the square of both sides of the above equation, we get

9

4(δt)2
‖un+1‖2 + ‖∇pn+1‖2 =

9

4(δt)2
‖ũn+1‖2 + ‖∇pn‖2 + 3

δt
(ũn+1,∇pn).

(3.57)

Hence, by multiplying 2(δt)2/3 of the above equation, we derive

3

2
(‖un+1‖2 − ‖ũn+1‖2) + 2(δt)2

3
(‖∇pn+1‖2 − ‖∇pn‖2) = 2δt(ũn+1,∇pn).

(3.58)

By taking the inner product of (3.19) with 2δtun+1 in the L2 space, we have

3

2
(‖un+1‖2 − ‖ũn+1‖2 + ‖un+1 − ũn+1‖2) = 0. (3.59)

We combine (3.52), (3.54), (3.58), and (3.59) to obtain

1

2
(‖un+1‖2 − ‖un‖2 + ‖2un+1 − un‖2 − ‖2un − un−1‖2

+ ‖un+1 − 2un + un−1‖2) + 3

2
‖un+1 − ũn+1‖2

+
2(δt)2

3
(‖∇pn+1‖2 − ‖∇pn‖2) + 2νδt‖∇ũn+1‖2

− 2δt

3∑
i=1

(μ̄n+1
i ∇(φ∗i − φ̂0i ), ũ

n+1)− 2δt

3∑
i=1

((φ∗i − φ̂0i )μ̄
n+1
i ,∇ · ũn+1) = 0.

(3.60)

Computing the inner product of (3.14) with 2δtμ̄n+1
i in the L2 space, we have

(3φn+1
i − 4φni + φn−1

i , μ̄n+1
i ) + 2δt((ũn+1 · ∇)(φ∗i − φ̂0i ), μ̄

n+1
i )

+ 2δt((∇ · ũn+1)(φ∗i − φ̂0i ), μ̄
n+1
i ) + 2δtMΣi

∥∥∥∥ μ̄n+1
i

Σi

∥∥∥∥
2

= 0. (3.61)
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Computing the L2 inner product of (3.15) with −(3φn+1
i − 4φni + φn−1

i ) and

applying integration by parts, we find

−(μn+1
i , 3φn+1

i − 4φni + φn−1
i )

= −3

4
εΣi(∇φn+1

i ,∇(3φn+1
i − 4φni + φn−1

i ))

− 12

ε
(H∗

i U
n+1, 3φn+1

i − 4φni + φn−1
i )

− S

ε
(Σi(φ

n+1
i − φ∗i ), 3φ

n+1
i − 4φni + φn−1

i ), (3.62)

where we use the following equality

3∑
i=1

(β∗Un+1, 3φn+1
i − 4φni + φn−1

i ) =

(
β∗Un+1,

3∑
i=1

(3φn+1
i − 4φni + φn−1

i )

)

= 0, (3.63)

which is due to (3.30). Moreover, from (3.44), it is easy to derive

(3φn+1
i − 4φni + φn−1

i , μ̄n+1
i ) = (3φn+1

i − 4φni + φn−1
i , μn+1

i ). (3.64)

We compute the inner product of (3.16) with 24
ε U

n+1 in the L2 space and use

(3.55) to obtain

12

ε
(‖Un+1‖2 − ‖Un‖2 + ‖2Un+1 − Un‖2 − ‖2Un − Un−1‖2

+ ‖Un+1 − 2Un + Un−1‖2) = 12

ε

3∑
i=1

(H∗
i (3φ

n+1
i − 4φni + φn−1

i ), Un+1).

(3.65)

Hence, by taking the summation for i = 1, 2, 3 of (3.60)–(3.62), and combining

the obtained result with (3.65), we arrive at

1

2
(‖un+1‖2 − ‖un‖2 + ‖2un+1 − un‖2 − ‖2un − un−1‖2)

+
2(δt)2

3
(‖∇pn+1‖2 − ‖∇pn‖2)

+
3ε

8

3∑
i=1

Σi(‖∇φn+1
i ‖2 − ‖∇φni ‖2 + ‖∇(2φn+1

i − φni )‖2 − ‖∇(2φni − φn−1
i )‖2)

+
12

ε
(‖Un+1‖2 − ‖Un‖2 + ‖2Un+1 − Un‖2 − ‖2Un − Un−1‖2)

+
S

ε

3∑
i=1

Σi(‖φn+1
i − φni ‖2 − ‖φni − φn−1

i ‖2)
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+

{
1

2
‖un+1 − 2un + un−1‖2 + 3

2
‖un+1 − ũn+1‖2

+
3ε

8

3∑
i=1

Σi‖∇(φn+1
i − 2φni + φn−1

i )‖2

+
12

ε
‖Un+1 − 2Un + Un−1‖2

+
2S

ε

3∑
i=1

Σi‖φn+1
i − 2φni + φn−1

i ‖2
}

= −2δtν‖∇ũn+1‖2 − 2δtM

3∑
i=1

Σi

∥∥∥∥ μ̄n+1
i

Σi

∥∥∥∥
2

≤ −2δtν‖∇ũn+1‖2 − 2δtMΣ

3∑
i=1

∥∥∥∥ μ̄n+1
i

Σi

∥∥∥∥
2

≤ 0,

(3.66)

where we use Lemma 2.1, (3.32), (3.64), and the following identity

(3a− 4b+ c, a− 2b+ c) = ‖a− b‖2 − ‖b− c‖2 + 2‖a− 2b+ c‖2. (3.67)

Finally, we obtain (3.50) after dropping the terms in { } of (3.66) since they are

all positive from Lemma 2.1 and (3.30), i.e.

3∑
i=1

Σi‖∇(φn+1
i − 2φni + φn−1

i )‖2 ≥ Σ

3∑
i=1

‖∇(φn+1
i − 2φni + φn−1

i )‖2 ≥ 0,

3∑
i=1

Σi‖φn+1
i − 2φni + φn−1

i ‖2 ≥ Σ
3∑

i=1

‖φn+1
i − 2φni + φn−1

i ‖2 ≥ 0.

(3.68)

4. Numerical Simulation

In this section, we perform numerical simulations in two- and three-dimensional

spaces to demonstrate the accuracy and energy stability of the developed scheme

(3.13)–(3.21).

4.1. Brief description of the full discretization schemes

In all the next simulations, we set the computational region to be a two- or three-

dimensional rectangular domain as Ω = [0, L1] × [0, L2] or Ω = [0, L1] × [0, L2] ×
[0, L3]. For the direction that is assumed to follow periodic boundary conditions, we

adopt the Fourier-spectral method. For the direction that is assumed to follow the

boundary conditions as (3.18)–(3.21), the spatial discretizations are based on the
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Legendre–Galerkin method which results in very efficient and accurate solvers for

elliptic equations with constant coefficients. We adopt the inf-sup stable PN ×PN−2

pair for the velocity and pressure, and PN for the phase-field variables. For solving

the coupled linear variable-coefficient system in Step 1, we refer to our recent work

in Refs. 5,29 and 35 where the procedure was given in details.

4.2. Accuracy and stability test

We first perform accuracy and stability tests for the developed scheme (3.13)–(3.21).

When the scheme is equipped with a nonzero stabilizer (S �= 0), we denote it by

S-IEQ for short. To show how the stability is improved by the stabilization term, for

comparisons, the convergence rates of the non-stabilized version are also calculated,

namely, the scheme (3.13)–(3.21) without the stabilizer (S = 0), denoted by IEQ

for short. We also compare the convergence rates by using the second-order implicit

type scheme that is based on the Crank–Nicolson approach and all nonlinear terms

are treated implicitly. For convenience, we denote it by Implicit.

We first set a 2D computational domain with (x, y) ∈ Ω = [0, 2] × [0, 1]. We

assume the periodic boundary conditions for the x-axis and then discretize it by

using 257 Fourier modes. The boundary conditions (3.18) and (3.21) are used for

the y-axis which is then discretized by using Legendre polynomials up to the degree

of 256. The initial conditions for variables φi,u, p are set as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
φ0i (x, y) = tanh

(
r −√(x− xi)2 + (y − yi)2

ε

)
, i = 1, 2,

φ03(x, y) = 1− φ01(x, y)− φ02(x, y),

u0(x, y) = 0, p0(x, y) = 0,

(4.1)

where r = 0.25, x1 = 1.27, x2 = 0.73, y1 = y2 = 0.5. We also set ν = 1, ε = 0.04,

M = 1
ε , B = 10, and S = 10.

Since the exact solutions are not known, we choose the numerical solutions using

a very tiny time step size δt = 1e − 9 computed by using the scheme S-IEQ as

the benchmark solution (approximately the exact solution) for computing errors.

We investigate the order of accuracy by using two different set of surface tension

parameters (σ12, σ23, σ13) = 0.01(1, 1, 1) and 0.01(1, 1, 3) by varying the time step

sizes.

In Fig. 1(a), we set the partial spreading surface tension parameters as

(σ12, σ23, σ13) = 0.02(1, 1, 1). By varying the time step size δt from 1e − 2 to

δt = 1e−2
27 with a factor of 1/2 for each variance, we show the L2-errors of all

the variables. More precisely, the average of the L2 errors of the three phase-field

variables (since the accuracy performance of the three phase-field variables are

almost the same, we only plot the average value of their numerical errors), the

average of the L2 errors of the velocity field, as well as the L2 error of the pressure

between the numerical solution and the exact solution at t = 0.2 are plotted. We
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observe that the stabilized scheme S-IEQ presents the second-order convergence

rate. But the non-stabilized scheme IEQ blows up while the time step is large

(δt ≥ 0.01
23 ) and presents the second-order convergence rate when δt ≤ 0.01

24 . Simi-

larly, in Fig. 1(b) with the total spreading coefficients (σ12, σ23, σ13) = 0.01(1, 1, 3),

we observe that the stabilized scheme S-IEQ presents almost perfect second-order

accuracy all along, but the non-stabilized scheme IEQ blows up for δt ≥ 0.01
26 and

presents the second-order convergence rate only when δt ≤ 0.01
26 . In Fig. 1(c) with

(σ12, σ23, σ13) = 0.01(1, 1, 3), we compare the convergence rate computed by S-IEQ

and Implicit for the average of the three phase-field variables. We observe that

the Implicit scheme blows up for δt > 0.01
27 and can only present the second-order

convergence rate when δt ≤ 0.01
28 .

We further plot the temporal evolution curves of the total free energy (3.51)

with various time steps for the second example with (σ12, σ23, σ13) = 0.01(1, 1, 3).

The computed energy curves computed by the scheme S-IEQ and IEQ are shown

in Figs. 2(a) and 2(b), respectively. We find that all energy curves computed by the

scheme S-IEQ show monotonic decays, which confirms the unconditional stability

of the scheme. For comparison, in Fig. 2(b), the scheme IEQ blows up for larger

time steps and only show decays when δt ≤ 0.01
27 .

Therefore, through all accuracy and stability tests computed above, we find

that the stabilized scheme S-IEQ presents better accuracy and stability results in

comparisons with its non-stabilized version and Implicit type schemes especially

while using large time steps.

4.3. Spinodal decomposition with various surface tension

parameters

In this example, we study how surface tension parameters drive the system to evolve

from the initial homogeneous state to a three-phase state. This is the so-called

phase separation (or called spinodal decomposition) dynamics. We set the initial

conditions as a homogeneous ternary mixture that reads as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u0(x) = 0, p0(x) = 0,

ψi(x) = 0.5 + 0.001rand(x),

φ0i (x) =
ψi

ψ1 + ψ2 + ψ3
, i = 1, 2, 3,

(4.2)

where the rand(x) is the random number in [−1, 1] that follows the normal distri-

bution.

We first perform 2D simulations using the computational domain [0, 4]2 and

adopting the periodic boundary conditions. Space is discretized by using the

Fourier-spectral methods with 2572 Fourier modes. The model parameters read as

δt = 1e− 3, ε = 0.04, B = 10, S = 20, and M = 250. We adjust the surface

tensions (σ12, σ13, σ23) to investigate how the three-phase equilibrium patterns are

obtained.
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(a) (σ12, σ13, σ23) = 0.01(1, 1, 1).

(b) (σ12, σ13, σ23) = 0.01(1, 0.6, 0.6).

(c) (σ12, σ13, σ23) = 0.01(1, 0.8, 1.4).

(d) (σ12, σ13, σ23) = 0.01(1, 1, 3).

Fig. 3. The 2D dynamical evolutions of the profile 1
2
φ1+φ2 for the spinodal decomposition exam-

ples with various sets of surface tension parameters (σ12, σ13, σ23). In each subfigure, snapshots
at t = 1, 2, 5, and 50 (equilibrium state) are presented.

In Fig. 3, we plot the profiles of 1
2φ1 + φ2 with four sets of surface tension

parameters as (σ12, σ13, σ23) = 0.01(1, 1, 1), 0.01(1, 0.6, 0.6), 0.01(1, 0.8, 1.4), and

0.01(1, 1, 3).We observe that the final equilibrium solution presents various patterns

with different contact angles. In particular, when (σ12, σ13, σ23) = 0.01(1, 1, 1),
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shown in Fig. 3(a), the equilibrium solution present hexagonal phases with three

equal contact angles 2π
3 are obtained. When (σ12, σ13, σ23) = 0.01(1, 1, 3), shown in

Fig. 3(d), no junction points are formed due to the total spreading coefficients.

We further perform 3D simulations using the computational domain [0, 2]3

and adopting the periodic boundary conditions. Space is discretized by using the

Fourier-spectral methods with 2573 Fourier modes. The model parameters read as

δt = 1e− 3, ε = 0.04, B = 10, S = 20, andM = 50. In Fig. 4, we plot 3D dynamical

evolution of the isosurfaces of {φ1 = 1
2} (red) and {φ2 = 1

2} (yellow) in differ-

ent colors with three surface tension parameters as (σ12, σ13, σ23) = 0.01(1, 1, 1),

0.01(1, 0.8, 1.4), and 0.01(1, 1, 3). We observe that the three components accumulate

with different contact angles.

(a) (σ12, σ13, σ23) = 0.01(1, 1, 1), snapshots are taken at 1, 4, 5, and 20.

(b) (σ12, σ13, σ23) = 0.01(1, 0.8, 1.4), snapshots are taken at 1, 3, 7, and 20.

(c) (σ12, σ13, σ23) = 0.01(1, 1, 3), snapshots are taken at 1, 3, 7, and 20.

Fig. 4. (Color online) The 3D dynamical evolutions of the isosurfaces of {φ1 = 1
2
} (red) and

{φ2 = 1
2
} (yellow) for the spinodal decomposition examples with various surface tension parame-

ters are set as (σ12, σ13, σ23) = 0.01(1, 1, 1), 0.01(1, 0.8, 1.4), and 0.01(1, 1, 3).
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(a) Log(Energy) evolution. (b) A close-up view when the energies decay fast.

Fig. 5. Time evolution of the logarithm of the total free energy (3.51) for the 2D spinodal
decomposition examples where various surface tension parameters are set as (σ12, σ13, σ23) =
0.01(1, 1, 1), 0.01(1, 0.6, 0.6), 0.01(1, 0.8, 1.4), and 0.01(1, 1, 3).

(a) Energy evolution. (b) A close-up view when the energies decay fast.

Fig. 6. Time evolution of the total free energy (3.51) for the 3D spinodal decomposition examples
where various surface tension parameters are set as (σ12, σ13, σ23) = 0.01(1, 1, 1), 0.01(1, 0.8, 1.4),
and 0.01(1, 1, 3).

In Figs. 5 and 6, we present the time evolution of the free energy functional

for all 2D and 3D simulations. The energy curves show decays with the time that

confirms that the developed algorithm is unconditionally stable.

4.4. Liquid lens between two stratified fluids under the shear flow

In this section, we investigate the evolutions of the liquid lens driven by the

imposed shear flow on the boundary. We set the 2D computed domain as
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(x, y) ∈ Ω= [0, 1]× [0, 0.5] and the initial conditions as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ01(x, y) = (1− φ03)

(
1

2
+

1

2
tanh

(
4

ε
(y − 0.25)

))
,

φ02(x, y) = 1− φ01 − φ03,

φ03(x, y) =
1

2
tanh

(
0.09−√(x− 0.5)2 + (y − 0.25)2

ε/2

)
+

1

2
,

u0(x, y) = (0, 0), p0(x, y) = 0.

(4.3)

The liquid lens at the initial moment is set as circular and located at the interface

between two other immiscible fluids. We set the periodic boundary conditions along

the x-direction and discretize it by using the Fourier-spectral method with 257

Fourier modes. The boundary conditions for the variables along the y-direction are

set as

u|(y=0,0.5) = ±uw, v|(y=0,0.5) = ∂nφi|(y=0,0.5) = ∂nμi|(y=0,0.5) = 0, (4.4)

where the uw is the wall shear velocity. Hence, we discretize y-direction by using

the Legendre–Galerkin spectral method with the Legendre polynomials up to the

degree of 512. For better accuracy, we use the time step δt = 1e− 3. We set other

model parameters as ν = 1,M = 100, ε = 0.01, B = 10, S = 10, and adjust the

surface tension parameters (σ12, σ13, σ23) to investigate how the contact angles are

affected by the surface tension forces.

We first investigate the no shear case (uw = 0) by using four partial spreading

(Σi > 0, for all i), and two total spreading surface tension parameters (Σi < 0 for

some i). In each subfigure of Fig. 8, we plot snapshots of the profile 1
2φ1 + φ2 at

various times.

From the sharp interface formula (4.5) for angles, i.e. in the limit ε approximates

0, the contact angles (shown in Fig. 7) at the equilibrium state of the liquid lens

follow the so-called Young’s relation (cf. Refs. 4,16 and 24) given as

sin θ1
σ23

=
sin θ2
σ13

=
sin θ3
σ12

, (4.5)

Fig. 7. Theoretical shape of the contact lens between two stratified fluid at the equilibrium state.
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we derive (a) θ1 = θ2 = θ3 = 2π
3 for (σ12, σ13, σ23) = 0.01(1, 1, 1); (b) θ1 >

θ2 = θ3 for (σ12, σ13, σ23) = 0.01(1, 1, 0.6); (c) θ1 = θ2 > θ3 for (σ12, σ13, σ23) =

0.01(1, 0.6, 0.6); (d) θ1 < θ3 < θ2 for (σ12, σ13, σ23) = 0.01(1, 0.8, 1.4); (e) θ1 = 0,

θ2 = θ3 = π for (σ12, σ13, σ23) = 0.01(1, 1, 3); and (f) θ1 = θ2 = π, θ3 = 0 for

(a) t = 0.2, 10 with (σ12, σ13, σ23) = 0.01
(1, 1, 1).

(b) t = 0.4, 6 with (σ12, σ13, σ23) = 0.01
(1, 1, 0.6).

(c) t = 0.4, 6 with (σ12, σ13, σ23) = 0.01
(1, 0.6, 0.6).

(d) t = 0.4, 6 with (σ12, σ13, σ23) = 0.01
(1, 0.8, 1.4).

(e) t = 0.2, 3 with (σ12, σ13, σ23) = 0.01
(3, 1, 1).

(f) t = 0.4, 10 with (σ12, σ13, σ23) = 0.01
(1, 1, 3).

Fig. 8. The 2D dynamical evolution of the profile 1
2
φ1 + φ2 for the liquid lens example without

the shear flow (uw = 0) where four partial spreading cases (a)–(d) and two total spreading cases
(e)–(f) are simulated.

(a) Log(Energy) evolution. (b) A close-up view where the energies decay fast.

Fig. 9. Time evolution of the logarithm of the total free energy (3.51) for the spinodal decom-
position examples without the shear flow (uw = 0) where various surface tension parameters are
used.
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(σ12, σ13, σ23) = 0.01(3, 1, 1). These theoretical predictions for contact angles are all

verified by the computed results shown by the equilibrium solutions plotted in each

final subfigure of Figs. 8(a)–8(f). In Fig. 10, for the above three partial spreading

cases, we compare the equilibrium solutions calculated using the original ternary

Cahn–Hilliard model2,4 and the provided nonlinear schemes with δt = 1e− 5, and

the new volume-conserved Allen–Cahn model with the new developed scheme with

δt = 1e− 3. We note that there are almost no viewable differences between the

obtained contact angles, which illustrates the effectiveness of the new model and

the robustness of the algorithm. In Fig. 9, we plot the time evolution of the total

free energy for all simulated cases.

Fig. 10. Comparison of equilibrium solutions of three partial spreading cases calculated using the
conserved ternary Allen–Cahn model (2.13)–(2.16) and the ternary Cahn–Hilliard model computed
by the nonlinear scheme provided in Refs. 2 and 4 with δt = 1e− 5. From left to right are
(σ12, σ13, σ23) = 0.01(1, 1, 1), 0.01(1, 0.6, 0.6), and 0.01(1, 0.8, 1.4), respectively.

(a) t = 0.2, 10 with (σ12, σ13, σ23) = 0.01
(1, 1, 1).

(b) t = 0.4, 6 with (σ12, σ13, σ23) = 0.01
(1, 1, 0.6).

(c) t = 0.4, 6 with (σ12, σ13, σ23) = 0.01
(1, 0.6, 0.6).

(d) t = 0.4, 6 with (σ12, σ13, σ23) = 0.01
(1, 0.8, 1.4).

(e) t = 0.2, 3 with (σ12, σ13, σ23) = 0.01
(3, 1, 1).

(f) t = 0.4, 3 with (σ12, σ13, σ23) = 0.01
(1, 1, 3).

Fig. 11. The 2D dynamical evolution of the profile 1
2
φ1 +φ2 for the liquid lens example with the

shear flow (uw = 0.5) where four partial spreading cases (a)–(d) and two total spreading cases

(e)–(f) are simulated.
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Furthermore, we impose the shear flow on the wall with uw = 0.5 and plot the

snapshots of the profile 1
2φ1 + φ2 at various times in Figs. 11(a)–11(f). We observe

that liquid lens is deformed by the flow field while the contact angles for each phase

are still consistent with the no shear cases that follow Young’s relation as well.

4.5. The dynamics of a rising liquid drop with various surface

tensions and gravity forces

In this example, we investigate how a liquid bubble rises and deforms across a

liquid/liquid interface driven by the gravity force. We consider the case where the

density difference of the liquid crystal drop and ambient fluid is small so that we

can use the Boussinesq approximation (see also Refs. 26 and 33) and replace the

momentum equation as follows:

ut + u · ∇u− νΔu+∇p−
3∑

i=1

μ̄i∇φi +
3∑

i=1

∇(φiμ̄i) = g0φ3, (4.6)

with g0 = (0, g0) for 2D and g0 = (0, 0, g0) for 3D where g0 is the pre-assumed

gravity constant.

We first perform 2D simulations and set the computational domain as (x, y) ∈
Ω = [0, 1] × [0, 2]. The periodic boundary conditions are set for the x-axis and

we discretize it using 257 Fourier modes. For the y-axis, we adopt the boundary

conditions given in (3.18) and (3.21) and discretize it by using Legendre polynomials

up to the degree of 512. The initial conditions for variables φi (sketches of the

profiles shown in Fig. 12(a)), u, and p are set as follows:

φ01(x, y) = (1− φ03)

(
1

2
+

1

2
tanh

(
5

ε
(y − 1)

))
,

φ02(x, y) = 1− φ01 − φ03,

φ03(x, y) =
1

2
tanh

(
0.15−√(x − 0.5)2 + (y − 0.6)2

ε/5

)
+

1

2
,

u0(x, y) = (0, 0), p0(x, y) = 0.

(4.7)

We also set δt = 0.01, ν = 1, ε = 0.028, M = 1
ε , B = 10, and S = 10. We

vary the surface tension parameters (σ12, σ13, σ23) and the gravity parameter g0 to

investigate how the liquid bubble evolves with time.

In Fig. 13, we set the surface tension parameter as (σ12, σ13, σ23) = 0.01(1, 1, 1)

and use two different gravity parameters g0 = 10 and 20. With the weak gravity

constant g0 = 10, snapshots of 1
2φ1 + φ2 shown in Fig. 13(a), the liquid bubble

penetrates the liquid/liquid interface and remains captured between the two liquid

layers. We also note the three equal contact angles are formed due to three equal

surface tension parameters. For comparison, with the strong gravity constant g0 =

20, snapshots of 1
2φ1 + φ2 shown in Fig. 13(b), the liquid bubble finally rises into

the upper liquid after penetrating the interface.
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(a) 2D. (b) 3D.

Fig. 12. The 2D and 3D initial profiles of the rising fluid bubble example.

(a) g0 = 20 with snapshots taken at t = 1.2, 2.4, 3.6, 4.8, 6, 7.2, 8.4, and 9.6.

(b) g0 = 30 with snapshots taken at t = 1.2, 2.4, 3.6, 4.8, 6, 7.2, 8.4, and 9.6.

Fig. 13. The 2D dynamical evolution of the profile 1
2
φ1 + φ2 for rising bubble examples with

(σ12, σ13, σ23) = 0.01(1, 1, 1) and various gravity parameters g0 = 10 and g0 = 20.

Furthermore, we change the surface tension parameter to (σ12, σ13, σ23) =

0.01(1, 0.6, 0.6) and use two different gravity parameters g0 = 10 and 120 as well.

We get very similar phenomena that the small gravity parameter induces that the

liquid bubble is captured by the liquid layer and the large gravity parameter leads

to the interface penetration of the liquid bubble from the lower liquid to the upper

liquid.

Finally, we perform simulations in 3D and set the computational domain as

Ω = [0, 1]×[0, 1]×[0, 2]. Similar to the 2D simulations, we set the periodic boundary

conditions for the x and y-axes and discretize it using 1292 Fourier modes. The

z-direction is equipped with the physical boundary conditions given in (3.18) and
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(a) g0 = 10 with snapshots taken at t = 1.2, 2.4, 3.6, 4.8, 6, 7.2, 8.4, and 9.6.

(b) g0 = 120 with snapshots taken at t = 0.4, 0.8, 1.2, 2, 2.4, 2.8, 3.6, and 4.8.

Fig. 14. The 2D dynamical evolution of the profile 1
2
φ1 + φ2 for rising bubble examples with

(σ12, σ13, σ23) = 0.01(1, 0.6, 0.6) and various gravity parameters g0 = 10 and g0 = 120.

(3.21) and it is discretized by using Legendre polynomials up to the degree of 256.

The initial conditions are set as follows:

φ01(x, y, z) = (1− φ03)

(
1

2
+

1

2
tanh

(
5

ε
(z − 1)

))
,

φ02(x, y, z) = 1− φ01 − φ03,

φ03(x, y, z) =
1

2
tanh

(
0.15−√(x − 0.5)2 + (y − 0.5)2 + (z − 0.6)2

ε/5

)
+

1

2
,

u0(x, y, z) = (0, 0, 0), p0(x, y, z) = 0.

(4.8)

The initial condition for the phase-field variables φi are sketched in Fig. 12(b) and

the other parameters are set as δt = 0.01, ν = 1, ε = 0.028, M = 1
ε , B = 10, and

S = 10. In Figs. 15(a) and 15(b) and Figs. 16(a) and 16(b), for the computed results,

we plot the isosurfaces of {φ1 = 1
2} and {φ2 = 1

2} using different colors by varying

the gravity parameters and the surface tension parameters, i.e. (σ12, σ13, σ23) =

0.01(1, 1, 1) with g0 = 10 in Fig. 15(a); (σ12, σ13, σ23) = 0.01(1, 1, 1) with g0 = 20

in Fig. 15(b); (σ12, σ13, σ23) = 0.01(1, 0.6, 0.6) with g0 = 10 in Fig. 16(a); and

(σ12, σ13, σ23) = 0.01(1, 0.6, 0.6) with g0 = 120 in Fig. 16(b). The simulations are

consistent to the 2D results and the similar two behaviors occur, i.e. the capturing

in the layer and rising to the upper fluid.
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(a) g0 = 10 with snapshots taken at t = 0.2, 1.8, 3.8, 5.8, 9, 17, and 30.

(b) g0 = 20 with snapshots taken at t = 2.2, 3, 5, 11, 13.4, 13.8, and 17.8.

Fig. 15. The 3D dynamical evolution of the isosurfaces {φ1 = 1
2
} and {φ3 = 1

2
} for rising bubble

examples with (σ12, σ13, σ23) = 0.01(1, 1, 1) and various gravity parameters g0 = 10 and g0 = 20.

(a) g0 = 10 with snapshots taken at t = 0.2, 3.4, 3.8, 4.2, 5, 9, and 16.2.

(b) g0 = 120 with snapshots taken at t = 0.2, 1.4, 1.8, 2.6, 3.4, 3.8, and 4.2.

Fig. 16. The 3D dynamical evolution of the isosurfaces {φ1 = 1
2
} and {φ3 = 1

2
} for rising

bubble examples with (σ12, σ13, σ23) = 0.01(1, 0.6, 0.6) and various gravity parameters g0 = 10
and g0 = 120.
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5. Concluding Remarks

In this paper, we develop a new hydrodynamically coupled phase-field model for

three immiscible fluid components system and construct an efficient scheme to

solve the model. The scheme combines the recently developed IEQ approach with

the stabilization technique, the projection method, as well as the implicit–explicit

treatments for the nonlinear stress and convective terms. The well-posedness of the

scheme and its unconditional energy stability are rigorously proved.We demonstrate

the effectiveness of the new model, as well as the stability and the accuracy of

the developed scheme in simulating numerous numerical examples of 2D and 3D

including the spinodal decomposition, contact lens, and rising bubbles.

Acknowledgment

X. Yang was partially supported by National Science Foundation with Grant Num-

bers DMS-1720212, DMS-1818783, and DMS-2012490.

References

1. D. M. Anderson, G. B. McFadden and A. A. Wheeler, Diffuse-interface methods in
fluid mechanics, Annu. Rev. Fluid Mech. 30 (1998) 139–165.

2. F. Boyer and C. Lapuerta, Study of a three component Cahn–Hilliard flow model,
ESAIM : Math. Model. Numer. Anal. 40 (2006) 653–687.

3. F. Boyer, C. Lapuerta, S. Minjeaud, B. Piar and M. Quintard, Cahn–Hilliard/Navier–
Stokes model for the simulation of three-phase flows, Transp. Porous Media 82 (2010)
463–483.

4. F. Boyer and S. Minjeaud, Numerical schemes for a three component Cahn–Hilliard
model, ESAIM : Math. Model. Numer. Anal. 45 (2011) 697–738.

5. C. Chen and X. Yang, Efficient numerical scheme for a dendritic solidification phase
field model with melt convection, J. Comput. Phys. 388 (2019) 41–62.

6. C. Chen and X. Yang, Fast, provably unconditionally energy stable, and second-order
accurate algorithms for the anisotropic Cahn–Hilliard model, Comput. Meth. Appl.
Mech. Eng. 351 (2019) 35–59.

7. A. Christlieb, J. Jones, K. Promislow, B. Wetton and M. Willoughby, High accuracy
solutions to energy gradient flows from material science models, J. Comput. Phys.
257 (2014) 192–215.

8. C. M. Elliott and H. Garcke, Diffusional phase transitions in multicomponent systems
with a concentration dependent mobility matrix, Physica D 109 (1997) 242–256.

9. D. J. Eyre, Unconditionally gradient stable time marching the Cahn–Hilliard equa-
tion, in Computational and Mathematical Models of Microstructural Evolution, Mate-
rials Research Society Symposium Proceedings, Vol. 529 (Cambridge Univ. Press,
1998), pp. 39–46.

10. X. Feng and A. Prohl, Numerical analysis of the Allen–Cahn equation and approxi-
mation for mean curvature flows, Numer. Math. 94 (2003) 33–65.

11. X. Feng, Y. He and C. Liu, Analysis of finite element approximations of a phase field
model for two-phase fluids, Math. Comp. 76 (2007) 539–571 (electronic).

12. M. E. Gurtin, D. Polignone and J. Viñals, Two-phase binary fluids and immiscible
fluids described by an order parameter, Math. Models Methods Appl. Sci. 6 (1996)
815–831.



May 19, 2021 11:25 WSPC/103-M3AS 2150018

786 X. Yang

13. D. Jacqmin, Calculation of two-phase Navier–Stokes flows using phase-field modeling,
J. Comput. Phys. 155 (1999) 96–127.

14. J. Kim, Phase-field models for multi-component fluid flows, Commun. Comput. Phys.
12 (2012) 613–661.

15. J. Kim, K. Kang and J. Lowengrub, Conservative multigrid methods for ternary
Cahn–Hilliard systems, Commun. Math. Sci. 2 (2004) 53–77.

16. J. Kim and J. Lowengrub, Phase field modeling and simulation of three-phase flows,
Interface Free Bound. 7 (2005) 435–466.

17. T. S. Little, V. Mironov, A. Nagy-Mehesz, R. Markwald, Y. Sugi, S. M. Lessner, M. A.
Sutton, X. Liu, Q. Wang, X. Yang, J. O. Blanchette and M. Skiles, Engineering a 3D,
biological construct: Representative research in the south carolina project for organ
biofabrication, Biofabrication 3 (2011) 030202.

18. C. Liu and J. Shen, A phase field model for the mixture of two incompressible fluids
and its approximation by a Fourier-spectral method, Physica D 179 (2003) 211–228.

19. J. Lowengrub, A. Ratz and A. Voigt, Phase field modeling of the dynamics of mul-
ticomponent vesicles spinodal decomposition coarsening budding and fission, Phys.
Rev. E 79 (2009) 031926.

20. J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn–Hilliard fluids and
topological transitions. Proc. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454
(1998) 2617–2654.

21. L. Ma, R. Chen, X. Yang and H. Zhang, Numerical approximations for Allen–Cahn
type phase field model of two-phase incompressible fluids with moving contact lines,
Comm. Comput. Phys. 21 (2017) 867–889.

22. C. Miehe, M. Hofacker and F. Welschinger, A phase field model for rate-independent
crack propagation: Robust algorithmic implementation based on operator splits, Com-
put. Methods Appl. Mech. Eng. 199 (2010) 2765–2778.

23. S. Minjeaud, An unconditionally stable uncoupled scheme for a triphasic Cahn–
Hilliard/Navier–Stokes model, Numer. Methods Partial Differ. Equ. 29 (2013) 584–
618.

24. J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity (Clarendon Press,
1989).

25. J. Shen and X. Yang, Numerical approximations of Allen–Cahn and Cahn–Hilliard
equations, Disc. Cont. Dyn. Syst. A 28 (2010) 1669–1691.

26. J. Shen and X. Yang, Decoupled energy stable schemes for phase filed models of two
phase complex fluids, SIAM J. Sci. Comput. 36 (2014) B122–B145.

27. J. Shen and X. Yang, The IEQ and SAV approaches and their extensions for a class
of highly nonlinear gradient flow systems, Contemp. Math. 754 (2020) 217–245.

28. X. Yang, Linear, first and second order and unconditionally energy stable numer-
ical schemes for the phase field model of homopolymer blends, J. Comput. Phys.
327 (2016) 294–316.

29. X. Yang, Efficient Linear, stabilized, second-order time marching schemes for an
anisotropic phase field dendritic crystal growth model, Comput. Meth. Appl. Mech.
Eng. 347 (2019) 316–339.

30. X. Yang, A novel fully-decoupled scheme with second-order time accuracy and uncon-
ditional energy stability for the Navier–Stokes equations coupled with mass-conserved
Allen–Cahn phase-field model of two-phase incompressible flow, Int. J. Numer. Meth-
ods Eng. 122 (2021) 1283–1306.

31. X. Yang, A novel fully-decoupled, second-order and energy stable numerical scheme
of the conserved Allen–Cahn type flow-coupled binary surfactant model, Comput.
Methods Appl. Mech. Eng. 373 (2021) 113502.



May 19, 2021 11:25 WSPC/103-M3AS 2150018

Scheme for a flow-coupled three components model 787

32. X. Yang, Numerical approximations of the Navier–Stokes equation coupled with
volume-conserved multi-phase-field vesicles system: Fully-decoupled, linear, uncon-
ditionally energy stable and second-order time-accurate numerical scheme, Comput.
Methods Appl. Mech. Eng. 375 (2021) 113600.

33. X. Yang, J. J. Feng, C. Liu and J. Shen, Numerical simulations of jet pinching-off and
drop formation using an energetic variational phase-field method, J. Comput. Phys.
218 (2006) 417–428.

34. X. Yang, G. Forest, C. Liu and J. Shen, Shear cell rupture of nematic droplets in
viscous fluids, J. Non-Newtonian Fluid Mech. 166 (2011) 487–499.

35. X. Yang and H. Yu, Efficient second-order unconditionally stable schemes for a phase
field moving contact line model using an invariant energy quadratization approach,
SIAM J. Sci. Comput. 40 (2018) B889–B914.

36. X. Yang, J. Zhao, Q. Wang and J. Shen, Numerical approximations for a three compo-
nents Cahn–Hilliard phase-field model based on the invariant energy quadratization
method, M3AS: Mathematical Models Methods Appl. Sci. 27 (2017) 1993–2030.

37. J. Zhang, C. Chen and X. Yang, A novel decoupled and stable scheme for an
anisotropic phase-field dendritic crystal growth model, Appl. Math Lett. 95 (2019)
122–129.

38. J. Zhang and X. Yang, Decoupled, non-iterative, and unconditionally energy sta-
ble large time stepping method for the three-phase Cahn–Hilliard phase-field model,
J. Comput. Phys. 404 (2020) 109115.

39. J. Zhang and X. Yang, Unconditionally energy stable large time stepping method for
the L2-gradient flow based ternary phase-field model with precise nonlocal volume
conservation, Comput. Methods Appl. Mech. Eng. 361 (2020) 112743.


