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In this paper, we establish a new hydrodynamically coupled phase-field model for three
immiscible fluid components system. The model consists of the Navier—Stokes equations
and three coupled nonlinear Allen—Cahn type equations, to which we add nonlocal type
Lagrange multipliers to conserve the volume of each phase accurately. To solve the
model, a linear and energy stable time-marching method is constructed by combining
the stabilized-Invariant Energy Quadratization (S-IEQ) approach and the projection
method. The well-posedness of the scheme and its unconditional energy stability are
rigorously proved. Several numerical simulations in 2D and 3D are carried out, including
spinodal decomposition, dynamical deformations of a liquid lens and rising liquid drops,
to validate the model and demonstrate the efficiency and energy stability of the proposed
scheme, numerically.
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1. Introduction

The phase-field method (diffusive interface approach) had been widely applied to
model and simulate the multiphase fluid flow and a variety of multiple-component
materials, see Refs. 1, 3, 7, 13, 14, 17, 18, 20 and 34 and the references therein. Its
essential modeling framework is to adopt a certain number of independent phase
variables to label each material component and then postulate the total free energy
in terms of them. For instance, the commonly-used total free energy for simulating
the two-phasic fluid flow system that consists of two immiscible fluid components
usually includes two parts where one is the bulk potential (double-well or loga-
rithmic Flory—Huggins) that yields a hydrophobic contribution, and the other one
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is the conformational capillary entropic term that demands a hydrophilic prop-
erty. The competition between these two types of energy potentials enables the
coexistence of two distinct phases in the immiscible two-phasic system. we refer to
Refs. 1,8-14,16,18,19,21,22 and 25 concerning the theoretical analysis, algorithm
developments and numerical simulations for the two-phasic model.

Remarkably, it is not straightforward to extend the existing works of the two-
phasic model to the multi-phase scenario. For example, a modeling approach
adopted in Ref. 15 is to postulate the total free energy as a simple summation
of the original biphasic energy for each variable. In this way, the obtained system
consists of three nonlinear coupled Cahn-Hilliard type equations of the same for-
mat where the coupling term is induced by a Lagrangian multiplier term in each
equation to enforce the no-volume loss condition. However, as illustrated in Refs. 2
and 4, such a simple system is not well-posed for the total spreading case (some
coefficient of gradient term is negative) and thus some nonphysical instabilities at
interfaces may occur. To fix this problem, in Refs. 2 and 4, a sixth-order polynomial
type coupling potential is added into the free energy which can ensure the system
to be well-posed as long as a specific consistency condition for the surface ten-
sion parameters is satisfied. But the sixth-order polynomial potential causes more
sophisticated nonlinear couplings of all three phase-field variables. The consequence
is that a highly complicated, coupled and nonlinear system arrives which brings
up many substantial difficulties to design efficient and stable schemes to solve it
numerically. As far as the authors know, the only energy stable, linear numerical
schemes with second-order accuracy are developed based on the recently developed
so-called Invariant Energy Quadratization (IEQ)3¢ and Scalar Auxiliary Variable
(SAV)38:39 approaches. Except for these two methods, most of the existing methods
are either first-order accurate in time, or energy unstable, or highly nonlinear, or
even the combinations of these features (see Refs. 2,4 and 23).

Meanwhile, even though the three-phasic phase-field fluid flow model had been
developed for more than a decade, we note almost all the numerical work (algo-
rithm developments or simulations) were focused on the partial model (no flow-field
coupled) instead of the full hydrodynamically coupled model. It is well known that
when the Navier—Stokes equations are coupled into the system, a far more compli-
cated model for algorithm developments arrives. This is because remarkably more
nonlinear coupling terms between the flow field and the phase-field variables appear
in addition to the stiffness issues induced by nonlinear terms. To the best of the
authors knowledge, the only scheme with unconditional energy stability for solving
the hydrodynamics coupled three-phasic model is developed in Ref. 23, however,
their scheme is only first-order in time, and its computational cost is relatively
expensive due to the nonlinear nature.

In this paper, we consider numerical approximations for solving the hydrody-
namically coupled three components phase-field model. First, instead of solving
the multiple coupled nonlinear fourth-order Cahn—Hilliard equations, we formulate
the ternary phase-field model by using the Allen—Cahn equation. It is well known
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that the second-order Allen-Cahn system is relatively easier to solve numerically
in comparison with the fourth-order Cahn-Hilliard system. But an intrinsic bot-
tleneck using the Allen-Cahn model is that the volume cannot be conserved when
time evolves. To fix this issue, we modify the model by adding a nonlocal Lagrange
multiplier to each of the phase equations. This term helps to maintain the original
energy law and preserve the volume accurately. Second, we develop a linear scheme
that can possess unconditional energy stability and second-order accuracy by com-
bining the TEQ approach with the stabilization technique, the projection method,
as well as a subtle implicit—explicit treatment. The developed method can efficiently
solve the nonlinear couplings between the velocity and phase function through the
nonlinear convective and stress terms. The combination of these proved efficient
methods enables one to solve a linear elliptic system for the phase-field variables
and the velocity field, and a Poisson equation for the pressure at each time step.
We give rigorous proofs of the well-posedness of the linear system together with the
energy stability, and further demonstrate the stability and accuracy numerically in
simulating some classical benchmark numerical examples in 2D and 3D including
the spinodal decomposition, dynamical deformations of a liquid lens and a rising
liquid drop.

The rest of the paper is organized as follows. In Sec. 2, we briefly describe
the hydrodynamically coupled, volume-conserved, three components Allen—Cahn
phase-field model and derive its associated PDE energy dissipation law. In Sec. 3, we
present the numerical scheme and prove the well-posedness of the semi-discretized
linear system and its discrete energy dissipation law rigorously. In Sec. 4, we present
various numerical examples to illustrate the accuracy and efficiency of the proposed
schemes. Some concluding remarks are given in Sec. 5.

2. Model System

We now develop the volume-conserved, hydrodynamically coupled Allen—Cahn
phase-field model for the three components fluid flows system. Let €2 be a smooth,
rectangular, open bounded, connected domain in R%, d = 2,3. Let ¢; ;—1 2.3 be the
1th phase-field variable which represents the volume fraction of the ith component
in the fluid mixture, i.e.

1 inside the ith component,
b = (2.1)
0 outside the ith component.
A smooth layer with the thickness € is used to connect the interface between 0
and 1. Assuming the mixture being perfect (no volume leaking), thus the three
unknowns ¢1, @2, @3 satisfy

o1+ g2+ 3 =1 (2.2)

This is the so-called perfect mixture or hyperplane link condition, see Refs. 2,4
and 23.
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Remarkably, there exist several generalizations from the two-phasic model to
the three-phasic model (cf. Refs. 2-4,16 and 23). In this paper, we adopt below
the total free energy developed in Refs. 2-4,23. Hence, after coupling with the
hydrodynamics, the total free energy reads as

1 3e
E(u, ¢1,¢2,03) = / §|U|2dx+/ §(21|V¢>1|2 + Do Vo|* + E5|Ves|?)dx
Q Q

I II

+ BF‘((]Sl,(]52,¢3)dx . (23)
Q €

1
We give a brief introduction for all three parts of the total free energy in (2.3), I,
II, and III, as follows.

Part I is the kinetic energy for the fluid where u is the fluid velocity. Part II is
the linear gradient part in the well-known mixing energy potential for each of the
phase-field variable that contributes to the hydrophilic type (tendency of mixing) of
interactions between the fluid components. The coefficients X;,7 = 1,2, 3 are called
the “spreading” coefficient of the phase ¢ at the interface between phases j and k.
Part III is a nonlinear potential that reads as

F(81,62,65) = Z-63(1 = 1) + 2631 — 62" + 263(1 — )7

+P(¢17¢27¢3)5 (24)

where

P((blv ¢27 ¢3) = 3A¢%¢§¢§7 (25)

and A is a non-negative constant. The potential F' represents the hydrophobic type
(tendency of separation) of interactions. The parameter ¢ < 1 is related to the
width of the interface. As a consequence of the competition between parts II and
II1, the equilibrium configuration will include a diffusive interface.

The parameters, 0;; (012,013, 023), prescribe surface tension parameter between
the different pairs of phases, for example, 015 is the surface tension parameter
between the fluid 1 and fluid 2. To be algebraically consistent with the two-phasic
systems, 0;; (012,013, 023) should verify the following conditions:

Ei:Uij+Uz’k*0'jk, i =1,2,3. (26)

Note ¥; might not be always positive. If ¥3; > 0, the spreading is said to be “partial”,
and if X; < 0, it is called “total”.

Assuming that the fluid is incompressible and follows a generalized Fick’s law
that the mass flux be proportional to the gradient of the chemical potential, we
can derive the following hydrodynamically coupled Allen—Cahn model based on the
L2-gradient flow approach

bit + V- (ugy) = —M%, (2.7)
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3 12
3
ut—l—u-Vu—uAu—l—Vp—l—Z@Vui =0, (2.9)
i=1
V.-u=0, (2.10)

where p; = % is the variational derivative or chemical potential, M is the mobility
parameter, f; = 0;F, p is the pressure, v is the fluid viscosity, S, is the Lagrange
multiplier to ensure the hyperplane link condition (2.2) and it can be derived as

LR S
ﬂL——E <2—1+E—2+2—3), (2.11)

with X7 = E% + ELQ + E%, We consider in this paper either of the two type boundary
conditions below:

(i) all variables are periodic,or (i) ulgg = 0,0n¢iloa =0, i=1,2,3,
(2.12)

where n is the unit outward normal on the boundary 0f.

However, the Allen-Cahn dynamics (2.7) does not conserve the total volume
of [, ¢idx for any i. To fix it, we modify the system (2.7)-(2.10) to the following
form:

Pt + (0 V), + (V-u)p; = fM%, (2.13)
3 12 .
i = *ZezlA(ﬁl‘F ?(fz+ﬂL)7 = 172737 (214)
3 3
W+ u-Vu—vAu+ Vp— > Ve + Y V(gifis) =0, (2.15)
=1 1=1
V-u=0, (2.16)
with
i ! dx (2.17)
Pi = pi — 1o7 [ HidX. :
12 Jo

Here we use a nonlocal Lagrange multiplier term in (2.13) to cancel the variance of
the volume of phase i. By taking the L? inner product of (2.13) with 1, we obtain
the volume conservation property that reads as

d
— idx = 0. 2.18
% | o (2.18)
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Meanwhile, the convective terms in (2.13) and the stress terms in (2.15) are identical
to those in (2.7) and (2.9).

Remark 2.1. The system (2.13)—(2.14) is equivalent to the following two phase-
field variables system

Bu -+ (w- V)i + (V- w)gs =~ ML

3

(2.19)
3 12 .
pi = *ZGZiA¢i+?(fi+ﬂL)a =12,
where ¢3 and 3 are given by the following explicit formula:

P11+ g2+ ¢3 =1, (2.20)

H1 H2 H3
—+=+=—=0. 2.21
P + pI + P ( )

Since the proof is quite similar to Theorem 3.1, we omit the details here.

We now show the model equations (2.13)—(2.16) follow a dissipative energy law.
By taking the L? inner product of (2.13) with fi;, of (2.14) with —@;, of (2.15)
with u, performing integration by parts, we obtain

- 2
(6t i) + (- V)i, i) + (V- Wi, is) = —MZ, | EX| (2.22)
3 , 12
— (pis Git) = *gfzidtHV(ﬁiH - ?(fi + BL, dit), (2.23)
3 3
%dt||u|\2 +u|Vul? = (p,V-u) = > (Vi u) = Y (¢ifis, V-u) = 0. (2.24)
i=1 =1

Then, by taking the summation of (2.22), (2.23), and (2.24) for i = 1,2, 3, using
(2.16) for the pressure term, the equality (8r, (¢1 + @2 + ¢3)) = (B, (1)) = 0 due
to (2.20), and the equality (¢, fi;) = (¢4, pt;) due to (2.18), we obtain the following
identity as

d
%E(uv ¢17 ¢27 ¢3) =X (225)
where
1 ° f2 2 3 ?
=— oM |= Yol == Yl == . 2.26
X v||[Vul| ( 1, + X9 s, + 33 5 ( )

It appears that the inequality (2.25) forms like the energy dissipation law, but in
fact since Y; may not be always positive, one still needs to show the total free
energy E(u, ¢1, d2, ¢3) given in (2.3) is bounded from below and the energy decay
rate x < 0 which can be ensured by the following Lemmas (cf. Ref. 2).

Lemma 2.1. For any & + & + &3 = 0, there exists a constant X > 0 such that
Silén? + Daléo? + Bal&s)? > B(lén + &) + &)%), (2.:27)
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if and only if the following condition holds:
Do+ 2123+ 2y >0, X, + Ej > 0, Vi 75 7 (228)

Lemma 2.2. Let 013,013 and o3 be three positive numbers and X1, and X3
defined by (2.6) (Note 3; might not be positive for some i). For any A > 0, the bulk
free energy F(¢1, ¢2, @3) defined in (2.4) is bounded from below if ¢1, da, 3 is on
the hyperplane S in 2D with S = {¢1 + ¢2 + ¢3 = 1}. Furthermore, the lower bound
only depends on 1,%5, %3 and A.

From Lemma 2.1, when (2.28) holds, the summation of the gradient entropy
term is bounded from below since V(g1 + ¢2 + ¢3) = 0 by (2.20), i.e.

3 3
S niVeil? =23 Ve > o. (2.29)
i=1 i=1

Therefore, we derive E(u, ¢1, ¢2, ¢3) is bounded from below from (2.29) and Lemma
2.2. To show the decay rate x < 0, from (2.21), we derive

N - 0.

By applying Lemma 2.1, when (2.28) holds, we have
i |)? 2k s || a2 (A
—(El 2—1 + 29 2—2 + 33 2—3 )S—Z(HE—l +HE_2 +HE_3 ),
(2.31)

that implies the energy decay rate x < 0.

Remark 2.2. The bulk part energy F(¢1,p2,¢3) defined in (2.4) has to be
bounded from below in order to form a meaningful physical system. For partial
spreading case (X; > 0,V 1), one can drop the six-order polynomial term by assum-
ing A = 0 since Fy(¢p1, d2,d3) > 0 is naturally satisfied. For the total spreading
case, A has to be nonzero. Moreover, to ensure the non-negativity for F', A has to
be large enough.

For 3D case, it is shown in Ref. 2 that the bulk energy F' is bounded from below
when P(¢1, ¢2, ¢3) takes the following form:

P(¢1, 62, 03) = 3AG1 0505 (0a(61) + dal(d2) + dald3)), (2.32)

where ¢, (z) = m with 0 < a < £,

Since (2.5) is commonly used in literatures (cf. Refs. 2 and 4), we adopt it as well
for convenience. Nonetheless, it will be clear that the numerical schemes we develop
in this paper can deal with either (2.4) or (2.32) without any essential difficulties.
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3. Numerical Schemes

Before we construct the numerical scheme to solve the model (2.13)-(2.16), we
introduce some notations here. Let ¢ > 0 be a time step size and set t" = ndt for
0 <n < N with T = Nét. The L2 inner product of any two functions ¢(x) and

¥(x) is denoted by (¢,1)) = [, ¢(x)1h(x)dx, and the L? norm of ¢(x) is denoted
by ||¢]|? = (¢, #). Let )™ be the numerlcal approximation to the analytic function
(1) e=en.

Since we expect to develop linear type schemes, we use the IEQ approach to
handle the nonlinear potential F'(¢1, ¢2, ¢3). The IEQ method was recently devel-
oped in Refs. 5,6,28-30,35 and 37, where its essential idea is to transform the bulk
potential into a quadratic form (since the nonlinear potential is usually bounded
from below) using a set of new variables. For the reformulated model, all nonlinear
terms are treated semi-explicitly, which in turn yields a linear and unconditionally
energy stable system. This method bypasses those typical challenges such as the
justification/adjustment of convexity or implicit/explicit terms, and provides many
flexibilities to treat the complicated nonlinear terms since the only request for the
nonlinear potential is bounded from below. Here we give a slight modification to it
by adding some stabilization terms. Remarkably, the extra added linear stabiliza-
tion term is particularly effective to improve the energy stability while keeping the
required accuracy. The projection method is used to discretize the Navier—Stokes
equations thus the computations of the velocity can be decoupled from the pressure.
For the coupled nonlinear terms like the stress and convective terms, we discretize
them by using the implicit—explicit combination. The detailed procedure to develop
the scheme is presented as follows:

We define an auxiliary function U(x,t) as

U =\F(¢1,2,03) + B, (3.1)

where B is any constant that ensures the radicand positive (in all numerical exam-
ples, we let B = 10). Then, we rewrite the system (2.13)—(2.16) to the following
equivalent form with unknown variables (u, p, ¢;, i, U):

Gir+ (w0 V) (01— 89) + (V- w) (61 — 69) = ~MEL, (32)

pi= —SeSAG+ (H 4 B, i=1,2,3, (33)
1 3

=3 ZHZ'%&, (34)
=1

3 3
w4 B(u,u) = vAu+ Vp =Y V(g — 6)) + > V(g — ¢))i) =0, (3.5)
=1

=1

V-u=0, (3.6)
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where
B(u,v)=(u-V)v+ = (V u)v, (3.7)
0_ 1 0
1 (H  H, H;
ﬁ——z(z—ﬁz—ﬁz—g)’ e
i = Ji (3.10)

VE(¢1,62,03) + B

The transformed system (3.2)—(3.6) in terms with the variables (u, ¢;, u;, U, p) form
a closed PDE system with the following initial conditions:

u|(t:0) = 110, p|(t:0) :p07 (bz'(t 0) 17 i=1,2,3,

Ul(t=0) = = VF(¢9,¢3,¢3) + B.

Note the boundary conditions for U are not needed at all since Eq. (3.4) is only an
ODE with time. Thus, the boundary conditions of the new system (3.2)—(3.6) are
still (2.12).

We have made several modifications to the PDE model and thus we list some
detailed remarks as follows.

(3.11)

Remark 3.1. We replace the advection term by the skew-symmetric form B(u, v)
in the momentum equation. Even though V - u # 0, the identity (B(u,v),v) =0
still holds as long as the boundary condition u - n|pg = 0 is valid, which helps to
preserve the discrete energy stability.

Remark 3.2. Tt is easy to see the convective terms in (3.2) and the stress terms
in (3.5) are equivalent to that their original forms in (2.13) and (2.15) due to the
divergence-free condition. These modified formulations help to ensure the perfect
mixture condition (2.2) of the numerical solutions and the energy stability when
developing discrete schemes. Because while using the projection methods to deal
with the Navier—Stokes equations, the velocity used to discretize the convective
term may not follow the divergence-free condition. Hence, the numerical solutions
of ¢; may violate the condition (2.2) if we use the original convective term in (2.7).
For comparisons, after taking the new convective terms in (2.13), by taking the
summation for (2.13) for i = 1,2, 3, the convective terms turn into

v (Le-ya) @ (La-ya)

which vanishes as long as Z?Zl ¢; = 1 (since Z?Zl ¢? = 1) even if the divergence-
free condition of u does not hold.
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Using the second-order backward differentiation formula (BDF2), we now con-
struct a time marching scheme to discretize the new system (3.2)—(3.6), that
includes the following two steps:

Step 1. We compute a"+1, ¢!, 't U+t by

3ﬁn+l o 411” + unfl

557 +B(u*, a" ) — vAa" T 4 vp©

3

3
= D ETIV(GE =)+ Y V((er — At =0, (3.13)
i=1

i=1

ntl g 4ot . .
PO @)@ - )+ (V@ - 6Y)

20t
—n+1
M.
— M 3.14
i (3.14)
12
it = *%eziM?“ + 21 g 4 Zn et e, i=1,23
€ €
(3.15)
13
UM AU UM = 5 5 HI(3T 467 + 677, (3.16)
i=1
where
uf =2u” —u"l, ¢F =297 — "1,
1 I H* H* (3.17)
H* = H(o* * % * 1 2 3
(¢17¢27¢3)5 B ET <21 22 E3>,

S is a positive stabilization parameter, and the boundary conditions are either
periodic or

WMo =0, 9ngy o = 0. (3.18)

Step 2. We compute p" ! u™t! as follows:

3 -
ﬁ(u'“rl —a"t) + vttt —p") =0, (3.19)

V-ou"tt =0, (3.20)
where the boundary condition is either periodic or
u" ! nfyo = 0. (3.21)

Remarkably, we add an extra linear, second-order stabilization term associated
with S in (3.15). This term introduces an error in the scale of S(5t)20y¢;(+) which
is comparable with the error introduced by the second-order extrapolation of the
nonlinear term (see also in Refs. 5,27,29-32). In Sec. 4, we present enough numerical
evidence to show that this stabilizer is critical to maintain the accuracy and improve
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the energy stability while using large time steps, see the accuracy/stability tests
shown in Figs. 1 and 2.

Remark 3.3. The computations of the second-order scheme (3.13)—(3.21) need
the values of ¢}, U, p', ul. In practice, we obtain these values by constructing a
first-order scheme based on the backward Euler method that reads as the following.

Step 1. We compute u', ¢}, ul, U by

al —u’ >
0 ~1 ~1 0 =1 0 70
251 +B(u',u’) —vAa + Vp’ - E 1 V(97 — &;)
i=1
3
0 20y -1y
+ > V((¢) - )it =0, (3.22)
i=1
10 10°
average of (6, 6, o,
<} %t .l\\n’é‘:r of :u. v} I
G #
10+ A 2 St 10 (1. . ) I
s 5 ) : <]
o TEQ: - 4 d 3 =
w 10° R Al & # w 10 3 3
8 a T ; 8 %
] A 3K & L -
o 10t o i * o 10" ﬁ’/?:- F p %
¥~ i e
= N #_
1070 * 3 2 107" #7
- #t=0.01/2 ¥ 4 §t=0.01/2°
e A ) 100 L .
10% 104 102 10 10% 104 102 10
Time step Time step

(a) S-IEQ/IEQ, (o12,013,023) = 0.01(1,1,1). (b) S-IEQ/IEQ, (012,013,023) = 0.01(1, 1, 3).

A
10 -
»
4 *
= 10 ¥
<} o ;
& &
N_I -
y [l =
w4
o]
or »
108 - S-IEQuaverage of (1, oz, ¢s)

> of [y, é,04)

o lmplicit:average
A=0.01/2% ref-2nid order

10710 o= P )
10 102 108

Time Step
(¢) S-IEQ/Implicit, (012, 013,023) = 0.01(1, 1, 3).

Fig. 1. The L2 numerical errors of unknown variables computed by using the schemes S-IEQ,
IEQ, and implicit with various temporal resolutions, where (a) S-IEQ and IEQ for all unknown
variables with surface tension parameters (o012, 013,023) = 0.01(1,1,1), (b) S-IEQ and IEQ with
(o12,013,023) = 0.01(1, 1, 3), and (c) S-IEQ and implicit with (o12,013,023) = 0.01(1, 1, 3).
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0.08 T T T T T T T T T T
1:8t=0.01 HIEQ &t = 0012
L0012 0.075 SIEQ it = 0.01/2°
1ikRef-S-1EQ &t = 0.01/2°

|
0.075 |
Fbt=0.01/2

a1

0.07 |

- \ S:dt=0.00/2°
B 0.06 Dedit=0.01,/2*

Energy

2 | 1
0,055 /
w 1\ /
0.05 I'I *"

0045 |

Fn

0.04 i,

0.035 e 0.035 PR . N TR
. o 1] 05 1 15 2 25 3 as 4 45 §

o 0.5 1 15 2 25 3 3.5
Time

Time

(a) S-IEQ. (b) IEQ.
Fig. 2. Time evolution of the total free energy with various time steps computed by using the
scheme (a) S-TEQ and (b) IEQ with various time steps from §t = 0.01 to 6t = 0.01/2% with a

factor of 1/2 for each variance, where the surface tension parameters are set as (o12,013,023) =
0.01(1,1,3) (In (b), the energy evolution curves with larger time steps computed by IEQ are

plotted, and it can be seen that they blow up).

¢ = 0_ 50 STy 0 20y i}
BBy @ V) - )+ (V@ - ) =M @)
1 3 1, 1200 N 1 0 .
i = =7 8ilG + —(H] + O)UT + =Xi(¢; — ¢7), 1=1,2.3, (3.24)
13
L0 = 2N T HO>pr — 9. 2
Ut-u 2; 2(0] — ) (3.25)
Step 2. We compute p*, u! as follows:
1
St ) V- p0) =0, (3.26)

V-u' =0. (3.27)

The boundary condition for at, ul, ¢}, u! follows the same boundary conditions as
the scheme (3.13)—(3.21).
The following theorem ensures the numerical solutions ((;571”’1, ;H’l, g"’l) com-

puted by the scheme (3.13)-(3.21) always satisfy the hyperplane link condition
Zle gb?“ = 1, namely, no volume loss for the whole discrete scheme.

Theorem 3.1. The system (3.14)—(3.15) is equivalent to the following scheme with

two phase-field variables,

n+l n n—1 . ~
O @ V)6 - )+ (V) (0 )
—n+1

— _M'ui_’
2

(3.28)
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3 12
,U;L+1 — 7_621_A¢;l+1 4+ =
4 €

(H; + 57U

+ gEi(gb?'H —¢7), i=1,2, (3.29)
with
g+1 —1_ ?+1 o 721+17 (3.30)
pstt (u?” N u?“). (3.31)
Ss bl ¥y

Proof. First, assuming that (3.28)—(3.31) are satisfied, we derive (3.14)—(3.15).

From (3.31), we derive

—n—+1 —n+1 —n—+1

MS — 1 +7M2 . C}32)
P p P

Taking the summation of (3.28) for i = 1,2, applying (3.30) at t = ¢"+1 ¢n ¢n=1
using (3.32) and Z?Zl #? = 1, we obtain

3¢5 — Al + ¢!

+ (@ V) (95— 45)

26t
. ﬂn+1
(Va5 - ) = —M B (3.33)
3

Furthermore, from (3.31), (3.30) and the definition of 5* in (3.17), we derive

n+1 n+1
ntl _ _y Hy Ha
H3 3< A + Sy )

3 o 312
= —23 <ZEA¢1+1 — Z€A¢2+1 + ? <

Hi +5°  Hy + 8"\ s
U
P ’ Yo

S
R A2}

= 71623&;53“ + —(H3 + 51U oy =3 o 3.

Second, we then assume that Eqs. (3.14)—(3.15) are satisfied and derive (3.28)—
(3.31). We use the math induction and assume (3.30) are valid for ¢ = " and
t = t"! (the validity of (3.30) at t = t! can be shown by taking the similar
procedure of proof for the first-order scheme (3.22)—(3.27)). For any m, we define

mo_ m o oamgm o om _ M B3 HE
T+ d3" + ¢35 u 21+E2+23 (3.34)
By taking the summation of (3.14) for i = 1, 2,3, we derive
3
(@™ — 1) = —Mp" (3.35)

26t
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where the combination of three convective terms vanishes since
3 3 3
(z 5oy gzsg) (7w (z oy g,g) o @30
i=1 i=1 i=1

where we use Z?Zl ¢F =1 by the induction.
By taking the summation of (3.15) for i = 1, 2,3, we derive

nrl = %A@““ + 5(@““ —-1). (3.37)
€
By taking the L? inner product of (3.35) with —2tg"+1 of (3.37) with @™ —1,

and taking the summation of the two obtained equalities, we derive

26

3 S t
ZEHV‘I’"HW + ?H‘I’"H — 1>+ ?M|\ﬂ"+1|\2 =0, (3.38)

where we use [,,(®"! —1)dx = [, i""'dx = 0. Since the left-hand side of (3.38)
is a sum of non-negative terms, thus 7" = 0 that implies ®"*! = 1, i.e. (3.30) is
valid. Hence, from (3.37), we get u"*! = 0 that implies (3.31). |

The practical implementation process is described here. In fact, the new variable
U™+ is not needed to be solved together with ¢! ™'. We rewrite (3.16) as

3
1
untl = 5 S Hip 4 gn, (3.39)
=1

where

AU ™ Uun— 1 4¢n7¢n 1
":77— Hf ——t 4
g 2 Z 2 (340)

Thus, the system (3.13)—(3.16) can be rewritten as

26t 26t
ﬁn—i-l + TB(u*,ﬁ"H) o ?VAﬁn—i_l

)

25t & et 0y , 20t s _ g0yt
—?Z V ¢)+?Zv((¢z_¢) ) =91, (3-41)
im1 i=1

" 20t ,_, 20t an S 26t g+t .

Gt S V)(0] — )+ o (V- E(6] — 60) + e = b
(3.42)

3

—p - EEiA¢i+1 + E(H1 +p )ZHZ ot + zzi%ﬂ =93 (3.43)

i=1

where g1, g, g% include all explicit terms in each corresponding equation. Note the
new auxiliary variable U™*! disappears in the above scheme, hence we solve the
system (3.41)—(3.43) first and update U"*! by (3.39).
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We develop the associated weak form of the system (3.41)—(3.43) and show its
well-posedness. For simplicity, the periodic boundary conditions are only considered
in this paper. For the physical boundary conditions (3.18)—(3.21), the proof can be
derived similarly without any essential difficulties. We define three Sobolev spaces
as follows:

H* (Q) = {¢ € H*(Q) : ¢ is periodic},

per

@) = {oc i@ [ oax—of.

H(Q) = {u € [Hi, ()]}

where 2 is the computed domain that is a smooth, open bounded, connected domain
in RY, d =2,3.
By integrating (3.42), we obtain

[ et [ opax=- = [ oax (3.44)

for i =1,2,3. We let
wew o= ot o | (3.45)

Hence, we derive Z?:l ¢; = 0 from Theorem 3.1.
The weak form of (3.41)—(3.43) can be formulated as follows. Find ¢; € H' (1),
pi € HO(Q), u € HL(Q) via

(w,v) + %&(B(u*, w),v) + ?tu(Vu, vv)
S (Z ) =S = V)
= (g1, v), _ - (3.46)
(6 w0) + 20 (- D)6 — 90 0) + 2LV )6 — 80),w)
o ) = (w0, (3.47)

—(pis i) + _52 (Vgi, Vb)) + H* + %) (Z H*¢z,wz>

+ %zi(@-,wi) = (@), (3.48)

for any ¢; € HY(Q), w; € H*(Q), v € HL(Q), where g1, §5, 35 include corresponding
explicit terms in each equation.
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We denote the above linear system (3.46)—(3.48) as
(L(X),Y) = (B,Y), (3.49)
where X = (u, u;, ¢,)7, Y = (v, w;, ¥;)7, X, Y € (HL, H°, H")(Q), and
B = (1,95, 95)"-
Next, we will show the well-posedness of the linear system (3.49).

Theorem 3.2. There exists a unique solution (u,u;,¢;) € (HL, H°, H)(Q) for
the linear system (3.49).

Proof. (i). By setting X = (u, u;, ¢;)7 and Y = (v, w;, ;)T where X,Y € (H],
H°, HY)(Q), we obtain

(LX), Y) <Ch <|u”H1 + 3 luillze +) |¢i||H1>

i=1 i=1

3 3
x <|V||H1 + D willao + |¢i||H1>,
=1 i=1

where C is some constant that may depend on dt, M, v, ¥;, S €, [|[Vu*|| L, ||u*| Lo,
19711 oe, 162 1lLoes IV 7l oe s IV llLoe, 8% [l Loe, and || H*[| o

(ii). It is easy to find that
26t
LX), X) = ) + 2L vu?

3
+> (%&Mzi

=1

2
i 3 S
Ll | ZE&HV(J%HQJF Zzi|¢i||2>

>

6 * ES %
+ =~ Higr + Hy o + Hi s

20t
> [[ull? + ]| Val?

3
26t i
+Z<7M#§

i=1

2

3 S
+f&v@ﬁ+—ﬂmﬁ>
€
6 * * * 2
+EHH1¢1 +H2¢2 +H3¢3H

3
> Cs <|u||?11 + 3 (lgilld + |m||§{o)>,
i=1
where we use Lemma 2.1 since Y37, £ = 0 from (3.31) and S L éi = 0. The
constant Cy depends on 6t, M, X, v, S, €.

Therefore, we conclude that the linear system (3.49) admits a unique solution
X = (u,p;, )" € (HL, H°, H')(Q) by using the Lax-Milgram theorem. O
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The unconditional energy stability of the scheme (3.13)—(3.21) is shown as
follows.

Theorem 3.3. The time-discrete scheme (3.13)—(3.21)satisfies the discrete energy
dissipation law as follows:

2

1 77l+1
n—+1 n n+1(12
5 (B"H —B") < —v|vart| ME; s <O (3.50)
where E"Y > 0 is defined as
1/1 1 (6t)?
En+1 I - n+12 - 2 n+l _ _.nj2 n+1(2
5 (514 gl = w?) + Gl pwp

3
1 1
+ 5 Y (m(GIverne + gl2vert - vorp)

12 /1 1
-~ - U’n,+1 2 - 2U’n,+1 _U’n, 2
+ 2 (Gl 50 H
IS 3
+ 5o D (Bl = o). (3.51)
i=1

Proof. It is easy to see that E"*1 > 0 by using Lemma 2.1 and (3.30).
By taking the inner product of (3.13) with 2§tu™*! in the L? space, we obtain

(3u" T —4u™ +u" At + 2wat| Vartt? 4 26t(Vp", at )

3
—26t Y (T V(o) — 4Y), antt)
=1

—26tz v Lantt) = o. (3.52)

From (3.19), for any variable v with V- v = 0, we have
(u"t v) = (@, v). (3.53)
We derive following equality
(3~n+1 4un+ un—l’ ﬁn—i-l)
— (3l~ln+1_ 4un+ un—l’ un—i—l) 4 (3l~ln+1_ 4un+ un—171~1n+1_ un+1)
_ (3un+1_ 4un+ un—l’un—i-l) 4 (?)ﬁn—i-l7 ﬁn—i-l_ un+1)

_ (3un+1 _ 411” _i_un—l?un-&-l) +3( n+l n-‘rl’ﬁn—i-l =+ un—i—l)
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1
= 5" = - [j20 T —un | — |20 —un
=2 ) ),
(3.54)
where we use the following identity
2(3a —4b+c,a) = |lal|* = ||b]|* + [|12a — b||* — ||2b — ¢||* + |la — 2b+ ¢||*.  (3.55)

We reformulate the projection step (3.19) as

S 3 .
—u" Vp'tt = —a" ! + vpn. 3.56
st TP s VP (8:56)
By taking the square of both sides of the above equation, we get
9
n+1(2 v n+1(2 ~n+1 2 v 2 ~n+1 v n )
T I IR = s 9 V)

(3.57)

Hence, by multiplying 2(§¢)2/3 of the above equation, we derive

3 n ~nNn 5t T T n
2 s = )+ 200 o 2w ) = 2nan+, vp).

(3.58)

By taking the inner product of (3.19) with 2§tu™*! in the L? space, we have

3
5 U HZ = a7 o ™ — ) = o. (3.59)
We combine (3.52), (3.54), (3.58), and (3.59) to obtain

e e e e

3
+ Hun—i—l —ou" + un—1||2) + 5”un—',-l o ﬁ"+1||2

2(6t)2

+ (IVp" 1% = [Vp™ %) + 2ot Va2

72&2 (I (g — ¢?), a" ) 251&2 (o7 — dN)Er T, v -antt) = o.
=1

(3.60)
Computing the inner product of (3.14) with 26tu”+1 in the L? space, we have

(3P —4gr + ¢t ) + 20t (@ V) (0 — D), a )
2
=0. (3.61)

—n+1
F25H((V - ) (0 — ¢0), i) + 20t My, || L

%
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Computing the L? inner product of (3.15) with —(3¢!""" — 447 + ¢~ ') and
applying integration by parts, we find
—(u 3P — 4o} + 97

3 _
= 2DV VBT — 467 + 67 7))

12
— S (H;U™ 367 — 407 + 07 7)
S n+1 * n+1 n n—1
- _(Ei((bi - ¢i )» 3¢i - 4¢z‘ + ¢i )» (3-62)

€

where we use the following equality

i=1

3
D_(BUTL B — g + 77 = < R Z?@"“ 407 + ¢} 1))
0,

(3.63)
which is due to (3.30). Moreover, from (3.44), it is easy to derive
Bor ™ 4o} + i BT = (BT —dgl o). (3.64)

We compute the inner product of (3.16) with 22U ! in the L? space and use
(3.55) to obtain

12
Z (TR = U+ 20 - U f2u - U

12
U o U = 5t - gy 0.0,
i=1
(3.65)

Hence, by taking the summation for ¢ = 1,2,3 of (3.60)—(3.62), and combining
the obtained result with (3.65), we arrive at

1
5 U = a2 4 20— a? = 20" — " %)

2(dt)? " "
O (ot — 1 vpmIP)

3
36 n i n 3 3 n—
+ 2 2 SilIVOIT I = Va2 + IV 67" — o)I* = IV (267 — 67~ )I)
i=1
12 n n n n n n—
+ (U = U+ U = U - fl2UT = U )

S < . . 0 e
+?§ Si(lef ™ — o217 = llgy — o7 1)
=1
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1 n+1 n n—1)2 3 n+1 ~n+12
T R LR A (M O
36 <
+3 2Bl VT = 207 + 67T
i=1
12
+—HUH+172UH+U”71H2
€

25 &
ZZN 7T — 207 + o2
+; 95+ — 207 + 67|

2

n+1

= —25tv||Var |2 — 26tM ) X,
v|[Va" | z; EZ
u?“ ’

IN

—20tv|| Va2 — 25t M Y Z

i=1

<0

— )

l

(3.66)
where we use Lemma 2.1, (3.32), (3.64), and the following identity
(3a—4b+c,a—2b+¢)=|la—b||> = |b—c||®> +2la—20+c||>.  (3.67)

Finally, we obtain (3.50) after dropping the terms in { } of (3.66) since they are
all positive from Lemma 2.1 and (3.30), i.e

ZEHV (¢ — 207 + ¢"1H2>EZHV (6T =207 + 67 )| > 0,
=1

(3.68)
ZEH(bn-i-l 2¢n+¢n 1||2>EZH¢71+1 2¢n+¢n 1||2>0 O

=1

4. Numerical Simulation

In this section, we perform numerical simulations in two- and three-dimensional
spaces to demonstrate the accuracy and energy stability of the developed scheme
(3.13)—(3.21).

4.1. Brief description of the full discretization schemes

In all the next simulations, we set the computational region to be a two- or three-
dimensional rectangular domain as Q = [0, L1] x [0, Ls] or Q = [0, L1] x [0, La] X
[0, Ls]. For the direction that is assumed to follow periodic boundary conditions, we
adopt the Fourier-spectral method. For the direction that is assumed to follow the
boundary conditions as (3.18)—(3.21), the spatial discretizations are based on the
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Legendre-Galerkin method which results in very efficient and accurate solvers for
elliptic equations with constant coefficients. We adopt the inf-sup stable Py X Py _o
pair for the velocity and pressure, and Py for the phase-field variables. For solving
the coupled linear variable-coefficient system in Step 1, we refer to our recent work
in Refs. 5,29 and 35 where the procedure was given in details.

4.2. Accuracy and stability test

We first perform accuracy and stability tests for the developed scheme (3.13)—(3.21).
When the scheme is equipped with a nonzero stabilizer (S # 0), we denote it by
S-TEQ for short. To show how the stability is improved by the stabilization term, for
comparisons, the convergence rates of the non-stabilized version are also calculated,
namely, the scheme (3.13)—(3.21) without the stabilizer (S = 0), denoted by IEQ
for short. We also compare the convergence rates by using the second-order implicit
type scheme that is based on the Crank—Nicolson approach and all nonlinear terms
are treated implicitly. For convenience, we denote it by Implicit.

We first set a 2D computational domain with (x,y) € Q = [0,2] x [0,1]. We
assume the periodic boundary conditions for the x-axis and then discretize it by
using 257 Fourier modes. The boundary conditions (3.18) and (3.21) are used for
the y-axis which is then discretized by using Legendre polynomials up to the degree
of 256. The initial conditions for variables ¢;, u, p are set as follows:

& (x,y) = tanh(r — Ve -z y - yi)2>, i=1,2,

4.1
gbg(x,y):1*¢?(I,y)*¢8($,y), ( )

u(z,y) =0, p’(z,y) =0,

where r = 0.25, 1 = 1.27, 2o = 0.73, y; = y2 = 0.5. We also set v = 1, ¢ = 0.04,
M =1 B=10,and S = 10.

Since the exact solutions are not known, we choose the numerical solutions using
a very tiny time step size 6t = le — 9 computed by using the scheme S-IEQ as
the benchmark solution (approximately the exact solution) for computing errors.
We investigate the order of accuracy by using two different set of surface tension
parameters (012, 0923,013) = 0.01(1,1,1) and 0.01(1, 1, 3) by varying the time step
sizes.

In Fig. 1(a), we set the partial spreading surface tension parameters as
(012,0923,013) = 0.02(1,1,1). By varying the time step size §t from le — 2 to
6t = 122 with a factor of 1/2 for each variance, we show the LZ?-errors of all
the variables. More precisely, the average of the L? errors of the three phase-field
variables (since the accuracy performance of the three phase-field variables are
almost the same, we only plot the average value of their numerical errors), the
average of the L? errors of the velocity field, as well as the L? error of the pressure
between the numerical solution and the exact solution at ¢ = 0.2 are plotted. We
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observe that the stabilized scheme S-IEQ presents the second-order convergence
rate. But the non-stabilized scheme IEQ blows up while the time step is large
(6t > %21) and presents the second-order convergence rate when §t < 0221. Simi-
larly, in Fig. 1(b) with the total spreading coeflicients (012, 023, 013) = 0.01(1, 1, 3),
we observe that the stabilized scheme S-TEQ presents almost perfect second-order
accuracy all along, but the non-stabilized scheme TEQ blows up for dt > 0;(11
presents the second-order convergence rate only when 0t < 0;;1. In Fig. 1(c) with
(012,023,013) = 0.01(1, 1, 3), we compare the convergence rate computed by S-IEQ
and Implicit for the average of the three phase-field variables. We observe that
the Implicit scheme blows up for 6t > Oé# and can only present the second-order
convergence rate when 6t < Oé(g)l.

We further plot the temporal evolution curves of the total free energy (3.51)
with various time steps for the second example with (012, 093,013) = 0.01(1, 1, 3).
The computed energy curves computed by the scheme S-IEQ and IEQ are shown
in Figs. 2(a) and 2(b), respectively. We find that all energy curves computed by the
scheme S-TEQ show monotonic decays, which confirms the unconditional stability
of the scheme. For comparison, in Fig. 2(b), the scheme TEQ blows up for larger
time steps and only show decays when §t < 0—;3—1.

Therefore, through all accuracy and stability tests computed above, we find
that the stabilized scheme S-IEQ) presents better accuracy and stability results in
comparisons with its non-stabilized version and Implicit type schemes especially

while using large time steps.

and

4.3. Spinodal decomposition with various surface tension
parameters

In this example, we study how surface tension parameters drive the system to evolve
from the initial homogeneous state to a three-phase state. This is the so-called
phase separation (or called spinodal decomposition) dynamics. We set the initial
conditions as a homogeneous ternary mixture that reads as follows:

u’(x) =0, p'(x)=0,

Yi(x) = 0.5 + E)ﬁ.OOlrand(X)7 (4.2)
Ofx) = — "¢
¢i(x)7¢1+¢2+¢3’ bR

where the rand(x) is the random number in [—1, 1] that follows the normal distri-
bution.

We first perform 2D simulations using the computational domain [0,4]? and
adopting the periodic boundary conditions. Space is discretized by using the
Fourier-spectral methods with 2572 Fourier modes. The model parameters read as
0t = le—3, ¢ = 0.04, B =10, S = 20, and M = 250. We adjust the surface
tensions (012,013, 093) to investigate how the three-phase equilibrium patterns are
obtained.
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(b) (012,013,023) = 0.01(1,0.6,0.6).

aPP.D.

(¢) (o12,013,023) = 0.01(1,0.8,1.4).

l' VOUSUE™
W IA‘ YYI| R

(o12,013,023) = 0.01(1, 1, 3).

Fig. 3. The 2D dynamical evolutions of the profile %(ﬁl ~+ ¢o for the spinodal decomposition exam-
ples with various sets of surface tension parameters (c12,013,023). In each subfigure, snapshots
at t =1, 2, 5, and 50 (equilibrium state) are presented.

In Fig. 3, we plot the profiles of %¢1 + ¢o with four sets of surface tension
parameters as (o12,013,023) = 0.01(1,1,1), 0.01(1,0.6,0.6), 0.01(1,0.8,1.4), and
0.01(1, 1, 3). We observe that the final equilibrium solution presents various patterns
with different contact angles. In particular, when (o12,013,023) = 0.01(1,1,1),
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shown in Fig. 3(a), the equilibrium solution present hexagonal phases with three
equal contact angles 2?“ are obtained. When (012, 013, 023) = 0.01(1, 1, 3), shown in
Fig. 3(d), no junction points are formed due to the total spreading coefficients.

We further perform 3D simulations using the computational domain [0,2]?
and adopting the periodic boundary conditions. Space is discretized by using the
Fourier-spectral methods with 2573 Fourier modes. The model parameters read as
o0t =1le—3,e=0.04, B=10,5 =20, and M = 50. In Fig. 4, we plot 3D dynamical
evolution of the isosurfaces of {¢1 = 1} (red) and {¢2 = 3} (yellow) in differ-
ent colors with three surface tension parameters as (012,013, 023) = 0.01(1,1,1),
0.01(1,0.8,1.4), and 0.01(1, 1, 3). We observe that the three components accumulate
with different contact angles.

(¢) (o12,013,023) = 0.01(1, 1, 3), snapshots are taken at 1, 3, 7, and 20.

Fig. 4. (Color online) The 3D dynamical evolutions of the isosurfaces of {¢1 = %} (red) and

{p2 = %} (yellow) for the spinodal decomposition examples with various surface tension parame-
ters are set as (o12,013,023) = 0.01(1,1,1), 0.01(1,0.8,1.4), and 0.01(1, 1, 3).
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(a) Log(Energy) evolution. (b) A close-up view when the energies decay fast.

Fig. 5. Time evolution of the logarithm of the total free energy (3.51) for the 2D spinodal
decomposition examples where various surface tension parameters are set as (o12,013,023) =
0.01(1,1,1), 0.01(1,0.6,0.6), 0.01(1,0.8,1.4), and 0.01(1, 1, 3).

8 PO— : : ; ; : ’ 8
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U 2:(0y2, 019, 723) = 0.01(1,0.8, 1.4) i il 2:(0y2, 019, 723) = 0.01(1,0.8, 1.4)
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(a) Energy evolution. (b) A close-up view when the energies decay fast.

Fig. 6. Time evolution of the total free energy (3.51) for the 3D spinodal decomposition examples
where various surface tension parameters are set as (012,013, 023) = 0.01(1, 1, 1), 0.01(1, 0.8, 1.4),
and 0.01(1,1,3).

In Figs. 5 and 6, we present the time evolution of the free energy functional
for all 2D and 3D simulations. The energy curves show decays with the time that
confirms that the developed algorithm is unconditionally stable.

4.4. Liquid lens between two stratified fluids under the shear flow

In this section, we investigate the evolutions of the liquid lens driven by the
imposed shear flow on the boundary. We set the 2D computed domain as
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(x,y) € 2=]0,1] x [0,0.5] and the initial conditions as follows:
1 1 4
) = (1= o) (5 + grann (L0 - 025)).

P3(x,y) = %tanh(o'og — V(- 06-/5;2 +(y - 0.25)2> N

(4.3)

1
9’

uo(xvy) - (070)7 po(:r,y) =0.

The liquid lens at the initial moment is set as circular and located at the interface
between two other immiscible fluids. We set the periodic boundary conditions along
the x-direction and discretize it by using the Fourier-spectral method with 257
Fourier modes. The boundary conditions for the variables along the y-direction are
set as

ul(y=0,0.5) = TUw, V|(y=0,0.5) = OnPil(y=0,0.5) = Onii|(y=0,05 =0, (4.4)

where the u,, is the wall shear velocity. Hence, we discretize y-direction by using
the Legendre—Galerkin spectral method with the Legendre polynomials up to the
degree of 512. For better accuracy, we use the time step 0t = le — 3. We set other
model parameters as v = 1, M = 100, ¢ = 0.01, B = 10, S = 10, and adjust the
surface tension parameters (012, 013, 023) to investigate how the contact angles are
affected by the surface tension forces.

We first investigate the no shear case (u,, = 0) by using four partial spreading
(3; > 0, for all i), and two total spreading surface tension parameters (X; < 0 for
some 7). In each subfigure of Fig. 8, we plot snapshots of the profile %(251 + ¢o at
various times.

From the sharp interface formula (4.5) for angles, i.e. in the limit € approximates
0, the contact angles (shown in Fig. 7) at the equilibrium state of the liquid lens
follow the so-called Young’s relation (cf. Refs. 4,16 and 24) given as

sinf;  sinfy;  sinfs

= = , (4.5)

023 013 g12

0.5 = : = - ) - . - o —_— >
ths
0.4+
03| 6/, P3 \ 1
L - 19 !

0.2} [ > b

017

— Uy
4] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 7. Theoretical shape of the contact lens between two stratified fluid at the equilibrium state.
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we derive (a) 01 = 0y = 93 = 2% for (0'12,01370'23) = 00].(1,]./].)7 (b) 01 >
92 = 93 fOl" (0'12,01370'23) = 001(1,1,06) (C) 91 = 92 > 93 fOl" (0'12,01370'23) =

001(1,06,06), (d) 0 < 93 < 65 for (0'12,013,023) = 00].(1,08,].4)7 (e) 01 = O,
92 = 93 = x for (012,0’13,023) = 001(1,1,3), and (f) 91 = 92 = 7T,93 = 0 for

a t = 0.2,10 Wlth 0'12,0'13,023 = 0.01 t = 04,6 Wlth 0’12,0’13,0’23 = 0.01
(1,1,1). (1,170.6).

C t = 0.4,6 with (0’12,0’13,0’23 = 0.01 t = 04,6 with 0’12,0’13,0’23 = 0.01
(1,0.6,0.6). (1,0.8,1.4).

(e) t = 0.2,3 with (o12,013,023) = 0.01 t = 04,10 with (o12,013,023) = 0.01
(3,1,1). (1,1,3).

Fig. 8. The 2D dynamical evolution of the profile %(ﬁl + ¢2 for the liquid lens example without
the shear flow (uw = 0) where four partial spreading cases (a)—(d) and two total spreading cases
(e)—(f) are simulated.

3
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34| i3 ay) = 0.01(1, 0.8, 1.4) 34 &i(a1z. 003.00) = 0.01(1,0.8, 1.4)
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(a) Log(Energy) evolution. (b) A close-up view where the energies decay fast.

Fig. 9. Time evolution of the logarithm of the total free energy (3.51) for the spinodal decom-

position examples without the shear flow (u. = 0) where various surface tension parameters are
used.
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(012,013, 023) = 0.01(3, 1, 1). These theoretical predictions for contact angles are all
verified by the computed results shown by the equilibrium solutions plotted in each
final subfigure of Figs. 8(a)-8(f). In Fig. 10, for the above three partial spreading
cases, we compare the equilibrium solutions calculated using the original ternary
Cahn-Hilliard model®>* and the provided nonlinear schemes with 6t = le — 5, and
the new volume-conserved Allen—Cahn model with the new developed scheme with
o0t = le — 3. We note that there are almost no viewable differences between the
obtained contact angles, which illustrates the effectiveness of the new model and
the robustness of the algorithm. In Fig. 9, we plot the time evolution of the total
free energy for all simulated cases.

Caonseved Allen-Cahn model 1 Conseved Allen-Cahn model

Conseved Alen-Cahn model Cahn-Hilliard model Cahn-Hlliard model

Cahn-Hilliard model

62 03 04 05 06 07 o0 09

Fig. 10. Comparison of equilibrium solutions of three partial spreading cases calculated using the
conserved ternary Allen—-Cahn model (2.13)—(2.16) and the ternary Cahn—Hilliard model computed
by the nonlinear scheme provided in Refs. 2 and 4 with 6t = le — 5. From left to right are
(o12,013,023) = 0.01(1, 1, 1), 0.01(1,0.6,0.6), and 0.01(1,0.8,1.4), respectively.

(a) t = 0.2,10 with (o12,013,023) = 0.01 t = 04,6 with (012,013,023) = 0.01
(1,1,1). (1 1,0.6).

(C t = 04,6 Wlth 0'12,0'1370'23 = 0.01 t = 04,6 Wlth (712,013,0’23 = 0.01
(1,0.6, 0.6). (17 0.8, 1.4).

(e t = 0.2,3 with (0'12,0'1370'23) = 0.01 t = 0.4,3 with (0’12,0’13,023) = 0.01
(3,1,1). (1,1,3).

Fig. 11. The 2D dynamical evolution of the profile %d)l + ¢2 for the liquid lens example with the
shear flow (uw = 0.5) where four partial spreading cases (a)—(d) and two total spreading cases
(e)—(f) are simulated.
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Furthermore, we impose the shear flow on the wall with u,, = 0.5 and plot the
snapshots of the profile 1¢1 4 ¢ at various times in Figs. 11(a)-11(f). We observe
that liquid lens is deformed by the flow field while the contact angles for each phase
are still consistent with the no shear cases that follow Young’s relation as well.

4.5. The dynamics of a rising liquid drop with various surface
tensions and gravity forces

In this example, we investigate how a liquid bubble rises and deforms across a
liquid/liquid interface driven by the gravity force. We consider the case where the
density difference of the liquid crystal drop and ambient fluid is small so that we
can use the Boussinesq approximation (see also Refs. 26 and 33) and replace the
momentum equation as follows:
3 3
u; +u-Vu—vAu+ Vp — Z iV i + Z V(¢ifii) = gop3, (4.6)
i=1 i=1
with go = (0,g0) for 2D and gy = (0,0, go) for 3D where go is the pre-assumed
gravity constant.
We first perform 2D simulations and set the computational domain as (z,y) €
2 = [0,1] x [0,2]. The periodic boundary conditions are set for the z-axis and
we discretize it using 257 Fourier modes. For the y-axis, we adopt the boundary
conditions given in (3.18) and (3.21) and discretize it by using Legendre polynomials
up to the degree of 512. The initial conditions for variables ¢; (sketches of the
profiles shown in Fig. 12(a)), u, and p are set as follows:
1 1 5
¢(1)(Iay):(]‘7¢g) _+_ta’nh _(yil) )
2 2 €

(4.7)
1 (0.15— \/(:C—O.5)2+(y—0.6)2> 1

9 = —tanh =
¢3(Iay) 2 an 6/5 + 27

uO(I, y) = (070)7 po(xvy) =0.
We also set 6t = 0.01, v = 1, ¢ = 0.028, M = %, B = 10, and S = 10. We
vary the surface tension parameters (012, 013, 023) and the gravity parameter gy to
investigate how the liquid bubble evolves with time.

In Fig. 13, we set the surface tension parameter as (012,013, 0923) = 0.01(1,1,1)
and use two different gravity parameters go = 10 and 20. With the weak gravity
constant gy = 10, snapshots of %¢1 + ¢2 shown in Fig. 13(a), the liquid bubble
penetrates the liquid/liquid interface and remains captured between the two liquid
layers. We also note the three equal contact angles are formed due to three equal
surface tension parameters. For comparison, with the strong gravity constant gy =
20, snapshots of %(251 + ¢2 shown in Fig. 13(b), the liquid bubble finally rises into
the upper liquid after penetrating the interface.
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(a) 2D. (b) 3D.

Fig. 12. The 2D and 3D initial profiles of the rising fluid bubble example.

@& & L @

a) go = 20 with snapshots taken at ¢t = 1.2, 2.4, 3.6, 4.8, 6, 7.2, 8.4, and 9.6.

go = 30 with snapshots taken at ¢t = 1.2, 2.4, 3.6, 4.8, 6, 7.2, 8.4, and 9.6.

Fig. 13. The 2D dynamical evolution of the profile %dh + ¢2 for rising bubble examples with
(o12,013,023) = 0.01(1,1,1) and various gravity parameters go = 10 and go = 20.

Furthermore, we change the surface tension parameter to (oi2,013,023) =
0.01(1,0.6,0.6) and use two different gravity parameters go = 10 and 120 as well.
We get very similar phenomena that the small gravity parameter induces that the
liquid bubble is captured by the liquid layer and the large gravity parameter leads
to the interface penetration of the liquid bubble from the lower liquid to the upper
liquid.

Finally, we perform simulations in 3D and set the computational domain as
0 =10,1] x[0,1] %[0, 2]. Similar to the 2D simulations, we set the periodic boundary
conditions for the 2 and y-axes and discretize it using 1292 Fourier modes. The
z-direction is equipped with the physical boundary conditions given in (3.18) and
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a) go = 10 with snapshots taken at ¢t = 1.2, 2.4, 3.6, 4.8, 6, 7.2, 8.4, and 9.6.

‘i“‘.l

b) go = 120 with snapshots taken at t = 0.4, 0.8, 1.2, 2, 2.4, 2.8, 3.6, and 4.8.

Fig. 14. The 2D dynamical evolution of the profile %(ﬁl + ¢2 for rising bubble examples with
(o12,013,023) = 0.01(1,0.6,0.6) and various gravity parameters go = 10 and gg = 120.

(3.21) and it is discretized by using Legendre polynomials up to the degree of 256.
The initial conditions are set as follows:

Ay, 2) = <1¢3>< +;tanh<5<zl>>>
¢g(xay7z):1_¢(lj_¢g7

0.15 — /(z — 0.5)2 + (y — 0.5)% + (2 — 0.6)2> 1
€/5 T

(4.8)

1
¢g($,y7 Z) = itanh<

u’(z,y,2) = (0,0,0), p°(z,y,2)=0.

The initial condition for the phase-field variables ¢; are sketched in Fig. 12(b) and
the other parameters are set as 6t = 0.01, v =1, e = 0.028, M = %, B =10, and
S = 10. In Figs. 15(a) and 15(b) and Figs. 16(a) and 16(b), for the computed results,
we plot the isosurfaces of {¢; = £} and {¢2 = £} using different colors by varying
the gravity parameters and the surface tension parameters, i.e. (012,013,023) =
001(1, 1, 1) with go = 10 in Flg 15(&)7 (0’127013,023) - 001(1, 1, 1) with go = 20
in Fig. 15(b); (012,013, 023) = 0.01(1,0.6,0.6) with go = 10 in Fig. 16(a); and
(012, 013,093) = 0.01(1,0.6,0.6) with go = 120 in Fig. 16(b). The simulations are
consistent to the 2D results and the similar two behaviors occur, i.e. the capturing
in the layer and rising to the upper fluid.
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(b) go = 20 with snapshots taken at ¢t = 2.2, 3, 5, 11, 13.4, 13.8, and 17.8.

Fig. 15. The 3D dynamical evolution of the isosurfaces {¢1 = %} and {¢3 = %} for rising bubble
examples with (012,013, 023) = 0.01(1,1,1) and various gravity parameters go = 10 and go = 20.

T o e e TR TRk

(a) go = 10 with snapshots taken at ¢t = 0.2, 3.4, 3.8, 4.2, 5, 9, and 16.2.

5,
A

(b) go = 120 with snapshots taken at ¢t = 0.2, 1.4, 1.8, 2.6, 3.4, 3.8, and 4.2.

Fig. 16. The 3D dynamical evolution of the isosurfaces {¢1 = %} and {¢3 = %} for rising
bubble examples with (o12,013,023) = 0.01(1,0.6,0.6) and various gravity parameters go = 10
and go = 120.
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5. Concluding Remarks

In this paper, we develop a new hydrodynamically coupled phase-field model for
three immiscible fluid components system and construct an efficient scheme to
solve the model. The scheme combines the recently developed TEQ approach with
the stabilization technique, the projection method, as well as the implicit—explicit
treatments for the nonlinear stress and convective terms. The well-posedness of the
scheme and its unconditional energy stability are rigorously proved. We demonstrate
the effectiveness of the new model, as well as the stability and the accuracy of
the developed scheme in simulating numerous numerical examples of 2D and 3D
including the spinodal decomposition, contact lens, and rising bubbles.
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