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a b s t r a c t

We construct a novel fully-decoupled and second-order accurate time marching numerical scheme
with unconditional energy stability for the Cahn–Hilliard–Darcy phase-field model of the two-phase
Hele–Shaw flow, in which, the key idea to realize the full decoupling structure is to use the so-called
‘‘zero-energy-contribution’’ function and design a special ordinary differential equation to deal with
the nonlinear coupling terms between the flow field and the phase-field variable. Compared with the
existing decoupling type schemes, the scheme developed here is more effective, efficient and easy to
implement. At each time step, one only needs to solve a few fully-decoupled linear equations only
with constant coefficients. We also strictly prove the solvability and unconditional energy stability of
the scheme, and implement various numerical simulations in 2D and 3D to show the efficiency and
stability of the proposed scheme numerically.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, we consider the numerical approximations of the
ahn–Hilliard–Darcy phase-field model of the two-phase Hele–
haw flow system (CHD, for short). The term Hele–Shaw (or
ele–Shaw cells) is commonly used to describe the motions of
iscous fluids which is limited by two parallel plates with a very
mall gap. For this type of flow, the fluid motion conforms to the
echanical principles in porous media, and the boundary condi-

ions are defined by the pressure. Starting with the pioneering
ork in [1], the Cahn–Hilliard equation describing the two-phase

lows is coupled with the Darcy equations to simulate the motion
f the two-phase fluid flow confined in two flat plates, in which
oth fluids are assumed to be inertialess. Similar models had also
een used to describe tumor growth, see [2,3]. Although the CHD
odel has received extensive attention, as a complex nonlinear
ystem, to develop easy-to-implement, accurate, and uncondi-
ional energy stable schemes for solving it is still very challenging.
he main difficulty lies on how to discretize the following three
erms, (i) the coupling of the velocity and phase-field function
hrough the nonlinear advection and surface tension; (ii) the
tiffness term related to the interfacial width due to the nonlinear
ouble-well potential; and (iii) the coupling between the velocity
nd pressure through the divergence-free condition in the Darcy
quation.

✩ The review of this paper was arranged by Prof. Hazel Andrew.
E-mail address: xfyang@math.sc.edu.
https://doi.org/10.1016/j.cpc.2021.107868
0010-4655/© 2021 Elsevier B.V. All rights reserved.
The difficulty referred in (ii) means that for a nonlinear term
that causes stiffness, simple implicit or explicit type discretization
may lead to strict stability constraints on the time step (cf. [4,5]),
resulting in practical inefficiency. We recall that many successful
efforts have been made in the direction of designing appropriate
discretization for nonlinear terms to obtain unconditionally en-
ergy stable schemes. Some well-known methods include, but are
not limited to: the convex splitting [6–11], the linear stabiliza-
tion [5,12,13], the Invariant Energy Quadratization (IEQ) [14–17]
and its various version of the Scalar Auxiliary Variable (SAV)
[18–20], nonlinear implicit derivative [21], nonlinear quadra-
ture [22–24] methods, etc. Therefore, it can be considered that
the difficulty (ii) has been solved well. The difficulty mentioned in
(iii) can also be easily solved by the direct method [25,26], or the
projection-type method [27–34]. Therefore, we can also consider
that it has been solved well.

Regarding the difficulty referred to in (i), we recall that there
is also a successful scheme developed in [11,28] that can achieve
the full decoupling structure, second-order time accuracy, and
unconditional energy stability. Its key idea is to use the convex-
splitting method to deal with the double-well potential and the
way of implicit–explicit combination to deal with the advection
and surface tension. For this scheme, we temporarily ignore its
relatively expensive computational cost due to the nonlinearity
and only discuss the decoupling method developed therein. It
is worth noting that the implicit–explicit combination used in
[11,28] to deal with advection and surface tension is a very
common method that has been widely adopted to deal with

https://doi.org/10.1016/j.cpc.2021.107868
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2021.107868&domain=pdf
mailto:xfyang@math.sc.edu
https://doi.org/10.1016/j.cpc.2021.107868
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he same terms that appear in the Cahn–Hilliard–Navier–Stokes
ystem (referred to as CH–NS) for two-phase flow, cf. [10,11,13,
4,34–37]. However, for the CH–NS system, this method can
nly generate a fully-coupled scheme. Hence, a natural question
rises: when dealing with the same terms in the same way, what
auses the completely different result, that is, the fully-decoupled
cheme for the CHD model and the fully-coupled scheme for the
H–NS model? The answer is contained in the special format
f the Darcy equation, where the pressure gradient and velocity
atisfy an explicit linear relationship. Therefore, the fluid veloc-
ty can be given explicitly by the pressure, so as to achieve a
ully-decoupled scheme. However, in the Navier–Stokes equation,
here is no similar explicit relationship between the velocity
nd pressure gradient at all. Therefore the way of the implicit
nd explicit combination of advection and surface tension will
nevitably lead to a fully-coupled scheme.

Therefore, in this paper, we aim to construct a novel full
ecoupling scheme for the CHD model. This scheme does not
equire an explicit relationship between the velocity and pres-
ure, and can also achieve the fully-decoupling and second-order
ccuracy. We expect the scheme to be linear and unconditionally
nergy stable as well. To achieve the full decoupling structure,
e take advantage of a well-known but often overlooked special
roperty, the so-called ‘‘zero-energy-contribution" feature [38–42]
atisfied by the two coupling terms advection and surface ten-
ion. When deducing the energy law, if a proper test function
s selected to perform the inner product, these two coupling
erms will cancel each other out. In other words, the contribu-
ion of these two terms to the energy is zero. We apply this
roperty and develop a novel way to deal with these terms, by
dding a specially designed ordinary differential equation (ODE)
o the system that contains the inner product of these nonlinear
erms. This ODE is trivial at the continuous level because all the
erms in it are zero. But after discretization, it can help elimi-
ate all the troublesome nonlinear terms to obtain unconditional
nergy stability. Besides, the nonlocal variable can be used to
ecompose all equations into two sub-equations which can be
olved independently. As a result, the fully-decoupled feature is
chieved.
After combining this novel decoupling method with the pro-

ection type method for the Darcy fluid equation, and the SAV
ethod that is used to linearize the nonlinear double-well po-

ential, we arrive at an effective numerical scheme with all the
esired properties (linear, fully-decoupling, second-order accu-
ate in time, and unconditionally energy stable). Although the
eveloped scheme is not the first and unique fully-decoupled
cheme for solving the CHD model, compared with the scheme
n [11,28], it has two advantages. First, the scheme in [28] uses the
onvex-splitting method, and its nonlinear nature requires more
ime expense (cf. Fig. 4.7 (b)), while the scheme developed here is
inear and very effective in practice because we only need to solve
few fully-decoupled elliptic equations with constant coefficients
t each time step. Second, the scheme developed in [28] utilizes
he special property of the Darcy equation, so it is difficult to
eneralize to other type of fluid coupling system, while the new
ecoupling method can be used to construct efficient numerical
chemes for many coupled nonlinear models, not only the Darcy
quation considered in this paper but also the Navier–Stokes
quations [14,43], magnetic field [44], electric field [45,46], heat
quations [17,47], etc.
The rest of the article is organized as follows. We briefly de-

cribe the CHD model and derive its energy structure in Section 2.
n Section 3, a fully decoupled numerical scheme is constructed,
nd then its implementation is described in detail. The solvability
nd unconditional energy stability are proved rigorously as well.
n Section 4, we implement the developed scheme and test its
ccuracy/stability by simulating plenty of 2D and 3D examples.
ome concluding remarks are given in Section 5.
2

2. Cahn–Hilliard–Darcy system

Now, we briefly introduce the Cahn–Hilliard–Darcy phase-
field model for the two-phase Hele–Shaw flow system. Suppose
that Ω is a smooth, open bounded, connected domain in Rd,
d = 2, 3. Let φ(x, t) be a phase-field variable (or called labeling
function) to represent the volume fraction of the two distinct fluid
components in the fluid mixture, i.e.,

φ(x, t) =

{
1 fluid 1,
−1 fluid 2,

(2.1)

with a thin, smooth transition region with a width O(ϵ). The
total free energy is postulated as a combination of the gradient
potential and Ginzburg–Landau type double-well functional:

E(φ) =

∫
Ω

λ(
1
2
|∇φ|

2
+ F (φ))dx, (2.2)

here F (φ) =
1

4ϵ2
(φ2

− 1)2, λ accounts for the surface tension
parameter. The gradient entropy acts as the hydrophilic type of
interaction (the tendency to mix), and the double-well potential
represents the hydrophobic type of interaction (the tendency to
separate).

Assuming that the fluid motion conforms to the mechanical
principles in porous media and follows the generalized Fick’s law
of mass flux proportional to the chemical potential gradient, the
Cahn–Hilliard–Darcy model reads as:

φt + ∇ · (uφ) = M∆µ, (2.3)
µ = λ(−∆φ + f (φ)), (2.4)
τut + αu + ∇p + φ∇µ = 0, (2.5)
∇ · u = 0, (2.6)

where u is the nondimensionalized seepage velocity, f (φ) =

F ′(φ) =
1
ϵ2
(φ3

− φ), τ is a positive parameter, M is the mobility
parameter, p is the pressure, α is the dimensionless hydraulic
conductivity. Note the time derivative of the seepage velocity u
is retained for flows in porous medium, cf. [11,28,48,49].

We consider one of the following two types of boundary
conditions or their combination:
(i) all variables are periodic, or
(ii) u · n|∂Ω= ∂nφ|∂Ω= ∂nµ|∂Ω= 0,

(2.7)

where n is the unit outward normal on the boundary ∂Ω . Re-
markably, if the boundary conditions are (ii), then it is easy to
derive that

∂np|∂Ω= 0. (2.8)

The initial conditions read as

u|(t=0)= u0, p|(t=0)= p0 , φ|(t=0)= φ0. (2.9)

The system (2.3)–(2.6) admits the law of energy dissipation
which can be derived by the following process. By multiplying
the inner product of (2.3) with −µ in L2, we derive

−(φt , µ) = M∥∇µ∥
2
+

∫
Ω

∇ · (uφ)µdx. (2.10)

By taking the L2 inner product of (2.4) with φt , we obtain

(µ, φt ) =
d
dt

∫
Ω

(
λ

2
|∇φ|

2
+ λF (φ))dx. (2.11)

y taking the L2 inner product of (2.5) with u and using integra-
ion by parts and (2.6), we obtain

d
∫

τ
|u|

2dx + α∥u∥
2
+

∫
φ∇µ · udx = 0. (2.12)
dt Ω 2 Ω
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y combining the above three equalities, we obtain the energy
aw as follows,
d
dt

E(u, φ) = −M∥∇µ∥
2
− α∥u∥

2, (2.13)

where the two negative terms on the right end prescribe the
energy diffusive rate and

E(u, φ) =

∫
Ω

(
τ

2
|u|)2 + λ(

1
2
|∇φ|

2
+ F (φ))dx. (2.14)

emark 2.1. When deriving the PDE energy law (2.13), the
wo nonlinear terms are canceled by using integration by parts,
amely,

Ω

(
φ∇µ · u + ∇ · (uφ)µ

)
dx = 0. (2.15)

his shows that the advection and surface tension terms have
o contribution to the total free energy or energy diffusivity.
herefore, the ‘‘zero-energy-contribution" feature behind these
wo terms inspires us to design a fully decoupled scheme, which
ill be given in the next section.

We fix some notations here. For each k ≥ 0, let (·, ·)k and ∥·∥k
e the Hk(Ω) inner product and norm, respectively (H0(Ω) =
2(Ω)). We use (·, ·) and ∥·∥ to denote the L2 inner product and its
orm, respectively. For any given integer N > 0, we set δt = T/N
s the time step, and set ψn as the numerical approximation of
he value of solution ψ(·, t) at t = tn = nδt, 0 ≤ n ≤ N .

. Numerical scheme

This section aims to construct a time marching scheme to
olve the CHD system (2.3)–(2.6) and it is expected to be fully-
ecoupled, linear, second-order accurate, and unconditionally en-
rgy stable. To this end, we introduce a new method in this
aper, the main idea of which is to combine several approaches
hat have been proved to be effective. First, the projection-type
ethod is used to discretize the Darcy equations. Second, for the
onlinear term f (φ), we use the recently developed SAV approach
n which an auxiliary variable is used to convert the nonlinear
art of the energy to a quadratic form. This approach helps us to
btain a linear scheme. Third, for advection and surface tension
erms with the ‘‘zero-energy-contribution" property, we intro-
uce a second auxiliary variable and a trivial ODE associated with
t. This method brings three benefits. First, the modified system is
quivalent to the original system. Second, the coupled nonlinear
erms can be dealt with explicitly when discretizing the system.
hird, this variable decomposes all equations into multiple inde-
endent sub-equations that can be solved independently, thereby
chieving the full-decoupling. The detailed process is shown as
ollows.

First, we introduce a nonlocal auxiliary variable Q (t) and de-
ign a special ODE that reads as⎧⎪⎪⎨⎪⎪⎩
Qt =

∫
Ω

(∇ · (uφ)µ+ (φ∇µ) · u) dx,

Q |(t=0)= 1,
u · n|∂Ω= 0, or all variables are periodic.

(3.1)

t is easy to derive that the ODE (3.1) is equivalent to a trivial ODE
Qt = 0,Q |(t=0)= 1) which has the solution of Q (t) = 1.

Second, we define the first nonlocal auxiliary variable U(t) as a
quare root of the integral of the double-well potential, that read
s

=

√∫
F (φ)dx + B, (3.2)
Ω

3

where B is a constant ensuring a positive radian. This is the so-
alled SAV method that is very efficient to linearize the nonlinear
erms induced by the free energy potential.

Then, by using the two nonlocal variables Q ,U , and combining
the ODE system (3.1) with the CHD system (2.3)–(2.6), we obtain
the following equivalent form:

φt + Q∇ · (uφ) = M∆µ, (3.3)
= λ(−∆φ + HU), (3.4)

t =
1
2

∫
Ω

Hφtdx, (3.5)

ut + αu + ∇p + Qφ∇µ = 0, (3.6)
· u = 0, (3.7)

t =

∫
Ω

(∇ · (uφ)µ+ (φ∇µ) · u) dx, (3.8)

here

(φ) =
f (φ)√∫

Ω
F (φ)dx + B

. (3.9)

he transformed system (3.3)–(3.8) in the new variables
u, p, φ, µ,Q ,U) forms a closed PDE system with the following
nitial conditions,

u|(t=0)= u0, p|(t=0)= p0, φ|(t=0)= φ0,

Q |(t=0)= 1, U |(t=0)=

√∫
Ω

F (φ0)dx + B.
(3.10)

ote the two Eqs. (3.5) and (3.8) for the new variables U , Q are
nly differential equations in time, hence the boundary condi-
ions of the new system (3.3)–(3.8) are still (2.7).

emark 3.1. The new system (3.3)–(3.8) is exactly equivalent
o the original PDE system (2.3)–(2.6) since the summation of
wo nonlinear integral terms in (3.8) is equal to zero by using
ntegration by parts, which means Q (t) = 1. Therefore, we
multiply Q to the advection term ∇ · (uφ) and the surface tension
φ∇u will not change anything of the system. Meanwhile, after
integrating (3.5) with time t and using the initial condition (3.10),
we directly get (2.4).

The transformed system (3.3)–(3.8) also follows an energy
dissipative law which can be derived by a similar process to
obtain (2.13). We present the details here since the discrete
energy stability proof follows the same approach. We multiply
the L2 inner product of (3.3) with µ to get

(φt , µ) + M∥∇µ∥
2
+ Q

∫
Ω

∇ · (uφ)µdx  
I1

= 0. (3.11)

By taking the L2 inner product of (3.4) with φt , we obtain

− (µ, φt ) +
d
dt

∫
Ω

λ

2
|∇φ|

2dx + λU
∫
Ω

Hφtdx = 0. (3.12)

y taking the L2 inner product of (3.5) with 2λU , we obtain

d
dt

(λU2) − λU
∫
Ω

Hφtdx = 0. (3.13)

y taking the L2 inner product of (3.6) with u and using (3.7), we
btain
d
dt

∫
Ω

τ

2
|u|

2dx + α∥u∥
2
+ Q

∫
Ω

(φ∇µ) · udx   = 0. (3.14)
II1
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Fig. 4.1. Stability tests computed by the scheme SAV ((3.17)–(3.23) with S = 0) with two different time steps (a) δt = 0.01 and (b) δt = 0.01/27 , where the original
nergy (2.14) and modified energy (3.57) are plotted in each subfigure.
(

y taking the L2 inner product of (3.8) with Q , we obtain

d
dt

(
Q 2

2
) = Q

∫
Ω

∇ · (uφ)µdx  
I2

+Q
∫
Ω

(φ∇µ) · udx  
II2

. (3.15)

By combining the above five equalities and noting that the
terms I1 and I2, II1 and II2 are canceled respectively, we obtain
the energy law as follows,

d
dt

(∫
Ω

(
τ

2
|u|

2
+
λ

2
|∇φ|

2)dx + λU2
+

Q 2

2

)
= −M∥∇µ∥

2
− α∥u∥

2
≤ 0. (3.16)

Remark 3.2. The advantages of adding a simple ordinary dif-
ferential equation for Q can be seen from the above energy
law derivation process. Note that the term I1 is offset by term
I2, and term II1 is offset by term II2. In this way, we can use
different methods to discretize I1 and II1 because they no longer
need to cancel each other out, making it possible to design a
fully-decoupled scheme.

Now, we are ready to develop a numerical scheme to solve
(3.3)–(3.8). Based on the second-order backward differentiation
formula (BDF2), a time marching scheme is constructed as fol-
lows.

We compute ũn+1,un+1, φn+1, µn+1,Un+1,Q n+1 by

aφn+1
− bφn

+ cφn−1

2δt
+ Q n+1

∇ · (u∗φ∗) = M∆µn+1, (3.17)

µn+1
= λ(−∆φn+1

+ H∗Un+1
+

S
ϵ2

(φn+1
− φ∗)), (3.18)

Un+1
− bUn

+ cUn−1

=
1
2

∫
Ω

H∗(aφn+1
− bφn

+ cφn−1)dx, (3.19)

τ
aũn+1

− bun
+ cun−1

2δt
+ αũn+1

+ ∇pn + Q n+1φ∗
∇µ∗

= 0, (3.20)
aQ n+1

− bQ n
+ cQ n−1

2δt

=

∫
Ω

(
∇ · (u∗φ∗)µn+1

+ (φ∗
∇µ∗) · ũn+1) dx, (3.21)

and

τ
a

(un+1
− ũn+1) + ∇(pn+1

− pn) = 0, (3.22)

2δt

4

∇ · un+1
= 0, (3.23)

where
a = 3, b = 4, c = 1,

u∗
= 2un

− un−1, φ∗
= 2φn

− φn−1,

µ∗
= 2µn

− µn−1,H∗
= H(φ∗),

(3.24)

S > 0 is a pre-assigned stabilization parameter. We set the
boundary conditions to be periodic or

∂npn+1
|∂Ω= ∂nφ

n+1
|∂Ω= ∂nµ

n+1
|∂Ω= un+1

· n|∂Ω= 0. (3.25)

Remark 3.3. A second-order pressure-correction scheme is used
to decouple the computation of the pressure from that of the
velocity, see [11,27,28,28–34,50]. The initialization of the second-
order scheme requires the values of all variables at t = t1,
which can be obtained by constructing a first-order scheme using
the backward Euler method. In the above second-order scheme
(3.17)–(3.23), by setting a = 2, b = 2, c = 0, and ψ∗

= ψ0 for
any variable ψ , the first-order scheme can be easily obtained.

Remark 3.4. We add an extra second-order linear stabilization
term related to S in (3.18). Although this term introduces ex-
tra error of S

ϵ2
δt2∂ttφ(·), its magnitude is comparable with the

error caused by the second-order extrapolated nonlinear term
f (φ). In Section 4, we present sufficient numerical evidence that
the stabilizer is essential for maintaining accuracy and improv-
ing the energy stability while using large time steps, see the
accuracy/stability tests shown in Fig. 4.1, 4.2, and 4.6 (cf. [20]).

However, it seems that the scheme (3.17)–(3.23) is not a
fully-decoupled scheme we expect. It looks more like a fully-
coupled scheme, instead. Since all variables are related tightly,
it may require expensive iterative solvers in practical computa-
tions. To achieve the fully-decoupled implementation, we need
take advantage of the nonlocal properties of U and Q . We do
not need to explicitly solve them, but use them to divide all
variables into several equations that can be solved independently.
In this way, as long as by solving several linear equations with
constant coefficients, the final solution can be obtained, which
can greatly reduce the actual computational cost. The specific
implementation process is as follows.

First, we use the nonlocal scalar variable Q n+1 to split
φ,µ,U)n+1 into a linear combination that reads as⎧⎪⎨⎪⎩
φn+1

= φn+1
1 + Q n+1φn+1

2 ,

µn+1
= µn+1

1 + Q n+1µn+1
2 ,

n+1 n+1 n+1 n+1

(3.26)
U = U1 + Q U2 .
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hen the scheme (3.17)–(3.18) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
2Mδt

(φn+1
1 + Q n+1φn+1

2 ) +
1
M

Q n+1
∇ · (u∗φ∗)

= ∆(µn+1
1 + Q n+1µn+1

2 )

+
1

2Mδt
(bφn

− cφn−1),

µn+1
1 + Q n+1µn+1

2 =

(
−λ∆+

S
ϵ2

)
(φn+1

1 + Q n+1φn+1
2 )

+ H∗(Un+1
1 + Q n+1Un+1

2 ) −
S
ϵ2
φ∗,

(3.27)

ccording to Q n+1, the linear system (3.27) can be decomposed
nto two sub-systems as follows:⎧⎪⎨⎪⎩

a
2Mδt

φn+1
1 = ∆µn+1

1 + A1,

µn+1
1 =

(
−λ∆+

S
ϵ2

)
φn+1
1 + H∗Un+1

1 + B1,

(3.28)

⎧⎪⎨⎪⎩
a

2Mδt
φn+1
2 = ∆µn+1

2 + A2,

µn+1
2 =

(
−λ∆+

S
ϵ2

)
φn+1
2 + H∗Un+1

2 ,

(3.29)

where A1, A2, B1 are explicit, that read as

A1 =
1

2Mδt
(bφn

− cφn−1), B1 = −
S
ϵ2
φ∗, A2 = −

1
M

∇ · (u∗φ∗).

ote that the two subsystems (3.28) and (3.29) have the same
orm, so we only need to introduce a method to solve any one
f them, and the other follows the same rule. We take the first
ubsystem (3.28) as an example. To solve (3.28), we continue to
se the split technique, that is, the variables (φ1, µ1)n+1 are split

into a linear combination form by the variable Un+1
1 which read

as

φn+1
1 = φn+1

11 + Un+1
1 φn+1

12 , µn+1
1 = µn+1

11 + Un+1
1 µn+1

12 . (3.30)

By substituting the split form of all variables in (3.30) into (3.28)
and decomposing the results according to Un+1

1 , we obtain two
independent subsystems that read as⎧⎪⎨⎪⎩

a
2Mδt

φn+1
11 = ∆µn+1

11 + A1,

µn+1
=

(
−λ∆+

S )
φn+1

+ B1,

(3.31)

11 ϵ2 11

5

⎧⎪⎨⎪⎩
a

2Mδt
φn+1
12 = ∆µn+1

12 ,

µn+1
12 =

(
−λ∆+

S
ϵ2

)
φn+1
12 + H∗,

(3.32)

The boundary conditions for (3.31)–(3.32) are either periodic
r

nφ
n+1
11 |∂Ω= ∂nφ

n+1
12 |∂Ω= ∂nµ

n+1
11 |∂Ω= ∂nµ

n+1
12 |∂Ω= 0. (3.33)

One can easily solve (φ11, φ12, µ11, µ12)n+1 from the above two
sub-systems (3.31)–(3.32) since all nonlinear terms are given
explicitly.

We continue to solve (3.29) in a similar way where the vari-
able Un+1

2 is used to split (φ2, µ2)n+1 into a linear combination,
i.e.,

φn+1
2 = φn+1

21 + Un+1
2 φn+1

22 , µn+1
2 = µn+1

21 + Un+1
2 µn+1

22 . (3.34)

Then the unknowns (φ21, φ22, µ21, µ22)n+1 can be obtained by
solving another two subsystems that are similar to (3.31)–(3.32)
with the periodic or similar boundary conditions as (3.33).

Second, we rewrite (3.19) as the following form

Un+1
=

1
2

∫
Ω

H∗φn+1dx + gn, (3.35)

here gn
=

1
a (bU

n
− cUn−1)− 1

2a

∫
Ω
H∗(bφn

− cφn−1)dx is an ex-
plicit form. Substituting the linear form of (U, φ)n+1 represented
by Q n+1 given in (3.26) into (3.35), we get

Un+1
1 + Q n+1Un+1

2 =
1
2

∫
Ω

H∗(φn+1
1 + Q n+1φn+1

2 )dx + gn. (3.36)

hen, according to Q n+1, we decompose (3.36) into the following
wo equalities:⎧⎪⎪⎨⎪⎪⎩
Un+1
1 =

1
2

∫
Ω

H∗φn+1
1 dx + gn,

Un+1
2 =

1
2

∫
Ω

H∗φn+1
2 dx.

(3.37)

ubstituting the linear form of (φ1, φ2)n+1 represented by Un+1
1

iven in (3.30) into (3.37), we get⎧⎪⎪⎨⎪⎪⎩
Un+1
1 =

1
2

∫
Ω

H∗(φn+1
11 + Un+1

1 φn+1
12 )dx + gn,

Un+1
2 =

1
∫

H∗(φn+1
21 + Un+1

2 φn+1
22 )dx.

(3.38)
2 Ω
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w

ϑ

W
p

t

(
e
i
a

fter applying a simple factorization to (3.38), we derive

n+1
1 =

1
2

∫
Ω
H∗φn+1

11 dx + gn

1 −
1
2

∫
Ω
H∗φn+1

12 dx
, (3.39)

Un+1
2 =

1
2

∫
Ω
H∗φn+1

21 dx

1 −
1
2

∫
Ω
H∗φn+1

22 dx
. (3.40)

We need verify that Un+1
1 and Un+1

2 are solvable. This can be
obtained by applying a simple energy estimate to the subsystem
(3.32). For any ψ ∈ L2(Ω) with

∫
Ω
ψdx = 0, we define ∆−1ψ by

∆φ = ψ,

∫
Ω

φdx = 0. (3.41)

Applying ∆−1 to the first equation of (3.32) and combining the
result with the second equation of (3.32), we get

a
2Mδt

∆−1φn+1
12 = (−λ∆+

S
ϵ2

)φn+1
12 + H∗. (3.42)

By taking the L2 inner product of (3.42) with φn+1
12 , we derive

−

∫
Ω

H∗φn+1
12 dx

=
a

2Mδt
∥∇∆−1φn+1

12 ∥
2
+ λ∥∇φn+1

12 ∥
2
+

S
ϵ2

∥φn+1
12 ∥

2
≥ 0.

(3.43)

ence, the denominator in (3.39) is non-zero, which means that
n+1
1 is always solvable. Similarly, Un+1

2 can be always solved
rom (3.40) as well. After calculating Un+1

1 and Un+1
2 , we further

obtain φn+1
1 , µn+1

1 from (3.30), and φn+1
2 , µn+1

2 from (3.34).
Third, for the velocity field ũn+1,un+1 and the pressure pn+1

in the scheme (3.20) and (3.22)–(3.23), we also use the nonlocal
variable Q n+1 to split them as the following linear combinations:

ũn+1
= ũn+1

1 + Q n+1ũn+1
2 ,

un+1
= un+1

1 + Q n+1un+1
2 , pn+1

= pn+1
1 + Q n+1pn+1

2 .
(3.44)

y replacing these variables (ũ,u, p)n+1 in the scheme (3.20) and
3.22)–(3.23), and then splitting the obtained equations according
o Q n+1, we arrive at a system that includes two sub-equations.
ore precisely, from (3.20), the two split variables ũn+1

i , i = 1, 2
ollow the equations:⎧⎪⎨⎪⎩
τ

a
2δt

ũn+1
1 + αũn+1

1 = σ1,

τ
a

2δt
ũn+1
2 + αũn+1

2 = σ2,
(3.45)

where σ1, σ2 are explicit forms that are given by

σ1 = −∇pn + τ
bun

− cun−1

2δt
, σ2 = −φ∗

∇µ∗. (3.46)

imilarly, from (3.22)–(3.23), the two split variables un+1
i , pn+1

i ,

= 1, 2 follow the equations:⎧⎪⎨⎪⎩
τ

a
2δt

(un+1
1 − ũn+1

1 ) + ∇pn+1
1 = κ1, ∇ · un+1

1 = 0,

τ
a

2δt
(un+1

2 − ũn+1
2 ) + ∇pn+1

2 = κ2, ∇ · un+1
2 = 0,

(3.47)

where κ1 = ∇pn and κ2 = 0. We request the two split variables
pn+1
i , i = 1, 2 follow the boundary conditions described in (3.25),

i.e, they are either periodic or satisfy:

∂npn+1
i |∂Ω= 0. (3.48)

Fourth, we solve the auxiliary variable Q n+1. Using the split
form for the variables µn+1, ũn+1, one can rewrite (3.21) as the
 p

6

following form:

(
a

2δt
− ϑ2)Q n+1

=
1
2δt

(bQ n
− cQ n−1) + ϑ1, (3.49)

here ϑi are all known from previous steps:

i =

∫
Ω

(
∇ · (u∗φ∗)µn+1

i + (φ∗
∇µ∗) · ũn+1

i

)
dx, i = 1, 2. (3.50)

e need verify that Eq. (3.49) is solvable. By taking the L2 inner
roduct of the second equation in (3.45) with ũn+1

2 , we obtain

−

∫
Ω

(φ∗
∇µ∗) · ũn+1

2 dx = (τ
a

2δt
+ α)∥ũ2

n+1∥
2

≥ 0. (3.51)

By taking the L2 inner product of the first equation in (3.29) with
Mµn+1

2 , and of the second equation in (3.29) with −
a

2δt φ
n+1
2 , and

hen merging the two obtained equalities, we obtain

−

∫
Ω

∇ · (u∗φ∗)µn+1
2 dx

=
a

2δt
(λ∥∇φn+1

2 ∥
2
+

S
ϵ2

∥φn+1
2 ∥

2) + M∥∇µn+1
2 ∥

2

+
a

2δt
Un+1
2

∫
Ω

H∗φn+1
2 dx. (3.52)

From (3.37), it is easy to see that Un+1
2

∫
Ω
H∗φn+1

2 dx =
1
2 (

∫
Ω
H∗φn+1

2 dx)2 ≥ 0. Thus

−

∫
Ω

∇ · (u∗φ∗)µn+1
2 dx ≥ 0. (3.53)

The two inequalities (3.51) and (3.53) imply −ϑ2 ≥ 0 and then
a

2δt − ϑ2 ̸= 0, namely, (3.49) is always solvable.
Finally, we update φn+1, µn+1,Un+1 from (3.26), ũn+1, un+1,

and pn+1 from (3.44).
In summary, we implement the scheme (3.17)–(3.23) in the

following way:

• Step 1: Compute (φij, µij)n+1, i, j = 1, 2 from (3.31)–(3.32)
and another similar two subsystems split from (3.29) using
the variable Un+1

2 ;
• Step 2: Update Un+1

1 ,Un+1
2 from (3.39) and (3.40);

• Step 3: Update (φi, µi)n+1, i = 1, 2 from (3.30) and (3.34);
• Step 4: Compute ũn+1

i , i = 1, 2 from (3.45);
• Step 5: Compute un+1

i and pn+1
i , i = 1, 2 from (3.47);

• Step 6: Compute Q n+1 from (3.49);
• Step 7: Update φn+1, µn+1, Un+1 from (3.26), ũn+1, un+1, and

pn+1 from (3.44).

Remark 3.5. For step 5, by applying the divergence operator ∇·

to (3.47) and using the divergence-free conditions for un+1
i , we

can obtain the following Poisson equation for pn+1
i with the pe-

riodic boundary conditions or homogeneous Neumann boundary
conditions, i.e.,

−∆pn+1
i = −

aτ
2δt

∇ · ũn+1
i − ∇ · κi. (3.54)

Once pn+1
i is computed from (3.54), we update un+1

i by using
(3.47), i.e.,

un+1
i = ũn+1

i −
2δt
aτ

∇pn+1
i +

2δt
aτ
κi. (3.55)

Hence, the total computational cost needed by the scheme
3.17)–(3.23) at each time step includes solving four independent
lliptic linear systems in Step 1 and two Poisson-type equations
n Step 5. All these equations have constant coefficients and
re fully-decoupled, which means very efficient calculations in
ractice.
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The following theorem ensures that the developed scheme
3.17)–(3.23) satisfies the energy stability unconditionally.

heorem 3.1. The following discrete energy dissipation law holds
or the scheme (3.17)–(3.23),
1
δt

(En+1
− En) ≤ −α∥ũn+1

∥
2
− M∥∇µn+1

∥
2

≤ 0, (3.56)

where

En+1
=
τ

2

(1
2
∥un+1

∥
2
+

1
2
∥2un+1

− un
∥
2
)

+
λ

2
(
1
2
∥∇φn+1

∥
2
+

1
2
∥2∇φn+1

− ∇φn
∥
2)

+ λ(
1
2
|Un+1

|
2
+

1
2
|2Un+1

− Un
|
2
)

+
1
2
(
1
2
|Q n+1

|
2
+

1
2
|2Q n+1

− Q n
|
2
)

+
δt2

3τ
∥∇pn+1

∥
2
+
λS
2ϵ2

∥φn+1
− φn

∥
2.

(3.57)

roof. We multiply the inner product of (3.20) with 2δtũn+1 in
the L2 space to get

τ (3ũn+1
− 4un

+ un−1, ũn+1) + 2αδt∥ũn+1
∥
2

+ 2δt(∇pn, ũn+1) + 2δtQ n+1
∫
Ω

φ∗
∇µ∗

· ũn+1dx = 0. (3.58)

From (3.22), for any variable v with ∇ · v = 0, we have

un+1, v) = (ũn+1, v). (3.59)

We derive following equality

τ (3ũn+1
− 4un

+ un−1, ũn+1)

= τ (3ũn+1
− 4un

+ un−1,un+1)

+ τ (3ũn+1
− 4un

+ un−1, ũn+1
− un+1)

= τ (3un+1
− 4un

+ un−1,un+1)

+ τ (3ũn+1, ũn+1
− un+1)

= τ (3un+1
− 4un

+ un−1,un+1)

+ 3τ (ũn+1
− un+1, ũn+1

+ un+1)

=
τ

2

(
∥un+1

∥
2
− ∥un

∥
2
+ ∥2un+1

− un
∥
2
− ∥2un

− un−1
∥
2

+ ∥un+1
− 2un

+ un−1
∥
2
)

+ 3τ (∥ũn+1
∥
2
− ∥un+1

∥
2),

(3.60)

here we use the following identity

2(3a − 4b + c, a)

= a2 − b2 + (2a − b)2 − (2b − c)2 + (a − 2b + c)2.
(3.61)

We reformulate the projection step (3.22) as
3τ
2δt

un+1
+ ∇pn+1

=
3τ
2δt

ũn+1
+ ∇pn. (3.62)

By taking the square of both sides of the above equation, we get

9τ 2

4δt2
∥un+1

∥
2
+ ∥∇pn+1

∥
2

=
9τ 2

∥ũn+1
∥
2
+ ∥∇pn∥2

+
3τ

(ũn+1,∇pn). (3.63)

4δt2 δt

7

ence, by multiplying 2δt2
3τ of the above equation, we derive

3τ
2

(∥un+1
∥
2
− ∥ũn+1

∥
2) +

2δt2

3τ
(∥∇pn+1

∥
2
− ∥∇pn∥2)

= 2δt(ũn+1,∇pn). (3.64)

By taking the inner product of (3.22) with 2τδtun+1 in the L2

space, we have

3τ
2

(∥un+1
∥
2
− ∥ũn+1

∥
2
+ ∥un+1

− ũn+1
∥
2) = 0. (3.65)

We combine (3.58), (3.60), (3.64), and (3.65) to obtain
τ

2
(∥un+1

∥
2
− ∥un

∥
2
+ ∥2un+1

− un
∥
2
− ∥2un

− un−1
∥
2

+ ∥un+1
− 2un

+ un−1
∥
2)

+
3τ
2

∥un+1
− ũn+1

∥
2

+
2δt2

3τ
(∥∇pn+1

∥
2
− ∥∇pn∥2) + 2αδt∥ũn+1

∥
2

+ 2δtQ n+1
∫
Ω

(φ∗
∇µ∗) · ũn+1dx = 0.

(3.66)

Computing the inner product of (3.17) with 2δtµn+1 in the L2

space, we have

(3φn+1
− 4φn

+ φn−1, µn+1)

+ 2δtQ n+1
∫
Ω

∇ · (u∗φ∗)µn+1dx + 2δtM∥∇µn+1
∥
2

= 0.

(3.67)

Computing the L2 inner product of (3.18) with −(3φn+1
−4φn

+

φn−1), we find

− (µn+1, 3φn+1
− 4φn

+ φn−1)

+ λ(∇φn+1,∇(3φn+1
− 4φn

+ φn−1))

+ λUn+1
∫
Ω

H∗(3φn+1
− 4φn

+ φn−1)dx

+ λ
S
ϵ2

(φn+1
− φ∗, 3φn+1

− 4φn
+ φn−1) = 0.

(3.68)

By multiplying (3.19) with 2λUn+1 and using (3.61) we obtain

λ

(
|Un+1

|
2
− |Un

|
2
+ |2Un+1

− Un
|
2
− |2Un

− Un−1
|
2

+ |Un+1
− 2Un

+ Un−1
|
2
)

= λUn+1
∫
Ω

H∗(3φn+1
− 4φn

+ φn−1)dx.

(3.69)

By multiplying (3.21) with 2δtQ n+1 and using (3.61) we obtain

1
2

(
|Q n+1

|
2
− |Q n

|
2

+ |2Q n+1
− Q n

|
2
− |2Q n

− Q n−1
|
2
+ |Q n+1

− 2Q n
+ Q n−1

|
2
)

= 2δtQ n+1
∫
Ω

(
∇ · (u∗φ∗)µn+1

+ (φ∗
∇µ∗) · ũn+1

)
dx.
(3.70)
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w

Hence, by combining (3.66)–(3.70), we arrive at
τ

2
(∥un+1

∥
2
− ∥un

∥
2
+ ∥2un+1

− un
∥
2
− ∥2un

− un−1
∥
2)

+
2δt2

3τ
(∥∇pn+1

∥
2
− ∥∇pn∥2)

+
λ

2
(∥∇φn+1

∥
2
− ∥∇φn

∥
2
+ ∥∇(2φn+1

− φn)∥2

− ∥∇(2φn
− φn−1)∥2)

+ λ(|Un+1
|
2
− |Un

|
2
+ |2Un+1

− Un
|
2
− |2Un

− Un−1
|
2
)

+
1
2
(|Q n+1

|
2
− |Q n

|
2
+ |2Q n+1

− Q n
|
2
− |2Q n

− Q n−1
|
2
)

+
λS
ϵ2

(∥φn+1
− φn

∥
2
− ∥φn

− φn−1
∥
2)

+

{τ
2
∥un+1

− 2un
+ un−1

∥
2
+

3τ
2

∥un+1
− ũn+1

∥
2

+
λ

2
∥∇(φn+1

− 2φn
+ φn−1)∥2

+
2λS
ϵ2

∥φn+1
− 2φn

+ φn−1
∥
2

+ λ|Un+1
− 2Un

+ Un−1
|
2
+

1
2
|Q n+1

− 2Q n
+ Q n−1

|
2
}

= −2δtα∥ũn+1
∥
2
− 2δtM∥∇µn+1

∥
2,

(3.71)

where we use the following identity:

(3a−4b+c)(a−2b+c) = (a−b)2−(b−c)2+2(a−2b+c)2. (3.72)

Finally, we obtain (3.56) from (3.71) after dropping the posi-
tive terms in { }. □

4. Numerical simulation

In this section, we first implement several numerical examples
to verify the energy stability and convergence rate of the pro-
posed scheme (3.17)–(3.23). Then we perform several benchmark
simulations including the spinodal decompositions in 2D and 3D
and fingering instability in 2D and 3D, to show the effectiveness
of the scheme. In all the examples below, the computed domain is
set to a rectangle or a rectangular body. For directions with peri-
odic boundary conditions, we use the Fourier-spectral method to
perform the discretization. For the directions with boundary con-
ditions specified in (3.25), we use the spectral Legendre–Galerkin
method to perform the discretization.

4.1. Stability tests

In this subsection, we perform several stability tests in 2D to
verify the unconditional energy stability of the fully-decoupled
scheme (3.17)–(3.23). The initial conditions at t = t0 for all
variables are set as follows (as shown in the first subfigure of
Fig. 4.3),⎧⎪⎨⎪⎩φ0(x, y) = 1 +

2∑
i=1

tanh(
ri −

√
(x − xi)2 + (y − yi)2

1.5ϵ
),

u0(x, y) = 0, p0(x, y) = 0,

(4.1)

here r1 = 1.4, r2 = 0.5, x1 = π−0.8, x2 = π+1.7, y1 = y2 = π .
The computational domain is Ω = [0, 2π ]

2 and the periodic
boundary conditions are assumed. We use the Fourier-spectral
method and 128 Fourier modes for each direction to discretize
the space such that the interface is resolved well by sufficiently
fine mesh. The parameters read as

τ = 1, α = 100,M = 1, ϵ = 5e−2, λ = 0.01, B = 10, S = 2.
(4.2)
8

Note that the scheme (3.17)–(3.23) contains an additional sta-
bilizer (term S in (3.18)), to verify whether it effectively enhances
the stability, we compare the numerical solutions obtained by
the stabilized version (S ̸= 0) with that obtained by using the
non-stabilized version (S = 0). For convenience, we use DSAV to
denote the stabilized version ((3.17)–(3.23) with S = 2), and SAV
to denote the non-stabilized version ((3.17)–(3.23) with S = 0).

In Figs. 4.1 and 4.2, we compute the original free energy (2.14)
and the modified free energy (3.57) computed by using different
time steps to verify the energy stability of DSAV and SAV.

• First, we plot the energy evolution curves calculated us-
ing SAV with a time step of δt = 0.01. It can be seen
from Fig. 4.1 (a) that the modified energy of the system
(3.57) does show a monotonic downward trend, while the
original energy (2.14) shows an upward trend. Moreover,
the difference between the two energies is very large. We
again use a smaller time step of δt = 0.01/27, but the results
obtained have not improved, as shown in Fig. 4.1 (b).

• Then, we use the scheme DSAV and different time steps to
plot the original energy evolution curves in Fig. 4.2 (a). The
results show that the obtained energy curves present a good
monotonic attenuation, which means that the stabilizer S
can effectively stabilize the computations. In Fig. 4.2 (b), we
use SAV and time step δt = 0.01/28 to plot the time
evolution of the original energy (2.14) and compare it with
the result obtained by using DSAV with the time step δt =

0.01/24. We find that the two energy curves are very con-
sistent. However, the time step of 0.01/28 is the maximum
time step size that can be used by SAV to get the decaying
energy evolution curve. This means that if the expected
energy curves are the same, the time step available in DSAV
is 32 times the time step available in SAV.

• Finally, we use DSAV and time step δt = 0.01/24 to run to
the steady-state. Fig. 4.3 shows the profiles of φ at different
times. It can be seen that due to the coarsening effect, the
small circle is gradually absorbed by the large circle. In
Fig. 4.4 (a), we plot the evolution curve of the original energy
(2.14) and the modified energy (3.57) with the time that are
computed from DSAV and time step δt = 0.01/24. We find
that the difference between these two energies is very small.
Also, in Fig. 4.4 (b), we plot the evolution of the value of the
auxiliary variable Q over time using different time steps. We
find that as the time step size gradually decreases, the size
of Q tends to 1, which means that if the time step is small,
the two integral terms in (3.21) will be closer to 0.

4.2. Accuracy tests

In this subsection, we perform convergence tests to verify the
accuracy of the scheme DSAV. For comparisons, we also compute
the numerical solutions by using the following schemes:

• DSAV scheme but no Q and no S (by setting Q n
≡ 1 for

any n such that (3.21) is removed, and setting S = 0 in
the scheme (3.17)–(3.23) to illustrate the effectiveness of
additional stabilizer S), referred to as AV;

• DSAV scheme with S but no Q (by setting Q n
≡ 1 for

any n such that (3.21) is removed), i.e., the advection and
surface tension terms are all treated explicitly, referred to
as EX-SAV;

• Convex-splitting scheme (the scheme developed in [28]
where the nonlinear term f (φ) is discretized using the
second-order convex-splitting approach, and the advection
and surface tension terms are treated by implicit–explicit

combinations), referred to as CS.
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c

a

Fig. 4.3. The profiles of φ computed using the scheme DSAV with time step δt = 0.01/24 . Snapshots are taken at t = 0, 1.4, 1.9, 1.95, 2.45, and 5, where the initial
onditions are given in (4.1).
Fig. 4.4. (a) The evolution of the original energy (2.14) and modified energy (3.57) calculated by DSAV using the time step δt = 0.01/24 . (b) The evolution of the
uxiliary variable Q computed by using different time steps.
Fig. 4.5. (a) Convergence tests by using the pre-assumed exact solutions given in (4.3) where L2 numerical errors of φ, the average of u = (u, v), and p are computed
by DSAV using different time steps at t = 10. (b) Convergence tests by refinement in time step calculated by DSAV with the initial conditions given in (4.1) and
different time steps.
We first perform convergence tests by assuming the exact
solutions of the system (2.3)–(2.6) are known, which are given
by

φ(x, y, t) = sin x cos y cos t, p(x, y, t) = sin x sin y sin t,
u(x, y, t) = cos x sin y cos t, v(x, y, t) = − sin x cos y cos t,

(4.3)

and apply some suitable force fields so that the given solutions
in (4.3) satisfy the system. We set the 2D computational domain
9

as Ω = [0, 2π ]
2, and set the model parameters as

τ = 1, α = 100,M = 1, ϵ = 0.1, λ = 0.01, B = 10, S = 2. (4.4)

We assume the periodic boundary conditions and use 128 Fourier
modes to discretize each direction. Therefore, compared to the
time discretization error, the spatial discretization error is negli-
gible. In Fig. 4.5 (a), we plot the numerical errors of L2 at t = 10
of the all unknown variables between the obtained numerical
solution and the given exact solution (4.3) by using different time
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Fig. 4.6. Convergence tests by refinement in the time step, where (a) the L2 numerical errors of φ computed by using the schemes DSAV and EX-SAV (no Q ) with
different time steps, and (b) the L2 numerical errors of φ computed by using the schemes DSAV and SAV (no S and Q ) with different time steps.

Fig. 4.7. Convergence tests by refinement in the time step, where (a) the L2 numerical errors of φ computed by using the schemes DSAV and CS with different time
steps; and (b) the average number of iterations required by the two schemes at each time step. (Note: DSAV does not require any iterations at each time step, but
it requires solving six linear equations with constant coefficients, thus we count the number of iterations as 6.)

Fig. 4.8. 2D dynamics of spinodal decomposition examples computed using the scheme DSAV. Snapshots of φ are taken at different times, where the initial conditions
are (a) φ̄0 = 0 and (b) φ̄0 = 0.3.

10
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Fig. 4.9. 3D dynamics of spinodal decomposition examples computed using the scheme DSAV. Snapshots of the isosurfaces {φ = 0} are plotted at different times,
where the initial conditions are (a) φ̄0 = 0 and (b) φ̄0 = 0.5.

Fig. 4.10. The evolution over time of the logarithm of the total free energy (3.57) calculated by DSAV for all 2D and 3D spinodal decompositions in (a) 2D and (b)
3D.

11



X. Yang Computer Physics Communications 263 (2021) 107868

Fig. 4.11. (a) 2D fingering pattern example where snapshots of φ are taken at various times, (b) the velocity field at t = 5.5, and (c) the pressure p at t = 5.5.

Fig. 4.12. Comparison of number of fingers where λ = 0.01, 0.001, 0.0005, 0.0001, and 0.00001, from left to right.

12
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Fig. 4.13. 3D fingering pattern example where snapshots of isosurfaces {φ = 0} are taken at t = 0, 0.4, 0.8, 0.9, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, and 1.9.
teps. We note that the scheme DSAV provides almost perfect
econd-order accuracy for all variables.
We further test the convergence rates by performing mesh

efinement in time. We use the initial conditions given in (4.1)
nd the model parameters given in (4.2). Since the exact solutions
re not known yet, we choose the numerical solutions computed
y the scheme DSAV with a very tiny time step size δt = 1e−9
s the exact solution.

• In Fig. 4.5 (b), we plot the L2 errors of φ computed by DSAV
between the numerical solution and the exact solution at
t = 0.2 where the time step δt is changed from δt = 0.01
to δt =

0.01
27

with a factor of 1/2. The computed results show
the expected second-order of accuracy for all variables.
13
• In Fig. 4.6 (a), we compare the convergence rate obtained
by using schemes DSAV and EX-SAV (DSAV but no Q ). We
observe that both schemes exhibit a second-order conver-
gence rate. But for any fixed time step δt , the magnitude of
the error calculated using the scheme DSAV is much smaller
than the error calculated using the scheme EX-SAV. This
means that the scheme DSAV is more accurate because the
second auxiliary variable Q records all variances caused by
the coupled nonlinear terms.

• In Fig. 4.6 (b), we plot the L2 errors of φ by using the schemes
DSAV and AV (DSAV but no S and Q ) by refining the time
step. We observe that the scheme DSAV always presents
almost perfect second-order accuracy. However, when AV
uses a large time step of δt > 0.01/26, the convergence



X. Yang Computer Physics Communications 263 (2021) 107868
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Fig. 4.14. Comparison of number of 3D fingers where λ = 0.0025, 0.0005, 0.0001, and 0.00001.
u
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s
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rate is very poor. Only when a smaller time step is used
(δt ≤ 0.01/27), AV can display second-order accuracy.

• In Fig. 4.7 (a), we compare the error of φ calculated by DSAV
and CS. Both schemes present the second-order convergence
rate. We note that for any fixed time step δt , the mag-
nitude of the error calculated using CS is slightly smaller
than the error calculated using DSAV because of its implicit
processing for the nonlinear term. But in Fig. 4.7 (b), we also
compare the number of iterations required for each time
step. Although DSAV does not require iterations at each time
step, it needs solving six elliptic equations, so we still count
the number of iterations as 6. We can see that the scheme
CS requires a large number of iterations and is very time-
consuming. For example, when δt = 0.01, CS needs around
800 iterations per step. This means that CS requires a lot of
CPU time, which reflects the effectiveness of DSAV.

.3. Spinodal decomposition in 2D and 3D

In this example, we use the developed scheme DSAV to study
he spinodal decomposition (phase separation). By setting the
nitial condition to a uniform binary mixture with a certain range
f random number perturbations, the system can evolve from
uniform state to the two-phase state, which is caused by the
pontaneous growth of the concentration fluctuations.
14
We give the initial conditions as follows,
0(x) = 0, p0(x) = 0, φ(x) = φ̄0 + 0.001rand(x), (4.5)

here the rand(x) is the random number in [−1, 1] that follows
he normal distribution.

We first perform 2D simulations. The computational domain
s Ω = [0, 2π ]

2 that is equipped with the periodic boundary
onditions. We use the Fourier-spectral method to discretize the
pace, and use 512 Fourier mode for each direction. The model
arameters are set as τ = 1, α = 100, M = 1, ϵ = 0.025, B = 10,

S = 10, λ = 0.01, and the time step is set as δt = 1e−3. In
Fig. 4.8, two simulations with initial average φ̄0 = 0 and φ̄0 = 0.3
are performed. Snapshots of the profiles of φ at various times
are plotted in Fig. 4.8 (a)–(b). We find that the final equilibrium
solutions in the two simulations show a banded phase and a
circular phase, respectively.

We then perform 3D simulations. The computational domain
to be Ω = [0, 2π ] × [0, 2π ] × [0, 2]. The periodic bound-
ary conditions are assumed for x- and y-directions which are
then discretized by using the Fourier-spectral method with 256
Fourier modes for each direction. The boundary conditions along
the z-direction read as (pz, φz, µz)|(z=0,2) = 0 and the spatial
discretization for z-direction is discretized by using the Legendre–
Galerkin method and the Legendre polynomials with degrees up
to 256. We set the initial average value φ̄0 = 0 and φ̄0 = 0.5,
and plot the dynamical evolutions of the isosurface {φ = 0} at
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ifferent times in Fig. 4.9 (a)–(b). We observe that the equilibrium
olution presents the lamella phase when φ̄0 = 0, and the
ylindrical phase when φ̄0 = 0.5.
In Fig. 4.10, we present the time evolution of the total free

nergy functional (3.57) for all 2D and 3D simulations. The en-
rgy curves show the decay over time, which confirms that the
eveloped algorithm is unconditionally stable.

.4. Fingering pattern in 2D and 3D

When a liquid droplet is located in the rotating Hele–Shaw
ell, the rotating motion will cause the fluid interface to become
entrifugally unstable and deformed. In the experiment, a rich
wirling fingering pattern was observed, for example, they may
hange from teardrop-like structures to filament-like arms with
xtended ends, or branched skeleton structures with almost con-
tant fingertip width, see [51–55]. In this section, we investigate
he fingering pattern instability by imposing the rotating force
n the Darcy equations, where the momentum equation (2.5) is
eplaced by the following form:

ut + αu + ∇p + φ∇µ = g
(1 + φ)

2
(ω2r + 2ω(ez × u)). (4.6)

where ez = (0, 0, 1).
We first perform a 2D simulation with the computed domain

Ω = [0, 2π ]
2. The initial conditions read as follows:

φ0
= tanh(

r0 −

√
(x − π )2 − (y − π )2

ϵ
),u0

= (0, 0), p0 = 0,

(4.7)

here r0 = 1.3 + 0.01rand(x) where rand(x) is the random
umber in [0, 1]. For simplicity, we assume periodic boundary
onditions and discretize the space by using the Fourier-spectral
ethod, where each direction is discretized using 2048 Fourier
odes. The model parameters read as

τ = 1, α = 40,M = 0.01, ϵ = 0.0125, λ = 0.0001, B = 10,
S = 2, ω = 5, g = 5, r = (x − π, y − π ).

(4.8)

In Fig. 4.11 (a), snapshots of the phase-field variable φ at
different times are plotted using the black–white color map. We
observe that a large number of fingers are formed over time. In
Fig. 4.11 (b) and (c), we plot the velocity field and the pressure
p at t = 5.5. It can be seen that the velocity field presents
a clear vortex in the vicinity of each finger. In Fig. 4.12, by
using various surface tension parameter λ, we show the finger-
ing pattern where smaller surface tension contributes a larger
number of fingering structures. These numerical simulations are
qualitatively consistent with the numerical simulations in [51]
and the experimental results in [54,55].

We continue to perform a simulation in 3D and set the com-
puted domain as (x, y, z) ∈ Ω = [0, 2π ] × [0, 2π ] × [0, 0.6].
The initial conditions read as (shown in the first subfigure of
Fig. 4.13):

φ0
= tanh(

r −

√
(x − π )2 − (y − π )2 + (z + 1.05)2

ϵ
),

u0
= (0, 0, 0), p0 = 0,

(4.9)

here r = 1.5 + 0.01rand(x). We assume periodic boundary
onditions for the x and y-directions which are then discretized
y using 512 Fourier-modes for each direction. The boundary con-
itions along the z-direction read as (pz, φz, µz)|(z=0,0.6)= 0. The
patial discretization for z-direction is based on the Legendre–
alerkin method and the Legendre polynomials with degrees up
15
o 256 are used. The order parameters are still from (4.8). In
ig. 4.13, we plot the isosurfaces of {φ = 0} at different times
hich clearly display that plenty of 3D fingers are formed over
ime. In Fig. 4.14, we vary the surface tension parameter λ, and
ind that the magnitude of λ directly affects the number of fingers,
hich is consistent with the 2D simulations, with a small surface
ension causes more fingers. Similar dynamics were also observed
xperimentally/numerically in [51,54,55].

. Concluding remarks

For the coupled nonlinear Cahn–Hilliard–Darcy phase-field
odel of Hele–Shaw flow, we have developed a novel and effec-

ive scheme in this paper. The novelty of the developed scheme is
n the design of a special ODE to deal with the coupled nonlinear
erms by utilizing their ‘‘zero-energy-contribution" characteristic.
he combination of the new decoupling method, the projec-
ion method for the Darcy equations, and the AV method to
inearize the nonlinear double-well potential leads to a fully-
ecoupled, linear, second-order accurate, unconditionally energy
table scheme. We give a detailed practical implementation and
lso prove the unconditional energy stability rigorously. By simu-
ating a large number of 2D and 3D numerical examples and com-
aring them with several other known methods, we numerically
rove the effectiveness of the developed scheme.
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