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In this paper, we consider numerical approximations for solving the hydrodynamically 
coupled three components Cahn-Hilliard phase-field model. By combining the Invariant 
Energy Quadratization approach with the stabilization technique, and the projection 
method for the Navier-Stokes equations, we obtain a linear, second-order, and uncondition-
ally energy stable time marching scheme. We present rigorous proofs for the well-
posedness of the obtained linear system and the unconditional energy stability. Various 2D 
and 3D numerical simulations are implemented to demonstrate the stability and accuracy 
of the scheme thereafter.
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1. Introduction

In this paper, we consider numerical approximations for solving the hydrodynamically coupled three components Cahn-
Hilliard phase-field model that was developed in [4–6]. As one of the most popular modeling approaches for interfacial 
dynamics, the phase-field method had been widely applied in simulating a variety of multiple-component material, e.g., 
multiphase fluid flows, vesicle membranes, crystals, fracture dynamics, etc., see [6,9,11,16,17,31,42] and the references 
therein. The governing equations in phase-field models are derived from the energy-based variational formalism and thus 
the system obeys the so-called energy dissipation law. For instance, the commonly-used total free energy for simulating 
the two-phasic material system usually includes two parts where one is the bulk potential (double-well or logarithmic 
Flory-Huggins) that yields a hydrophobic contribution, and the other one is the conformational capillary entropic term that 
demands a hydrophilic property. The competition between these two types of energy potentials enforces the coexistence of 
two distinct phases in the immiscible two-phasic system. Concerning the theoretical analysis, algorithm developments and 
numerical simulations of the two-phasic system in simulating various materials, we refer to [9–12,15,17,19,22–24,28].

Similar to the two-phasic scenario, the essential idea to model the three components material system is to adopt three 
independent phase-field variables to represent the volume (or mass) fraction of each component and then impose a hy-
perplane link condition (i.e., no volume leaking) for them (see [1–4,6,9,13,14,18–20,26]). The free energy of the system 
naturally turns out to be the summation of the original biphasic energy that appeared in the two-phasic model for each 
variable. Moreover, a Lagrangian multiplier is adopted in each Cahn-Hilliard equation to enforce the hyperplane link condi-
tion. But such a simple system is not well-posed for the total spreading case and some nonphysical instabilities at interfaces 
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may occur, which was illustrated in [4,6]. To fix this issue, in [4,6], a sixth-order polynomial type coupling potential is 
added into the free energy that can ensure the system to be well-posed. However, since the three phase-field variables are 
completely coupled together by this term, numerical difficulties to design efficient and energy stable schemes are increased 
to a large extent. Remarkably, most of the existing methods are either first-order accurate in time, or energy unstable, or 
highly nonlinear, or even the combinations of these features (see [4,6,25]) except the most recently developed so-called 
Invariant Energy Quadratization (IEQ) [43] and Scalar Auxiliary Variable (SAV) [45,46] approaches that could generate some 
second-order accurate schemes with unconditional energy stability.

Meanwhile, we note almost all the above-mentioned numerical algorithms were focused on the partial model instead of 
the full hydrodynamically coupled model while the three-phase model had been given attention for more than a decade. 
Remarkably, the full model is conceivably more complicated for algorithm developments than the partial model since it 
includes more nonlinear coupling terms between the flow field and the phase-field variable except the stiffness issue in-
duced by the thin interfacial parameter and the sixth-order polynomial term. For the full model, to the best of the author’s 
knowledge, the only scheme with unconditional energy stability for arbitrary time steps is developed in [25], however, their 
scheme is only first-order in time, and its computational cost is relatively expensive due to the nonlinear nature.

Therefore, in this paper, we aim to develop an efficient scheme for solving the full hydrodynamically coupled three 
components Cahn-Hilliard model. More precisely, we expect a linear scheme that can possess the unconditional energy 
stability and second-order accuracy. To this aim, except the numerical difficulties induced by those coupled and nonlinear 
terms in the bulk potentials, one needs to solve two more challenges including (i) the nonlinear coupling between the 
velocity and phase function through the convective and stress terms; and (ii) the coupling of the velocity and pressure 
through the incompressibility constraint. We combine the IEQ approach with the stabilization technique to discretize the 
nonlinear terms in the Cahn-Hilliard equations, the projection method for the Navier-Stokes equations to decouple the 
velocity and pressure, and a subtle implicit-explicit treatment to handle the stress and convective terms. Hence, at each 
time step, one only needs to solve a linear elliptic system for the phase-field variables and the velocity field, and a Poisson 
equation for the pressure. We give rigorous proofs of the well-posedness of the linear system together with the energy 
stability, and further demonstrate the stability and accuracy numerically in simulating some classical benchmark numerical 
examples in 2D and 3D.

The rest of the paper is organized as follows. In Section 2, we briefly describe the hydrodynamically coupled three 
components Cahn-Hilliard phase-field model and derive its associated PDE energy dissipation law. In Section 3, we present 
the numerical scheme and prove the well-posedness of the semi-discretized linear system and its discrete energy dissipation 
law rigorously. In section 4, we present various numerical examples to illustrate the accuracy and efficiency of the proposed 
schemes. Some concluding remarks are given in Section 5.

2. Model system

We now give a brief introduction to the Cahn-Hilliard phase-field model for the three components fluid flows system 
that was proposed in [4–6]. Suppose � be a smooth, open bounded, connected domain in Rd , d = 2, 3. Let φi (i = 1, 2, 3) 
be the i-th phase-field variable which represents the volume fraction of the i-th component in the fluid mixture, i.e.,

φi =
{

1 inside the i-th component,

0 outside the i-th component.
(2.1)

A smooth layer with the thickness ε is used to connect the interface between 0 and 1. Assuming the mixture being perfect 
(no volume leaking), thus the three unknowns φ1, φ2, φ3 are linked though the relationship as

φ1 + φ2 + φ3 = 1. (2.2)

This is the link condition for the vector C = (φ1, φ2, φ3), where it belongs to the hyperplane of

S = {C = (φ1, φ2, φ3) ∈ R3, φ1 + φ2 + φ3 = 1}. (2.3)

There exist several generalizations from the two-phasic model to the three-phasic model (cf. [4–6,19]). In this paper, we 
adopt below the approach in [4–6] and define the total free energy as

E(φ1, φ2, φ3) =
∫
�

(3ε

8
L(φ1, φ2, φ3) + 12

ε
F (φ1, φ2, φ3)

)
dx, (2.4)

where ε is the order parameter to characterize the interfacial width, L(φ1, φ2, φ3) is the linear part, and F (φ1, φ2, φ3) is the 
nonlinear part.

The linear part is set as

L(φ1, φ2, φ3) = �1|∇φ1|2 + �2|∇φ2|2 + �3|∇φ3|2, (2.5)
2
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where the coefficient �i is called the “spreading” coefficient of the phase i at the interface between phases j and k. To be 
algebraically consistent with the two-phasic systems, the three surface tension parameters σi j (σ12, σ13, σ23) should verify 
the following conditions:

�i = σi j + σik − σ jk, i = 1,2,3. (2.6)

Note �i might not be always positive. If �i > 0, the spreading is said to be “partial”, and if �i < 0, it is called “total”.
The nonlinear potential F (φ1, φ2, φ3) given in [4–6] reads as:

F (φ1, φ2, φ3) =σ12φ
2
1φ2

2 + σ13φ
2
1φ2

3 + σ23φ
2
2φ2

3

+ φ1φ2φ3(�1φ1 + �2φ2 + �3φ3) + 3�φ2
1φ2

2φ2
3 .

(2.7)

Since φ1, φ2, φ3 satisfy the hyperplane link condition (2.2), F (φ1, φ2, φ3) can be rewritten as

F (φ1, φ2, φ3) = F0(φ1, φ2, φ3) + P (φ1, φ2, φ3), (2.8)

where⎧⎨
⎩F0(φ1, φ2, φ3) = �1

2
φ2

1(1 − φ1)
2 + �2

2
φ2

2(1 − φ2)
2 + �3

2
φ2

3(1 − φ3)
2,

P (φ1, φ2, φ3) = 3�φ2
1φ2

2φ2
3 ,

and � is a non-negative constant.
The following lemmas hold (cf. [4]):

Lemma 2.1. For any ξ1 + ξ2 + ξ3 = 0, there exists a constant � > 0 such that

�1|ξ1|2 + �2|ξ2|2 + �3|ξ3|2 ≥ �
(
|ξ1|2 + |ξ2|2 + |ξ3|2

)
, (2.9)

if and only if the following condition holds:

�1�2 + �1�3 + �2�3 > 0,�i + � j > 0,∀i �= j. (2.10)

Lemma 2.2. Let σ12, σ13 and σ23 be three positive numbers and �1, �2 and �3 defined by (2.6). (Note �i might not be positive for 
some i.) For any � > 0, the bulk free energy F (φ1, φ2, φ3) defined in (2.8) is bounded from below if φ1, φ2, φ3 is on the hyperplane S
in 2D. Furthermore, the lower bound only depends on �1, �2, �3 and �.

Remark 2.1. From Lemma 2.1, when (2.10) holds, the summation of the gradient entropy term is bounded from below since 
∇(φ1 + φ2 + φ3) = 0, i.e.,

3∑
i=1

�i‖∇φi‖2 ≥ �

3∑
i=1

‖∇φi‖2 ≥ 0. (2.11)

Remark 2.2. The bulk part energy F (φ1, φ2, φ3) defined in (2.8) has to be bounded from below in order to form a meaningful 
physical system. For partial spreading case (�i > 0 , ∀i), one can drop the six order polynomial term by assuming � = 0
since F0(φ1, φ2, φ3) ≥ 0 is naturally satisfied. For the total spreading case, � has to be non-zero. Moreover, to ensure the 
non-negativity for F , � has to be large enough.

For 3D case, it is shown in [4] that the bulk energy F is bounded from below when P (φ1, φ2, φ3) takes the following 
form:

P (φ1, φ2, φ3) = 3�φ2
1φ2

2φ2
3(φα(φ1) + φα(φ2) + φα(φ3)) (2.12)

where φα(x) = 1
(1+x2)α

with 0 < α ≤ 8
17 .

Since (2.8) is commonly used in literatures (cf. [4,6]), we adopt it as well for convenience. Nonetheless, it will be clear 
that the numerical schemes we develop in this paper can deal with either (2.8) or (2.12) without any essential difficulties.

When coupling with the hydrodynamics, the total free energy becomes

Etot(u, φ1, φ2, φ3) =
∫
�

(1

2
|u|2 + 3ε

8
L(φ1, φ2, φ3) + 12

ε
F (φ1, φ2, φ3)

)
dx, (2.13)

where u is the fluid velocity.
3
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Assuming that the fluid is incompressible and follows a generalized Fick’s law that the mass flux be proportional to the 
gradient of the chemical potential, we can derive the following hydrodynamically coupled Cahn-Hilliard model:

∂tφi + ∇ · (uφi) = M�
μi

�i
, (2.14)

μi = −3

4
ε�i�φi + 12

ε
( f i + βL), i = 1,2,3, (2.15)

ut + u · ∇u − ν�u + ∇p +
3∑

i=1

φi∇μi = 0, (2.16)

∇ · u = 0, (2.17)

where M is the mobility parameter, f i = ∂φi F , p is the pressure, ν is the fluid viscosity, βL is the Lagrange multiplier to 
ensure the hyperplane link condition (2.2) and it can be derived as

βL = − 1

�T
(

f1

�1
+ f2

�2
+ f3

�3
), (2.18)

with

1

�T
= 1

�1
+ 1

�2
+ 1

�3
. (2.19)

The initial conditions read as

u|(t=0) = u0, φi|(t=0) = φ0
i , (2.20)

where the initial condition also satisfies φ0
1 + φ0

2 + φ0
3 = 1.

The convective term ∇ · (uφi) in (2.14) takes the so-called conservative form as the two-phasic model, see [30,44]. The 
conservative formulation can ensure the volume conservation for each phase that can be easily derived if one takes the L2-
inner product with 1 for (2.14). By taking the summation for (2.14) for i = 1, 2, 3 and using the hyperplane link condition 
(2.2), this term becomes ∇ · u which is zero for the continuous case. However, when developing numerical schemes, the 
velocity used to discretize the convective term may not follow the divergence-free condition leading to a consequence that 
the numerical solutions of φi violate the hyperplane link condition (2.2).

To overcome this issue, we further rewrite the system (2.14)-(2.17) into the following equivalent form (cf. [25]).

∂tφi + ∇ · (u(φi − φ̄0
i )) = M�

μi

�i
, (2.21)

μi = −3

4
ε�i�φi + 12

ε
( f i + βL), i = 1,2,3, (2.22)

ut + u · ∇u − ν�u + ∇p +
3∑

i=1

(φi − φ̄0
i )∇μi = 0, (2.23)

∇ · u = 0, (2.24)

where φ̄0
i = 1

|�|
∫
�

φ0
i dx. Note φ0

1 + φ0
2 + φ0

3 = 1, then we derive

φ̄0
1 + φ̄0

2 + φ̄0
3 = 1. (2.25)

While the convective term in (2.21) and the stress term in (2.23) are slightly different with their original forms in (2.14) and 
(2.16), the new system (2.21)-(2.24) is actually equivalent to the original system (2.14)-(2.17). This is because the convective 
term in (2.21) can be written as

∇ · (u(φi − φ̄0
i )) = ∇ · (uφi) − φ̄0

i ∇ · u = ∇ · (uφi) (2.26)

from ∇ · u = 0, and the stress term in (2.23) is written as

3∑
i=1

(φi − φ̄0
i )∇μi =

3∑
i=1

φi∇μi − ∇(

3∑
i=1

φ̄0
i μi) (2.27)

where the latter gradient term can be absorbed into the pressure gradient directly.
4
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Remark 2.3. There is some advantage by taking the formulation (2.21)-(2.24) that is, the summation of three convective 
terms 

∑3
i=1 ∇ · (u(φi − φ̄0

i )) vanishes because 
∑3

i=1(φi − φ̄0
i ) = ∑3

i=1 φi − ∑3
i=1 φ̄0

i = 1 − 1 = 0 as long as the hyperplane 
link condition is always valid for φi even though ∇ · u �= 0. Namely, the new form of convective terms in (2.21) can help 
to ensure the hyperplane link condition 

∑3
i=1 φi = 1 even if the velocity field may not follow the divergence-free condition 

when developing algorithms.

Remark 2.4. The system (2.21)-(2.24) is equivalent to the following two phase-field variables system⎧⎪⎨
⎪⎩

∂tφi + ∇ · (u(φi − φ̄0
i )) = M�

μi

�i
,

μi = −3

4
ε�i�φi + 12

ε
( f i + βL), i = 1,2,

(2.28)

where φ3 and μ3 are given by the following explicit formula:

φ1 + φ2 + φ3 = 1, (2.29)
μ1

�1
+ μ2

�2
+ μ3

�3
= 0. (2.30)

Since the proof is quite similar to Theorem 3.1, we omit the details here.

We consider in this paper either of the two type boundary conditions below:

(i) all variables are periodic,or (ii) u|∂� = ∂nφi|∂� = ∂nμi|∂�, i = 1,2,3, (2.31)

where n is the unit outward normal on the boundary ∂�.
The model equations (2.21)-(2.24) follow a dissipative energy law. By taking the L2 inner product of (2.14) with μi , of 

(2.15) with −∂tφi , of (2.16) with u, and performing integration by parts, we can obtain

(∂tφi,μi) − (u(φi − φ̄0
i ),∇μi) = −M�i

∥∥∥∥∇μi

�i

∥∥∥∥
2

, (2.32)

−(μi, ∂tφi) = −3

4
ε�idt‖∇φi‖2 − 12

ε
( f i + βL, ∂tφi), (2.33)

1

2
dt‖u‖2 + ν‖∇u‖2 − (p,∇ · u) +

3∑
i=1

((φi − φ̄0
i )∇μi,u) = 0. (2.34)

Then, by taking the summation of (2.32), (2.33), and (2.34) for i = 1, 2, 3, using (2.17) for the pressure term and using that 
(βL, (φ1 + φ2 + φ3)t) = (βL, (1)t) = 0 due to Remark 2.4, we obtain the energy dissipative law as

d

dt
Etot(u, φ1, φ2, φ3)

= −ν‖∇u‖2 − M
(
�1

∥∥∥∥∇μ1

�1

∥∥∥∥
2

+ �2

∥∥∥∥∇μ2

�2

∥∥∥∥
2

+ �3

∥∥∥∥∇μ3

�3

∥∥∥∥
2 )

≤ −ν‖∇u‖2 − M�
(∥∥∥∥∇μ1

�1

∥∥∥∥
2

+
∥∥∥∥∇μ2

�2

∥∥∥∥
2

+
∥∥∥∥∇μ3

�3

∥∥∥∥
2 )

,

(2.35)

where the last inequality is derived by using the Lemma 2.1 since (μ1, μ2, μ3) satisfies the condition (2.30).

3. Numerical schemes

We now develop numerical schemes for solving the model (2.21)-(2.24) in this section. While we consider only time 
discretizations here, the results can carry over to any consistent finite-dimensional Galerkin approximations (finite elements 
or spectral) since the proof is based on variational formulations with all test functions in the same space as the trial 
function.

We aim to construct efficient schemes with some desired properties like linear, second-order accurate, and uncondi-
tionally energy stable. There are several numerical challenges needed to be overcome, including (i) how to decouple the 
computations of velocity and pressure; (ii) how to discretize the nonlinear term associated with the double-well potential 
F0, the sixth-order polynomial potential as well as the Lagrange multiplier term especially; and (iii) how to develop proper 
discretizations for convective (in (2.14)) and stress terms (in (2.16)). Here we combine the newly developed IEQ approach 
with the stabilization technique to discretize the nonlinear terms as well as the projection method for the Navier-Stokes 
equations. For their coupled nonlinear terms, we discretize them by using the implicit-explicit combination. Remarkably, 
5
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the extra added linear stabilization term is particularly effective to improve the energy stability while keeping the required 
accuracy. The detailed procedure to develop the scheme is presented as follows.

We define an auxiliary function U (x, t) as

U = √
F (φ1, φ2, φ3) + B, (3.1)

where B is any constant that ensures the radicand positive (in all numerical examples, we let B = 10). Hence the total free 
energy (2.4) can be rewritten as

Etot(u, φ1, φ2, φ3, U ) =
∫
�

(1

2
|u|2 + 3

8
L(φ1, φ2, φ3) + 12

ε
U 2

)
dx − 12

ε
B|�|. (3.2)

Then, we rewrite the system (2.21)-(2.24) to the following equivalent form with unknown variables (u, p, φi, μi, U ):

∂tφi + ∇ · (u(φi − φ̄0
i )) = M�

μi

�i
, (3.3)

μi = −3

4
ε�i�φi + 12

ε
(Hi + β)U , i = 1,2,3, (3.4)

Ut = 1

2

3∑
i=1

Hi∂tφi, (3.5)

ut + u · ∇u − ν�u + ∇p +
3∑

i=1

(φi − φ̄0
i )∇μi = 0, (3.6)

∇ · u = 0, (3.7)

where

β = − 1

�T

(
H1

�1
+ H2

�2
+ H3

�3

)
, (3.8)

Hi = f i√
F (φ1, φ2, φ3) + B

. (3.9)

Note (3.8) can be also written as the following form,

H1 + β

�1
+ H2 + β

�2
+ H3 + β

�3
= 0. (3.10)

The transformed system (3.3)-(3.7) in terms with the variables (φi, μi, U , p) form a closed PDE system with the following 
initial conditions,⎧⎨

⎩
u|(t=0) = u0, p|(t=0) = p0, φi |(t=0) = φ0

i , i = 1,2,3,

U |(t=0) = U 0 =
√

F (φ0
1 , φ0

2 , φ0
3) + B.

(3.11)

Note the boundary conditions for U are not needed at all since the equation (3.5) is only an ODE with time. Thus the 
boundary conditions of the new system (3.3)-(3.7) are still (2.31).

Moreover, the equations (3.3)-(3.4) can be proved to be equivalent to the following system with two order parameters 
(φ1, φ2):⎧⎪⎨

⎪⎩
∂tφi + ∇ · (u(φi − φ̄0

i )) = M

�i
�μi,

μi = −3

4
ε�i�φi + 12

ε
(Hi + β)U , i = 1,2,

(3.12)

with

φ3 = 1 − φ1 − φ2,
μ3

�3
= −(

μ1

�1
+ μ2

�2
). (3.13)

Since the corresponding proof is quite similar to Theorem 3.1, we omit the details here.
Let δt > 0 denote the time step size and set tn = n δt for 0 ≤ n ≤ N with T = N δt . We also denote by ( f (x), g(x)) =∫

�
f (x)g(x)dx the L2 inner product of any two functions f (x) and g(x), and by ‖ f ‖ = √

( f , f ) the L2 norm of the function 
f (x).
6
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Using the second-order backward differentiation formula (BDF2), we now construct a time marching scheme to discretize 
the new system (3.3)-(3.7), that includes the following two steps:

Step 1: we compute ũn+1, φn+1
i , μn+1

i , Un+1 by

3ũn+1 − 4un + un−1

2δt
+ B(u∗, ũn+1) − ν�ũn+1 + ∇pn +

3∑
i=1

(φ∗
i − φ̄0

i )∇μn+1
i = 0, (3.14)

3φn+1
i − 4φn

i + φn−1
i

2δt
+ ∇ · (ũn+1(φ∗

i − φ̄0
i )) = M�

μn+1
i

�i
, i = 1,2,3, (3.15)

μn+1
i = −3

4
ε�i�φn+1

i + 12

ε
(H∗

i + β∗)Un+1 + S

ε
�i(φ

n+1
i − φ∗

i ), (3.16)

3Un+1 − 4Un + Un−1 = 1

2

3∑
i=1

H∗
i (3φn+1

i − 4φn
i + φn−1

i ), (3.17)

where⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B(u,v) = (u · ∇)v + 1

2
(∇ · u)v,

u∗ = 2un − un−1, φ∗ = 2φn − φn−1, H∗ = H(φ∗
1 , φ∗

2 , φ∗
3),

β∗ = − 1

�T

(
H∗

1

�1
+ H∗

2

�2
+ H∗

3

�3

)
,

(3.18)

S is a positive stabilization parameter, and the boundary conditions are either periodic or

ũn+1|∂� = ∂nφn+1
i |∂� = ∂nμn+1

i |∂� = 0. (3.19)

Step 2: we compute pn+1, un+1 as follows,

3

2δt
(un+1 − ũn+1) + ∇(pn+1 − pn) = 0, (3.20)

∇ · un+1 = 0, (3.21)

where the boundary condition is either periodic or

un+1 · n|∂� = 0. (3.22)

Remark 3.1. We add an extra linear, second-order stabilization term associated with S in (3.12). This term introduces an 
error in the scale of Sδt2φtt(·) which is comparable with the error introduced by the second-order extrapolation of the 
nonlinear term. In Section 4, we present enough numerical evidence to show that this stabilizer is critical to maintain the 
accuracy and improve the energy stability while using large time steps, see the accuracy/stability tests shown in Fig. 4.1 and 
4.2. Similar treatment had been used to apply the IEQ/SAV method for various gradient flow models, see [7,8,31,45].

Remark 3.2. B(u, v) is the skew-symmetric form of the nonlinear advection term in the Navier–Stokes equation. Even though 
∇ · u �= 0, the identity (B(u, v), v) = 0 still holds as long as the boundary condition u · n|∂� = 0 is valid, which helps to 
preserve the discrete energy stability.

Remark 3.3. The computations of (φn+1
i , μn+1

i , ̃un+1) and the pressure pn+1 are totally decoupled via a second-order pres-
sure correction scheme [33] and a subtle implicit-explicit treatment for the stress and convective terms. It is quite an open 
problem on how to develop a second-order scheme that can decouple the computations of (φi, μi) from the velocity field 
u. All decoupled type energy stable schemes were first-order accurate in time (cf. [21,25,29,30,32]).

Remark 3.4. The computations of the second-order scheme (3.14)-(3.22) need the values of φ1
i , U 1, p1, u1. In practice, we 

obtain these values by the following first-order scheme that reads as,
Step 1: we compute ũ1, φ1

i , μ1
i , U

1 by

ũ1 − u0

2δt
+ B(u0, ũ1) − ν�ũ1 + ∇p0 +

3∑
i=1

(φ0
i − φ̄0

i )∇μ1
i = 0, (3.23)

φ1
i − φ0

i + ∇ · (ũ1(φ0
i − φ̄0

i )) = M�
μ1

i , i = 1,2,3, (3.24)

δt �i

7
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μ1
i = −3

4
ε�i�φ1

i + 12

ε
(H0

i + β0)U 1 + S

ε
�i(φ

1
i − φ0

i ), (3.25)

U 1 − U 0 = 1

2

3∑
i=1

H0
i (φ

1
i − φ0

i ), (3.26)

Step 2: we compute p1, u1 as follows,

1

δt
(u1 − ũ1) + ∇(p1 − p0) = 0, (3.27)

∇ · u1 = 0. (3.28)

The boundary condition for ũ1, u1, φ1
i , μ1

i follows the same boundary conditions as the scheme (3.14)-(3.22).

The following theorem ensures the numerical solutions (φn+1
1 , φn+1

2 , φn+1
3 ) always satisfies the hyperplane link condition ∑3

i=1 φn+1
i = 1, namely, no volume loss for the whole discrete scheme.

Theorem 3.1. The system (3.15)-(3.16) is equivalent to the following scheme with two order parameters,

3φn+1
i − 4φn

i + φn−1
i

2δt
+ ∇ · (ũn+1(φ∗

i − φ̄0
i )) = M�

μn+1
i

�i
, (3.29)

μn+1
i = −3

4
ε�i�φn+1

i + 12

ε
(H∗

i + β∗)Un+1 + S

ε
�i(φ

n+1
i − φ∗

i ), i = 1,2, (3.30)

with

φn+1
3 = 1 − φn+1

1 − φn+1
2 , (3.31)

μn+1
3

�3
= −(

μn+1
1

�1
+ μn+1

2

�2
). (3.32)

Proof. First, we derive (3.15)-(3.16) by assuming that (3.29)-(3.32) are satisfied. Taking the summation of (3.29) for i = 1, 2, 
applying (3.31) at t = tn+1, tn, tn−1, and using (3.32) and 

∑3
i=1 φ̄0

i = 1, we obtain

3φn+1
3 − 4φn

3 + φn−1
3

2δt
+ ∇ · (ũn+1(φ∗

3 − φ̄0
3)) = M�

μn+1
3

�3
. (3.33)

Furthermore, from (3.32), we derive

μn+1
3 = −�3(

μn+1
1

�1
+ μn+1

2

�2
)

= −�3

(
− 3

4
ε�φn+1

1 − 3

4
ε�φn+1

2 + 12

ε
(

H∗
1 + β∗

�1
+ H∗

2 + β∗

�2
)Un+1

+ S

ε
(φn+1

1 + φn+1
2 − φ∗

1 + φ∗
2)

)
= −3

4
ε�3�φn+1

3 + 12

ε
(H∗

3 + β∗)Un+1 + S

ε
�3(φ

n+1
3 − φ∗

3),

where we use (3.31) and the definition of β∗ in (3.18).
Second, we then assume that the equations (3.15)-(3.16) are satisfied and derive (3.29)-(3.32). We use the math induction 

and assume (3.31) are valid for t = tn and t = tn−1 (the validity of (3.31) at t = t1 is shown in Remark 3.5). For any m, we 
define

Cm = φm
1 + φm

2 + φm
3 , �m = μm

1

�1
+ μm

2

�2
+ μm

3

�3
. (3.34)

By taking the summation of (3.15) for i = 1, 2, 3, we derive

3

2δt
(Cn+1 − 1) = M��n+1, (3.35)

where the convective terms satisfy
8
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∇ · (ũn+1
3∑

i=1

(φ∗
i − φ̄0

i )) = 0 (3.36)

since 
∑3

i=1 φ̄0
i = 1 and 

∑3
i=1 φ∗

i = 1 by the induction.
By taking the summation of (3.16) for i = 1, 2, 3, we derive

�n+1 = −3

4
ε�Cn+1 + S

ε
(Cn+1 − 1). (3.37)

By taking the L2 inner product of (3.35) with − 2δt
3 �n+1, of (3.37) with Cn+1 − 1, and taking the summation of the two 

obtained equalities, we derive

3

4
ε‖∇Cn+1‖2 + S

ε
‖Cn+1 − 1‖2 + 2δt

3
M‖∇�n+1‖2 = 0. (3.38)

Since the left hand side of (3.38) is a sum of non-negative terms, thus ∇Cn+1 = 0 and ∇�n+1 = 0 that implies the functions 
Cn+1 and �n+1 are both constants. Then (3.35) leads to Cn+1 = 1 that means the (3.31) is valid. We also derive �n+1 = 0
from (3.37) that implies (3.32) is valid. �
Remark 3.5. The derivation of Theorem 3.1 in the second step lies on the math induction where we assume (3.31) is valid 
for step n and n − 1. Since (3.31) is valid for t = t0 automatically, we only need to show that it is also valid for t = t1. That 
can be easily derived by performing the similar procedure as Theorem 3.1 for the scheme (3.24)-(3.25). The corresponding 
proof is quite similar to Theorem 3.1 thus we leave the details to the interested readers.

In practice, the new variable Un+1 is not needed to be solved explicitly. We can first rewrite (3.17) as

Un+1 = 1

2

3∑
i=1

H∗
i φn+1

i + gn, (3.39)

where

gn = 4Un − Un−1

3
− 1

2

3∑
i=1

H∗
i

4φn
i − φn−1

i

3
. (3.40)

Thus the system (3.14)-(3.17) can be rewritten as

ũn+1 + 2δt

3
B(u∗, ũn+1) − 2δt

3
ν�ũn+1 + 2δt

3

3∑
i=1

(φ∗
i − φ̄0

i )∇μn+1
i = g1, (3.41)

φn+1
i + 2δt

3
∇ · (ũn+1(φ∗

i − φ̄0
i )) − 2δt

3
M�

μn+1
i

�i
= gi

2, (3.42)

−μn+1
i − 3

4
ε�i�φn+1

i + 6

ε
(H∗

i + β)

3∑
i=1

H∗
i φ

n+1
i + S

ε
�iφ

n+1
i = gi

3, (3.43)

where g1, gi
2, g

i
3 include all explicit terms in each corresponding equation. Note the new auxiliary variable Un+1 disappears 

in the above scheme, hence we solve the system (3.41)-(3.43) first and update Un+1 by (3.39).
We develop the associated weak form of the system (3.41)-(3.43) and show its well-posedness. For simplicity, the peri-

odic boundary conditions are only considered in this paper. For the physical boundary conditions, the proof can be derived 
similarly without essential difficulties. We define three Sobolev spaces as follows,

Hk
per(�) = {φ ∈ Hk(�) : φ is periodic},

H̄k(�) = {φ ∈ Hk
per(�) :

∫
�

φdx = 0},

Hk
u(�) = {u ∈ [Hk

per(�)]d}.
By integrating (3.42), we obtain∫

φn+1
i dx =

∫
φn

i dx = · · · =
∫

φ0
i dx, (3.44)
� � �

9
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for i = 1, 2, 3. We let

u = ũn+1, φi = φn+1
i − 1

|�|
∫
�

φ0
i dx,μi = μn+1

i − 1

|�|
∫
�

μn+1
i dx. (3.45)

Hence we derive φ1 + φ2 + φ3 = 0 from Theorem 3.1. The weak form of (3.41)-(3.43) can be formulated as follows.
Find φi ∈ H̄1(�), μi ∈ H̄1(�), u ∈ H1

u(�) via

(u,v) + 2δt

3
(B(u∗,u),v) + 2δt

3
ν(∇u,∇v) + 2δt

3
(

3∑
i=1

(φ∗
i − φ̄0

i )∇μi,v) = ( g̃1,v), (3.46)

(φi, wi) − 2δt

3
(u(φ∗

i − φ̄0
i ),∇wi) + 2δt

3

M

�i
(∇μi,∇wi) = (g̃i

2, wi), (3.47)

−(μi,ψi) + 3

4
ε�i(∇φi,∇ψi) + 6

ε
(H∗

i + β∗)(
3∑

i=1

H∗
i φi,ψi) + S

ε
�i(φi,ψi) = (g̃i

3,ψi), (3.48)

for any ψi ∈ H̄1(�), wi ∈ H̄1(�), v ∈ H1
u(�), where g̃1, ̃gi

2, ̃g
i
3 include corresponding explicit terms in each equation.

We denote the above linear system (3.46)-(3.48) as

(L(X), Y ) = (B, Y ), (3.49)

where X = (u, μi , φi)
T , Y = (v, wi , ψi)

T , X , Y ∈ (H1
u , H̄1, H̄1)(�), and B = ( g̃1, gi

2, g
i
3)

T .

Next, assuming that ψn and ψn−1 for any variable ψ are known, we show the well-posedness of the linear system (3.49).

Theorem 3.2. There exists a unique solution (u, μi , φi) ∈ (H1
u , H̄1 , H̄1)(�) for the linear system (3.49).

Proof. (i). By setting X = (u, μi , φi)
T and Y = (v, wi , ψi)

T where X, Y ∈ (H1
u , H̄1, H̄1)(�), we obtain

(L(X), Y ) ≤ C1

(
‖u‖H1 +

3∑
i=1

‖μi‖H1 +
3∑

i=1

‖φi‖H1

)(
‖v‖H1 +

3∑
i=1

‖wi‖H1 +
3∑

i=1

‖ψi‖H1

)
,

where C1 is some constant that may depend on δt, M, �i, S, ε , ‖∇u∗‖L∞ , ‖u∗‖L∞ , ‖φ∗
i ‖L∞ , ‖φ0

i ‖L∞ , ‖β∗‖L∞ , and ‖H∗‖L∞ . 
This tells us that L is bounded.

(ii). It is easy to find that

(L(X), X) =‖u‖2 + 2δt

3
ν‖∇u‖2

+
3∑

i=1

(
2δt

3
M�i

∥∥∥∥∇μi

�i

∥∥∥∥
2

+ 3

4
ε�i‖∇φi‖2 + S

ε
�i‖φi‖2

)
+ 6

ε
‖H∗

1φ1 + H∗
2φ2 + H∗

3φ3‖2

≥‖u‖2 + 2δt

3
ν‖∇u‖2

+
3∑

i=1

(
2δt

3
M�

∥∥∥∥∇μi

�i

∥∥∥∥
2

+ 3

4
ε�‖∇φi‖2 + S

ε
�‖φi‖2

)
+ 6

ε
‖H∗

1φ1 + H∗
2φ2 + H∗

3φ3‖2

≥ C2

(
‖u‖2

H1 +
3∑

i=1

(
‖φi‖2

H1 + ‖μi‖2
H1

))
,

where we use Lemma 2.1 since 
∑3

i=1
∇μi
�i

= 0 and 
∑3

i=1 φi = 0. The constant C2 depends on δt, M, �, ν, S, ε . This tells us 
that L is coercive.

Therefore, we conclude that the linear system (3.49) admits a unique solution X = (u, μi, φi)
T ∈ (H1

u , H̄1, H̄1)(�) by 
using the Lax-Milgram theorem. �

The unconditional energy stability of the scheme (3.14)-(3.22) is shown as follows.

Theorem 3.3. The time-discrete scheme (3.14)-(3.22) satisfies the discrete energy dissipation law as follows

1

δt
(En+1 − En) ≤ −ν‖∇ũn+1‖2 − M�

3∑∥∥∥∥∥∇μn+1
i

�i

∥∥∥∥∥
2

≤ 0, (3.50)

i=1

10
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where

En+1 =1

2

(1

2
‖un+1‖2 + 1

2
‖2un+1 − un‖2

)
+ δt2

3
‖∇pn+1‖2

+ 3ε

8

3∑
i=1

(
�i(

1

2
‖∇φn+1

i ‖2 + 1

2
‖2∇φn+1

i − ∇φn
i ‖2)

)

+ 12

ε

(1

2
‖Un+1‖2 + 1

2
‖2Un+1 − Un‖2

)
+ S

2ε

3∑
i=1

(�i‖φn+1
i − φn

i ‖2) ≥ 0.

(3.51)

Proof. By taking the inner product of (3.14) with 2δtũn+1 in the L2 space, we obtain

(3ũn+1 − 4un + un−1, ũn+1) + 2νδt‖∇ũn+1‖2 + 2δt(∇pn, ũn+1)

+ 2δt
3∑

i=1

(
(φ∗

i − φ̄0
i )∇μn+1

i , ũn+1
)

= 0.
(3.52)

From (3.20), for any variable v with ∇ · v = 0, we have

(un+1,v) = (ũn+1,v). (3.53)

We derive following equality

(3ũn+1 − 4un + un−1, ũn+1)

= (3ũn+1 − 4un + un−1,un+1) + (3ũn+1 − 4un + un−1, ũn+1 − un+1)

= (3un+1 − 4un + un−1,un+1) + (3ũn+1, ũn+1 − un+1)

= (3un+1 − 4un + un−1,un+1) + 3(ũn+1 − un+1, ũn+1 + un+1)

= 1

2

(
‖un+1‖2 − ‖un‖2 + ‖2un+1 − un‖2 − ‖2un − un−1‖2

+ ‖un+1 − 2un + un−1‖2
)

+ 3(‖ũn+1‖2 − ‖un+1‖2),

(3.54)

where we use the following identity

2(3a − 4b + c,a) = a2 − b2 + (2a − b)2 − (2b − c)2 + (a − 2b + c)2. (3.55)

We reformulate the projection step (3.20) as

3

2δt
un+1 + ∇pn+1 = 3

2δt
ũn+1 + ∇pn. (3.56)

By taking the square of both sides of the above equation, we get

9

4δt2
‖un+1‖2 + ‖∇pn+1‖2 = 9

4δt2
‖ũn+1‖2 + ‖∇pn‖2 + 3

δt
(ũn+1,∇pn). (3.57)

Hence, by multiplying 2δt2/3 of the above equation, we derive

3

2
(‖un+1‖2 − ‖ũn+1‖2) + 2δt2

3
(‖∇pn+1‖2 − ‖∇pn‖2) = 2δt(ũn+1,∇pn). (3.58)

By taking the inner product of (3.20) with 2δtun+1 in the L2 space, we have

3

2
(‖un+1‖2 − ‖ũn+1‖2 + ‖un+1 − ũn+1‖2) = 0. (3.59)

We combine (3.52), (3.54), (3.58), and (3.59) to obtain

1

2
(‖un+1‖2 − ‖un‖2 + ‖2un+1 − un‖2 − ‖2un − un−1‖2 + ‖un+1 − 2un + un−1‖2)

+ 3

2
‖un+1 − ũn+1‖2 + 2δt2

3
(‖∇pn+1‖2 − ‖∇pn‖2) + 2νδt‖∇ũn+1‖2

+ 2δt
3∑(

(φ∗
i − φ̄0

i )∇μn+1
i , ũn+1

)
= 0.

(3.60)
i=1

11
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Computing the inner product of (3.15) with 2δtμn+1
i in the L2 space, we have

(3φn+1
i − 4φn

i + φn−1
i ,μn+1

i ) − 2δt(ũn+1(φ∗
i − φ̄0

i ),∇μn+1
i ) + 2δtM�i

∥∥∥∥∥∇μn+1
i

�i

∥∥∥∥∥
2

= 0. (3.61)

Computing the L2 inner product of (3.16) with −(3φn+1 − 4φn + φn−1), we find

− (μn+1
i ,3φn+1

i − 4φn
i + φn−1

i )

= −3

4
ε�i(∇φn+1

i ,∇(3φn+1
i − 4φn

i + φn−1
i ))

− 12

ε
((H∗

i + β∗)Un+1,3φn+1
i − 4φn

i + φn−1
i )

− S

ε
(�i(φ

n+1
i − φ∗

i ),3φn+1
i − 4φn

i + φn−1
i ).

(3.62)

We compute the inner product of (3.17) with 24
ε Un+1 in the L2 space and use (3.55) to obtain

12

ε

(
‖Un+1‖2 − ‖Un‖2 + ‖2Un+1 − Un‖2 − ‖2Un − Un−1‖2

+ ‖Un+1 − 2Un + Un−1‖2
)

= 12

ε

3∑
i=1

(
H∗

i (3φn+1
i − 4φn

i + φn−1
i ), Un+1

)
.

(3.63)

Hence, by combining (3.60)-(3.63) and taking the summation for i = 1, 2, 3, we arrive at

1

2
(‖un+1‖2 − ‖un‖2 + ‖2un+1 − un‖2 − ‖2un − un−1‖2) + 2δt2

3
(‖∇pn+1‖2 − ‖∇pn‖2)

+ 3ε

8

3∑
i=1

(
�i(‖∇φn+1

i ‖2 − ‖∇φn
i ‖2 + ‖∇(2φn+1

i − φn
i )‖2 − ‖∇(2φn

i − φn−1
i )‖2)

)

+ 12

ε

(
‖Un+1‖2 − ‖Un‖2 + ‖2Un+1 − Un‖2 − ‖2Un − Un−1‖2)

+ S

ε

3∑
i=1

(
�i

(
‖φn+1

i − φn
i ‖2 − ‖φn

i − φn−1
i ‖2

))

+
{1

2
‖un+1 − 2un + un−1‖2 + 3

2
‖un+1 − ũn+1‖2

+ 3ε

8

3∑
i=1

�i‖∇(φn+1
i − 2φn

i + φn−1
i )‖2 + 12

ε
‖Un+1 − 2Un + Un−1‖2

+ 2S

ε

3∑
i=1

�i‖φn+1
i − 2φn

i + φn−1
i ‖2

}

= −2δtν‖∇ũn+1‖2 − 2δtM
3∑

i=1

�i

∥∥∥∥∥∇μn+1
i

�i

∥∥∥∥∥
2

≤ −2δtν‖∇ũn+1‖2 − 2δtM�

3∑
i=1

∥∥∥∥∥∇μn+1
i

�i

∥∥∥∥∥
2

≤ 0,

(3.64)

where we use the following two identities

(3a − 4b + c)(a − 2b + c) = (a − b)2 − (b − c)2 + 2(a − 2b + c)2, (3.65)

and

3∑
i=1

(β∗Un+1,3φn+1
i − 4φn

i + φn−1
i ) = (β∗Un+1,

3∑
i=1

(3φn+1
i − 4φn

i + φn−1
i )) = 0 (3.66)

which is due to (3.31).
Finally, we obtain En+1 ≥ 0 by using Lemma 2.1 and (3.31). Likewise, we obtain (3.50) after dropping the terms in { } of 

(3.64) since they are positive, i.e.,
12
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Fig. 4.1. The average of the L2 numerical errors for the three phase-field variables (φ1, φ2, φ3), the average of the two velocity components (u, v), the 
pressure p, that are computed using the schemes S-IEQ (shown in (a)) and IEQ (shown in (b)) with various temporal resolutions. (c) The average of the 
L2 numerical errors for the three phase-field variables (φ1, φ2, φ3) computed by S-IEQ and the scheme Semi. Three sets of surface tension parameters are 
used respectively where (a) (σ12, σ13, σ23) = 0.02(1, 1, 1), (b) 0.02(1, 1, 3), and (c) 0.02(1, 0.6, 0.6).

3∑
i=1

�i‖∇(φn+1
i − 2φn

i + φn−1
i )‖2 ≥ �

3∑
i=1

‖∇(φn+1
i − 2φn

i + φn−1
i )‖2 ≥ 0,

3∑
i=1

�i‖φn+1
i − 2φn

i + φn−1
i ‖2 ≥ �

3∑
i=1

‖φn+1
i − 2φn

i + φn−1
i ‖2 ≥ 0. �

(3.67)

Remark 3.6. It is worth noting that both IEQ and SAV (cf. [7,8,31,34–41]) use the same idea of “quadratization”, and they 
are both effective to generate linear schemes for gradient flow type models. By using the inverse linear operator technique, 
SAV method can usually produce equations with constant coefficients thus it is more effective in practice. However, for the 
gradient flow model coupled with the hydrodynamics, it is quite difficult to apply the inverse linear operator due to the 
coupling nature between the phase-field variable and the velocity field. Recently, the author has developed the so-called 
“zero-energy-contribution” technique which can be combined with IEQ/SAV approach such that for hydrodynamics-coupled 
gradient flow systems, the fully-decoupled type scheme can be easily obtained, and all coupled, nonlocal calculations or 
variable-coefficient systems can be easily avoided, see [34–41].

4. Numerical simulation

In this section, we perform numerical simulations in two and three-dimensional spaces to demonstrate the accuracy and 
energy stability of the developed scheme (3.14)-(3.22). Since the developed scheme has variable coefficients, so we use a 
conjugate gradient type solver with preconditioning (PCG), that does not need explicitly building the matrix. Instead, it only 
13
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Fig. 4.2. The comparisons of the time evolution of the total free energy (3.51) with various time steps computed by using the scheme S-IEQ and IEQ, where 
we set the surface tension parameter as (σ12, σ13, σ23) = 0.02(1, 1, 1).

Fig. 4.3. The comparisons of the time evolution of the total free energy in the original form (2.13) and modified discrete form (3.51) with various δt
computed by using the scheme S-IEQ, where we set the surface tension parameter as (σ12, σ13, σ23) = 0.02(1, 1, 3).

needs a subroutine to calculate the matrix-vector product. Since the linear systems are not symmetric, we use BiCGSTAB 
method.

4.1. Accuracy and stability test

We first perform convergence and stability tests for the developed scheme (3.14)-(3.22). When the scheme is equipped 
with a non-zero stabilizer (S �= 0), we denote it by S-IEQ for short. In order to show how the stability is improved by 
the stabilization term, for comparisons, the convergence rates of the non-stabilized version are also calculated, namely, the 
scheme (3.14)-(3.22) without the stabilizer (S = 0), denoted by IEQ for short.

We first perform refinement tests in time to investigate the temporal convergence rates. The 2D computational domain 
is set as � = [0, 2] × [0, 1]. The periodic boundary conditions are used for the x-axis which is discretized by the Fourier-
spectral method. The boundary conditions (3.19) and (3.22) are used for the y-axis which is then discretized by using the 
Legendre-Galerkin method. The x-direction is calculated by using 257 Fourier modes, and the y-direction is calculated by 
using Legendre polynomials up to the degree of 256. Using this sufficient fine grid, the interface can be well resolved, so 
that the spatial errors are negligible compared with the temporal errors.
14
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Fig. 4.4. The 2D dynamical evolution of the profile 1
2 φ1 + φ2 for the spinodal decomposition examples with (σ12, σ13, σ23) = 0.02(1, 1, 1) and various 

viscosity parameters ν = 1, 1e−2, 1e−3, and 1e−4 are used.

The initial conditions are set as follows,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ0
i (x, y) = tanh(

r − √
(x − xi)

2 + (y − yi)
2

ε
), i = 1,2,

φ0
3(x, y) = 1 − φ0

1(x, y) − φ0
2(x, y),

u0(x, y) = 0, p0(x, y) = 0,

(4.1)

where r = 0.25, x1 = 1.27, x2 = 0.73, y1 = y2 = 0.5. We set ν = 1, ε = 0.04, M = 2.5e−3, B = 10, and S = 10. Since the 
exact solution is not known, we choose the solution obtained with the time step size δt = 1e−9 computed by the scheme S-
IEQ as the benchmark solution (approximately the exact solution) for computing errors. We investigate the order of accuracy 
by using two different set of surface tension parameters (σ12, σ23, σ13). The average of the L2 errors of the three phase-field 
variables, the average of the L2 errors of the velocity field, as well as the pressure between the numerical solution and the 
exact solution at t = 0.2 are then plotted by varying the time step sizes.

In Fig. 4.1 (a), for (σ12, σ23, σ13) = 0.02(1, 1, 1), we show the L2-errors of all the variables by varying the time step 
sizes from δt = 0.1 to δt = 0.01

27 with a factor of 1/2. We observe that both of the two schemes, S-IEQ and IEQ, present 
the second-order convergence rate but the slope of the accuracy curve of the non-stabilized version is not ideally straight 
when the time step is large. This implies the accuracy of the non-stabilized version is not as good as the stabilized version 
15
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Fig. 4.5. The 2D dynamical evolution of the profile 1
2 φ1 + φ2 for the spinodal decomposition example with ν = 1e−3 and four different sets of surface 

tension parameters (σ12, σ13, σ23).

while using the large time steps. In Fig. 4.1 (b), we set (σ12, σ23, σ13) = 0.02(1, 1, 3). We observe that the scheme S-IEQ 
still presents almost perfect second-order accuracy. But the non-stabilized scheme IEQ presents zero-order convergence rate 
when 0.01

25 ≤ δt ≤ 0.01
2 or even blows up when δt = 0.01. It only presents the second-order accuracy when time step is 

very small (δt ≤ 0.01/27). In Fig. 4.1 (c), we set (σ12, σ23, σ13) = 0.02(1, 0.6, 0.6) and compare the accuracy of S-IEQ and 
the second-order implicit-explicit type scheme (i.e., all linear terms are treated implicitly and nonlinear terms are treated 
explicitly, abbreviated as Semi). We observe that, when the time step is large, the scheme Semi blows up quickly therefore 
the corresponding error points are missing, when the time step is small, the scheme Semi shows second-order convergence, 
but scheme S-IEQ is still better than it from the magnitude of error.

We further plot the evolution curves of the total free energy (3.2) with various time steps for the second example 
computed by the scheme S-IEQ and IEQ in Fig. 4.2. We find that all computed energy curves computed by the scheme S-IEQ 
show monotonic decays, which confirms the unconditional stability of the scheme. For comparison, in Fig. 4.2(b), we plot 
the energy evolution curves calculated by using the non-stabilized scheme IEQ. The scheme IEQ blows up for larger time 
steps and only shows decays when δt ≤ 0.16/24. In Fig. 4.3, we show the time evolution of the original energy (2.13) and 
16
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Fig. 4.6. Time evolution of the logarithm of the total free energy (3.2) for the spinodal decomposition examples where (a) the viscosity parameter is varied 
as ν = 1, 1e−2, 1e−3, 1e−4 and the surface tension parameter is fixed as (σ12, σ13, σ23) = 0.02(1, 1, 1), and (b) the surface tension parameters are varied 
as (σ12, σ13, σ23) = 0.02(1, 0.6, 0.6), 0.02(1, 0.8, 1.4), 0.02(1, 1, 0.6), and 0.02(1, 1, 3) and the viscosity parameter is fixed as ν = 1e−3.

Fig. 4.7. The 3D dynamical evolution of the two close-by spheres with the partial spreading case with (σ12, σ13, σ23) = 0.02(1, 1, 1) that is driven by three 
different magnitude of shear flow where (a) no shear case with û0 = 0, (b) weak shear case with û0 = 0.1, and (c) strong shear case with û0 = 0.5.

modified energy (3.51) computed by using different time step size δt . When δt = 0.01, we can see the two energies have 
slight difference, but when δt = 0.01/2, there is no visible difference between them.

Finally, after summarizing all above accuracy and stability tests, we conclude that the stabilized scheme S-IEQ is far more 
superior to the non-stabilized scheme while using large time steps for both of the accuracy and the stability concern.

4.2. Spinodal decomposition with various viscosity and surface tension parameters

In this example, we study how the viscosity of the fluid mixture and surface tension parameters affect the phase separa-
tion (or called spinodal decomposition) dynamics and equilibrium pattern. Using the homogeneous ternary mixture as the 
initial condition, we observe that the system evolves from the homogeneous to the three-phase state. The initial conditions 
read as follows,
17
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Fig. 4.8. The 3D dynamical evolution of the two close-by spheres with the total spreading case with (σ12, σ13, σ23) = 0.02(1, 1, 3) that is driven by three 
different magnitude of shear flow where (a) no shear case with û0 = 0, (b) weak shear case with û0 = 0.1, and (c) strong shear case with û0 = 0.5.

Fig. 4.9. Time evolution of the logarithm of the total free energy (3.2) for the two close-by spheres example with (a) no shear cases and (b) weak and strong 
shear cases where two sets of surface tension parameters are used, (σ12, σ13, σ23) = 0.02(1, 1, 1) (partial spreading) and 0.02(1, 1, 3) (total spreading).
(Note: the total free energy is not decaying with time due to the imposed shear flow.)⎧⎪⎪⎨

⎪⎪⎩
u0(x) = 0, p0(x) = 0,

ψi(x) = 0.5 + 0.001rand(x),

φ0
i (x) = ψi

ψ1 + ψ2 + ψ3
, i = 1,2,3,

(4.2)

where the rand(x) is the random number in [−1, 1] that follows the normal distribution.
We use the 2D computational domain [0, 2]2 and adopt the periodic boundary conditions. The space is discretized by 

using the Fourier-spectral methods with Nx = N y = 257 Fourier modes. The model parameters read as δt = 1e−3, ε = 0.02, 
B = 10, S = 20, and M = 5e−3. We adjust the viscosity parameter ν and surface tensions (σ12, σ13, σ23) to investigate how 
the three phases are separated.

In Fig. 4.4, we perform simulations for a partial spreading case with three equal surface tension parameters 
(σ12, σ13, σ23) = 0.02(1, 1, 1) and vary the viscosity parameter as ν = 1, 1e−2, 1e−3, and 1e−4. We observe the phase 
separation behavior and all the final equilibrium solutions present hexagonal patterns where the three contact angles be-
come 2π . Meanwhile, we find that the final equilibrium state is obtained faster while using smaller viscosity parameter.
3

18
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Fig. 4.10. Theoretical shape of the contact lens at the equilibrium between two stratified fluid components.

In Fig. 4.5, we fix ν = 1e−3 and vary the surface tension parameters to be (σ12, σ13, σ23) = 0.02(1, 0.6, 0.6), 
0.02(1, 0.8, 1.4), 0.02(1, 1, 0.6), and 0.02(1, 1, 3), respectively. We then observe that the final equilibrium solution presents 
various contact angles. In particular, when (σ12, σ13, σ23) = 0.02(1, 1, 3) shown in Fig. 4.5 (d), we observe that no junction 
points are formed all along due to the total spreading happens therein.

In Fig. 4.6, we present the time evolution of the free energy functional for all eight simulations. The energy curves show 
the decay with the time that confirms that the developed algorithm is unconditionally stable.

4.3. Two close-by spheres under the shear flow

In this example, we perform simulations to investigate how the two close-by spheres are driven by the imposed shear 
flow on the boundary and the surface tension forces in 3D space. The computational domain is set as (x, y, z) ∈ � =
[0, 1] × [0, 0.5] × [0, 0.5].

The initial conditions read as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u0(x) = 0, p0(x) = 0,

φ0
i (x) = 1

2
tanh(

ri − √
(x − xi)

2 + (y − yi)
2 + (z − zi)

2

ε
) + 1

2
, i = 1,2,

φ0
3(x) = 1 − φ0

1(x) − φ0
2(x),

(4.3)

where ε = 0.018, r1 = r2 = 0.15, x1 = 0.65, x2 = 0.35, and y1 = y2 = z1 = z2 = 0.25. The periodic boundary conditions are 
set for the x- and y-directions which are discretized by using the Fourier-spectral method with 1292 Fourier modes. The 
boundary conditions of the velocity field u = (u, v, w), phase-field variables φi , and the chemical potentials μi along the 
z-direction are set as

u|(z=0,0.5) = ±û0, v|(z=0,0.5) = w|(z=0,0.5) = ∂nφi|(z=0,0.5) = ∂nμi |(z=0,0.5) = 0. (4.4)

The z-direction is then discretized by using the Legendre-Galerkin spectral method where the Legendre polynomials up 
to the degree of 256 are adopted. For better accuracy, we use the time step δt = 1e−3. The other model parameters are 
set as ν = 1, M = 1e−4, ε = 0.015, B = 10, S = 10. We vary the surface tension parameters (σ12, σ13, σ23) and adjust the 
magnitude of the shear flow û0 to investigate how the two spheres are deformed when time evolves.

First, using the partial spreading case with (σ12, σ13, σ23) = (1, 1, 1), we adjust the magnitude of the imposed shear case 
by setting û0 = 0 (no shear), û0 = 0.1 (weak shear), and û0 = 0.5 (strong shear). For the no shear case, shown in Fig. 4.7
(a), we observe that the two spheres are finally bound together with identical shapes due to the equal surface tension force 
between each phase. For the weak shear and strong shear cases, shown in Fig. 4.7 (b) and (c), we observe that the two 
bounded spheres are deformed to form ellipsoids due to the shear flow and larger shear flow induces larger deformations.

Second, we investigate the total spreading case with (σ12, σ13, σ23) = (1, 1, 3). For the no shear case that is shown in 
Fig. 4.8(a), we find that one sphere finally moves into the other one since the latter phase spreads out totally. Likewise, for 
the weak shear and strong shear cases, shown in Fig. 4.8 (b) and (c), the two spheres are deformed by the shear flow field 
while one phase is totally spreading out around the other. The time evolution of the free energy functional for all cases is 
presented in Fig. 4.9.

4.4. Liquid lens between two stratified fluids under the shear flow

In this subsection, we compute the evolutions of the liquid lens with and without the shear flow where the lens is 
initially spherical and located at the interface between two other immiscible fluids, cf. [4–6,45,46]. The 2D computed domain 
is set as [0, 1] × [0, 0.5] and the initial conditions read as follows,
19



X. Yang Journal of Computational Physics 438 (2021) 110342
Fig. 4.11. The 2D dynamical evolution of the profile 1
2 φ1 + φ2 for the liquid lens example without imposing the shear flow (û0 = 0) where four partial 

spreading and two total spreading cases are simulated.

u0(x, y) = 0, p0(x, y) = 0,

φ0
1(x, y) = (1 − φ0

3)

(
1

2
+ 1

2
tanh

(4

ε
(y − 0.25)

))
φ0

2(x, y) = 1 − φ0
1 − φ0

3 ,

φ0
3(x, y) = 1

2
tanh(

0.09 − √
(x − 0.5)2 + (y − 0.25)2

ε/2
) + 1

2
.

(4.5)

The periodic boundary conditions are set for the x-direction which is discretized by using the Fourier-spectral method with 
257 Fourier modes. The boundary conditions for u = (u, v), φi and μi along the y-direction are set as

u|(y=0,0.5) = ±û0, v|(y=0,0.5) = ∂nφi|(y=0,0.5) = ∂nμi |(y=0,0.5) = 0. (4.6)
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Fig. 4.12. (a) Time evolution of the logarithm of the total free energy (3.2) for the two close-by spheres example with (a) no shear cases and (b) weak and 
strong shear cases where (σ12, σ13, σ23) = 0.02(1, 1, 1) and 0.02(1, 1, 3).

The y-direction is then discretized by using the Legendre-Galerkin spectral method with the Legendre polynomials up to 
the degree of 512. For better accuracy, we use the time step δt = 1e−3. We set the model parameters as ν = 1, M = 1e−4, 
ε = 0.01, B = 10, S = 10, and adjust the surface tension parameters (σ12, σ13, σ23) to investigate how the contact angles 
are affected.

As pointed by the Young’s relation (cf. [6,19,27]), in the limit ε → 0, the contact angles (shown in Fig. 4.10) of the 
equilibrium state of the lens is given as a function of the three surface tensions by

sinθ1

σ23
= sinθ2

σ13
= sinθ3

σ12
. (4.7)

We first simulate four partial spreading cases (�i > 0, for all i) and two total spreading cases (�i < 0 for some i) without 
imposing the shear flow (i.e., û0 = 0) in Fig. 4.11 where snapshots of the profile 1

2 φ1 +φ2 at various times are plotted. From 
the sharp interface formula (4.7) for angles, we derive

• θ1 = θ2 = θ3 = 2π
3 for (σ12, σ13, σ23) = 0.02(1, 1, 1);

• θ1 > θ2 = θ3 for (σ12, σ13, σ23) = 0.02(1, 1, 0.6);
• θ1 = θ2 > θ3 for (σ12, σ13, σ23) = 0.02(1, 0.6, 0.6);
• θ1 < θ3 < θ2 for (σ12, σ13, σ23) = 0.02(1, 0.8, 1.4);
• θ1 = 0, θ2 = θ3 = π for (σ12, σ13, σ23) = 0.02(1, 1, 3);
• θ1 = θ2 = π, θ3 = 0 for (σ12, σ13, σ23) = 0.02(3, 1, 1).

These theoretical predictions for contact angles are all verified by the computed results which are shown by the equilibrium 
solutions plotted in each final subfigure of Fig. 4.11 (a)-(f). Moreover, all these computations are qualitatively consistent 
to the numerical simulations presented in [4,6,43,45,46]. The time evolution of the free energy functional for all cases is 
presented in Fig. 4.12. Once we impose the shear flow on the boundary, all dynamical behaviors until the equilibrium states 
for each case are shown Fig. 4.13 (a)-(f). We observe that the flow field makes the total shape of the liquid lens deformed 
while the contact angles still follow the sharp interface formula (4.7).

4.5. A compound droplet under the shear flow

In this example, we perform simulations to investigate how a compound droplet (drop-in-drop) are driven by the im-
posed shear flow on the boundary. The computational domain is set as (x, y) ∈ � = [0, 1] × [0, 0.75].

The initial conditions read as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u0(x) = 0, p0(x) = 0,

φ0
1(x) = −1

2
tanh(

R1 − √
(x − 0.5)2 + (y − 0.35)2

ε
) + 1

2
,

φ0
3(x) = 1

2
tanh(

R2 − √
(x − 0.5)2 + (y − 0.35)2

ε
) + 1

2
,

φ0(x) = 1 − φ0(x) − φ0(x).

(4.8)
2 1 3
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Fig. 4.13. The 2D dynamical evolution of the profile 1
2 φ1 + φ2 for the liquid lens example with the shear flow (û0 = 0.1) where four partial spreading and 

two total spreading cases are simulated.

The periodic boundary conditions are set for the x-direction which is discretized by using the Fourier-spectral method with 
257 Fourier modes. The boundary conditions of the velocity field u = (u, v), phase-field variables φi , and the chemical 
potentials μi along the z-direction are set as

u|(z=0,0.75) = ±û0, v|(z=0,0.75) = ∂nφi|(z=0,0.75) = ∂nμi|(z=0,0.75) = 0. (4.9)

The y-direction is then discretized by using the Legendre-Galerkin spectral method where the Legendre polynomials up to 
the degree of 512 are adopted. For better accuracy, we use the time step δt = 1e−3. The other model parameters are set as 
R1 = 0.28, ν = 1, M = 1e−4, ε = 0.01, B = 10, S = 10, (σ12, σ13, σ23) = (1, 0.6, 0.6), û0 = 1.2. We adjust the radius of the 
inner droplet R2 to investigate how the two drops are deformed when time evolves.

In Fig. 4.14, we plot the profiles of 1
2 φ1 + φ2 of the steady-state solution, where the radius of inner droplet is set as 

R2 = 0.1, 0.13, 0.16. We can see that with the different radius of the inner droplet, the deformation of the outer droplet is 
different. At the same time, the deformation of the smaller inner droplets is least affected by the shear flow, and the larger 
inner droplets are more affected. The inclination angles formed by the inner droplet and the outer droplet are completely 
22
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Fig. 4.14. The deformation of a compound droplet driven by the shear flow where the radius R2 of inner droplet is varied. From left to right, R2 = 0.1, 0.13
and 0.16.

different. These simulations are qualitatively consistent with the numerical simulations in [16] using the immerse boundary 
method.

5. Concluding remarks

In this paper, we develop a semi-discrete in time, linear, and second-order scheme to solve the hydrodynamically cou-
pled three components Cahn-Hilliard phase-field model. The scheme combines the recently developed IEQ approach with 
the stabilization technique, the projection method, as well as the implicit-explicit treatments for the nonlinear stress and 
convective terms. We prove the unconditional energy stability of the developed scheme rigorously. In simulating numerous 
numerical examples of 2D and 3D, we demonstrate the stability and the accuracy of the developed scheme numerically.
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