®

Check for
updates

Impact of Commodity Networks on Storage
Disaggregation with NVMe-oF

Arjun Kashyap?®, Shashank Gugnani!, and Xiaoyi Lu?

! The Ohio State University, Columbus, USA
gugnani.2@osu.edu
2 University of California Merced, Merced, USA
{akashyap5,xiaoyi.lu}@ucmerced.edu

Abstract. NVMe-based storage is widely used for various data-intensive appli-
cations due to their high bandwidth and low access latency. The NVMe-over-
Fabrics (NVMe-oF) protocol specification provides efficient remote access to
NVMe-SSDs over storage networking fabrics. NVMe-oF provides the oppor-
tunity to make storage disaggregation practical by reducing the cost of remote
access. Unfortunately, the performance characteristics of different NVMe-oF net-
working protocols are not well understood. In this paper, we propose a four
dimensional (network protocol, I/O pattern, I/O size, and number of cores) evalu-
ation methodology to understand NVMe-oF performance over various commod-
ity networks. We conduct comprehensive microbenchmark analyses using the
user-space Intel SPDK library to compare the TCP, IPoIB, RoCE, and RDMA
transports. Our analysis reveals interesting, and often counter-intuitive insights
and performance tradeoffs among the different transports. We find that Infini-
Band with native RDMA is able to deliver the best performance among all tested
networking protocols in most experiments. Contrary to expectation, IPoIB could
achieve better CPU utilization and lower tail-latency for large I/O operations in
some of our experiments. We believe that our analysis helps gain insight into the
deployment implications of NVMe-oF in datacenters.

Keywords: NVMe-over-Fabrics - SPDK - Disaggregated storage -
Performance characterization

1 Introduction

Storage disaggregation is gaining popularity in cloud datacenters recently [13—15] due
to the ability to scale and manage storage and compute results with increased flexibility
and better resource utilization. A large body of work [4,5,14—-16] has looked at how
storage systems can be efficiently designed to take advantage of disaggregated storage.
Other works [10,13,26] have looked at improving the network costs of disaggregation.
Taking this trend into consideration, it is imperative to gain a better understanding of
the impact of commodity networks on storage disaggregation.

Fast NVMe [18] drives are becoming ubiquitous in datacenters. Their low latency
and inherent parallelism make them a perfect fit for cloud storage. The recently

This work was supported in part by NSF research grant CCF #1822987.
This work was done by the authors A. Kashyap and X. Lu while at Ohio State University.
(© Springer Nature Switzerland AG 2021

F. Wolf and W. Gao (Eds.): Bench 2020, LNCS 12614, pp. 41-56, 2021.
https://doi.org/10.1007/978-3-030-71058-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71058-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-71058-3_3

42 A. Kashyap et al.

proposed NVMe over Fabrics (NVMe-oF) standard [19] allows fast remote access
to NVMe devices over various network transports. NVMe-oF has overtaken Serial
Attached SCSI (SAS) and Serial AT Attachment (SATA) as the state-of-the-art approach
to access storage remotely. The standard was designed to leverage the increased paral-
lelism available in modern solid state drives (SSDs) and networks, such as InfiniBand
(IB) and Remote Direct Memory Access (RDMA) over Converged Ethernet (RoCE).
Studies [2,3] have shown that NVMe-oF has extremely low overhead at the application
level compared to traditional I/O paths. However, the standard allows several network
protocols to be used for remote I/O and prior work has not considered the breadth of
available protocols.

We believe that there is a lack of studies which evaluate the tradeoffs of different
networks and try to gain an in-depth understanding of their performance characteristics
on storage disaggregation. This is even more important when considering NVMe-oF
because the network overhead constitutes a significant portion of remote access latency.
Protocols such as SAS and SATA were designed for spinning disks where data stor-
age was significantly slower than network I/0. Therefore, it was not beneficial to study
the impact of network protocols until now. For cloud vendors, there is a lack of suf-
ficient information to make informed decisions on the network protocol to deploy in
datacenters. For instance, the tail latency characteristics of networks are not known.
Therefore, it is hard to choose which network to use to achieve a given latency service
level objective. We seek to solve this information gap through an in-depth performance
characterization.

In this paper, we propose a four dimensional (network protocol, I/O pattern, I/O size,
and number of cores) evaluation methodology to understand NVMe-oF over various
commodity networks. We conduct a set of comprehensive microbenchmark analyses
using the userspace Intel SPDK library to compare the TCP, IP-over-1B/IPoIB, RoCE,
and RDMA transports. Our analysis reveals interesting insights and performance trade-
offs between the different transports.

To summarize, the contributions of our work are as follows:

— An extensive four dimensional (network protocol, I/O pattern, I/O size, and number
of cores) characterization methodology of NVMe-oF protocols

— In-depth NVMe-oF protocol performance characterization and tradeoff analysis
using the userspace Intel SPDK library

— The community can leverage the findings in this paper to make informed decisions
on the transport type to deploy for NVMe-oF based on latency, bandwidth, and CPU
utilization constraints of the system in datacenters

We conduct extensive experiments on a local cluster with NVMe-SSDs and sev-
eral networks connecting each server. Overall, our findings reveal interesting insights —
ROCE is able to achieve bandwidth similar to IPoIB and IB for most of the write work-
loads despite having only 40 Gbps network card when compared to 100 Gbps card for
InfiniBand. This shows that moderate network bandwidth is sufficient to achieve good
performance for write operations on current-generation NVMe-SSDs. Overall, we find
that InfiniBand with native RDMA can deliver the best performance among all tested
networking protocols in most experiments.

Contrary to expectation, [PoIB could achieve better CPU utilization and lower tail-
latency for large I/O operations in some of our experiments. IPoIB has similar CPU

Impact of Commodity Networks on Storage Disaggregation with NVMe-oF 43

utilization to TCP with ~45% CPU time in user mode and ~50% in kernel/system
mode but its bandwidth are similar to RoCE and IB whose CPU utilization is ~92%
in user mode. Apart from TCP, the other three network protocols - RoCE, IPoIB, and
IB have similar average latency but varying tail latency depending upon the I/O size.
Increasing the number of cores on client and target for NVMe-oF protocol does not
change the throughput for TCP, RoCE, and IB transports for random read operation but
raises the latency for all transports.

The rest of this paper is organized as follows. Section?2 discusses background
on storage disaggregation, NVMe-oF, and SPDK. Section 3 presents the characteriza-
tion methodology we propose, Sect. 4 presents our in-depth experimental analysis, and
Sect. 5 summarizes our analysis with a discussion. Section 6 discusses related work and
Sect. 7 presents the conclusion and future work.

2 Background

In this section, we discuss storage disaggregation, the NVMe-oF standard, and the
SPDK library.

2.1 Storage Disaggregation and NVMe-oF

Storage disaggregation is a commonly used technique to improve resource utilization
in cloud environments. In this approach, storage devices are physically separated from
compute servers and are typically accessed over the network using a remote access
protocol. This separation allows applications to only provision storage in an ad-hoc
manner and scale it up or down depending on utilization. Disaggregation comes at the
cost of the network overhead of remote access and indeed a lot of research [10,13,26]
has looked into limiting the performance overheads of remote access. Nevertheless, the
flexibility and resource savings of disaggregation are worth the overhead.

The NVMe-oF protocol specification [19] allows remote access of NVMe devices
over different transports/network protocols. It allows fast access to any remote NVMe
device via NVMe block storage protocol over the network as seen in Fig. 1. NVMe-oF
currently supports three types of transports:

* NVMe over Fabrics using RDMA (Infiniband, RoCE, and iWARP)
* NVMe over Fabrics using Fibre Channel
* NVMe over Fabrics using Ethernet (TCP)

The specification terms NVMe-oF client/initiator as the node which contains drivers
to send NVMe commands over the transport and NVMe-oF target as the node which
contains drivers for local NVMe storage device (connected via PCI-e) and different
transports.

2.2 Intel SPDK

Intel SPDK [25] is a userspace library that provides NVMe drivers, storage protocols
(iSCSI target, NVMe-oF target, and vhost-scsi target), and storage services (blobstore

44 A. Kashyap et al.

Client Target
= mmmmmmm—— 1 _I
T N R
: NVMe-oF client/initiator ! I
i | : NVMe-of 1
| |
: Application " : Target |
1 : 1 | :
1 1
[NVMe-oF ' i NVMe :
1 . I 1 Controller
| driver 1 i 1
I R ! Lmm e 2
Ethernet/RDMA Ethernet/RDMA
NIC NIC

NVMe SSD

Fig. 1. NVMe-oF architecture

and block device abstraction layer). It uses polling rather than interrupts to complete
asynchronous I/O operations via queue pairs. It provides a userspace NVMe-oF appli-
cation which consists of NVMe-oF target [7] and NVMe-oF client/initiator drivers. The
client is responsible for establishing a connection and submitting I/O requests (similar
to local NVMe devices) over the network to an NVMe subsystem exposed by an NVMe-
oF target. Apart from avoiding costly syscalls and data copy overheads, SPDK is also
able to scale and avoid synchronization overheads by pining its connections to CPU
cores.

3 Characterization Methodology

Our methodology involves evaluating NVMe-oF across four dimensions - transport type
or network protocol, I/O pattern or workload, number of cores involved in I/O, and I/O
size as seen in Fig. 2. The network transport under consideration are TCP, RoCE, IPoIB,
and IB as these are widely available in today’s datacenters. We did not consider iWARP
and fibre channel because we did not have access to these networks. Moreover, they
are not widely used in datacenters. I/O pattern studied are sequential/random read/write
and read-write and I/O sizes are varied from 1KB to IMB. Number of cores represent
the threads (one thread is pinned to one core) performing I/O at NVMe-oF client and
NVMe-oF target side. I/O pattern, I/O size, and the number of cores represent most of
the workloads different applications generate while reading or writing from/to NVMe-
SSDs.

For benchmarking NVMe-oF we choose SDPK’s NVMe-oF implementation [25]
as it provides both a user-space NVMe-oF target and client and is the current state-of-
the-art approach. The SPDK NVMe-oF target uses NVMe driver in polled-mode for
I/Os. Being in user-space, it helps us avoid software processing overheads and obtain
the actual latency of I/O transactions. The metrics reported are throughput/bandwidth,
average and tail (p50, p90, p99, p999, and p9999) latency, client CPU utilization, and
SSD parallelism or concurrency. These metrics were chosen as they help in quantifying

Impact of Commodity Networks on Storage Disaggregation with NVMe-oF 45

Network Protocol

1B

IP-over-1B
RoCE
TCP/IP

># of

1MB 16KB 4KB 1KB 512B 1 2 4 8 16 28 cores
(large) (small)

1/0 size ¢

Sequential
Random

Mixed read-write

Workload

Fig. 2. Four-dimensional characterization approach

the performance and efficiency of various network transports and are typically the most
important for cloud vendors and applications. Throughput, bandwidth, and latency are
measured using the NVMe perf tool [20] as it has the capability to generate various
workloads (sequential/random read/write and read-write), vary queue depth, I/O size,
pin threads to CPU cores, and specify different transport types (ethernet and RDMA).

In our experiments, first we find out the maximum bandwidth of each transport
type by trying out different combinations of I/O size, workload, and queue depth while
performing I/Os. The observation here was that higher queue depth always provided
higher bandwidth keeping all other factors same. Hence, all of our experiments are per-
formed at a queue depth of 128. Even at a queue depth of 128, the system is not able
to achieve its peak bandwidth when only one core is involved in I/O at both NVMe-
oF client and target side. To fully utilize/saturate the network and SSD, we differ the
number of cores and noticed bandwidth scaling with number of cores for IPoIB, though
not linearly. Once we obtain the maximum throughput of all four transport types, we
decide to study the variation in maximum bandwidth according to I/O pattern or work-
load as workload type has a profound impact on the bandwidth. Keeping other factors,
like number of cores and queue depth constant, we evaluated the change in bandwidth
for 1 KB and 4 KB I/O sizes. We choose these I/O sizes as it is representative of the
typical size of objects in systems, such as key-value stores. Efficiency of the network
transports is determined by the latency and CPU utilization at peak bandwidth. Aver-
age, p90, p99, p999, and p9999 latencies for each transport were noted when system
has maximum throughput. Again, the increase in latency is proportional to the I/O size.
The CPU utilization of a transport was broken down into the time spent by an I/O oper-
ation in user/system/idle mode. NVMe-SSDs support multiple levels (channel, plane,
chip, and die) of parallelism. We calculate the concurrency/parallelism each transport
could attain by varying the queue depth. This helps us to learn how well each network
transport can exploit the parallelism within an NVMe-SSD. These metrics could allow
a user of NVMe-oF protocol to determine a suitable transport type for their application
based on its operating environment and latency constraints.

46 A. Kashyap et al.

4 Evaluation

In this section, we conduct experiments on four networking protocols TCP, RoCE,
[PolIB, and IB (native RDMA) to evaluate the performance of SPDK’s NVMe-oF stor-
age protocol over RDMA and Ethernet fabrics. We use the perf [20] tool of SPDK to
obtain bandwidth, throughput, and latency results across various dimensions- I/O pat-
tern, I/O size, and number of cores. The number of cores indicate the total threads (each
thread pinned to one core) involved in performing I/O operations at NVMe-oF client
and target side. The 1/O sizes considered for the study range from 512 B to 1 MB. The
I/O pattern or workload considered are sequential read, sequential write, random read,
random write, read-write and random read-write. Like other studies [21,22] the ratio of
reads to write in both read-write and random read-write operations were 70:30.

For all the experiments, the queue depth is set to 128 unless specified otherwise
because this value of queue depth provides maximum throughput. The configuration of
NVMe-oF target [8] is done by JSON-RPC interface provided by SPDK and the perf
tool is run on the client. Each experiment is performed three times and the average value
is reported.

4.1 Experimental Setup

Our cluster consists of two Linux servers directly connected, each equipped with a
two-socket, 28-core Intel broadwell CPU (E5-2680v4@2.40 GHz), 512 GB DRAM,
an Ethernet (1 Gbps) NIC, a ConnectX-3 RoCE (40 Gbps) NIC, and a ConnectX-5
IB-EDR (100 Gbps) NIC. One server has an Intel DC P3700 NVMe-SSD attached via
PCle and acts as the NVMe-oF target while the other server is used as the NVMe-oF
client performing I/O reads and writes over the network. We use SPDK v20.04.1 for
all of our evaluations. In our experiments, the legend TCP refers to TCP over 1 GbE,
RoCE refers to RoCE over 40 GbE, IPolB refers to IP-over-InfiniBand over a 100Gb 1B
card, and IB refers to native RDMA over a 100 Gb IB card.

4.2 Bandwidth Evaluation

First, we wish to discover the peak throughput for all transports as we vary the number
of cores or workload or I/O size. Thus, we vary one of the factors and keep the others
fixed. The number of cores/threads are set to 28 as maximum bandwidth is achieved
when all 28 cores are performing I/O operations. We study the variation in bandwidth
with respect to I/O size in Fig. 3 for random read operation with number of threads/cores
set to 28 (full subscription) at both NVMe-oF target and client. The peak bandwidth for
this configuration is 3599 MiB/s at 1 MB I/O size for IB transport and 3611 MiB/s for
local SSDs. IPoIB has a slightly lower peak bandwidth of 3426 MiB/s. An interesting
observation is that RoCE, IPoIB, and IB are able to almost achieve their respective peak
bandwidths after I/0O size crosses 4 KB. Thus, small I/O sizes are sufficient to achieve
near peak bandwidth of an NVMe SSD over the network. TCP transport has the lowest
peak bandwidth at 466 MiB/s which is 13% of the peak bandwidth achieved by other
transports. This is because of the low bandwidth of the ethernet NIC.

Impact of Commodity Networks on Storage Disaggregation with NVMe-oF 47

4000
mTCP N RoCE g IPolB 1B

3500

2

3000

2500

2000

1500

Bandwith (MiB/s)

1000

500

L L T 777

9
\
N
N
\
\
N
N
\
N
N
N
N
\
N
\
%
N
§
N
\
\
N
\
N
\

Z777777777777777777777777 27777777 27 27 77777777 77777

N
\
N
N
\
N
\
\
N
N
N
N
N
N
\
N
N
\
N
\
N
N
\
\

| . il

1 2 4 8 16 32 64 128 256 512 1024
1/0 Size (KB)

Wz

0

Fig. 3. Bandwidth with varied I/O sizes at full subscription for random read 1/O

900k
TCP SRoCE ElIPolB EIB -eLocal

800k N
700k
600k

500k

IOPS

400k

300k
200k

100k

%

V7777777777777 7777777777777/

V77777777

0Ok

1 2 4 8 16 28
of cores

Fig. 4. Throughput with varied cores/threads for 4KB random read I/O

Second, we discuss the effects of number of cores/threads on throughput. For this
experiment, we equally vary the number of threads performing I/O at the NVMe-oF
client and target between 1-28 and measure the bandwidth for random read I/O at 4KB.
We observe from Fig. 4 that the throughput/IOPS does not scale with the increase in the
number of cores for TCP transport type and remains fixed at maximum throughput for
ROoCE and IB. On the other hand, IPoIB’ throughput increases until 4 cores and then
reaches its peak value. The low throughput of IPoIB for only 1 or 2 cores is due to
the execution of kernel code in IPoIB network stack that dominates the total I/O time

48 A. Kashyap et al.

decreasing the overall throughput. This places RoCE and IB above IPoIB in terms of
throughput as they need only a single core to reach maximum throughput.

Next, we analyse the impact of I/O pattern or workload (sequential/random read-
/write) for all transport types over 1 KB and 4 KB 1/O sizes at full subscription. In
Fig.5a for 4 KB 1/O size the maximum IOPS achieved by writes (275 k IOPS) is
roughly 33% of the maximum IOPS achieved by reads (832 k IOPS) for IB transport
type. This low bandwidth of write workload is not due to network protocol/transport
type. We verified this by running the same I/O pattern on local NVMe-SSD and found
that the write bandwidth is bounded by the SSD rather than the transport type. It can
also been seen from Fig. 5a that the throughput provided by NVMe over TCP is constant
across workloads indicating the network protocol is the bottleneck while IB maintains
the throughput close to that of local SSDs for all workloads. Surprisingly, from Fig. 5b
the maximum throughput of read-write (70:30) and/or sequential write workload (35 k
IOPS) at 1 KB I/O size is 4% of the maximum IOPS achieved by random read opera-
tions (830 k IOPS). Again, we verify that this peculiar behaviour is not dependent upon
transport type but rather is present while performing I/Os on local NVMe SSDs as well
due to write amplification at smaller sized I/Os. From Fig. 5 we can observe that random
read I/O pattern has the highest throughput on average and we choose this workload for
majority of our experiments.

900k MTCP NRoCE EIPolB EIB +Local 900k MTCP SRoCE EIPoIB @IB +Local
800k M 800k

700k
600k
500k
400k
300k
200k
100k

700k
600k
500k

10PS
10PS

400k
300k
200k
100k

0Ok S 0k S
> Y 2 > R 2 O Y & O N
S O A S Y
& @ ,§§>/ & & & & (g§>/ & 45)/
1/0 pattern 1/0 pattern
(a) 4KB 1/O size (b) 1KB 1/O size

Fig. 5. Throughput/IOPS variation with respect to I/O pattern or workload at full subscription (28
cores/threads). For random read-write (rand_rw) and read-write (rw) workloads the read to write
ratio was 70:30

4.3 Latency Evaluation

In latency analysis we study the impact of transport types on latency and the overhead
they introduce. We first compare average, p90, p99 and p9999 latency of local NVMe-
SSDs and NVMe-oF for all four transport types with 512 B (the minimum block size
of a SSD) and 1 MB I/O sizes at full subscription. This shows us the overhead incurred
by both small and large I/Os due to the transport type. As expected, from Table 1, the
average latency of TCP transport is approximately 20 times that of average latency of

Impact of Commodity Networks on Storage Disaggregation with NVMe-oF 49

RoCE/IPoIB/IB transport types. Similarly, the p99 and p9999 latency of TCP transport
is roughly 30 times that of p99 latency of RoCE/IPoIB/IB transport. In fact, in terms of
bandwidth IB is the closest to local NVMe-SSDs for small (Table 2) and large sized 1/Os
whereas in terms of latency IPoIB adds the least amount of overhead at peak utilization
for large I/Os. This could be related to the configuration of various transports in SPDK
library. For small I/O requests, IPoIB incurs a higher overhead with its tail latency being
1.5x of IB.

Table 1. Latency at peak bandwidth and full subscription for IMB random read I/O

Bandwidth (MiB/s) | Avg Latency (s) | p90 (s) | p99 (s) | p9999 (s)
Local | 3626.10 0.96 1.1 1.33 1.40
TCP | 466.60 19.44 28.72 129.23 |29.27
RoCE | 3512.67 0.99 1.16 1.71 1.75
IPoIB | 3366.23 1.05 1.12 1.35 1.42
IB 3599.87 0.97 1.15 1.60 1.64

Table 2. Latency at full subscription for 512 bytes random read I/0O. RoCE was not reported to
due to testbed limitations

Bandwidth (MiB/s) | Avg Latency (ms) | p90 (ms) | p99 (ms) | p9999 (ms)
Local |403.67 4.30 4.61 4.71 5.78
TCP | 111.85 15.65 25.26 28.94 34.94
IPoIB | 401.07 4.36 5.03 6.10 9.02
1B 402.97 4.34 4.63 4.77 6.07

Similar to bandwidth, we next examine the variation in latency with respect to the
number of NVMe-oF client and target cores performing I/Os for all the transport types.
From the cumulative distribution function (CDF) plot of latencies in Fig. 6 and 7 one can
see the latency increases with increase in number of cores irrespective of the transport
type and IB has the latency closet to local SSDs for all the cores. RoCE and IPoIB have
quite similar latency distribution except p9999 latency of RoCE being unusally high
(1146 ms). From Fig. 6¢, d, Table 1, and Table 2 we can observe that the tail latency
of IPoIB and IB are dependent upon the I/O size. For small and medium sized I/Os 1B
provides lower tail latency and for larger I/Os IPoIB produces slightly better tail latency.

4.4 CPU Utilization Study

In this experiment, we measure the NVMe-oF client CPU utilization for all four trans-
port types performing 1 MB random read I/O at full subscription using Linux sysstat
tools [23]. This helps us measure the efficiency of the various transport types initiat-
ing I/O operations at the client. One can see from Fig. 8 that interrupt based TCP and

50 A. Kashyap et al.

100 100 Ne
Z 9 Z 90
z 3
@ @
Q2 Q2
o o
< 80 & 80
o @
2 2
& Mcore-1 B Mcore-1 4#core-2 core-4
g 70 #core-2 g 70
g = core-8 core-16 @core-28
© core-4 <
60 core-8 60
¥core-16
®core-28
0w 500123456789101112
0 25 50 75 100 125 150 175 200 225 250
Latency(ms) Latency(ms)
(a) TCP (b) RoCE. The p9999 latency (1146 ms) for
28 cores is omitted from the graph.
100 -3 100
Z 90 Z 90
3 3
3 3
o o
£ 80 a 80
o o
2 = Mcore-1
& Mcore-1 #core-2 Acore-4 k]
g 70 E 70 #core-2
3 core-8 core-16 @core-28 3 core-4
core-8
60 60 *core-16
@core-28
50 J 50
0 2 4 6 8 10 12 14 16 0 1 2 3 4 5 6
Latency(ms) Latency(ms)
(c) IPoIB (d) 1B

Fig. 6. Latency CDF for various cores for each transport type at 4 KB random read I/O

100
S
Z 90
3
©
o)
o
a 80
g
= Mcore-1
E 70 #core-2
3 core-4
core-8
60 Xcore-16
@®core-28
50
0 1 2 3 4 5 6
Latency(ms)

Fig.7. Latency CDF for various cores for local SSD at 4 KB random read I/O

Impact of Commodity Networks on Storage Disaggregation with NVMe-oF 51

IPoIB have lower user mode CPU utilization when compared to polling based RoCE
and IB. Similar CPU utilization is observed for other workloads too. Table 1 shows us
the bandwidth and latency of IPoIB and IB transport for this configuration. Though IB
has higher bandwidth when compared to IPoIB, the latencies (p99 and p9999) of 1B is
slightly higher (1.15x) than IPoIB. This indicates that IPoIB is more efficient at large
I/Os despite being an interrupt based network protocol, which may imply that running
IB in event based mode could be considered for large I/O sizes rather than polling mode.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

TCP IPolB RoCE 1B
A %user B %system B %idle

Fig. 8. NVMe-oF client CPU utilization at full subscription for 1 MB random read I/O

4.5 SSD Concurrency Study

To find the parallelism each transport type could achieve, we first measure the through-
put or IOPS of local and remote NVMe SSDs for varying queue depth at 4 KB work-
loads when only 1 CPU core performs I/O operations. The concurrency/parallelism at
any queue depth for a specific workload type is calculated by dividing the throughput
of that transport type by the throughput of local NVMe SSD at queue depth of 1. For
example, the concurrency of an IB transport type for sequential read operations is com-
puted by dividing the each of the IOPS attained by IB transport type for queue depths 1
to 128 by the throughput of a local NVMe SSD for a similar workload at queue depth of
1. Similarly, the concurrency for all network transports and workloads (sequential/ran-
dom read/write) are calculated. In Fig.9 and 10 we can see that concurrency for read
workloads increases with queue depth whereas write concurrency does not change after
queue depth of 8. In terms of network transport, IB is able to reach higher parallelism for
both sequential/random read workloads than rest of the transports, followed by RoCE.
IPoIB is only able to achieve maximum concurrency of 2.3 for sequential read I/O at
a queue depth of 128 which is significantly lower from the maximum concurrencies of
IB and RoCE, 6.3 and 4.6 respectively.

52 A. Kashyap et al.

@ TCP N RoCE g1PolB 1B
. - o

Concurrency

H 4 EL ; 5“
0 S I Y= D@EL DEL ONEE NEE .=§ et R 0l S
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128

seq_read seq_write

Queue Depth

Fig. 9. Concurrency achieved by network transports for varying queue depth for 4 KB sequential
workload

5 Discussion

Tradeoffs. Our performance characterization and analysis of user-space NVMe-oF pro-
tocol specification is done across four dimensions and various metrics (throughput,
latency, CPU utilization, and concurrency). Table 3 provides a summary of the trade-
offs between different transports for evaluated metrics. In terms of throughput/band-
width and average/tail latencies IB network transport delivers very efficient perfor-
mance among all the protocols. IB with RDMA was also able to obtain 2.7x higher
concurrency than [PoIB transport. IPoIB had better CPU utilization and tail latencies at
maximum throughput. There might be two reasons for this. One is that the performance
of the tested SSD is limited, which prevents our experiments from achieving higher
performance with native RDMA. The achievable performance with IPoIB on IB EDR
is sufficient to saturate the SSD’s performance. The other reason is that the software
implementation in SPDK may not exploit the best configurations with RDMA protocol,
which leaves rooms for further performance improvements.

RoCE was similar to IB and IPoIB in terms of bandwidth, concurrency, and aver-
age latency but fared slightly worse in terms of tail latency and client CPU utilization.
A general trend observed across all network transports was that latency increased as
we increased the number of cores performing I/Os. Though IPoIB and IB (RDMA)
are faster and have higher performance than RoCE and TCP (ethernet), the current-
generation networking infrastructure in datacenters is typically built on top of tradi-
tional ethernet. The costs of laying down a new RDMA-capable network would be
expensive. To reduce the deployment cost, RoCE could be used on top of the ethernet

Impact of Commodity Networks on Storage Disaggregation with NVMe-oF 53

6
oTCP N RoCE g IPolB BB
5 ~ - ~
> 4
(&}
c
(O]
-
5 3
(&)
C
(@)
\
N
: \
NE \
1 i | N \
H | nfl N NE N N
| o 5 B A \ \
o -l el fol ol oS ol e N

1 2 4 8 16 32 64 1281 2 4 8 16 32 64 128

rand_read rand_write

Queue Depth

Fig. 10. Concurrency achieved by network transports for varying queue depth for 4 KB random
workload

infrastructure by adding specialized NICs to the nodes. Hence, NVMe-over-RoCE may
be a good tradeoff between cost and efficiency.

Other Metrics. Despite having a low bandwidth ethernet card (1 Gbps) for NVMe over
TCP, the throughput of TCP transport is quite low due to execution of kernel space code
during communication. On the contrary, kernel-space based IPoIB (100 Gbps NIC)
shows good performance, which implies that kernel overhead is minimal at maximum
throughput and when the network bandwidth is high. Although we did not evaluate
the kernel NVMe-oF driver, our results indicate that kernel overhead may not have
significant impact on throughput, if not latency. We leave a complete evaluation for
future work. We also expect the type of SSD to have a profound impact on the metrics
across all dimensions due to different driver/controller software and storage technology
(NAND flash-based and next generation 3D XPoint [6]). The SSD we evaluated suffers
from write amplification effects. Therefore, all networks (except TCP) were able to
saturate the SSD write bandwidth, but only IB was able to saturate the read bandwidth.
Newer Optane drives do not suffer from garbage collection and write amplification
overheads and will thus be harder to saturate for writes. We expect the type of network
and its bandwidth to be even more important for such SSDs.

54 A. Kashyap et al.

Table 3. Summary of tradeoffs between transports for each evaluated metric. As TCP bandwidth
is lower than SSD bandwidth on our cluster, we do not consider it directly. IPoIB is representative
of TCP performance because it supports TCP over a faster IB network.

Metric RoCE | IPoIB | IB
Bandwidth (Fig. 3) v v v
Throughput (Fig. 4) v’ v’
Average Latency (Table 1 & 3) | v~ |v |V
Tail Latency (Fig. 6 & Table 3) v’
Client CPU Utilization (Fig. 8) v’
Concurrency (Fig.9 & 10) v’
Cost-Effectiveness v’

6 Related Work

Previous works [2,3] do not study user-space SPDK’s NVMe-oF protocol implemen-
tation rather they study NVMe-oF driver present in Linux kernel and compare it with
similar protocols like iSCSI [10, 11]. Yang et al. [25] showed the inefficiencies present
in the Linux kernel NVMe-oF drivers when compared to userspace NVMe-oF drivers.
Given that NVMe over TCP is relatively new only two studies [22,26] exist as far as
we know which evaluate NVMe/TCP in user-space but no comparison exists with other
network tranpsorts. NVMe over TCP is important for the datacenters which currently
do not support RDMA-capable networks yet.

Some work which does evaluate disaggregated flash storage in [1-3,9,12,14,15,
17,21,24] only use RoOCE/iWARP rather than InfiniBand interconnect. Klimovic et al.
in [14,15] implement a software system for remote flash access only over TCP/IP and
in [13] describe an architecture for disaggregated flash system that optimizes remote
flash access by tuning system settings. [9] evaluates NVMe-oF on ARM SoC whereas
our characterization is done on x86 architecture. [24] studies NVMe and NVMe-oF for
docker storage drivers and containerized applications. Other than [4], which implement
HDEFS over Fabric on top of NVMe-oF, none of the previous work extensively evaluate
an important networking protocol IPoIB and IB or study various workload types like
sequential/random reads/writes or NVMe-oF client CPU utilization.

Our work is first-of-a-kind to comprehensively study and characterize SPDK’s user-
space NVMe-oF protocol for 4 different networking/transport protocols, namely TCP,
IPoIB, RoCE, and IB, across numerous dimensions, including number of cores, I/O
size, workloads, concurrency, and client-side CPU utilization.

7 Conclusion and Future Work

In this paper, we present an in-depth analysis of the tradeoffs and performance char-
acteristics of network protocols on storage disaggregation. Our characterization of
NVMe-over-Fabrics over Ethernet and RDMA was performed across four dimensions

Impact of Commodity Networks on Storage Disaggregation with NVMe-oF 55

- networking protocols (TCP, RoCE, IPoIB, and IB), I/O size, number of cores, and I/O
pattern. We found that native RDMA with IB was able to deliver the best performance
among all tested networking protocols in most experiments. IB with RDMA can typi-
cally deliver lower latency and higher throughput whereas IB with IPoIB offers lower
CPU utilization. Native RDMA with IB or RoCE can achieve higher SSD concurrency.
We believe that our analysis helps gain insight into the deployment implications of
NVMeoF in datacenters. In the future, we plan to study additional protocols, such as
iWARP and fibre channel, and types of NVMe-SSDs. We also plan to evaluate various
transport types on real world applications like key-value stores and distributed filesys-
tems.

References

1. Chelsio Communications. NVM Express over Fabrics (2014). http://www.chelsio.com/wp-

content/uploads/resources/NVM_Express_Over_Fabrics.pdf

2. Guz, Z., (Huan) Li, H., Shayesteh, A., Balakrishnan, H.: NVMe-over-Fabrics performance

characterization and the path to low-overhead flash disaggregation. In: Proceedings of the
10th ACM International Systems and Storage Conference, SYSTOR 2017 (2017)
3. Guz, Z., (Huan) Li, H., Shayesteh, A., Balakrishnan, V.: Performance characterization of
NVMe-over-fabrics storage disaggregation. ACM Trans. Storage 14(4), 1-18 (2018)
. Han, D., Nam, B.: Improving access to HDFS using NVMeoF. In: 2019 IEEE International
Conference on Cluster Computing (CLUSTER), pp. 1-2 (2019)

. IBM Research - Zurich. Crail (2017). http://www.crail.io/

. Intel. Intel Optane Memory. https://www.intel.com/OptaneMemory

. Intel. SPDK NVMe over Fabrics Target (2017). https://spdk.io/doc/nvmf.html

. Intel. SPDK NVMe over Fabrics Target Programming Guide (2017). https://spdk.io/doc/

nvmf.html
9. Jia, Y., Anger, E., Chen, F.: When NVMe over fabrics meets arm: performance and impli-
cations. In: 2019 35th Symposium on Mass Storage Systems and Technologies (MSST), pp/
134-140 (2019)

10. Joglekar, A., Kounavis, M.E., Berry, FL.: A scalable and high performance software ISCSI
implementation. In: Proceedings of the 4th Conference on USENIX Conference on File and
Storage Technologies, FAST 2005, vol. 4, p. 20, USA. USENIX Association (2005)

11. Khosravi, H.M., Joglekar, A., Iyer, R.: Performance characterization of iSCSI processing in
a server platform. In: 2005 24th IEEE International Performance, Computing, and Commu-
nications Conference, PCCC 2005, pp. 99-107 (2005)

12. Kim, J., Fair, D.: How ethernet RDMA protocols iWARP and RoCE support NVMe over
fabrics (Ethernet Storage Forum) (2016). https://www.snia.org/sites/default/files/ESF/How_
Ethernet_ RDMA _Protocols_Support_ NVMe_over_Fabrics_Final.pdf

13. Klimovic, A., Kozyrakis, C., Thereska, E., John, B., Kumar, S.: Flash storage disaggregation.
In Proceedings of the Eleventh European Conference on Computer Systems, EuroSys 2016
(2016)

14. Klimovic, A., Litz, H., Kozyrakis, C.: ReFlex: remote flash ~ local flash. In: Proceedings
of the Twenty-Second International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2017, pp. 345-359 (2017)

15. Klimovic, A., Wang, Y., Stuedi, P, Trivedi, A., Pfefferle, J., Kozyrakis, C.: Pocket: elastic
ephemeral storage for serverless analytics. In: Proceedings of the 13th USENIX Confer-
ence on Operating Systems Design and Implementation, OSDI 2018, pp. 427444, USA.
USENIX Association (2018)

A~

03 O\ L

http://www.chelsio.com/wp-content/uploads/resources/NVM_Express_Over_Fabrics.pdf
http://www.chelsio.com/wp-content/uploads/resources/NVM_Express_Over_Fabrics.pdf
http://www.crail.io/
https://www.intel.com/OptaneMemory
https://spdk.io/doc/nvmf.html
https://spdk.io/doc/nvmf.html
https://spdk.io/doc/nvmf.html
https://www.snia.org/sites/default/files/ESF/How_Ethernet_RDMA_%20Protocols_Support_NVMe_over_Fabrics_Final.pdf
https://www.snia.org/sites/default/files/ESF/How_Ethernet_RDMA_%20Protocols_Support_NVMe_over_Fabrics_Final.pdf

56

16.

17.

18.
19.

20.

21.

22.

23.
24.

25.

26.

A. Kashyap et al.

Mickens, J., et al.: Blizzard: fast, cloud-scale block storage for cloud-oblivious applications.
In: 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI
2014), pp. 257-273 (2014)

Dave M., Metz, J.: Under the Hood with NVMe over fabrics. In: Proceedings of the Ethernet
Storage Forum (2015)

NVM Express (2011). https://nvmexpress.org/

NVMe-over-Fabrics Specification (2019). https://nvmexpress.org/developers/nvme-of-speci
fication/

SPDK NVMe perf Benchmark. https://github.com/spdk/spdk/tree/master/examples/nvme/
perf

SPDK 20.04 NVMe-oF RDMA Performance Report. https:/ci.spdk.io/download/
performance-reports/SPDK_rdma_perf_report_2004.pdf

SPDK 20.04 NVMe-oF TCP Performance Report. https://ci.spdk.io/download/performance-
reports/SPDK _tcp_perf_report_2004.pdf

Linux sysstat. https://github.com/sysstat/sysstat

Xu, Q., et al.: Performance analysis of containerized applications on local and remote stor-
age. In: International Conference on Massive Storage Systems and Technology (2017)
Yang, Z., et al.: SPDK: a development kit to build high performance storage applications. In:
2017 IEEE International Conference on Cloud Computing Technology and Science (Cloud-
Com), pp. 154-161 (2017)

Yang, Z., Wan, Q., Cao, G., Latecki, K.: uNVMe-TCP: a user space approach to optimizing
NVMe over fabrics TCP transport. In: Hsu, C.-H., Kallel, S., Lan, K.-C., Zheng, Z. (eds.)
IOV 2019. LNCS, vol. 11894, pp. 125-142. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-38651-1_13

https://nvmexpress.org/
https://nvmexpress.org/developers/nvme-of-specification/
https://nvmexpress.org/developers/nvme-of-specification/
https://github.com/spdk/spdk/tree/master/examples/nvme/perf
https://github.com/spdk/spdk/tree/master/examples/nvme/perf
https://ci.spdk.io/download/performance-reports/SPDK_rdma_perf_report_2004.pdf
https://ci.spdk.io/download/performance-reports/SPDK_rdma_perf_report_2004.pdf
https://ci.spdk.io/download/performance-reports/SPDK_tcp_perf_report_2004.pdf
https://ci.spdk.io/download/performance-reports/SPDK_tcp_perf_report_2004.pdf
https://github.com/sysstat/sysstat
https://doi.org/10.1007/978-3-030-38651-1_13
https://doi.org/10.1007/978-3-030-38651-1_13

	Preface
	Organization
	BenchCouncil Rising Star Award Lecture
	Scientific Benchmarking of Parallel Computing Systems
	BenchCouncil Achievement Award Lecture
	It’s a Random World: Learning from Mistakes, Errors, and Noise
	Keynote
	Benchmarking Quantum Computers
	AIBench and Its Performance Rankings
	DataBench Toolbox Supporting Big Data and AI Benchmarking
	Contents
	Best Paper Session
	Characterizing the Sharing Behavior of Applications Using Software Transactional Memory
	1 Introduction
	2 Background
	2.1 Software Transactional Memory
	2.2 Sharing Behavior and Thread Mapping
	2.3 STAMP Applications

	3 Methodology of the Characterization
	3.1 Detecting Sharing in STM Applications
	3.2 Machine
	3.3 Mean Squared Error (MSE)
	3.4 Experiments

	4 Characterization of STM Sharing Behavior
	4.1 STM Memory Access Information
	4.2 Stability of Sharing Behavior Across Different Executions
	4.3 Stability of Sharing Behavior When Changing Input Parameters
	4.4 Stability of Sharing Behavior with Different Numbers of Threads
	4.5 Dynamic Behavior During Execution
	4.6 Overhead of the Behavior Detection

	5 Case Studies
	5.1 Performance Gains from Sharing-Aware Thread Mapping
	5.2 False Sharing in Kmeans

	6 Related Work
	7 Conclusion
	References

	swRodinia: A Benchmark Suite for Exploiting Architecture Properties of Sunway Processor
	1 Introduction
	2 Background
	2.1 Architecture of Sunway Processor
	2.2 Parallel Programming Paradigms on Sunway Processor
	2.3 Rodinia Benchmark

	3 Porting and Optimizing Rodinia Benchmarks
	3.1 Back Propagation
	3.2 Breadth-First Search
	3.3 Hotspot3D
	3.4 Kmeans
	3.5 Needleman-Wunsch
	3.6 Pathfinder

	4 Evaluation
	4.1 Performance Comparison
	4.2 Roofline Analysis

	5 Insights
	5.1 Programmability vs. Performance
	5.2 Software Optimization
	5.3 Hardware Improvements

	6 Related Work
	7 Conclusion
	References

	Data Management and Storage
	Impact of Commodity Networks on Storage Disaggregation with NVMe-oF
	1 Introduction
	2 Background
	2.1 Storage Disaggregation and NVMe-oF
	2.2 Intel SPDK

	3 Characterization Methodology
	4 Evaluation
	4.1 Experimental Setup
	4.2 Bandwidth Evaluation
	4.3 Latency Evaluation
	4.4 CPU Utilization Study
	4.5 SSD Concurrency Study

	5 Discussion
	6 Related Work
	7 Conclusion and Future Work
	References

	K2RDF: A Distributed RDF Data Management System on Kudu and Impala
	1 Introduction
	2 Related Works
	2.1 RDF
	2.2 SPARQL
	2.3 Related Systems

	3 Property Chain Model
	3.1 Model Definition
	3.2 Model Features

	4 System Design
	4.1 Data Loader
	4.2 Query Translater
	4.3 Query Executor

	5 Evaluation
	5.1 Environment
	5.2 Experimental Results

	6 Conclusion and Future Work
	References

	Artemis: An Automatic Test Suite Generator for Large Scale OLAP Database
	1 Introduction
	2 Architecture Overview of Artemis
	3 Database Schema Generation
	4 Data Generation
	4.1 Deterministic Random Data Generation
	4.2 Parallel Data Generation

	5 Workload Generation
	5.1 Parameter Instantiation

	6 Oracle Generation
	7 Experiment
	7.1 Data Generation
	7.2 Query Generation
	7.3 Oracle Generation

	8 Related Work
	9 Conclusion
	References

	OStoreBench: Benchmarking Distributed Object Storage Systems Using Real-World Application Scenarios
	1 Introduction
	2 Related Work
	2.1 Mainstream Distributed Object Storage System
	2.2 Benchmarks for Distributed Storage Systems
	2.3 Workloads Behavior and Storage Access Patterns

	3 Benchmark Building
	3.1 Requirements
	3.2 The Design of OStoreBench
	3.3 The Implementation of OStoreBench

	4 Evaluation
	4.1 Approach and Metrics
	4.2 Experimental Setup
	4.3 Experimental Results

	5 Conclusion
	6 Future Work
	References

	ConfAdvisor: An Automatic Configuration Tuning Framework for NoSQL Database Benchmarking with a Black-box Approach
	1 Introduction
	2 Problem Statement
	3 System Design
	3.1 System Overview
	3.2 Bayesian Optimization

	4 Experiment Settings
	4.1 NoSQL Databases and Benchmarks
	4.2 Hardware Platforms
	4.3 Configuration Settings

	5 Experimental Results
	5.1 Impact of Operating System Parameters
	5.2 Performance Improvement
	5.3 Comparisons

	6 Related Work
	7 Conclusion
	References

	Supercomputing
	Optimization of the Himeno Benchmark for SX-Aurora TSUBASA
	1 Introduction
	2 Target Systems and Benchmark
	2.1 Overview of SX-Aurora TSUBASA
	2.2 Overview of the Himeno Benchmark

	3 Optimization of the Himeno Benchmark
	3.1 Optimizations for a Single VE
	3.2 Optimizations for Multiple VEs

	4 Evaluation
	4.1 Experimental Environment
	4.2 Evaluation of a Single VE
	4.3 Evaluation of Multiple VEs
	4.4 Power Efficiency

	5 Related Work
	6 Conclusions
	References

	Benchmarking on GPU
	Parallel Sorted Sparse Approximate Inverse Preconditioning Algorithm on GPU
	1 Introduction
	2 SPAI Algorithm
	3 Parallel SPAI on GPU
	3.1 Pre-GSPAI Stage
	3.2 Compute-GSPAI Stage
	3.3 Post-GSPAI Stage

	4 Evaluation and Analysis
	4.1 Effectiveness Analysis
	4.2 Performance Comparison

	5 Conclusion
	References

	ComScribe: Identifying Intra-node GPU Communication
	1 Introduction
	2 Background
	3 Types of Communication
	3.1 Peer-to-Peer Communication
	3.2 Host-Device Communication

	4 Design and Implementation of ComScribe
	4.1 ComScribe Workflow

	5 Evaluation
	5.1 Micro-benchmarks from Comm|Scope and MGBench
	5.2 Overhead
	5.3 Macro-benchmarks from NVIDIA and MGBench
	5.4 Use-Cases: Deep Neural Network (DNN) Models

	6 Related Work
	7 Conclusion
	References

	Application and Dataset
	A Benchmark of Ocular Disease Intelligent Recognition: One Shot for Multi-disease Detection
	1 Introduction
	2 Related Work
	2.1 OCT Images Recognition
	2.2 Fundus Images Recognition

	3 Our Dataset
	3.1 Image Collection and Annotation
	3.2 Features of Dataset
	3.3 Split of Dataset

	4 Multi-disease Classification
	4.1 Network Structure
	4.2 Experimental Settings
	4.3 Experiment Analysis

	5 Discussion
	6 Conclusions
	References

	MAS3K: An Open Dataset for Marine Animal Segmentation
	1 Introduction
	2 Related Work
	2.1 Underwater Image Enhancement
	2.2 Marine Animal Detection
	2.3 Marine Animal Camouflage
	2.4 Camouflaged Object Detection

	3 Proposed Dataset
	3.1 Image Collection
	3.2 Data Annotation
	3.3 Dataset Features and Statistics

	4 Benchmark Experiments
	4.1 Experimental Settings
	4.2 Results

	5 Conclusion
	References

	Benchmarking Blockchain Interactions in Mobile Edge Cloud Software Systems
	1 Introduction
	2 Aspects in Benchmarking Blockchain Features for MECSS
	2.1 Mobile Edge Computing Software Systems
	2.2 Application-Required Features for Blockchain-Based MECSS
	2.3 Benchmarked Metrics
	2.4 MECSS Under Test and Infrastructures
	2.5 Coupling Software and Infrastructure Artefacts

	3 Framework for Benchmarks
	3.1 Overview
	3.2 Benchmark Functions
	3.3 Benchmark Experiment Configuration
	3.4 Prototype

	4 Experiments
	4.1 Flexibility in Benchmark Configurations
	4.2 Insights from Benchmarks for Developers

	5 Related Work
	6 Conclusions and Future Work
	References

	Author Index

