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Abstract

We consider the classic problem of scheduling jobs with precedence constraints on identical

machines to minimize makespan, in the presence of communication delays. In this setting, de-

noted by P | prec, c | Cmax, if two dependent jobs are scheduled on different machines, then at

least c units of time must pass between their executions. Despite its relevance to many applica-

tions, this model remains one of the most poorly understood in scheduling theory. Even for a

special case where an unlimited number of machines is available, the best known approximation

ratio is 2/3 · (c+1), whereas Graham’s greedy list scheduling algorithm already gives a (c+1)-
approximation in that setting. An outstanding open problem in the top-10 list by Schuurman

and Woeginger and its recent update by Bansal asks whether there exists a constant-factor

approximation algorithm.

In this work we give a polynomial-time O(log c · logm)-approximation algorithm for this

problem, where m is the number of machines and c is the communication delay. Our approach

is based on a Sherali-Adams lift of a linear programming relaxation and a randomized clustering

of the semimetric space induced by this lift.

1 Introduction

Scheduling jobs with precedence constraints is a fundamental problem in approximation algorithms
and combinatorial optimization. In this problem we are given m identical machines and a set J of n
jobs, where each job j has a processing length pj ∈ Z+. The jobs have precedence constraints, which
are given by a partial order ≺. A constraint j ≺ j′ encodes that job j′ can only start after job j is
completed. The goal is to find a schedule of jobs that minimizes makespan, which is the completion
time of the last job. This problem is denoted1 by P | prec | Cmax. In a seminal result from 1966, Gra-
ham [Gra66] showed that the greedy list scheduling algorithm achieves a

(
2− 1

m

)
-approximation.

By now, our understanding of the approximability of this basic problem is almost complete: it had
been known since the late ‘70s, due to a result by Lenstra and Rinnooy Kan [LRK78], that it is NP-
hard to obtain better than 4/3-approximation, and in 2010 Svensson [Sve10] showed that, assuming
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1 Throughout the paper we use the standard scheduling three-field notation [GLLK79, VLL90]. The respective

fields denote: (1) number of identical machines: P∞: unlimited; P: number m of machines given as input;
Pm: constant number m of machines, (2) job properties: prec: precedence constraints; pj = 1: unit-size jobs;
c: communication delays of length c (can be cjk if dependent on jobs j ≺ k); c−intervals: see Section 3; dup: allowed
duplication of jobs, (3) objective: Cmax: minimize makespan;

∑
wjCj : minimize weighted sum of completion times.
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a variant of the Unique Games Conjecture [BK10], it is NP-hard to get a (2− ε)-approximation for
any ε > 0.

The above precedence-constrained scheduling problem models the task of distributing workloads
onto multiple processors or servers, which is ubiquitous in computing. This basic setting takes the
dependencies between work units into account, but not the data transfer costs between machines,
which is critical in applications. A precedence constraint j ≺ j′ typically implies that the input to
j′ depends on the output of j. In many real-world scenarios, especially in the context of scheduling
in data centers, if j and j′ are executed on different machines, then the communication delay due to
transferring this output to the other machine cannot be ignored. This is an active area of research
in applied data center scheduling literature, where several new abstractions have been proposed to
deal with communication delays [CZM+11, GFC+12, HCG12, SZA+18, ZZC+12, ZCB+15, LYZ+16].
Another timely example is found in the parallelization of Deep Neural Network training (the ma-
chines being accelerator devices such as GPUs, TPUs, or FPGAs). There, when training the network
on one sample/minibatch per device in parallel, the communication costs incurred by synchronizing
the weight updates in fact dominate the overall running time [NHP+19]. Taking these costs into
account, it turns out that it is better to split the network onto multiple devices, forming a “model-
parallel” computation pipeline [HCB+19]. In the resulting device placement problem, the optimal
split crucially depends on the communication costs between dependent layers/operators.

A classic model that captures the effect of data transfer latency on scheduling decisions is
the problem of scheduling jobs with precedence and communication delay constraints, introduced
by Rayward-Smith [RS87] and Papadimitriou and Yannakakis [PY90]. The setting, denoted by
P | prec, c | Cmax, is similar to the makespan minimization problem described earlier, except for one
crucial difference. Here we are given a communication delay parameter c ∈ Z≥0, and the output
schedule must satisfy the property that if j ≺ j′ and j, j′ are scheduled on different machines, then
j′ can only start executing at least c time units after j had finished. On the other hand, if j and
j′ are scheduled on the same machine, then j′ can start executing immediately after j finishes. In
a closely related problem, denoted by P∞ | prec, c | Cmax, a schedule can use as many machines
as desired. The goal is to schedule jobs non-preemptively so as to minimize the makespan. In a
non-preemptive schedule, each job j needs to be assigned to a single machine and executed during
pj consecutive timeslots. The problems P | prec, c | Cmax and P∞ | prec, c | Cmax are the focus of
this paper.

Despite its theoretical significance and practical relevance, very little is known about the com-
munication delay setting. A direct application of Graham’s [Gra66] list scheduling algorithm yields
a (c + 2)-approximation, and no better algorithm is known for the problem. Over the years, the
problem has attracted significant attention, but all known results, which we discuss below in Sec-
tion 1.3, concern special settings, small communication delays, or hardness of approximation. To
put this in perspective, we note that the current best algorithm for general c [GKMP08], which
achieves an approximation factor of 2/3 · (c+ 1), only marginally improves on Graham’s algorithm
while requiring the additional assumptions that the number of machines is unbounded and pj = 1.
This is in sharp contrast to the basic problem P | prec | Cmax (which would correspond to the case
c = 0), where the approximability of the problem is completely settled under a variant of the Unique
Games Conjecture. This situation hints that incorporating communication delays in scheduling de-
cisions requires fundamentally new algorithmic ideas compared to the no-delay setting. Schuurman
and Woeginger [SW99] placed the quest for getting better algorithms to the problem in their in-
fluential list of top-10 open problems in scheduling theory. In a recent MAPSP 2017 survey talk,
Bansal [Ban17] highlighted the lack of progress on this model, describing it as “not understood
at all; almost completely open”, and suggested that this is due to the lack of promising LP/SDP
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relaxations.

1.1 Our Contributions

The main result of this paper is the following:

Theorem 1. There is a randomized O(log c · logm)-approximation algorithm for P | prec, c | Cmax

with expected polynomial running time, where c, pj ∈ N.

In any non-preemptive schedule the number m of machines is at most the number n of jobs, so
for the easier P∞ version of the problem, the above theorem implies the following:

Corollary 2. There is a randomized O(log c · logn)-approximation algorithm for P∞ | prec, c | Cmax

with expected polynomial running time, where c, pj ∈ N.

For both problems one can replace either c or m by n, yielding a O(log2 n)-approximation
algorithm. Our results make substantial progress towards resolving one of the questions in “Open
Problem 3” in the survey of Schuurman and Woeginger [SW99], which asks whether a constant-factor
approximation algorithm exists for P∞ | prec, c | Cmax.

Our approach is based on a Sherali-Adams lift of a time-indexed linear programming relaxation
for the problem, followed by a randomized clustering of the semimetric space induced by this lift.
To our knowledge, this is the first instance of a multiple-machine scheduling problem being viewed
via the lens of metric space clustering. We believe that our framework is fairly general and should
extend to other problems involving scheduling with communication delays. To demonstrate the
broader applicability of our approach, we also consider the objective of minimizing the weighted
sum of completion times. Here each job j has a weight wj , and the goal is to minimize

∑

j wjCj ,
where Cj is the completion time of j.

Theorem 3. There is a randomized O(log c · log n)-approximation algorithm for P∞ | prec, pj =
1, c |

∑

j wjCj with expected polynomial running time, where c ∈ N.

No non-trivial approximation ratio was known for this problem prior to our work.

1.2 Our Techniques

As we alluded earlier, there is a lack of combinatorial lower bounds for scheduling with communica-
tion delays. For example, consider Graham’s list scheduling algorithm, which greedily processes jobs
on m machines as soon as they become available. One can revisit the analysis of Graham [Gra66]
and show that there exists a chain Q of dependent jobs such that the makespan achieved by list
scheduling is bounded by

1

m

∑

j∈J

pj +
∑

j∈Q

pj + c · (|Q| − 1).

The first two terms are each lower bounds on the optimum — the 3rd term is not. In particular, it
is unclear how to certify that the optimal makespan is high because of the communication delays.
However, this argument suffices for a (c+ 2)-approximation, since pj ≥ 1 for all j ∈ J .

As pointed out by Bansal [Ban17], there is no known promising LP relaxation. To understand
the issue let us consider the special case P∞ | prec, pj = 1, c | Cmax. Extending, for example,
the LP of Munier and König [MK97], one might choose variables Cj as completion times, as well
as decision variables xj1,j2 denoting whether j2 is executed in the time window [Cj1 , Cj1 + c) on
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the same machine as j1. Then we can try to enforce communication delays by requiring that
Cj2 ≥ Cj1 +1+(c−1) · (1−xj1,j2) for j1 ≺ j2. Further, we enforce load constraints

∑

j1∈J
xj1,j2 ≤ c

for j2 ∈ J and
∑

j2∈J
xj1,j2 ≤ c for j1 ∈ J . To see why this LP fails, note that in any instance where

the maximum dependence degree is bounded by c, one could simply set xj1,j2 = 1 and completely
avoid paying any communication delay. Moreover, this problem seems to persist when moving to
more complicated LPs that incorporate indices for time and machines.

A convenient observation is that, in exchange for a constant-factor loss in the approximation
guarantee, it suffices to find an assignment of jobs to length-c intervals such that dependent jobs
scheduled in the same length-c interval must be assigned to the same machine. (The latter condition
will be enough to satisfy the communication delay constraints as, intuitively, between every two
length-c intervals we will insert an empty one.) In order to obtain a stronger LP relaxation, we
consider an O(1)-round Sherali-Adams lift of an inital LP with indices for time and machines. From
the lifted LP, we extract a distance function d : J×J → [0, 1] which satisfies the following properties:

(i) The function d is a semimetric.

(ii) Cj1 + d(j1, j2) ≤ Cj2 for j1 ≺ j2.

(iii) Any set U ⊆ J with a diameter of at most 1
2 w.r.t. d, satisfies |U | ≤ 2c.

Here we have changed the interpretation of Cj to the index of the length-c interval in which j will be
processed. Intuitively, d(j1, j2) can be understood as the probability that jobs j1, j2 are not being
scheduled within the same length-c interval on the same machine. To see why a constant number of
Sherali-Adams rounds are helpful, observe that the triangle inequality behind (i) is really a property
depending only on triples {j1, j2, j3} of jobs and an O(1)-round Sherali-Adams lift would be locally
consistent for every triple of variables.

We will now outline how to round such an LP solution. For jobs whose LP completion times
are sufficiently different, say Cj1 + Θ( 1

log(n)) ≤ Cj2 , we can afford to deterministically schedule j1
and j2 at least c time units apart while only paying a O(log n)-factor more than the LP. Hence
the critical case is to sequence a set of jobs J∗ = {j ∈ J | C∗ ≤ Cj ≤ C∗ + Θ( 1

log(n))} whose
LP completion times are very close to each other. Note that by property (ii), we know that any
dependent jobs j1, j2 ∈ J∗ must have d(j1, j2) ≤ Θ( 1

log(n)). As d is a semimetric, we can make use of
the rich toolset from the theory of metric spaces. In particular, we use an algorithm by Calinescu,
Karloff and Rabani [CKR04]: For a parameter ∆ > 0, one can partition a semimetric space into
random clusters so that the diameter of every cluster is bounded by ∆ and each δ-neighborhood
around a node is separated, meaning contains jobs assigned to different clusters, with probability
at most O(log(n)) · δ

∆ . Setting δ := Θ( 1
log(n)) and ∆ := Θ(1) one can then show that a fixed job

j ∈ J∗ will be in the same cluster as all its ancestors in J∗ with probability at least 1
2 , while

all clusters have diameter at most 1
2 . By (iii), each cluster will contain at most 2c many (unit-

length) jobs, and consequently we can schedule all the clusters in parallel, where we drop any job
that got separated from any ancestor. Repeating the sampling O(logn) times then schedules all
jobs in J∗. This reasoning results in a O(log2 n)-approximation for this problem, which we call
P∞ | prec, pj = 1, c−intervals | Cmax. With a bit of care the approximation factor can be improved
to O(log c · logm).

Finally, the promised O(log c · logm)-approximation for the more general problem P | prec, c |
Cmax follows from a reduction to the described special case P∞ | prec, pj = 1, c−intervals | Cmax.
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1.3 History of the Problem

Precedence-constrained scheduling problems of minimizing the makespan and sum of completion
times objectives have been extensively studied for many decades in various settings. We refer the
reader to [Pin18, LLRKS93, PST04, AMMS08, Sve09] for more details. Below, we only discuss
results directly related to the communication delay problem in the offline setting.

Approximation algorithms. As mentioned earlier, Graham’s [Gra66] list scheduling algorithm
yields a (c+2)-approximation for P | prec, c | Cmax, and a (c+1)-approximation for the P∞ variant.
For unit-size jobs and c ≥ 2, Giroudeau, König, Moulai and Palaysi [GKMP08] improved the latter
(P∞ | prec, pj = 1, c ≥ 2 | Cmax) to a 2

3(c+ 1)-approximation. For unit-size jobs and c = 1, Munier
and König [MK97] obtained a 4/3-approximation via LP rounding (P∞ | prec, pj = 1, c = 1 | Cmax);
for the P variant, Hanen and Munier [HM01] gave an easy reduction from the P∞ variant that loses
an additive term of 1 in the approximation ratio, thus yielding a 7/3-approximation. Thurimella and
Yesha [THU92] gave a reduction that, given an α-approximation algorithm for P∞ | prec, c, pj = 1 |
Cmax, would yield a (1 + 2α)-approximation algorithm for P | prec, c, pj = 1 | Cmax.

For a constant number of machines, a hierarchy-based approach of Levey and Rothvoss [LR16]
for the no-delay setting (Pm | prec, pj = 1 | Cmax) was generalized by Kulkarni, Li, Tarnawski and
Ye [KLTY20] to allow for communication delays that are also bounded by a constant. For any
ε > 0 and ĉ ∈ Z≥0, they give a nearly quasi-polynomial-time (1 + ε)-approximation algorithm for
Pm | prec, pj = 1, cjk ≤ ĉ | Cmax. The result also applies to arbitrary job sizes, under the assumption
that preemption of jobs is allowed, but migration is not.

Hardness. Hoogeveen, Lenstra and Veltman [HLV94] showed that even the special case P∞ |
prec, pj = 1, c = 1 | Cmax is NP-hard to approximate to a factor better than 7/6. For the case with
bounded number of machines (the P variant) they show 5/4-hardness. These two results can be
generalized for c ≥ 2 to (1 + 1/(c+ 4))-hardness [GKMP08] and (1 + 1/(c+ 3))-hardness [BGK96],
respectively.2

Duplication model. The communication delay problem has also been studied (to a lesser ex-
tent) in a setting where jobs can be duplicated (replicated), i.e., executed on more than one ma-
chine, in order to avoid communication delays. This assumption seems to significantly simplify
the problem, especially when we are also given an unbounded number of machines: already in
1990, Papadimitriou and Yannakakis [PY90] gave a rather simple 2-approximation algorithm for
P∞ | prec, pj , cjk, dup | Cmax. Observe that this result holds even when communication delays are
unrelated (they depend on the pair of jobs). The only non-trivial approximation algorithm for
arbitrary c and a bounded number of machines is due to Lepere and Rapine [LR02], who gave an
asymptotic O(log c/ log log c)-approximation for P | prec, pj = 1, c, dup | Cmax. On the hardness
side, Papadimitriou and Yannakakis [PY90] showed NP-hardness of P∞ | prec, pj = 1, c, dup | Cmax

(using a large delay c = Θ(n2/3)).
Besides being seemingly easier to approximate, we also believe that the replication model is less

applicable in most real-world scenarios due to the computation and energy cost of replication, as
well as because replication is more difficult to achieve if the computations are nondeterministic in
some sense (e.g. randomized).

Many further references can be found in [VLL90, GKMP08, Dro09, GK07, CC91, JKS93, MH97].

2 Papadimitriou and Yannakakis [PY90] claim a 2-hardness for P∞ | prec, pj = 1, c | Cmax, but give no proof.
Schuurman and Woeginger [SW99] remark that “it would be nice to have a proof for this claim”.
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2 Preliminaries

2.1 The Sherali-Adams Hierarchy for LPs with Assignment Constraints

In this section, we review the Sherali-Adams hierarchy which provides an automatic strengthening
of linear relaxations for 0/1 optimization problems. The authorative reference is certainly Lau-
rent [Lau03], and we adapt the notation from Friggstad et al. [FKK+14]. Consider a set of variable
indices [n] = {1, . . . , n} and let U1, . . . , UN ⊆ [n] be subsets of variable indices. We consider a
polytope

K =
{

x ∈ R
n | Ãx ≥ b̃,

∑

i∈Uk

xi = 1 ∀k ∈ [N ], 0 ≤ xi ≤ 1 ∀i ∈ [n]
}

,

which we also write in a more compact form as K = {x ∈ R
n | Ax ≥ b} with A ∈ R

m×n and
b ∈ R

m. We note that we included explicitly the “box constraints” 0 ≤ xi ≤ 1 for all variables i.
Moreover, the constraint matrix contains assignment constraints of the form

∑

i∈Uk
xi = 1. This is

the aspect that is non-standard in our presentation.
The general goal is to obtain a strong relaxation for the integer hull conv(K ∩ {0, 1}n). Ob-

serve that any point x ∈ conv(K ∩ {0, 1}n) can be interpreted as a probability distribution X
over points K ∩ {0, 1}n. We know that any distribution can be described by the 2n many values
yI = Pr[

∧

i∈I(Xi = 1)] for I ⊆ [n] — in fact, the probability of any other event can be reconstructed
using the inclusion-exclusion formula, for example Pr[X1 = 1 and X2 = 0] = y{1} − y{1,2}. While
this is an exact approach, it is also an inefficient one. In order to obtain a polynomial-size LP, we only
work with variables yI where |I| ≤ O(1). Hence, for r ≥ 0, we denote Pr([n]) := {S ⊆ [n] | |S| ≤ r}
as all the index sets of size at most r.

Definition 4. Let SAr(K) be the set of vectors y ∈ R
Pr+1([n]) satisfying y∅ = 1 and

∑

H⊆J

(−1)|H| ·
( n∑

i=1

Aℓ,iyI∪H∪{i} − bℓyI∪H

)

≥ 0 ∀ℓ ∈ [m]

for all I, J ⊆ [n] with |I|+ |J | ≤ r.

The parameter r in the definition is usually called the rank or number of rounds of the Sherali-
Adams lift. It might be helpful for the reader to verify that for I = J = ∅, the constraint simplifies
to

∑n
i=1Aℓ,iy{i} ≥ bℓy∅ = bℓ, which implies that (y{1}, . . . , y{n}) ∈ K. Moreover it is instructive to

verify that for any feasible integral solution x ∈ K ∩ {0, 1}n one can set yI :=
∏

i∈I xi to obtain a
vector y ∈ SAr(K).

Theorem 5 (Properties of Sherali-Adams). Let y ∈ SAr(K) for some r ≥ 0. Then the following
holds:

(a) For J ∈ Pr([n]) with yJ > 0, the vector ỹ ∈ R
Pr+1−|J|([n]) defined by ỹI := yI∪J

yJ
satisfies

ỹ ∈ SAr−|J |(K).

(b) One has 0 ≤ yI ≤ yJ ≤ 1 for J ⊆ I and |I| ≤ r + 1.

(c) If |J | ≤ r + 1 and yi ∈ {0, 1} ∀i ∈ J , then yI = yI\J ·
∏

i∈I∩J yi for all |I| ≤ r + 1.

(d) For J ⊆ [n] with |J | ≤ r there exists a distribution over vectors ỹ such that (i) ỹ ∈ SAr−|J |(K),
(ii) ỹi ∈ {0, 1} for i ∈ J , (iii) yI = E[ỹI ] for all I ⊆ [n] with |I ∪ J | ≤ r + 1 (this includes in
particular all I ∈ Pr+1−|J |([n])).
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(e) For I ⊆ [n] with |I| ≤ r and k ∈ [N ] one has yI =
∑

i∈Uk
yI∪{i}.

(f) Take H ⊆ [N ] with |H| ≤ r and set J :=
⋃

k∈H Uk. Then there exists a distribution over
vectors ỹ such that (i) ỹ ∈ SAr−|H|(K), (ii) ỹi ∈ {0, 1} for i ∈ J , (iii) yI = E[ỹI ] for all
I ∈ Pr+1−|H|([n]).

Proof. For (a)-(d), we refer to the extensive coverage in Laurent [Lau03]. We prove (e) and (f)
which are non-standard and custom-tailored to LPs with assignment constraints:

(e) Fix I ⊆ [n] with |I| ≤ r. We apply (d) to obtain a distribution over ỹ with ỹ ∈ SAr−|I|(K)
so that ỹi ∈ {0, 1} for i ∈ I. Then

∑

i∈Uk

yI∪{i}
linearity

= E

[ ∑

i∈Uk

ỹI∪{i}

]
(c)
= E

[

ỹI ·
∑

i∈Uk

ỹi

︸ ︷︷ ︸

=1

]

= E[ỹI ] = yI .

Here we apply (c) for index sets I ∪ {i} where variables in J := I have been made integral.
Note that indeed |I ∪ (I ∪ {i})| ≤ r + 1 as required.

(f) By an inductive argument it suffices to consider the case of |H| = 1. Let H = {k} and set
U := Uk, i.e. the constraints for polytope P contain the assignment constraint

∑

i∈U xi = 1
and we want to make all variables in U integral while only losing a single round in the
hierarchy. Abbreviate U+ := {i ∈ U | y{i} > 0}. For i ∈ U+, define y(i) ∈ R

Pr([n]) to be the

vector with y
(i)
I :=

yI∪{i}

yi
. By (a) we know that y(i) ∈ SAr−1(K). Moreover y

(i)
{i} =

y{i}
y{i}

= 1.

Then the assignment constraint of the LP forces that y(i){i′} = 0 for i′ ∈ U \ {i}. Now we define

a probability distribution over vectors ỹ as follows: for i ∈ U+, with probability yi we set
ỹ := y(i). Then (i) and (ii) hold for ỹ as discussed. Property (iii) follows from

E[ỹI ] =
∑

i∈U+

yiy
(i)
I =

∑

i∈U+

yi
yI∪{i}

yi
=

∑

i∈U+

yI∪{i}
(b)
=

∑

i∈U

yI∪{i}
(e)
= yI

It is known that Theorem 5.(f) holds in a stronger form for the SDP-based Lasserre hierarchy.
Karlin, Mathieu and Nguyen [KMN11] proved a result that can be paraphrased as follows: if one
has any set J ⊆ [n] of variables with the property that there is no LP solution with more than k
ones in J , then one can make all variables of J integral while losing only k rounds. Interestingly,
Karlin, Mathieu and Nguyen prove that this is completely false for Sherali-Adams. In particular, for
a Knapsack instance with unit size items and capacity 2− ε, the integrality gap is still 2− 2ε after
Θε(n) rounds of Sherali-Adams. In a different setting, Friggstad et al. [FKK+14] realized that given
a “tree constraint”, a Sherali-Adams lift can provide the same guarantees that Rothvoss [Rot11]
derived from Lasserre. While Friggstad et al. did not state their insight in the generality that we
need here, our Lemma 5.(e)+(f) are inspired by their work.

2.2 Semimetric Spaces

A semimetric space is a pair (V, d) where V is a finite set (we denote n := |V |) and d : V ×V → R≥0

is a semimetric, i.e.

• d(u, u) = 0 for all u ∈ U .
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• Symmetry: d(u, v) = d(v, u) for all u, v ∈ V .

• Triangle inequality: d(u, v) + d(v, w) ≥ d(u,w) for all u, v, w ∈ V .

Recall that the more common notion is that of a metric, which additionally requires that d(u, v) > 0
for u 6= v. For a set U ⊆ V we denote the diameter as diam(U) := maxu,v∈U d(u, v). Our goal is
to find a partition V = V1∪̇ . . . ∪̇Vk such that the diameter of every cluster Vi is bounded by some
parameter ∆. We denote d(w,U) := min{d(w, u) : u ∈ U} as the distance to the set U . Moreover,
for r ≥ 0 and U ⊆ V , let N(U, r) := {v ∈ V | d(v, U) ≤ r} be the distance r-neighborhood of U .

We use a very influential clustering algorithm due to Calinescu, Karloff and Rabani [CKR04],
which assigns each v ∈ V to a random cluster center c ∈ V such that d(u, c) ≤ β∆. Nodes assigned
to the same cluster center form one block Vi in the partition. Formally the algorithm is as follows:

CKR Clustering algorithm

Input: Semimetric space (V, d) with V = {v1, . . . , vn}, parameter ∆ > 0
Output: Clustering V = V1∪̇ . . . ∪̇Vk for some k.

(1) Pick a uniform random β ∈ [14 ,
1
2 ]

(2) Pick a random ordering π : V → {1, . . . , n}
(3) For each v ∈ V set σ(v) := vℓ so that d(v, vℓ) ≤ β ·∆ and π(vℓ) is minimal
(4) Denote the points v ∈ V with σ−1(v) 6= ∅ by c1, . . . , ck ∈ V and return clusters

Vi := σ−1(ci) for i = 1, . . . , k

Note that the algorithm has two sources of randomness: it picks a random parameter β, and
independently it picks a random ordering π. Here the ordering is to be understood such that
element vℓ with π(vℓ) = 1 is the “highest priority” element. The original work of Calinescu, Karloff
and Rabani [CKR04] only provided an upper bound on the probability that a short edge (u, v)
is separated. Mendel and Naor [MN06] note that the same clustering provides the guarantee of
Pr[N(u, t) separated] ≤ 1 − O( t

∆ · ln( |N(u,∆)|
|N(u,∆/8)|)) for all u ∈ V and 0 ≤ t < ∆

8 . Mendel and
Naor attribute this to Fakcharoenphol, Rao and Talwar [FRT04] (while Fakcharoenphol, Rao and
Talwar[FRT04] do not state it explicitly in this form and focus on the “local growth ratio” aspect).
Instead of the algorithm by Calinescu, Karloff and Rabani [CKR04], one could also cluster using
the techniques of Leighton and Rao [LR99] or those of Garg, Vazirani and Yannakakis [GVY93].

We state the formal claim in a form that will be convenient for us. For the sake of completeness,
a proof can be found in the Appendix.

Theorem 6 (Analysis of CKR). Let V = V1∪̇ . . . ∪̇Vk be the random partition of the CKR algorithm.
The following holds:

(a) The blocks have diam(Vi) ≤ ∆ for i = 1, . . . , k.
(b) Let U ⊆ V be a subset of points. Then

Pr[U is separated by clustering] ≤ ln
(
2
∣
∣N

(
U,∆/2

)∣
∣
)
·
4diam(U)

∆
≤ ln(2n) ·

4diam(U)

∆
.

In the above, separated means that there is more than one index i with Vi ∩ U 6= ∅.

3 An Approximation for P∞ | prec, pj = 1, c−intervals | Cmax

In this section, we provide an approximation algorithm for scheduling n unit-length jobs J with
communication delay c ∈ N on an unbounded number of machines so that precedence constraints

8
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Figure 1: Left: example of an instance of P∞ | prec, pj = 1, c−intervals | Cmax with c = 4 (where
the partial order ≺ is the transitive closure of the depicted digraph). Right: a valid schedule in 2
intervals.

given by a partial order ≺ are satisfied. Instead of working with P∞ | prec, pj = 1, c | Cmax directly,
it will be more convenient to consider a slight variant that we call P∞ | prec, pj = 1, c−intervals |
Cmax. This problem variant has the same input but the time horizon is partitioned into time
intervals of length c, say Is = [sc, (s + 1)c) for s ∈ Z≥0. The goal is to assign jobs to intervals
and machines. We require that if j1 ≺ j2 then either j1 is scheduled in an earlier interval than j2
or j1 and j2 are scheduled in the same interval on the same machine. Other than that, there are
no further communication delays. The objective function is to minimize the number of intervals
used to process the jobs. In fact we do not need to decide the order of jobs within intervals as
any topological order will work. In a more mathematical notation, the problem asks to find a
partition J = ˙⋃

s∈{0,...,S−1},i∈NJs,i with |Js,i| ≤ c such that S is minimized and for every j1 ≺ j2
with j1 ∈ Js1,i1 and j2 ∈ Js2,i2 one has either s1 < s2 or (s1, i1) = (s2, i2). See Figure 1 for an
illustration.

It is rather straightforward to give reductions between P∞ | prec, pj = 1, c | Cmax and P∞ |
prec, pj = 1, c−intervals | Cmax that only lose a small constant factor in both directions. The only
subtle point to consider here is that when the optimum makespan for P∞ | prec, c | Cmax is less
than c, the problem admits a PTAS; we refer to Section 4 for details.

3.1 The Linear Program

Let m ∈ N be a parameter defining the number of machines that we admit for the LP. Moreover, let
S ∈ N be the number of intervals that we allow for the time horizon. To obtain an approximation
for P∞ | prec, pj = 1, c−intervals | Cmax one can set m := n and perform a binary search to find the
minimal S for which the LP is feasible. But we prefer to keep the approach general.

We construct the LP in two steps. First consider the variables

xj,i,s =

{

1 if j is scheduled on machine i in interval Is
0 otherwise

∀j ∈ J, i ∈ [m], s ∈ {0, . . . , S − 1}

Let K be the set of fractional solutions to the following linear system
∑

i∈[m]

∑

s≥0

xj,i,s = 1 ∀j ∈ J

∑

j∈J

xj,i,s ≤ c ∀i ∈ [m] ∀s ∈ {0, . . . , S − 1}

0 ≤ xj,i,s ≤ 1 ∀j ∈ J, i ∈ [m], s ∈ {0, . . . , S − 1}

9



So far, K simply assigns jobs (fractionally) to intervals and machines without taking any precedence
constraints into account. Next, we will use a lift x ∈ SAr(K) containing variables x(j1,i1,s1),(j2,i2,s2),
which provide the probability for the event that j1 is scheduled in interval s1 on machine i1 and j2
is scheduled in interval s2 on machine i2. We introduce two more types of decision variables:

yj1,j2 =

{

1 j1 and j2 are scheduled on the same machine in the same interval

0 otherwise

Cj = index of interval where j is processed

Let Q(r) be the set of vectors (x, y, C) that satisfy

yj1,j2 =
∑

s∈{0,...,S−1}

∑

i∈[m]

x(j1,i,s),(j2,i,s)

Cj2 ≥ Cj1 + (1− yj1,j2) ∀j1 ≺ j2

Cj ≥ 0 ∀j ∈ J

x ∈ SAr(K)

The analysis of our algorithm will work for all r ≥ 5 while solving the LP takes time nO(r). Here
we make no attempt at optimizing the constant r. The main technical contribution of this section
is the following rounding result:

Theorem 7. Consider an instance with unit-length jobs J , a partial order ≺, and parameters
c, S,m ∈ N such that Q(r) is feasible for r := 5. Then there is a randomized algorithm with expected
polynomial running time that finds a schedule for P∞ | prec, pj = 1, c−intervals | Cmax using at most
O(logm · log c) · S intervals.

We would like to emphasize that we require ≺ to be a partial order, which implies that it is
transitive. While replacing any acyclic digraph with its transitive closure does not change the set of
feasible integral schedules and hence can be done in a preprocessing step, it corresponds to adding
constraints to the LP that we rely on in the algorithm and in its analysis.

We will now discuss some properties that are implied by the Sherali-Adams lift:

Lemma 8. Let (x, y, C) ∈ Q(r) with r ≥ 2. Then for any set J̃ ⊆ J of |J̃ | ≤ r−2 jobs, there exists
a distribution D(J̃) over pairs (x̃, ỹ) such that

(A) x̃j,i,s ∈ {0, 1} for all j ∈ J̃ , all i ∈ [m] and s ≥ 0.
(B) ỹj1,j2 =

∑

s≥0

∑

i∈[m] x̃j1,i,s · x̃j2,i,s if |{j1, j2} ∩ J̃ | ≥ 1.
(C) x̃ ∈ K, ỹj1,j2 =

∑

s∈{0,...,S−1}

∑

i∈[m] x̃(j1,i,s),(j2,i,s) for all j1, j2 ∈ J .
(D) E[x̃j,i,s] = xj,i,s and E[ỹj1,j2 ] = yj1,j2 for all j, j1, j2, i, s.

Proof. By Theorem 5.(f), there is a distribution over x̃ ∈ SA2(K) which satisfies (A) and has x̃ ∈ K,
E[x̃j,i,s] = xj,i,s and E[x̃(j1,i1,s1),(j2,i2,s2)] = x(j1,i1,s1),(j2,i2,s2), and additionally is integral on variables
involving only jobs from J̃ , where |J̃ | ≤ r − 2. Here, we crucially use that every job j ∈ J̃ is part
of an assignment constraint

∑

i∈[m]

∑

s≥0 xj,i,s = 1, hence making these variables integral results in
the loss of only one round per job. Then, the y-variables are just linear functions depending on the
x-variables, so we can define

ỹj1,j2 :=
∑

s∈{0,...,S−1}

∑

i∈[m]

x̃(j1,i,s),(j2,i,s)

and the claim follows.
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From the LP solution, we define a semimetric d. Here the intuitive interpretation is that a small
distance d(j1, j2) means that the LP schedules j1 and j2 mostly on the same machine and in the
same interval.

Lemma 9. Let (x, y, C) ∈ Q(r) be a solution to the LP with r ≥ 5. Then d(j1, j2) := 1 − yj1,j2 is
a semimetric.

Proof. The first two properties from the definition of a semimetric (see Section 2.2) are clearly
satisfied. We verify the triangle inequality. Consider three jobs j1, j2, j3 ∈ J . We apply Lemma 8
with J̃ := {j1, j2, j3} and consider the distribution (x̃, ỹ) ∼ D(J̃). For j ∈ J̃ , define Z(j) =
(s̃(j), ĩ(s)) as the random variable that gives the unique pair of indices such that x̃j,̃i(j),s̃(j) = 1.

Then for j′, j′′ ∈ J̃ one has

d(j′, j′′) = Pr[Z(j′) 6= Z(j′′)] = Pr
[(
s̃(j), ĩ(j′)

)
6=

(
s̃(j′′), ĩ(j′′)

)]

Then indeed

d(j1, j3) = Pr[Z(j1) 6= Z(j3)] ≤ Pr[Z(j1) 6= Z(j2) ∨ Z(j2) 6= Z(j3)]
union bound

≤ Pr[Z(j1) 6= Z(j2)] + Pr[Z(j2) 6= Z(j3)] = d(j1, j2) + d(j2, j3).

Lemma 10. For every j1 ∈ J one has
∑

j2∈J
yj1,j2 ≤ c.

Proof. Consider the distribution (x̃, ỹ) ∼ D({j1}). From Lemma 8.(B) we know that E[ỹj1,j2 ] =
yj1,j2 and ỹj1,j2 =

∑

s∈{0,...,S−1}

∑

i∈[m] x̃j1,i,s·x̃j2,i,s. By linearity it suffices to prove that
∑

j2∈J
ỹj1,j2 ≤

c always. Fix a pair (x̃, ỹ). There is a unique pair of indices (i1, s1) with x̃j1,i1,s1 = 1. Then

∑

j2∈J

ỹj1,j2 =
∑

s∈{0,...,S−1}

∑

j2∈J

∑

i∈[m]

x̃j1,i,s
︸ ︷︷ ︸

0 if i 6=i1 or s 6=s1

·x̃j2,i,s =
∑

j2∈J

x̃j2,i1,s1 ≤ c.

A crucial insight is that for any job j∗, few jobs are very close to j∗ with respect to d.

Lemma 11. Fix j∗ ∈ J and abbreviate U := {j ∈ J | d(j, j∗) ≤ β} for 0 < β < 1. Then |U | ≤ c
1−β .

Proof. For each j ∈ U we have yj,j∗ = 1−d(j, j∗) ≥ 1−β. Combining with the last lemma we have
(1− β)|U | ≤

∑

j∈J yj,j∗ ≤ c.

3.2 Scheduling a Single Batch of Jobs

We now come to the main building block of our algorithm. We consider a subset J∗ of jobs whose
LP completion times Cj are very close (within a Θ( 1

log(c)) term of each other) and show we can
schedule half of these jobs in a single length-2c interval. The following lemma is the main technical
contribution of the paper.

Lemma 12. Let (x, y, C) ∈ Q(r) with r ≥ 5 and let 0 < δ ≤ 1
64 log(4c) be a parameter. Let C∗ ≥ 0

and set J∗ ⊆ {j ∈ J | C∗ ≤ Cj ≤ C∗ + δ}. Then there is a randomized rounding procedure that
finds a schedule for a subset J∗∗ ⊆ J∗ in a single interval of length at most 2c such that every job
j ∈ J∗ is scheduled with probability at least 1− 32 log(4c) · δ ≥ 1

2 .
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Figure 2: Visualization of the partition V = V1∪̇ . . . ∪̇Vk and the induced sets V ′
ℓ ⊆ Vℓ. Here ≺ is

the transitive closure of the depicted digraph.

We denote Γ−(j) as the predecessors of j and Γ+(j) as the successors, and similary Γ−/+(J ′) =
{j ∈ J : ∃j′ ∈ J ′ s.t. j ∈ Γ−/+(j′)}. Again, recall that we assume ≺ to be transitive. The rounding
algorithm is the following:

Scheduling a Single Batch

(1) Run a CKR clustering on the semimetric space (J∗, d) with parameter ∆ := 1
4

and let V1, . . . , Vk be the clusters.
(2) Let V ′

ℓ := {j ∈ Vℓ | Γ
−(j) ∩ J∗ ⊆ Vℓ} for ℓ = 1, . . . , k.

(3) Schedule V ′
ℓ on one machine for all ℓ = 1, . . . , k.

We now discuss the analysis. First we show that no cluster is more than a constant factor too
large.

Lemma 13. One has |V ′
ℓ | ≤ 2c for all ℓ = 1, . . . , k.

Proof. We know by Theorem 6 that diam(V ′
ℓ ) ≤ diam(Vℓ) ≤ ∆ < 1

2 where the diameter is with
respect to d. Fix a job j∗ ∈ V ′

ℓ . Then we know by Lemma 11 that there are at most 2c jobs j with
d(j, j∗) ≤ 1

2 and the claim follows.

Next, we see that the clusters respect the precedence constraints.

Lemma 14. The solution V ′
1 , . . . , V

′
k is feasible in the sense that jobs on different machines do not

have precedence constraints.

Proof. Consider jobs processed on different machines, say (after reindexing) j1 ∈ V ′
1 and j2 ∈ V ′

2 . If
j1 ≺ j2 then we did not have Γ−(j2) ⊆ V ′

2 . This contradicts the definition of the sets V ′
ℓ .

A crucial property that makes the algorithm work is that predecessors of some job j ∈ J∗ must
be very close in d distance.

Lemma 15. For every j1, j2 ∈ J∗ with j1 ≺ j2 one has d(j1, j2) ≤ δ.

Proof. We know that

C∗
j1∈J∗

≤ Cj1 ≤ Cj1 + (1− yj1,j2)
︸ ︷︷ ︸

=d(j1,j2)

LP
≤ Cj2

j2∈J∗

≤ C∗ + δ

and so d(j1, j2) ≤ δ.

12



We will use the three statements above together with Theorem 6 to prove Lemma 12.

Proof of Lemma 12. We have already proven that the scheduled blocks have size |V ′
ℓ | ≤ 2c and that

there are no dependent jobs in different sets of V ′
1 , . . . , V

′
k. To finish the analysis, we need to prove

that a fixed job j∗ ∈ J∗ is scheduled with good probability. Consider the set U := {j∗}∪(Γ−(j∗)∩J∗)
of j∗ and its ancestors in J∗.

Since the diameter of U is at most 2δ by Lemma 15, we can use Lemma 11 to see that
|N(U,∆/2)| ≤ c

1−2δ−∆ . For our choice of ∆ = 1/4 and δ ≤ 1
64 log(4c) , |N(U, 1/8)| ≤ 2c. From

Theorem 6, the cluster is separated with probability at most log(4c) · 8δ
∆ ≤ 1

2 .

To schedule all jobs in J∗, we repeat the clustering procedure O(logm) times and simply schedule
the remaining jobs on one machine.

Lemma 16. Let (x, y, C) ∈ Q(r) with r ≥ 5. Let C∗ ≥ 0 and set J∗ ⊆ {j ∈ J | C∗ ≤ Cj < C∗+δ}.
Assume that all jobs in Γ−(J∗) \ J∗ have been scheduled respecting precedence constraints. Then
there is an algorithm with expected polynomial running time that schedules all jobs in J∗ using at
most O(logm) + |J∗|

mc many intervals.

Proof. Our algorithm in Lemma 12 schedules each j ∈ J∗ in an interval of length 2c with probability
at least 1/2. We run the algorithm for 2 logm iterations, where input to iteration k+1 is the subset
of jobs that are not scheduled in the first k iterations. For k ∈ {1, 2, . . . , 2 logm}, let J∗∗

k denote
the subset of jobs that are scheduled in the kth iteration, and let J∗

k+1 := J∗ \ {
⋃k

k′=1 J
∗∗
k′ }. In

this notation, J∗
1 := J∗. Let S(J∗∗

k ) denote the schedule of jobs J∗∗
k given by Lemma 12. We

schedule S(J∗∗
1 ) first, then for k = 2, . . . , 2 logm, we append the schedule S(J∗∗

k ) after S(J∗∗
k−1).

Let J ′ := J∗
2 logm+1 denote the set of jobs that were not scheduled in the 2 logm iterations. We

schedule all jobs in J ′ consecutively on a single machine after the completion of S(J∗∗
2 logm).

From our construction, the length of a schedule for J∗, which is a random variable, is at most
O(logm) + ⌈ |J

′|
c ⌉ many intervals. For k ∈ {1, 2, . . . , 2 logm}, Lemma 12 guarantees that each job

j ∈ J∗
k gets scheduled in the kth iteration with probability at least 1/2. Therefore, the probability

that j ∈ J ′, i.e., it does not get scheduled in the first 2 logm iterations, is at most 1
2m . This implies

that E[|J ′|] ≤ |J∗|
2m . By Markov’s inequality Pr[|J ′| > |J∗|

m ] ≤ Pr[|J ′| > 2 · E[|J ′|]] ≤ 1/2. Hence

we can repeat the described procedure until indeed we have a successful run with |J ′| ≤ |J∗|
m which

results in the claimed expected polynomial running time.
Let us now argue that the schedule of J∗ is feasible. For k ∈ {1, 2, . . . , 2 logm} and any two

jobs j, j′ ∈ S(J∗∗
k ), Lemma 12 guarantees that precedence and communication constraints are

satisfied. Furthermore, Lemma 12 also ensures that there cannot be jobs j, j′ such that j ∈ S(J∗∗
k ),

j′ ∈ S(J∗∗
k′ ) and j′ ≺ j and k′ > k. Finally note that every length-2c interval can be split into 2

length-c intervals. The claim follows.

3.3 The Complete Algorithm for P∞ | prec, pj = 1, c−intervals | Cmax

Now we have all the pieces to put the rounding algorithm together and prove its correctness. We
partition the jobs into batches, where each batch consists of subset of jobs that have Cj very close
to each other in the LP solution. The complete algorithm is given below.
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The Complete Algorithm

(1) Solve the LP and let (x, y, C) ∈ Q(r) with r ≥ 5.
(2) For δ = 1

64 log(4c) and k ∈ {0, 1, 2 . . . S−1
δ }, define

Jk = {j ∈ J : k · δ ≤ Cj < (k + 1) · δ}
(3) FOR k = 0 TO S−1

δ DO

(4) Schedule the jobs in Jk using the algorithm in Subsection 3.2.

Now we finish the analysis of the rounding algorithm.

Proof of Theorem 7. Let us quickly verify that the schedule constructed by our algorithm is feasible.
For jobs j1 ≺ j2 with j1 ∈ Jk1 and j2 ∈ Jk2 , the LP implies that Cj1 ≤ Cj2 and so k1 ≤ k2. If
k1 < k2, then j1 will be scheduled in an earlier interval than j2. If k1 = k2 = k, then Lemma 16
guarantees that precedence constraints are satisfied.

It remains to bound the makespan of our algorithm. Lemma 16 guarantees that for k ∈
{0, 1, 2 . . . S−1

δ }, the jobs in Jk are scheduled using at most O(logm) + |Jk|
cm many intervals. Then

the total number of intervals required by the algorithm is bounded by

S

δ
·O(logm) +

S−1

δ∑

k=0

|Jk|

cm
= O(logm · log c) · S +

|J |

cm
≤ O(logm · log c) · S.

Here we use that |J | ≤ S · cm is implied by the constraints defining K.

Remark 17. We note that it is possible to reverse-engineer our solution and write a more compact
LP for the problem, enforcing only the necessary constraints such as those given by Lemmas 9
and 10. Such an LP would be simpler and could be solved more efficiently. However, we feel that the
Sherali-Adams hierarchy gives a more principled and intuitive way to tackle the problem and explain
how the LP arises, and hence we choose to present it that way.

4 Reductions

We now justify our earlier claim: the special case P∞ | prec, pj = 1, c−intervals | Cmax indeed
captures the full computational difficulty of the more general problem P | prec, c | Cmax. The main
result for this section will be the following reduction:

Theorem 18. Suppose there is a polynomial time algorithm that takes a solution for the LP Q(r)
with parameters m, c, S ∈ N and r ≥ 5 and transforms it into a schedule for P∞ | prec, pj =
1, c−intervals | Cmax using at most α·S intervals. Then there is a polynomial time O(α)-approximation
for P | prec, c | Cmax.

For the reduction we will make use of the very well known list scheduling algorithm by Gra-
ham [Gra66] that can be easily extended to the setting with communication delays. Here the
notation σ(j) = ([t, t + pj), i) means that the job j is processed in the time interval [t, t + pj) on
machine i ∈ [m].
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Figure 3: Analysis of Graham’s algorithm with communication delay c.

Graham’s List Scheduling

(1) Set σ(j) := ∅ for all j ∈ J
(2) FOR t = 0 TO ∞ DO FOR i = 1 TO m DO

(3) Select any job j ∈ J with σ(j) = ∅ where every j′ ≺ j satisfies the
following:
• If j′ is scheduled on machine i then j′ is finished at time ≤ t
• If j′ is schedule on machine i′ 6= i then j′ finished at time ≤ t− c

(4) Set σ(j) := ([t, t+ pj), i) (if there was such a job)

For example, for the problem P | prec | Cmax, Graham’s algorithm gives a 2-approximation. The
analysis works by proving that there is a chain of jobs covering all time units where not all machines
are busy. Graham’s algorithm does not give a constant factor approximation for our problem with
communication delays, but it will still be useful for our reduction.

Recall that a set of jobs {j1, . . . , jℓ} ⊆ J with jℓ ≺ jℓ−1 ≺ . . . ≺ j1 is called a chain. We denote
Q(J) as the set of all chains in J w.r.t. precedence order ≺.

Lemma 19. Graham’s list scheduling on an instance of P | prec, c | Cmax results in a schedule with
makespan at most 1

m

∑

j∈J pj +maxQ∈Q(J){
∑

j∈Q pj + c · (|Q| − 1)}.

Proof. We will show how to construct the chain Q that makes the inequality hold. Let j1 be the
job which finishes last in the schedule produced by Graham’s algorithm and let tj1 be its start time.
Let j2 be the predecessor of j1 that finishes last. More generally in step i, we denote ji+1 as the
predecessor of ji that finishes last. The construction finishes with a job jℓ without predecessors.
Now let Q be the chain of jobs jℓ ≺ jℓ−1 ≺ . . . ≺ j1. The crucial observation is that for any
i ∈ {1, . . . , ℓ − 1}, either all machines are busy in the time interval [tji+1

+ pji+1
+ c, tji) or this

interval is empty. The reason is that Graham’s algorithm does not leave unnecessary idle time and
would have otherwise processed ji earlier. It is also true that all m machines are busy in the time
interval [0, tjℓ). The total amount of work processed in these busy time intervals is

L := m ·
(

tjℓ +
ℓ−1∑

i=1

max{tji − (c+ pji+1
+ tji+1

), 0}
)

≤
∑

j∈J

pj −
ℓ∑

i=1

pji .

Then any time between 0 and the makespan falls into at least one of the following categories: (a) the
busy time periods described above, (b) the times that a job of the chain Q is processed, (c) the
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Figure 4: Splitting jobs into chains of unit-length jobs.

interval of length c following a job in the chain Q. Thus, we see that the makespan from Graham’s
list scheduling is at most

tj1 + ptj1 ≤
L

m
+

∑

j∈Q

pj + c · (|Q| − 1) ≤
1

m

∑

j∈J

pj +
(

1−
1

m

)∑

j∈Q

pj + c · (|Q| − 1).

It will also be helpful to note that the case of very small optimum makespan can be well
approximated:

Lemma 20. Any instance for P | prec, c | Cmax with optimum objective function value at most c
admits a PTAS.

Proof. Let J be the jobs in the instance and let OPTm ≤ c be the optimum value. Consider the
undirected graph G = (J,E) with {j1, j2} ∈ E ⇔ ((j1 ≺ j2) or (j2 ≺ j1)). Let J = J1∪̇ . . . ∪̇JN be
the partition of jobs into connected components w.r.t. graph G. We abbreviate p(J ′) :=

∑

j∈J ′ pj .
The assumption guarantees that the optimum solution cannot afford to pay the communication
delay and hence there is a length-c schedule that assigns all jobs of the same connected component
to the same machine. If we think of a connected component Jℓ as an “item” of size p(Jℓ), then for
any fixed ε > 0 we can use a PTAS for P || Cmax (i.e. makespan minimization without precedence
constraints) to find a partition of “items” as [N ] = I1∪̇ . . . ∪̇Im with

∑

ℓ∈Ii
p(Jℓ) ≤ (1+ ε) ·OPTm in

polynomial time [HS87]. Arranging the jobs
⋃

ℓ∈Ii
Jℓ on machine i in any topological order finishes

the argument.

Additionally, it is a standard argument to convert an instance with arbitrary pj to an instance
where all pj ≤ n/ε, while only losing a factor of (1+2ε) in the approximation. For pmax := maxj pj ,
we simply scale the job lengths and communication delay down by a factor of n

εpmax
then round

them to the nearest larger integer. This results in at most a 2ε fraction of the optimal makespan
being rounded up and all job sizes are integral and at most n/ε.

Now we can show the main reduction:

Proof of Theorem 18. Consider an instance of P | prec, c | Cmax with pj , c ∈ N. Let J denote its job
set with precedence constraints, and OPTm(J) denote its optimal value where m is the number of
available machines. By the previous argument, we may assume that pj ≤ 2n for all j ∈ J . Moreover,
by Lemma 20 we only need to focus on the case where OPTm(J) > c. We may guess the optimum
value of OPTm(J) as OPTm(J) ∈ {1, . . . , 2n2}.

Let J ′ denote the job set obtained by splitting each job j ∈ J into a chain of pj unit sub-jobs
j(1) ≺ · · · ≺ j(pj). Moreover, precedence constraints in J are preserved in J ′ as we set all predecessors
of j to be predecessors of j(1) and all successors of j to be successors of j(pj), see Figure 4. We note
that OPTm(J ′) ≤ OPTm(J) as splitting does not increase the value of the optimum. Let Sm(J ′) be
a schedule achieving the value of OPTm(J ′). Next, observe that Sm(J ′) implies an integral solution
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machine i′

machine i

Is1 Is2

private machine

machine i

I4s1 I4s1+1 I4s1+3 I4s2 I4s2+3

case 2 case 1

Figure 5: Transformation of the schedule S∞,int(J
′) (top) to S∞(J) (bottom), where S∞(J) is

compressed by a factor of 4. Here a “private” machine for a job j means the machine never processes
any job other than j.

for Q(r) with parameters m, c, S where S := ⌈OPTm(J)/c⌉ and r := 5. In particular here we use
that if jobs j1 ≺ j2 are scheduled on different machines by Sm(J ′), then their starting times differ
by at least c+ 1 and hence they are assigned to different length-c intervals.

Now we execute the assumed α-approximate rounding algorithm and obtain a schedule S∞,int(J
′)

that uses T ≤ αS many intervals. We will use this solution S∞,int(J
′) to construct a schedule S∞(J)

for P∞ | prec, c | Cmax with job set J by running split sub-jobs consecutively on the same processor.
This will use 4T time intervals in total. Recall that Is denotes the time interval [sc, (s+ 1)c). The
rescheduling process is as follows:

For a fixed job j ∈ J , let Is1 be the time interval where j(1) is scheduled in S∞,int(J
′). Then all

other sub-jobs of j should be either scheduled in Is1 or the time intervals after Is1 .

• Case 1: Some sub-job of j is not scheduled in Is1.
Schedule job j at the beginning of time interval I4s1+1 on a new machine. If j is a short job,
then it will finish running by the end of the interval. Otherwise j is a long job. Let Is2 be the
last time interval where a sub-job of j is scheduled in S∞,int(J

′). Then, the length satisfies
pj ≤ c · (s2−s1+1), which implies that the job finishes by time c · (4s1+1)+pj ≤ c · (4s2−1).

• Case 2: All sub-jobs of j are scheduled in Is1.
Simply schedule job j during time interval I4s1 on the same machine as in S∞,int(J

′).

See Figure 5 for a visualization. Then S∞(J) is a valid schedule for P∞ | prec, c | Cmax, with
makespan ≤ 4c · T . Moreover, S∞(J) satisfies the following:

(a) A short job is fully contained in some interval Is.
(b) A long job’s start time is at the beginning of some interval Is.

For S∞(J), define a new job set H. Every long job j becomes an element of H with its original
running time pj . Meanwhile, every set of short jobs that are assigned to the same machine in one
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time interval becomes an element of H, with running time equal to the sum of running times of the
short jobs merged. To summarize, a new job h ∈ H corresponds to a set h ⊆ J and ph =

∑

j∈h pj .
We define the partial order ≺̃ on H with h1≺̃h2 if and only if there are j1 ∈ h1 and j2 ∈ h2

with j1 ≺ j2. One can check that this partial order is well defined. Moreover, by the fact that jobs
assigned to the same interval but different machines do not have precedence constraints, the length
of the longest chain in (H, ≺̃) in terms of the number of elements is bounded by the number of
intervals that are used, which is at most 4T .

Now run Graham’s list scheduling on the new job set H with order ≺̃ and m machines. By
Lemma 19, the makespan of the list scheduling is bounded by 1

m

∑

h∈H ph+maxQ∈Q(H){
∑

h∈Q ph+
c · |Q|}. As the total sum of the processing times does not change from J to H, we see that
1
m

∑

h∈H ph ≤ OPTm(J). Moreover, for any chain Q ∈ Q(H),
∑

h∈Q ph is no greater than the
makespan of S∞(J), which is 4cT . Finally, as argued earlier, the chain has |Q| ≤ 4T elements.
Above all,

1

m

∑

h∈H

ph + max
Q∈Q(H)

{∑

h∈Q

ph + c · |Q|
}

≤ OPTm(J) + 4cT + 4cT

≤ OPTm(J) + 8α · cS

≤ OPTm(J) + 16α · OPTm(J)

= O(α) · OPTm(J).

5 Minimizing Weighted Sum of Completion Times

To illustrate the generality of our framework we show that it can be extended to handle different
objective functions, in particular we can minimize the weighted sum of completion times of the jobs.
Here we restrict to the simplest case where jobs have unit length and an unbounded number of
machines are available. In the 3-field notation, this problem is denoted by P∞ | prec, pj = 1, c |
∑

j wjCj . The input for this problem is the same as for the makespan minimization problem except
that each job j now has a weight wj ≥ 0.

The goal is to minimize the objective function
∑

j wjCj , where Cj is the completion time of j,
which is defined as the time slot in which job j is scheduled.

Note that the LP Q(r) has variables Cj that denote the index of the length-c interval where j
is being scheduled. A natural approach would be to interpret c ·Cj as the completion time of job j
and minimize

∑

j∈J wj · c · Cj over Q(r). Then the rounding algorithm from Section 3 will indeed
schedule each job j so that the completion time is at most (O(log c · log n) · Cj +Θ(logn)) · c. We
can observe that if a O(log c · log n) approximation is the goal, then this argument suffices for all
jobs j where the LP solution has Cj ≥ Ω( 1

log c) — but it fails for jobs with 0 ≤ Cj ≪ 1.

5.1 The linear program

In order to address this case, we first start with a more general LP relaxation compared to the
makespan result which tracks the actual time slot where the jobs are processed, rather than just the
interval. Again, we use the parameter m ∈ N to denote the number of machines that we allow the
LP to use (one can set m := n) and the parameter S ∈ N to denote the number of intervals that we
allow for the time horizon. We abbreviate T := S · c as the number of time slots. Note that T ≤ nc
always suffices for any non-idling schedule. We index time slots as [T ] := {1, . . . , T} and consider
an interval as a discrete set of slots Is := {cs+ 1, . . . , c(s+ 1)} where s ∈ {0, . . . , S − 1}.
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Recall that in the makespan result xj,i,s variables indicated if job j got scheduled on machine i
in the interval s. Here, we introduce additional variables of the form zj,i,t which indicate if job j is
scheduled on machine i at time t ∈ [T ]. The variables xj,i,s are fully determined by summing over
appropriate variables zj,i,t, but we retain them for notational convenience. Further, similar to our
makespan result, we impose an interval structure on the optimal solution and lose an O(1) factor
in the approximation ratio.

Let K̃ be the set of fractional solutions to the following LP.
∑

i∈[m]

∑

t∈[T ]

zj,i,t = 1 ∀j ∈ J

∑

j∈J

zj,i,t ≤ 1 ∀i ∈ [m] ∀t ∈ [T ]

∑

t′<t

∑

i∈[m]

zj1,i,t′ ≥
∑

t′≤t

∑

i∈[m]

zj2,i,t′ ∀j1 ≺ j2 ∀t ∈ [T ]

∑

t∈Is

zj,i,t = xj,i,s ∀j ∈ J ∀s ∈ {0, . . . , S − 1}

0 ≤ zj,i,t ≤ 1 ∀j ∈ J, i ∈ [m], t ∈ [T ]

Similar to the makespan LP, let Q̃(r) be the set of feasible solutions (x, y, z, C) to the following
LP:

Minimize
∑

j∈J

wj · Cj

yj1,j2 =
∑

s∈{0,...,S−1}

∑

i∈[m]

x(j1,i,s),(j2,i,s)

Cj2 ≥ Cj1 + (1− yj1,j2) · c ∀j1 ≺ j2

Cj =
∑

i∈[m]

∑

t∈[T ]

zj,i,t · t ∀j ∈ J

(x, z) ∈ SAr(K̃)

Note that the Cj variables in this LP relaxation denote the actual completion time of j unlike
their role in the makespan result, where they were used to indicate the interval in which j was
scheduled. The main technical result for this section is the following:

Theorem 21. Consider an instance for P∞ | prec, pj = 1, c |
∑

j wjCj and a solution (x, y, z, C) ∈

Q̃(r) with r ≥ 5. Then there is a randomized algorithm with expected polynomial running time that
finds a feasible schedule so that (i) E[CA

j ] ≤ O(log c · log n) ·Cj and (ii) CA
j ≤ O(log c · log n) ·Cj +

O(logn) · c for all j ∈ J , where CA
j is the completion time of job j.

We briefly describe how Theorem 21 implies the approximation algorithm promised in Theo-
rem 3:

Proof of Theorem 3. Note that strictly speaking Q̃(r) is not actually a relaxation of P∞ | prec, pj =
1, c |

∑

j wjCj . However one can take an optimum integral schedule and insert c idle time slots every

c time units and obtain a feasible solution for Q̃(r). This increases the completion time of any job
by at most a factor of 2. Then we set r := 5 and m := n and solve the LP Q̃(r) in time polynomial

19



in n. Now consider the randomized schedule from Theorem 21 with completion times CA
j . Then

the expected objective function is E[
∑

j∈J wj · C
A
j ] ≤ O(logn · log c) ·

(∑

j∈J wj · Cj

)
. Markov’s

inequality guarantees that we can find in expected polynomial time a schedule that satisfies this
inequality if we increase the right hand side by a constant factor. This completes the proof.

5.2 The Rounding Algorithm

Let (x, y, z, C) be an optimal solution to the LP relaxation Q̃(r) with r ≥ 5. It remains to show
Theorem 21. We partition the jobs based on their fractional completion times. For δ = c

64 log(4c)

and k ≥ 0, let Jk := {j ∈ J : k · δ ≤ Cj < k · δ}.
We give a separate algorithm for scheduling jobs in J0 within an interval of length at most

O(logn) · c. Now consider the remaining jobs. For k = 1, 2, ..., we schedule jobs in the set Jk using
the algorithm from Section 3.3,

inserting c empty time slots between the schedule of jobs in the set Jk and Jk+1. Let CA
j denote

the completion time of job j in our algorithm.

Lemma 22. For k ≥ 1, consider a job j ∈ Jk. Then deterministically CA
j ≤ O(logn · log c) · Cj.

Proof. The claim follows from repeating the arguments in Lemma 16, so we only give a sketch
here. Fix k and consider scheduling the jobs in the set Jk using the procedure described in Lemma
16, where we repeat the CKR clustering algorithm for k = {1, 2, . . . 2 log n} iterations. Then the
expected number of jobs that did not get scheduled in the first 2 log n iterations is at most |Jk|

n2 < 1.
Therefore, in expected polynomial time we can find a schedule such that CA

j ∈ [2 logn · O(c) ·
k, 2 log n · O(c) · (k + 1)]. From the definition of set Jk, the fractional completion time Cj of every
job j in Jk is at least k · c

64 log(4c) in the LP solution. This completes the proof.

The only new ingredient for the completion time result is scheduling the jobs in the set J0. For
j ∈ J0, let t∗j denote the earliest time instant t at which the job is scheduled to a fraction of at least
1− ε in the LP solution. Here 0 < ε < 1 is a small constant that we determine later. In scheduling
theory this time is also called α-point with α = 1− ε. Formally

t∗j := min

{

t′ ∈ [T ] :

m∑

i=1

t′∑

t=1

zj,i,t ≥ 1− ε

}

(1)

We use the same semimetric d(j1, j2) := 1− yj1,j2 as in Section 3 and schedule jobs in J0 using
the following procedure.

Schedule For J0

(1) Run a CKR clustering on the semimetric space (J0, d) with parameter ∆ := 1
12

and let V1, . . . , Vk be the clusters.
(2) Let V ′

ℓ := {j ∈ Vℓ | (Γ
−(j) ∩ J0) ⊆ Vℓ} for ℓ = 1, . . . , k.

(3) For all ℓ = 1, . . . , k assign jobs in V ′
ℓ on a single machine and schedule them in

the increasing of order of t∗j values breaking ties in an arbitrary manner.
(4) Insert a gap of c time slots.
(5) Let J ′

0 ⊆ J0 be the set of jobs that did not get scheduled in steps (1) - (3). Use
Lemma 16 to schedule J ′

0.

Lemma 23. For a job j1 ∈ J0, the probability that j1 gets scheduled in step (5) of the algorithm,

i.e., j1 ∈ J ′
0, is at most O(log c) ·

Cj1

c .
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Proof. The arguments are a slight refinement of Lemma 12. Consider the set U := {j1}∪(Γ
−(j1)∩J0)

of j1 and its ancestors. If j0 ≺ j1, then 0 ≤ Cj0 + c · d(j0, j1) ≤ Cj1 by the LP constraints and so

d(j0, j1) ≤
Cj1

c . Then the diameter of U with respect to semimetric d is bounded by 2Cj1 and hence

by Theorem 6.(b) the probability that U is separated is bounded by ln(2|N(U,∆/2)|) · 4diam(U)
∆ ≤

O(log c) ·
Cj1

c .

The next lemma follows from repeating the arguments in Lemma 22.

Lemma 24. For a job j ∈ J0, condition on the event that j ∈ J ′
0. Then, CA

j |(j∈J ′
0
) ≤ O(logn) · c.

We can now prove that every cluster V ′
ℓ can be scheduled on one machine so that the completion

time of any job is at most twice the LP completion time.

Lemma 25. For a small enough constant ε > 0 (ε = 1
12 suffices) the following holds: Let U ⊆ J

be a set of jobs with diam(U) ≤ ε w.r.t. distance d. Define t∗j as in Eq (1) and schedule the jobs in

U in increasing order of t∗j on one machine and denote the completion time of j by CA
j . Then, in

expectation CA
j ≤ 2t∗j for every j ∈ U .

Proof. Let us index the jobs in U = {j1, . . . , j|U |} so that t∗j1 ≤ . . . ≤ t∗j|U|
. Suppose for the sake

of contradiction that there is some job jN with CA
jN

> 2t∗jN . Abbreviate U∗ := {j1, . . . , jN} and
θ∗ := t∗jN so that 1 ≤ t∗j ≤ θ∗ for j ∈ U∗. We observe that |U∗| =

∑

j∈U∗ pj > 2θ∗. Then we have

(A)
∑

j∈U∗

∑

i∈[m]

θ∗∑

t=1

zj,i,t ≥ (1− ε)|U∗|, (B)
∑

j∈U∗

yj,jN ≥ (1− ε)|U∗|, (C)
∑

i∈[m]

θ∗∑

t=1

zjN ,i,t ≥ 1− ε

where (A) and (C) are by definition of t∗j and (B) follows from diam(U∗) ≤ diam(U) ≤ ε. Intuitively,
this means that we have |U∗| > 2θ∗ many jobs that the LP schedules almost fully on slots {1, . . . , θ∗}
while (B) means that the jobs are almost fully scheduled on the same machine.

As before, we will use the properties of the Sherali-Adams hierarchy to formally derive a contra-
diction. We know by Lemma 83 that there is a distribution (x̃, z̃, ỹ) ∼ D(jN ) so that E[x̃j,i,s] = xj,i,s,
E[z̃j,i,t] = zj,i,t and E[ỹj1,j2 ] = yj1,j2 while the variables involving job jN are integral, i.e.

x̃jN ,i,s, z̃jN ,i,t ∈ {0, 1}. Consider the three events

(A′)
∑

j∈U∗

∑

i∈[m]

θ∗∑

t=1

z̃j,i,t ≥ (1− 3ε)|U∗|, (B′)
∑

j∈U∗

ỹj,jN ≥ (1− 3ε)|U∗|, (C ′)
∑

i∈[m]

θ∗∑

t=1

z̃jN ,i,t = 1.

Then by Markov inequality Pr[A′] ≥ 2
3 , Pr[B

′] ≥ 2
3 and Pr[C ′] ≥ 1− ε, and so by the union bound

Pr[A′ ∧ B′ ∧ C ′] > 0, assuming ε < 1
3 . Fix an outcome for (x̃, ỹ, z̃) where the events A′, B′, C ′

happen and let iN ∈ [m], tN ∈ {1, . . . , θ∗} be the indices with z̃jN ,iN ,tN = 1. Then the interval index
with tN ∈ IsN satisfies x̃jN ,iN ,sN = 1. Hence

(1− 3ε)|U∗|
(B′)

≤
∑

j∈U∗

ỹj,jN
LP
=

∑

j∈U∗

∑

i∈[m]

∑

s∈{0,...,S−1}

x̃(j,i,s),(jN ,i,s)

x̃jN ,iN ,sN
=1

=
∑

j∈U∗

x̃j,iN ,sN

LP
≤

∑

j∈U∗

θ∗∑

t=1

z̃j,iN ,t

︸ ︷︷ ︸

≤θ∗ by LP

+
∑

j∈U∗

∑

t>θ∗

z̃j,iN ,t

︸ ︷︷ ︸

≤3ε|U∗| by (A′)

≤ θ∗ + 3ε|U∗|

3Strictly speaking, Lemma 8 describes the SA properties for LP Q(r), but an absolutely analogous statement
holds for Q̃(r).
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Rearranging gives |U∗| ≤ 1
1−6εθ

∗, which is a contradiction for ε ≤ 1
12 .

Lemma 26. For a job j ∈ J0, condition on the event that it got scheduled in the step (3) of the
algorithm. Then, CA

j |(j 6∈J ′
0
) ≤ O(Cj).

Proof. Consider a job j ∈ J0 \ J ′
0. Then j ∈ V ′

ℓ and by construction, the set V ′
ℓ has diameter at

most ∆ = 1
12 w.r.t. d. Then Lemma 25 guarantees that the completion time is CA

j ≤ 2t∗j where
we set ε = 1

12 . Finally note that an ε-fraction of j was finished at time t∗j or later and hence
Cj =

∑

i∈[m]

∑

t∈[T ] zj,i,t · t ≥ ε · t∗j . Putting everything together we obtain CA
j ≤ 2

εCj .

We have everything to finish the proof of the completion time result.

Proof of Theorem 21. From Lemma 22, for k ≥ 1 and j ∈ Jk, we have deterministically CA
j ≤

O(logn · log c) · Cj . Now consider a job j ∈ J0. Then,

E[C
A
j ] = E[C

A
j |(j 6∈ J ′

0)] · Pr[(j 6∈ J ′
0)] + E[C

A
j |(j ∈ J ′

0)] · Pr[(j ∈ J ′
0)]

≤ O(Cj) +O(log c) ·
Cj

c
·O(logn) · c (from Lemmas 23, 24, 26)

≤ O(logn · log c) ·O(Cj)

Finally note that the completion time of a job j ∈ J0 is always bounded by CA
j ≤ O(log n) · c. The

claim follows.

Discussion and Open Problems

We gave a new framework for scheduling jobs with precedence constraints and communication delays
based on metric space clustering. Our results take the first step towards resolving several important
problems in this area. One immediate open question is to understand whether our approach can
yield a constant-factor approximation for P | prec, c | Cmax. A more challenging problem is to
handle non-uniform communication delays in the problem P | prec, cjk | Cmax, where cjk is the
communication delay between jobs j ≺ k.
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Figure 6: Visualization of CKR analysis

Appendix: The analysis of the CKR clustering

In this section we reprove the statement of Theorem 6. The claim from Theorem 6.(a) is easy to
show as

diam(Vi) = max
u,v∈Vi

d(u, v) ≤ 2max
u∈Vi

d(u, ci)
︸ ︷︷ ︸

≤β∆

≤ ∆

The tricky part is to show Theorem 6.(b). The following definition and lemma are needed.

Definition 27. Let us say that a node w is a separator for U , if

(A) σ(u) = w for at least one u ∈ U
(B) σ(u) 6= w for at least one u ∈ U

Moreover, if the set of separators of U is non-empty, then we call the separator that comes first in
the order π the first separator.

Next, we show that nodes that are closer to the set U are the most likely to be the first separator:

Lemma 28. Let w1, . . . , wn be the nodes sorted so that d(w1, U) ≤ . . . ≤ d(wn, U). Then

Pr[ws is the first separator for U ] ≤ 4
s ·

diam(U)
∆ .

Proof. Let umin := argmin{d(u,ws) : u ∈ U} and umax := argmax{d(u,ws) : u ∈ U} be the closest
and furthest point from ws. We claim that in order for ws to be the first separator, both of the
following conditions must hold:

(i) d(ws, umin) ≤ β ·∆ < d(ws, umax)
(ii) The order selects ws as the first node among w1, . . . , ws.

We assume that ws is the first separator, and suppose for the sake of contradiction that either (i)
or (ii) (or both) are not satisfied. We verify the cases:

• Case: β∆ < d(ws, umin). Then no point will be assigned to ws and ws is not a separator at
all.

• Case: β∆ ≥ d(ws, umax). As ws is a separator, there are nodes u1, u2 ∈ U with σ(u1) = ws

and σ(u2) 6= ws. Then σ(u2) has to come earlier in the order π as d(ws, u2) ≤ β∆. Hence ws

is not the first separator.

• Case: ws is not first among w1, . . . , ws with respect to π. By assumption there is an index
1 ≤ s2 < s such that π(ws2) < π(ws). As ws is a separator, there is a u1 ∈ U with σ(u1) = ws.
Let u2 := argmin{d(u,ws2) : u ∈ U} be the point in the set U that is closest to ws2 . Then
d(u2, ws2) = d(ws2 , U) ≤ d(ws, U) ≤ d(ws, u1) ≤ β∆. Hence u2 would be assigned to a point
of order at most π(ws′) < π(ws), and therefore ws is not the first separator.
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Now we estimate the probability that ws is the first separator. The parameter β and the permutation
are chosen independently, so (i) and (ii) are independent events. Clearly Pr[(ii)] = 1

s . Moreover

Pr[(i)] =
|[d(ws, umin), d(ws, umax)] ∩ [∆4 ,

∆
2 ]|

∆/4
≤

4d(umin, umax)

∆
≤

4diam(U)

∆
,

where we have used the triangle inequality and the notation |[a, b]| = b − a for the length of an
interval.

Now we can finish the proof of Theorem 6:

Proof of Theorem 6. As in Lemma 28, let w1, . . . , wn be an order of nodes such that d(w1, U) ≤
. . . ≤ d(wn, U). Note that L := |N(U, ∆2 )| ≤ n is the maximal index with d(wL, U) ≤ ∆

2 . If U is
separated, then there has to be a first separator. Therefore, the following holds:

Pr[U is separated] ≤
L∑

s=1

Pr[ws is first separator for U ]

Lem 28

≤
L∑

s=1

1

s
·

︸ ︷︷ ︸

≤ln(2L)

4diam(U)

∆
≤ ln(2L) ·

4diam(U)

∆

Here we use that Pr[ws is first separator for U ] = 0 for s > L since a node ws that has a distance
bigger than ∆

2 to U will never be a separator.
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