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Abstract

We consider the problem of scheduling jobs with precedence constraints on related machines
to minimize the weighted sum of completion times, in the presence of communication delays. In
this setting, denoted by Q | prec, c |

∑
wjCj , if two dependent jobs are scheduled on different

machines, then at least c units of communication delay time must pass between their executions.
Our main result is an O(log4 n)-approximation algorithm for the problem. As a byproduct of
our result, we also obtain an O(log3 n)-approximation algorithm for the problem of minimiz-
ing makespan Q | prec, c | Cmax, which improves upon the O(log5 n/ log log n)-approximation
algorithm due to a recent work of Maiti et al. [MRS+20].

1 Introduction

We consider the problem of scheduling jobs with precedence and communication delay constraints
on related machines. This classic model was first introduced by Rayward-Smith [RS87] and Pa-
padimitriou and Yannakakis [PY90]. In this problem we are given a set J of n jobs, where each
job j has a processing length pj ∈ Z+ and a weight wj ∈ Z+. The jobs need to be scheduled on m
related machines, where machine i ∈ [m] has speed si ∈ Z+. If a job j with processing length pj is
scheduled on the machine i, then it requires pj/si time units to complete. In addition, we are given
a communication delay parameter c ∈ Z≥0. The jobs have precedence and communication delay
constraints, which are given by a partial order ≺. A constraint j ≺ j′ encodes that job j′ can only
start after job j is completed. Moreover, if j ≺ j′ and j, j′ are scheduled on different machines,
then j′ can only start executing at least c time units after j had finished. On the other hand, if j
and j′ are scheduled on the same machine, then j′ can start executing immediately after j finishes.
The goal is to schedule jobs non-preemptively so as to minimize a certain objective function. In a
non-preemptive schedule, each job j needs to be assigned to a single machine i and executed during
a contiguous time interval of length pj/si.

We focus on two widely studied objective functions: (1) minimizing the weighted sum of com-
pletion times of jobs, and (2) minimizing the makespan. In the standard 3-field notation1, these
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problems are denoted by Q | prec, c |
∑

wjCj and Q | prec, c | Cmax, respectively. In the presence of
precedence and communication delay constraints, the weighted completion time objective is more
general than the makespan, in the sense that one can use an approximation algorithm for the com-
pletion time objective to obtain a comparable result for the makespan. Our main motivation to
study these problems is twofold:

• The problems of scheduling jobs with communication delays are some of the most notori-
ous open questions in approximation algorithms and scheduling theory, which have resisted
progress for a long time. For this reason, the well-known survey by Schuurman and Woegin-
ger [SW99] and its recent update by Bansal [Ban17] list understanding the approximability of
the problems in this model as one of the top-10 open questions in scheduling theory.

• These problems arise in many real-world applications, especially in the context of scheduling in
data centers. A precedence constraint j ≺ j′ typically implies that the input to j′ depends on
the output of j. Hence, if j and j′ are scheduled on different machines, then the communication
delay due to transferring this output to the other machine often becomes the bottleneck.
The problem has received significant attention in applied data center scheduling literature;
see [CZM+11, GFC+12, HCG12, SZA+18, ZZC+12, ZCB+15, LYZ+16] for more details.
Another timely example is in the parallelization of Deep Neural Network training. When
DNNs are trained on multiple clusters, the communication costs incurred for synchronizing
the weight updates in fact dominate the overall execution time [NHP+19]. The resulting device
placement problem [MPL+17, GCL18, JZA19, TPD+20] is indeed a variant of scheduling with
communication delays.

Scheduling jobs with precedence and communication delays has been studied extensively over
many years [RS87, PY90, MK97, HM01, TY92, HLV94, PY90, GKMP08]. Yet, very little was known
in terms of the approximation algorithms for problem until the recent work by Maiti et al. [MRS+20]
and us [DKR+20]. Previously, even for the identical machines case, where all machines have the same
speed, the best algorithm for general c achieved an approximation factor of 2/3 · (c+1) [GKMP08],
which only marginally improves on Graham’s list scheduling algorithm that obtains a (c + 1)-
approximation, while requiring the assumption that pj = 1. Moreover, no results were known for
the related machines case.

In a very recent work, we [DKR+20] designed an O(logm log c)-approximation algorithm for min-
imizing makespan in the identical machines case. We also showed an O(log n log c)-approximation
algorithm for the weighted sum of completion times objective, in a special case where pj = 1 and we
have an unlimited number of machines. In a parallel and independent work, Maiti et al. [MRS+20]
developed an O(log2 n log2m log c/ log log n)-approximation algorithm for the makespan objective
function on related machines. Interestingly, these two results were obtained using rather different
techniques. While our results were based on LP hierarchies and clustering, Maiti et al. [MRS+20]
developed a novel framework based on job duplication. In their framework, they first construct a
schedule where a single job can be scheduled on multiple machines, which is known to effectively
“hide” the communication delay constraints [PY90]. Quite surprisingly, Maiti et al. [MRS+20]
showed that one can convert a schedule with duplication to a feasible schedule without duplication,
where every job is processed on a single machine, while increasing the makespan by at most an
O(log2 n logm) factor. Unfortunately, their framework does not seem to extend to the weighted

Q for related machines, P for identical machines, (2) job properties: prec for precedence constraints; c for commu-
nication delays of length c; pj = 1 for unit length case, (3) objective: Cmax for minimizing makespan,

∑
wjCj for

minimizing weighted sum of completion times.
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sum of completion times objective; we discuss this further in Section 1.2. Moreover, our previous
results [DKR+20] also do not imply any approximation guarantees for the related machines case.
Specifically, in the presence of communication delay constraints there are no known reductions be-
tween the sum of weighted completion time and makespan objective functions in a spirit similar
to [CS99].

Finally, in another recent work, Su et al. [SRVW20] studied the objective of minimizing makespan
and sum of weighted completion times on related machines. They showed that a Generalized Earliest
Time First (GETF) algorithm achieves a makespan of O(logm/ log logm) ·OPT+C, where C is the
total communication delay in the longest chain in the input graph. They show a similar bound on
the schedule produced by GETF for the weighted sum of completion times objective. However, both
of these bounds do not give any multiplicative approximation guarantees, as the additive terms can
be substantially higher than the optimal solution. The additive terms in above bounds are precisely
the reason why the scheduling with communication delays problem is significantly more challenging
than the case when c = 0.

1.1 Our Contributions

Let M denote the number of machines types or equivalently speed classes. By standard arguments
we can assume that M = log(smax/smin) ≤ O(logm) while only losing a constant factor in the
approximation guarantee, where smax and smin denote the fastest and slowest speeds of machines
in the input instance.

The main result of this paper is the following:

Theorem 1. There is a randomized O(M2 · log2 n)-approximation algorithm for Q | prec, c |
∑

j wjCj with expected polynomial running time. When jobs have unit processing lengths, Q |

prec, c, pj = 1 |
∑

j wjCj, the approximation factor of the algorithm improves to O(M · log2 n).

As M ≤ O(logn), our result gives an O(log4 n)-approximation algorithm to the general problem
and an O(log3 n)-approximation algorithm for the case with unit processing lengths. As a byproduct
of our result we also obtain an improved approximation for the makespan objective function.

Theorem 2. There is a randomized O(M · logm · log n)-approximation algorithm for Q | prec, c |
Cmax with expected polynomial running time. When jobs have unit processing lengths, Q | prec, c, pj =
1 | Cmax, the approximation factor of the algorithm improves to O(logm · log n).

So our result gives an O(log3 n)-approximation algorithm for the problem of minimizing makespan
(and an O(log2 n)-approximation algorithm for the case with unit processing lengths). This improves
the O(log5 n/ log log n)-approximation algorithm due to Maiti et al. [MRS+20].

1.2 Technical Challenges

Absent the communication delay constraints, one can use an approximation for the makespan ob-
jective to obtain an approximation algorithm for the weighted sum of completion times objective,
with some (negligible) loss in the approximation quality [HSSW97, QS02, Li17]. Namely, a stan-
dard approach is to first solve an LP for the weighted sum of completion times problem, and then
geometrically partition jobs according to completion times in the LP solution into buckets of the
form [2t, 2t+1]. Next, use an α-approximation algorithm for makespan to schedule these jobs in
an interval of length O(α · 2t). Finally, concatenate the schedules of jobs belonging to different
partitions. This approach gives an O(α)-approximation for identical machines, and an extension of
this idea to related machines is given by [CS99].
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However, this approach fails in the presence of communication delay constraints, even for the
identical machines case. In particular, the main technical difficulty arises when in the LP solution a
large number of jobs have very small completion times, say O(c/ log2 n). We need to schedule these
jobs so that no precedence and communication delay constraints are violated, while at the same time
achieving completion times comparable to the LP. This requires very precise control over job com-
pletion times, which cannot be achieved by the existing algorithms for the makespan. The problem
becomes further more complex if machines have different speeds and jobs have different weights. This
is also the main technical hurdle if one tries to adapt the framework of Maiti et al. [MRS+20]. In fact,

[MRS+20] gives a schedule whose cost can be as large as O
(

(log5 n/ log log n) ·OPT + c ·
∑

j wj

)

,

which only implies an approximation factor of max{c, log5 n/ log log n}.

1.3 Our Techniques and Algorithm Overview

We obtain our results by generalizing the LP hierarchy framework introduced by [DKR+20] to
handle processors of varying speed and the more general objective of minimizing the weighted sum
of completion times. In this section we outline our main techniques and explain our innovations
compared to [DKR+20]. In particular, as alluded above, the weighted sum of completion times
objective requires a finer control over the time slots where jobs are scheduled compared to mini-
mizing the makespan. Moreover, allowing different machine types introduces an assignment aspect
to the problem, namely assigning jobs to a machine type, which is not present in the identical
machines case. Tackling these two challenges simultaneously requires an extended LP as well as
more structural insights about the solution produced by the Sherali-Adams hierarchy compared to
[DKR+20].

To keep the notation simple we will use log n instead of the potentially smaller quantities logm
and M . We begin our discussion with the problem Q | prec, pj = 1, c |

∑
wjCj , where jobs have

unit lengths. We will see later that we can reduce the version with general processing times to the
case pj = 1 while losing a factor of O(log n). A helpful view that already emerged in preceeding
work is to partitition the time horizon into intervals of length c or larger. Then if one can assign
each job j1 so that any predecessor j2 is either executed on the same machine or in a later interval,
then inserting a waiting time of c after each interval will result in a valid schedule while completion
times increase by at most a factor of 2.

We start by designing an LP with time-indexed variables xj,i,t that specify whether job j is to
be scheduled in time slot t on machine i. To accommodate the different speeds, a machine in class k
has sk slots available per unit time interval. Similarly to [DKR+20], we take the Sherali-Adams lift
with a constant number of rounds and use it to extract variables yj1,j2 , which tell us whether the
jobs are scheduled on the same machine within an interval of length c, as well as variables Cj , which
denote the LP completion times. Our main LP rounding result is that we can generate a schedule
at random so that the completion time of every job is at most O(log3 n) · Cj in expectation.

Using the Sherali-Adams properties one can prove that the function d : J × J → R≥0 with
d(j1, j2) := 1 − yj1,j2 is a semimetric. One important ingredient of our algorithm is a clustering
procedure due to Calinescu, Karloff and Rabani [CKR04] which, for such a semimetric space (J, d)
and a parameter ∆ > 0, finds a random partition J = V1∪̇ . . . ∪̇Vq into blocks of diameter at most ∆
such that any set U ⊆ J has a probability of at most O(log(n) · diam(U)

∆ ) of being separated. We will
use two different lines of arguments for scheduling jobs with very small LP completion time and for
the remaining jobs.
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Case I: Scheduling jobs with very small LP completion time. Consider the jobs J0 := {j ∈
J | 0 ≤ Cj ≤ Θ( c

log2 n
)} whose LP completion time Cj is much smaller than the communication

delay. Jobs with tiny Cj have to be scheduled in the first interval with sufficiently high probability,
and moreover the position within the first interval has to be proportional to Cj as well. To achieve
this, we run the CKR clustering with a rather small parameter ∆ := Θ( 1

logn) and denote J0 =

V1∪̇ . . . ∪̇Vq as the obtained partition. Clustering with such small diameter parameter allows us
to prove structural insights about clusters that are new and were not required for the setting of
[DKR+20]. If we consider a job j ∈ J0, one can prove that all its predecessors j′ ≺ j have a distance
of d(j, j′) ≤

Cj

c . In particular, the probability that j gets separated from any of its ancestors is

bounded by O(log2(n) ·
Cj

c ). Let us denote V ′
ℓ ⊆ Vℓ as the jobs that are not separated from any

ancestor and let J ′
0 :=

⋃q
ℓ=1 V

′
ℓ be their union. Note that any set V ′

ℓ could be processed on a single
machine starting at time 0 without the danger of violating any precedence or communication delay
constraints. Consequently, we will schedule the jobs in J ′

0 right at the beginning of the schedule;
after all of them are completed, we will schedule the jobs in J0 \ J

′
0.

• Scheduling J ′
0. This is the most delicate part of the algorithm, as for the jobs in J ′

0 even the
relative order of the jobs within the sets V ′

ℓ has to be decided. Moreover, there is no obvious
bijection between the V ′

1 , . . . , V
′
q and the machines, and we do not have a uniform upper bound

on the size of the sets V ′
ℓ . But we can prove a novel structural lemma that for each V ′

ℓ there
is a machine type k such that |V ′

ℓ | ≤ O(skc) and the LP solution schedules every job j ∈ V ′
ℓ

to an extent of Ω( 1
log n) on machines of class k. Then we assign V ′

ℓ to a random machine in
that speed class k. Now consider the situation of one machine i of class k and let J ′

0(i, k) be
the union of jobs assigned to this machine. The order we choose for sequencing the jobs in
J ′
0(i, k) is the increasing order of α-points, which for us is the time when the LP has processed

a (1 − Θ( 1
logn))-fraction of job j. Again using properties implied by the Sherali-Adams lift

combined with a Chernoff bound we can prove that for every θ, the number of jobs in J ′
0(i, k)

with α-point at most θ is at most O(log2 n) · sk · θ. We can then conclude that every job in
J ′
0 is indeed completed by time O(log3 n) · Cj .

• Scheduling J ′′
0 := J0 \ J

′
0. As the probability for a job j ∈ J0 to end up in this case is small

enough, it suffices to schedule all the jobs J ′′
0 in a time horizon of O(log n) · c without caring

about their particular order. In fact, we can simply use the same procedure that we are about
to describe for Case II.

Overall we can see that adding up the contributions from both cases, the expected completion time
of a job j ∈ J0 will be O(log3(n) · Cj) +O(log2 n ·

Cj

c ) ·O(logn · c) ≤ O(log3(n) · Cj) as required.

Case II: Scheduling jobs with lower-bounded LP completion time. The main result to
handle this case is that any subset JT of jobs with LP completion times Cj ≤ T for all j ∈ JT can
be scheduled with makespan O(log2 n) ·T +O(logn) · c. The complete algorithm can then be easily
obtained by running the argument for all T ≥ Θ( c

log2 n
) that are powers of 2 and concatenating the

obtained schedules. We can break the problem further down to scheduling jobs in a narrow band
of the form J∗ := {j ∈ JT | C∗ ≤ Cj ≤ C∗ + Θ( c

logn)}, i.e., jobs that have close LP completion

times. Again we run the CKR clustering procedure, but this time with a larger parameter ∆ := 1
4

(which will result in saving a log n factor in the approximation guarantee compared to choosing
∆ = Θ( 1

logn)). Again we denote the random partition by J∗ = V1∪̇ . . . ∪̇Vq and define V ′
ℓ ⊆ Vℓ

to be the jobs that were not separated from any ancestor in J∗. Unfortunately in this regime of
∆ = Θ(1), the mentioned structural claim from Case I does not hold anymore. However we can
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prove a weaker result that for every block V ′
ℓ there is a speed class k with |V ′

ℓ | ≤ O(skc) such that
the LP solution schedules jobs in V ′

ℓ on average to an extend of Ω( 1
logn) on class-k machines. Since

in Case II, we do not have to decide an order within the blocks V ′
ℓ , this weaker property will be

sufficient. Repeating the random clustering log n times will schedule all jobs in J∗. Finally we use
a load argument to conclude the bound on the makespan of JT .

Conclusion and reduction to general processing times. Overall this line of arguments gives
an O(log3 n)-approximation for Q | prec, pj = 1, c |

∑
wjCj . Moreover for the problem Q | prec, pj =

1, c | Cmax it suffices to consider instances with optimum value at least c and hence we can find an
O(log2 n)-approximation for that setting.

Finally let us outline how to obtain an approximation to Q | prec, c |
∑

wjCj while losing at
most another O(logn) factor. Consider jobs J that now have arbitrary integer processing times
pj . We perform the natural reduction and split each job into a chain of pj many unit-length jobs.
Then we run the O(log3 n)-approximation algorithm for Q | prec, pj = 1, c |

∑
wjCj . The obtained

schedule can be interpreted as a schedule for the original length-pj jobs that respects precedence
constraints and communication delays, but uses preemption and migration. By standard arguments
it suffices to schedule the jobs with completion time at most T so that the makespan is O(logn) ·T .
We use the information from the migratory schedule and create a new instance (J̃ , ≺̃) where jobs
that are scheduled within a length-c timeframe are merged and we have precedence constraints
j1≺̃j2 whenever a job j1 was finished before j2 in the migratory schedule. We can prove that chains
in the new partial order ≺̃ contain at most O(Tc ) many jobs. This implies that a small modification
of the Speed-based List Scheduling by Chudak and Shmoys [CS99] can be used to schedule
(J̃ , ≺̃) with makespan O(logn) · T . In particular, the penalty for taking communication delays into
account is bounded by c · (|C| − 1) ≤ O(T ), where C ⊆ J̃ is the chain that defines the bottleneck
in the algorithm. That concludes the O(log4 n)-approximation for Q | prec, c |

∑
wjCj .

1.4 Outline

The rest of this paper is organized as follows. In Section 2 we give preliminaries on hierarchies,
semimetric spaces, and a useful version of the Chernoff bound. In Section 3 we discuss our linear
program and its properties. In Sections 4 and 5 we give our algorithm for the weighted sum of
completion times objective in the special case of unit-size jobs. Then, in Section 6, we show how to
reduce the general processing time case to the unit-size case. Together, Sections 4–6 constitute the
proof of Theorem 1. Finally, in Section 7 we solve the makespan minimization version while saving
one O(logn) factor, thus proving Theorem 2.

2 Preliminaries

2.1 The Sherali-Adams Hierarchy for LPs with Assignment Constraints

The Sherali-Adams hierarchy systematically strengthens linear programs. Our notation for the
Sherali-Adams hierarchy is adapted from that of Friggstad et al. [FKK+14]. Let [n] = {1, . . . , n}
be a set of indices of variables and let U1, . . . , UN ⊆ [n] be subsets of them. Given these subsets of
variable indices, we study the polytope

K =
{

x ∈ R
n | Ãx ≥ b̃,

∑

i∈Uh

xi = 1 ∀h ∈ [N ], 0 ≤ xi ≤ 1 ∀i ∈ [n]
}
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or more compactly K = {x ∈ R
n | Ax ≥ b} for A ∈ R

m×n and b ∈ R
m. A non-standard piece of

our definition is that the constraint matrix contains assignment constraints
∑

i∈Uh
xi = 1.

Overall, we want a strong relaxation for the integer hull conv(K∩{0, 1}n). We motivate how we
can obtain this with a Sherali-Adams lift through a probabilistic lens. The set of points x ∈ conv(K∩
{0, 1}n) can be viewed as a probability distribution X defined by the 2n values yI = Pr[

∧

i∈I(Xi = 1)]
for I ⊆ [n]. Note that from the inclusion-exclusion formula we can, albeit inefficiently, define the
probability of any event; for example Pr[X1 = 1 and X2 = 0] = y{1} − y{1,2}. In order to keep the
size of the lifted LP polynomial, we only enforce constraints such that K ∩{0, 1}n looks locally like
a probability distribution, giving rise only to variables yI for |I| ≤ O(1).

Definition 3. Let SAr(K) be the set of vectors y ∈ R
Pr+1([n]) satisfying y∅ = 1 and

∑

H⊆J

(−1)|H| ·
( n∑

i=1

Aℓ,iyI∪H∪{i} − bℓyI∪H

)

≥ 0 ∀ℓ ∈ [m]

for all I, J ⊆ [n] with |I|+ |J | ≤ r.

We call the parameter r above the rank or number of rounds of the Sherali-Adams lift. Observe
that one can set I = J = ∅ to see that (y{1}, . . . , y{n}) ∈ K and for any x ∈ K ∩ {0, 1}n one can set
yI :=

∏

i∈I xi to obtain a vector y ∈ SAr(K).
More on hierarchies can be found in the work by Laurent [Lau03]. In the properties that follows,

for r ≥ 0 we let Pr([n]) := {S ⊆ [n] | |S| ≤ r} be the set of index sets with size at most r.

Theorem 4 (Properties of Sherali-Adams). Let y ∈ SAr(K) for some r ≥ 0. Then the following
holds:

(a) For J ∈ Pr([n]) with yJ > 0, the vector ỹ ∈ R
Pr+1−|J|([n]) defined by ỹI := yI∪J

yJ
satisfies

ỹ ∈ SAr−|J |(K).

(b) One has 0 ≤ yI ≤ yJ ≤ 1 for J ⊆ I and |I| ≤ r + 1.

(c) If |J | ≤ r + 1 and yi ∈ {0, 1} ∀i ∈ J , then yI = yI\J ·
∏

i∈I∩J yi for all |I| ≤ r + 1.

(d) For J ⊆ [n] with |J | ≤ r there exists a distribution over vectors ỹ such that (i) ỹ ∈ SAr−|J |(K),
(ii) ỹi ∈ {0, 1} for i ∈ J , (iii) yI = E[ỹI ] for all I ⊆ [n] with |I ∪ J | ≤ r + 1 (this includes in
particular all I ∈ Pr+1−|J |([n])).

(e) For I ⊆ [n] with |I| ≤ r and h ∈ [N ] one has yI =
∑

i∈Uh
yI∪{i}.

(f) Take H ⊆ [N ] with |H| ≤ r and set J :=
⋃

h∈H Uh. Then there exists a distribution over
vectors ỹ such that (i) ỹ ∈ SAr−|H|(K), (ii) ỹi ∈ {0, 1} for i ∈ J , (iii) yI = E[ỹI ] for all
I ∈ Pr+1−|H|([n]).

Proofs of properties (a)-(d) can be found in Laurent [Lau03], while proof of properties (e) and
(f) can be found in [DKR+20]. For a Sherali-Adams lift y ∈ SAr(K), it will be convenient later to
use the notation ỹ ∼ Dy(H) with |H| ≤ r for the distribution described in Theorem 4.(f). Often
we will omit the vector y if the Sherali-Adams lift is clear from the context. If we consider indices
J ⊆ Uh for some h ∈ [N ] then we can interpret these as an event E = “{∃i ∈ J : xi = 1}′′ and
the probability of this event is Prỹ∼Dy(h)[E holds in ỹ] =

∑

i∈J yi. Assuming that the probability of
this event is positive, we can obtain a new Sherali-Adams lift conditioned on that event to happen
while losing at most one round in the rank of the solution. We summarize the properties that we
require later:
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Lemma 5. Let y ∈ SAr(K) for some r ≥ 0. Fix an index h ∈ [N ] and fix J ⊆ Uh with
∑

i∈J yi > 0.

Define ȳ ∈ R
Pr([n]) with ȳI :=

∑
i∈J yI∪{i}∑

i∈J yi
for I ∈ Pr([n]). Then ȳ ∈ SAr−1(K) and moreover

ȳI ≤ yI∑
i∈J yi

.

Proof. Abbreviate γ :=
∑

i∈J yi > 0 and J+ := {i ∈ J | yi > 0}. For i ∈ J+ we denote y(i) ∈ Pr([n])

as the vector with y
(i)
I :=

yI∪{i}

yi
. By Theorem 4.(a) we know that y(i) ∈ SAr−1(K). Then y is a

convex combination of the vectors y(i) as one can see from ȳI =
∑

i∈J+
yi
γ · y

(i)
I . By convexity

of SAr−1(K), this implies that ȳ ∈ SAr−1(K). The moreover part follows from
∑

i∈J yI∪{i} ≤
∑

i∈Uh
yI∪{i} = yI , using Theorem 4.(e).

Suppose that ȳ ∈ SAr−1(K) is the vector obtained by conditioning on the event E = “{∃i ∈ J :
xi = 1}′′ according to Lemma 5 with J ⊆ Uh. Then we will also abbreviate the distribution Dȳ(h

′)
more conveniently as the conditional distribution Dy(h

′ | E).

2.2 Semimetric Spaces

A metric space is a pair (V, d) where V is a finite set (we denote n := |V |) and d : V × V → R≥0 is
a metric, i.e.,

(I) d(u, v) > 0 ⇔ (u 6= v) for all u, v ∈ V .

(II) Symmetry: d(u, v) = d(v, u) for all u, v ∈ V .

(III) Triangle inequality: d(u, v) + d(v, w) ≥ d(u,w) for all u, v, w ∈ V .

Throughout this paper we will be working with a slight generalization of a semi-metric d where (I)
is replaced by the weaker condition d(u, u) = 0 (meaning that it is possible that d(u, v) = 0 for
u 6= v). For a set U ⊆ V we denote the diameter as diam(U) := maxu,v∈U d(u, v). Our goal is to
find a random partition V = V1∪̇ . . . ∪̇Vq such that the diameter of every cluster Vi is bounded by
some parameter ∆. We say that a set U is separated by such a clustering if there is more than one
index i with Vi ∩ U 6= ∅. Moreover, we denote d(w,U) := min{d(w, u) : u ∈ U} as the distance to
the set U .

We use the very influential clustering algorithm due to Calinescu, Karloff and Rabani [CKR04],
which assigns each node v ∈ V to a random cluster center c ∈ V such that d(u, c) ≤ β∆, for a
random parameter β. Nodes assigned to the same cluster center form one block Vi in the partition.

CKR Clustering algorithm

Input: Semimetric space (V, d) with V = {v1, . . . , vn}, parameter ∆ > 0.
Output: Clustering V = V1∪̇ . . . ∪̇Vq for some q.

(1) Pick a uniform random β ∈ [14 ,
1
2 ].

(2) Pick a random ordering π : V → {1, . . . , n} .
(3) For each v ∈ V set σ(v) := vℓ so that d(v, vℓ) ≤ β ·∆ and π(vℓ) is minimal.
(4) Denote the points v ∈ V with σ−1(v) 6= ∅ by c1, . . . , cq ∈ V and return clusters

Vi := σ−1(ci) for i = 1, . . . , q.

A key trick for the analysis are the two sources of randomness: the algorithm picks a random
parameter β, and independently selects a random ordering π. Here the ordering is to be understood
so that element vℓ with π(vℓ) = 1 is the “highest priority” element.
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The original work of Calinescu, Karloff and Rabani [CKR04] only provided an upper bound
on the probability that an edge (u, v) is separated. Mendel and Naor [MN06] note that the same
clustering provides the guarantee of Pr[N(u, t) separated] ≤ 1− O( t

∆ · ln( |N(u,∆)|
|N(u,∆/8)|)) for all u ∈ V

and 0 ≤ t < ∆
8 . Here, for r ≥ 0 and U ⊆ V , N(U, r) := {v ∈ V | d(v, U) ≤ r} denotes the distance

r-neighborhood of U . Mendel and Naor attribute this to Fakcharoenphol, Rao and Talwar [FRT04]
(while Fakcharoenphol, Rao and Talwar [FRT04] do not state it explicitly in this form and focus on
the “local growth ratio” aspect).

We state the formal claim in a form that will be convenient for us. For a self-contained proof
see for example the appendix of [DKR+20].

Theorem 6 (Analysis of CKR). Let V = V1∪̇ . . . ∪̇Vq be the random partition of the CKR algorithm.
The following holds:

(a) The blocks have diam(Vi) ≤ ∆ for i = 1, . . . , q.
(b) Let U ⊆ V be a subset of points. Then

Pr[U is separated by clustering] ≤ ln
(
2
∣
∣N

(
U,∆/2

)∣
∣
)
·
4diam(U)

∆
≤ ln(2n) ·

4diam(U)

∆
.

It should be pointed out that it was not absolutely necessary to use the algorithm by Calinescu,
Karloff and Rabani [CKR04]. One could have extracted a suitable clustering also using the region
growing technique, see Leighton and Rao [LR99] or Garg, Vazirani and Yannakakis [GVY93].

2.3 Concentration

We will also make use of the following version of the Chernoff bound. See for example the textbook
of Dubhashi and Panconesi [DP09].

Lemma 7. There is a universal constant C > 0 such that the following holds. Let X := X1+. . .+Xn

be a sum of independent random variables with 0 ≤ Xℓ ≤ α for all ℓ ∈ [n] and E[X] ≤ α for some
α > 0. Then for any N ≥ 4 one has Pr[X > C logN

log logN · α] ≤ 1
N .

3 The Linear Program and Its Properties

Let J be a set of |J | = n jobs, each with a processing time pj = 1 and a weight wj ≥ 0. Let
{1, . . . ,m} be the indices of the available machines where we assume to have mk machines of speed
sk ∈ N. We let M be the number of different machine types, also referred to as speed classes. By
the standard argument of geometrically grouping machines with speeds within a constant factor
of each other [Li17, MRS+20], we can assume that M ≤ O(log( smax

smin
)) ≤ O(logm) while we lose

a constant factor in the approximation. The goal is to find a schedule such that jobs j1 ≺ j2 are
either scheduled on the same machine (with j1 finishing before j2 is started) or they are scheduled
on different machines and j2 starts at least c time units after j1 is finished. By a slight abuse of
notation we denote [mk] as the indices of the machines of speed sk.

3.1 The Linear Program

It will be convenient to partition the time horizon into intervals I0, I1, . . . , IL−1 of c time units each.
As machines have different speeds and hence can handle different numbers of jobs per interval, we
abbreviate the discrete set of time slots that a speed-sk machine has in Iℓ as Iℓ,k := {ℓ · c+ t

sk
: t =

9



time

speed-sk
machine

speed-sk′
machine

0 c ℓc (ℓ+ 1)c LcI0 . . . Iℓ . . . IL−1

slots Iℓ,k

Figure 1: Slots for different machine types.

1, . . . , skc}. We note that indeed |Iℓ,k| = skc. Moreover we set I∗,k :=
⋃L−1

ℓ=0 Iℓ,k as all time slots
where a speed-sk machine can schedule jobs.

We construct the LP in two steps. First consider the variables

xj,i,t =

{

1 if j is scheduled on machine i in time slot t ∈ I∗,k ,

0 otherwise

for all j ∈ J , k ∈ [M ], i ∈ [mk], and t ∈ I∗,k. Let K be the set of fractional solutions to the following
linear system:

∑

k∈[M ],i∈[mk]

∑

t∈I∗,k

xj,i,t = 1 ∀j ∈ J

∑

j∈J

xj,i,t ≤ 1 ∀k ∈ [M ] ∀i ∈ [mk] ∀t ∈ I∗,k

0 ≤ xj,i,t ≤ 1 ∀j ∈ J ∀k ∈ [M ] ∀i ∈ [mk] ∀t ∈ I∗,k

Next, we will use a lift x ∈ SAr(K), which contains in particular the variables x(j1,i1,t1),(j2,i2,t2)
that provide the probability for the event that j1 is scheduled at time t1 on machine i1 and j2 is
scheduled at time t2 on machine i2. We introduce more types of decision variables:

yj1,j2,k =

{

1 j1 and j2 are scheduled on the same machine of type k in the same interval,

0 otherwise,

yj1,j2 =

{

1 j1 and j2 are scheduled on the same machine in the same interval,

0 otherwise,

Cj = completion time of job j.

10



The LP relaxation is then as follows:

Minimize
∑

j∈J

wj · Cj (LP)

yj1,j2,k =
∑

ℓ∈{0,...,L−1}

∑

i∈[mk]

∑

t1∈Iℓ,k

∑

t2∈Iℓ,k

x(j1,i,t1),(j2,i,t2) ∀j1, j2 ∈ J ∀k ∈ [M ]

yj1,j2 =
∑

k

yj1,j2,k ∀j1, j2 ∈ J

Cj2 ≥ Cj1 + (1− yj1,j2) · c ∀j1 ≺ j2

Cj =
∑

k∈[M ],i∈[mk]

∑

t∈I∗,k

xj,i,t · t ∀j ∈ J

x ∈ SAr(K)

Following the discussion in Section 2.1, we know that for every job j, there is a distribution that
we denote as (x̃, ỹ) ∼ D(j∗) such that E[x̃j,i,t] = xj,i,t and E[ỹj1,j2 ] = yj1,j2 with x̃ ∈ SAr−1(K)
where job j∗ is integrally assigned and (x̃, ỹ) satisfies the first two constraints in (LP). This is
immediate for the x-part as x ∈ SAr(K), and follows for the y-variables as these linear in the
x-variables. If E is an event, then we write (x̃, ỹ) ∼ D(j∗ | E) as the conditional distribution
(conditioning on the event E occurring), see again Section 2.1 for details.

3.2 Properties of the LP

We will now discuss some properties that are implied by the Sherali-Adams lift. The properties
proved in this section, which we use crucially in our rounding algorithms, are the main technical
contributions of this paper.

Lemma 8. Let (x, y, C) be a solution to (LP) with r ≥ 5. Then d(j1, j2) := 1−yj1,j2 is a semimetric.

This property was proven in [DKR+20] for a special case of sk = 1 and is not hard to extend
to our more general LP. For the sake of completeness, we give the proof in Appendix A. From now
on, the symbol d as well as the quantity diam(·) will always refer to this particular semimetric. For
the special case of sk = 1 for all k, one can also find a proof in [DKR+20] that any set U ⊆ J with
diam(U) ≤ 1

2 has size |U | ≤ 2c. While this is a obviously false for arbitrary speeds sk, we can prove
a similar claim:

Lemma 9. For k ∈ [M ] and j1 ∈ J one has
∑

j2∈J
yj1,j2,k ≤ sk · c ·

∑

i∈[mk]

∑

t xj1,i,t ≤ sk · c.

Proof. The second inequality is trivial as
∑

i∈[mk]

∑

t xj1,i,t ≤ 1, so we only justify the first inequality.
As we are proving a linear inequality, it suffices to show this for a fixed outcome (x̃, ỹ) ∼ D(j1)
where job j1 is assigned integrally. If in (x̃, ỹ) the job j1 is not assigned to a machine in [mk], then
both sides are 0. So suppose that j1 is assigned to a machine i1 ∈ [mk] and to interval ℓ1. Then
indeed ∑

j2∈J

ỹj1,j2,k =
∑

j2∈J

∑

t∈Iℓ1,k

x̃j2,i1,t ≤ skc = skc
∑

i∈[mk]

∑

t

x̃j1,i,t

︸ ︷︷ ︸

=1

.

Lemmas 10 and 11 are key technical insights behind the algorithms for the related machines
setting. They say that if one considers a set of jobs which are close to each other with respect to
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d, then there exists a type k∗ such that we can schedule all the jobs in an interval of length O(c)
on a single machine of type k∗. Moreover, the LP also schedules a good fraction of these jobs on
the same machine type. These lemmas are important in assigning jobs to machine types in our
algorithms.

Lemma 10. Let U ⊆ J be a non-empty subset of jobs with diam(U) ≤ 1
4 . Then there exists a

k∗ ∈ [M ] such that

(i) |U | ≤ O(1) · sk∗ · c, and
(ii)

∑

j∈U

∑

i∈[mk∗ ]

∑

t xj,i,t ≥ Ω( 1
M ) · |U |.

Proof. Let us sort the speed classes [M ] so that s1 ≥ . . . ≥ sM and abbreviate zj,k :=
∑

i∈[mk]

∑

t xj,i,t
as the fraction of job j scheduled on class k. Moreover let ρk :=

∑

j∈U zj,k be the load of cluster U
on class k. We fix an arbitrary job j∗ ∈ U . Let kmedian ∈ [M ] be the median speed class for job j∗,
meaning that

∑

k≤kmedian
zj∗,k ≥ 1

2 and
∑

k≥kmedian
zj∗,k ≥ 1

2 . We split the remaining proof into two
separate claims.
Claim I. One has |U | ≤ 4 · skmedian

· c.
Proof of Claim I. First we observe that for every j ∈ U we have

∑

k≥kmedian
yj∗,j,k ≥ 1

2 −d(j∗, j) ≥
1
4 . We use this to estimate

|U |

4
≤

∑

k≥kmedian

∑

j∈U

yj∗,j,k
Lem 9

≤
∑

k≥kmedian

skc
∑

i∈[mk]

∑

t

xj∗,i,t

≤ skmedian
c

∑

k≥kmedian

∑

i∈[mk]

∑

t

xj∗,i,t

︸ ︷︷ ︸

≤1

≤ skmedian
c

Rearranging gives |U | ≤ 4skmedian
c as claimed.

Claim II. There is a class k∗ ∈ {1, . . . , kmedian} where ρk∗ ≥ |U |
4M .

Proof of Claim II. For any job j ∈ U we have
∑

k≤kmedian
zj,k ≥ (

∑

k≤kmedian
zj∗,k) − d(j, j∗) ≥

1
2 − 1

4 = 1
4 . Hence

∑

k≤kmedian
ρk ≥ |U |

4 . Then at least one index k∗ ∈ {1, . . . , kmedian} will have

ρk∗ ≥ |U |
4M .

While the above lemma is enough to obtain our approximation algorithm for makespan on
related machines, for the weighted completion time objective we need the following strengthening:
if one considers a set of jobs which are very close to each other, then there exists a type k∗ such that
we can schedule all the jobs in an interval of length O(c) on a single machine of type k∗. Moreover,
the LP solution also schedules at least Ω(1/M) fraction of every one of these jobs on the same
machine type. Recall that Lemma 10 only satisfied this condition on average.

Lemma 11. Let U ⊆ J be a non-empty set with diam(U) ≤ 1
8M and abbreviate zj,k :=

∑

i∈[mk]

∑

t xj,i,t.
Then

(i) |zj1,k − zj2,k| ≤ diam(U) ≤ 1
8M for all j1, j2 ∈ U and k ∈ [M ].

Moreover there are indices π(U) ⊆ [M ] such that

(ii) zj,k ≥ 1
4M for all j ∈ U and k ∈ π(U)

(iii)
∑

k∈π(U)min{zj,k : j ∈ U} ≥ 1
2

12



(iv) |U | ≤ 2 · sk · c for all k ∈ π(U).

Proof. We prove the points in order.

(i) Actually we claim the stronger property of |zj1,k − zj2,k| ≤ d(j1, j2). Sample a distribution
(x̃, ỹ) ∼ D(j1, j2) and let σ(j1) ∈ [m] be the random variable that denotes the machine index
with

∑

t x̃j1,σ(j1),t = 1 (similarly we define σ(j2)). Then we can see that

|zj1,k − zj2,k| = |Pr[σ(j1) ∈ [mk]]− Pr[σ(j2) ∈ [mk]]| ≤ |Pr[σ(j1) 6= σ(j2)]| ≤ d(j1, j2).

Now we fix any job j∗ ∈ U and set π(U) := {k ∈ [M ] : zj∗,k ≥ 1
4M }. Then we continue the proof:

(ii) By (i) we know that for each j ∈ U and k ∈ π(U) we have zj,k ≥ zj∗,k −
1

8M ≥ 1
4M .

(iii) We have

∑

k∈π(U)

min{zj,k : j ∈ U} ≥
∑

k∈π(U)

(

zj∗,k −
1

8M

)

≥
∑

k∈[M ]

zj∗,k

︸ ︷︷ ︸

=1

−
∑

k∈[M ]\π(U)

zj∗,k
︸︷︷︸

≤1/(4M)

−
1

8M
|π(U)|
︸ ︷︷ ︸

≤M

≥
1

2

(iv) Fix a machine type k ∈ π(U) and consider the event E := “
∑

i∈[mk]

∑

t x̃j∗,i,t = 1′′ (meaning
the event that j∗ is assigned to a machine in class k). Note that Pr(x̃,ỹ)∼D(j∗)[E ] = zj∗,k ≥
1

4M . Now, let (x̄, ȳ) be the Sherali-Adams lift (see Lemma 5) conditioned on the event E .
Then trivially

∑

i∈[mk]

∑

t x̄j∗,i,t = 1. As we have conditioned on an event with probability

zj∗,k ≥ 1
4M , the chance of other events cannot increase by more than a factor of 4M (see again

Lemma 5). In particular for j ∈ U we have 1 − ȳj∗,j ≤ 4M · (1 − yj∗,j) = 4M · d(j∗, j) ≤ 1
2 .

As ȳj∗,j,k′ = 0 for all k′ 6= k and j ∈ U we can conclude that ȳj∗,j,k ≥ 1
2 for all j ∈ U . Finally

by Lemma 9 we know that
∑

j∈J ȳj∗,j,k ≤ skc which then gives |U | ≤ 2skc.

4 The Rounding Algorithm for Q | prec, pj = 1, c |
∑

wjCj

In this section, we describe the rounding algorithm which proves our main technical result, The-
orem 12. We let CA

j denote the algorithm’s completion time of job j. We denote Γ−(j) as the
predecessors of j and Γ+(j) as the successors, and similarly Γ−/+(J ′) = {j ∈ J : ∃j′ ∈ J ′ s.t. j ∈
Γ−/+(j′)}.

Theorem 12. There is a polynomial-time randomized algorithm that, given a solution (x, y, C) to
(LP) for r ≥ 5, produces a schedule with completion times {CA

j }j∈J such that

E[C
A
j ] ≤ O(M · log2 n) · Cj ≤ O(log3 n) · Cj .
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Before we describe our rounding algorithm, we set up some notation. Let (x, y, C) be an optimal
solution to the LP with r ≥ 5. We partition the jobs based on their fractional completion times in
the LP solution. For any constant a > 128 set δ = 1

a·M ·log 2n . Consider

J0 := {j : Cj < δ · c} (1)

and for γ ≥ 1 define
Jγ :=

{
j : 2γ−1 · δ · c ≤ Cj < 2γ · δ · c

}
(2)

Our rounding algorithm has the following steps:

• Schedule J0 via the first batch scheduling algorithm given in Section 4.1

• For γ = 1, 2, . . ., schedule Jγ via the intermediate scheduling algorithm given in Section 4.2.

• Concatenate the schedules of J0, J1, J2, . . ..

We show that the expected completion time of every job in the above schedule satisfies Theorem
12. We need the following scheduling subroutine for the rounding steps above.

Theorem 13. Let (x, y, C) be a solution to the LP with r ≥ 5 and let T ∗ ∈ N. For some subset
J ′ ⊂ J , suppose in the LP solution completion time Cj ≤ T ∗ for every job j ∈ J ′. Then there is a
randomized polynomial time algorithm that schedules all jobs such that CA

j ≤ O(logm · log n · T ∗) +
O(logm · c) for every job j ∈ J ′.

Note that the above theorem immediately implies our result for the makespan minimization
problem on related machines. We prove this theorem in Section 5.

4.1 First Batch Scheduling

Here we give an algorithm for scheduling jobs in J0. We define the α-point of job j as the earliest
time t∗j when the LP solution has completed an α-fraction of j. Formally,

t∗j := min






t′ ∈ [T ] :

m∑

i=1

∑

t≤t′

xj,i,t ≥ α






. (3)

For β ≤ 1/4M , consider any subset U ⊆ J with diam(U) ≤ β. Let π(U) ⊆ [M ] denote the
indices of machine types that satisfy the conditions of Lemma 11. We use the same semimetric
d(j1, j2) := 1− yj1,j2 and schedule jobs in J0 using the following algorithm.
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First Batch Scheduling

(1) Run a CKR clustering on the semimetric space (J0, d) with parameter ∆ :=
1

100M and let V1, . . . , Vq be the clusters.
(2) Let V ′

ℓ := {j ∈ Vℓ | (Γ
−(j) ∩ J0) ⊆ Vℓ} for ℓ = 1, . . . , q, and J ′

0 := ∪q
ℓ=1V

′
ℓ .

(3) FOR ℓ = 1 TO q DO

(4) Sample a machine type k∗ from the set π(V ′
ℓ ) with probability

min{zjk∗ :j∈V
′
ℓ
}

∑
k∈π(V ′

ℓ
) min{zjk:j∈V

′
ℓ
} .

(5) Assign V ′
ℓ to a machine i ∈ [mk∗ ] with probability 1

mk∗
.

(6) For a machine i ∈ [mk] of type k, let J ′
0(i, k) denote the set of jobs assigned to

machine i.
(7) For all k and for all i ∈ [mk], schedule J ′

0(i, k) in the increasing order of their
α-points for α = (1− 1

100M ) as defined in Eq. (3).
(8) Insert a gap of c time slots.
(9) Let J ′′

0 := J0 \ J ′
0 be the set of jobs that did not get scheduled in steps (1) -

(5). Use Theorem 13 to schedule J ′′
0 .

We now argue that expected completion time of a job j in above algorithm is comparable to
its LP cost. First we focus on bounding the completion time of jobs in J ′

0. We need the following
crucial lemma.

Lemma 14. Let U ⊆ J be a set of jobs with diam(U) ≤ 1
100M w.r.t. distance d. For every job

j ∈ U , define t∗j as in Eq (3). For θ > 0, consider the set of jobs U∗ := {j ∈ U : t∗j < θ} with
α-point less than θ. Then |U∗| ≤ 2 · sk∗ · θ for any k∗ ∈ π(U).

The lemma formalizes the intuition that as the jobs in U∗ are very close to each other, it must
be the case that the LP schedules all of them on the same machine. As a good fraction of each of
these jobs are scheduled in the interval of length θ there cannot be too many of them.

Proof. We prove the lemma by contradiction. Consider a set U∗ that violates the conditions in the
lemma and fix a job j∗ ∈ U∗. Let k∗ ∈ π(U). Then we have

(A)
∑

j∈U∗

∑

i∈[m]

∑

t>θ

xj,i,t <
1

100M
·|U∗|, (B)

∑

j∈U∗

yj,j∗ ≥
(

1−
1

100M

)

|U∗|, (C)
∑

i∈[mk∗ ]

∑

t≤θ

xj∗,i,t ≥
1

5M
.

where (A) follows from the definition of α-point of jobs, (C) follows from
∑

i∈[mk∗ ]

∑θ
t=1 xj∗,i,t ≥

1/4M − 1/100M > 1/5M , and (B) follows from diam(U∗) ≤ diam(U) ≤ 1
100M . Now we appeal to

the properties of the Sherali-Adams hierarchy. Consider the event E := ”
∑

i∈[mk∗ ]

∑

t≤θ xj∗,i,t = 1”

and note that from (C) we know that the probability of the event E is at least 1
5M . Now let (x̄, ȳ)

be the Sherali-Adams lift with x̄ ∈ SAr−1(K) conditioned on this event, see Lemma 5 for details.
In particular one has

∑

i∈[mk∗ ]

∑

t≤θ x̄j∗,i,t = 1, meaning that the LP solution (x̄, ȳ) schedules j∗

fully on machines of class k∗ and until time θ.
As we have conditioned on an event of probability at least 1

5M , the probabilities of other events
cannot increase by more than a factor of 5M (see the “moreover” part in Lemma 5). In particular for
j ∈ U we have 1− ȳj∗,j ≤ 5M ·(1−yj∗,j) = 5M ·d(j∗, j) ≤ 1

10 . Similarly,
∑

j∈U∗

∑

i∈[m]

∑

t>θ x̄j,i,t ≤

5M · (
∑

j∈U∗

∑

i∈[m]

∑

t>θ xj,i,t) ≤ 5M · 1
100M · |U∗| ≤ |U∗|

10 . Therefore we have

(A′)
∑

j∈U∗

∑

i∈[mk∗ ]

∑

t>θ

x̄j,i,t ≤
|U∗|

10
, (B′)

∑

j∈U∗

ȳj,j∗ ≥
9

10
· |U∗|, (C ′)

∑

i∈[mk∗ ]

∑

t≤θ

x̄j∗,i,t = 1.
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Then by Markov’s inequality there exists an outcome (x̃, ỹ) ∼ Dȳ(j
∗) where the job j∗ is integrally

assigned and

(A′′)
∑

j∈U∗

∑

i∈[mk∗ ]

∑

t>θ

x̃j,i,t ≤
|U∗|

5
, (B′′)

∑

j∈U∗

ỹj,j∗ ≥
4

5
· |U∗|, (C ′′)

∑

i∈[mk∗ ]

∑

t≤θ

x̃j∗,i,t = 1.

We fix that outcome and let i∗ ∈ [mk∗ ], t
∗ ∈ {1, . . . , θ} be the indices with x̃j∗,i∗,t∗ = 1. Let ℓ∗ be

the interval index such that t∗ ∈ Iℓ∗,k∗ . Then

4

5
· |U∗|

(B′′)

≤
∑

j∈U∗

ỹj,j∗
LP
=

∑

j∈U∗

∑

ℓ∈{0,...,L−1}

∑

k

∑

i∈[mk]

∑

t1∈Iℓ,k

∑

t2∈Iℓ,k

x̃(j,i,t1),(j∗,i,t2)

≤
∑

j∈U∗

∑

t∈Iℓ∗,k∗

x̃j,i∗,t =
∑

j∈U∗

∑

t∈Iℓ∗,k∗ :t≤θ

x̃j,i∗,t

︸ ︷︷ ︸

≤sk∗ ·θ by LP

+
∑

j∈U∗

∑

t∈Iℓ∗,k∗ :t>θ∗

x̃j,i∗t

︸ ︷︷ ︸

≤ 1
5
·|U∗| by (A′′)

≤ sk∗ · θ +
|U∗|

5

Rearranging gives |U∗| ≤ 5
3 · sk∗ · θ

∗, which is a contradiction.

Lemma 15. Let θ > 0 and i be any machine of type k. Then with high probability 1 − 1/n100 it
holds that

|{j ∈ J ′
0(i, k) : t

∗
j ≤ θ}| ≤ O

( log n

log log n
· sk · θ

)

Proof. Fix θ∗ > 0 and any machine i∗ of type k. Consider any outcome of the clustering itself. The
randomness needed for the lemma is only over the assignment in step (3)-(5) of the algorithm. We
define the following random variables. Let

Xℓ =

{

|{j ∈ V ′
ℓ : t∗j ≤ θ∗}| if V ′

ℓ is assigned to machine i∗ of type k by our algorithm,

0 otherwise

and abbreviate X =
∑q

ℓ=1Xℓ. Note the random variables X1, . . . , Xq are independent and X =
|{j ∈ J ′

0(i
∗, k) : t∗j ≤ θ∗}|. From Lemma 14 we know that Xℓ ≤ 2sk · θ

∗ for all ℓ.
Next, we estimate E[X]. Recall that the algorithm uses the indices π(V ′

ℓ ) ⊆ [M ] from Lemma 11
which in particular satisfy zj,k ≥ 1

4M and |zj,k − zj′,k| ≤
1

8M whenever j, j′ ∈ V ′
ℓ with k ∈ π(V ′

ℓ ).
Abbreviate

µℓ,k :=

{

min{zj,k : j ∈ V ′
ℓ } if k ∈ π(V ′

ℓ )

0 otherwise.

Recall that for every ℓ we have
∑

k∈[M ] µℓ,k ≥ 1/2. We prove two technical claims that we need for
our analysis:
Claim I. For any ℓ and k and j ∈ V ′

ℓ one has µℓ,k ≤ 2zj,k.
Proof of Claim. If k /∈ π(V ′

ℓ ) then the left hand side is 0, so suppose k ∈ π(V ′
ℓ ). Then µℓ,k =

min{zj′,k : j′ ∈ V ′
ℓ } ≤ zj,k +

1
8M ≤ 2zj,k.

Claim II. For j ∈ V ′
ℓ with t∗j ≤ θ∗ and k ∈ π(V ′

ℓ ) one has zj,k ≤ 2
∑

i∈[mk]

∑

t∈I∗,k:t≤θ∗ xj,i,t.

Proof of Claim II. Since k ∈ π(V ′
ℓ ) we know that zj,k ≥ 1

4M . We consider the distribution
(x̃, ỹ) ∼ D(j) and denote ĩ and t̃ as the random indices so that x̃j,̃i,t̃ = 1. Then Pr[̃i ∈ [mk]] = zj,k
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and Pr[t̃ > θ∗] =
∑

k∈[M ]

∑

i∈[mk]

∑

t∈I∗,k:t>θ∗ xj,i,t ≤ 1
100M by the definition of α-points and the

assumption t∗j ≤ θ∗. Then

∑

i∈[mk]

∑

t∈I∗,k:t≤θ∗

xj,i,t = Pr
[
ĩ ∈ [mk] and t̃ ≤ θ∗

]

≥ Pr
[
ĩ ∈ [mk]

]
− Pr

[
t̃ > θ∗

]

≥ zj,k −
1

100M
≥

1

2
zj,k

Now we can bound the expectation of our random variable as

E[X] =
1

mk

q
∑

ℓ=1

Pr
[
V ′
ℓ assigned to class k

]
· |{j ∈ V ′

ℓ : t∗j ≤ θ∗}|

=
1

mk

q
∑

ℓ=1

µℓ,k
∑

k′ µℓ,k′
· |{j ∈ V ′

ℓ : t∗j ≤ θ∗}|

Claim I

≤
4

mk

∑

ℓ:k∈π(V ′
ℓ
)

∑

j∈V ′
ℓ
:t∗j≤θ∗

zj,k

Claim II

≤
8

mk

∑

ℓ:k∈π(V ′
ℓ
)

∑

j∈V ′
ℓ
:t∗j≤θ∗

∑

i∈[mk]

∑

t∈I∗,k:t≤θ∗

xj,i,t

≤
8

mk

∑

i∈[mk]

∑

t∈I∗,k:t≤θ∗

∑

j∈J ′
0

xj,i,t

︸ ︷︷ ︸

≤1 by (LP)

≤ 8 · |{t ∈ I∗,k : t ≤ θ∗}| ≤ 8sk · θ
∗

Here we also have used that
∑

k′∈[M ] µℓ,k′ ≥
1
2 . As X is sum of independent random variables Xℓ

each of which is bounded by O(sk · θ∗), we apply the Chernoff bound from Lemma 7 and obtain
that Pr[X > C ′ · log n

log logn · skθ
∗] ≤ 1/n1000 for some constant C ′ > 0. To complete the lemma, we

simply do a union bound over all possible values of θ∗ and i. The number of machines is m ≤ n
and the number of relevant θ∗’s in the time horizon is bounded by

∑

k∈[M ] |I∗,k| ≤ M · 2n.

Lemma 16. For every job j ∈ J ′
0, with high probability, the completion time of j in our schedule

CA
j ≤ O(M · log n

log log n · Cj).

Proof. Fix a job j∗ ∈ J ′
0, and suppose job j∗ is scheduled on machine i of type k in our schedule.

From Lemma 15, there are at most O( logn
log logn ·sk ·t

∗
j∗) jobs whose t∗j ≤ t∗j∗ . Therefore, the completion

time is CA
j∗ ≤ O( logn

log logn · t∗j∗). Note that in the LP solution at least an 1
100M -fraction of j∗ was

scheduled at or after t∗j∗ . Hence, Cj ≥ 1
100M · t∗j∗ . Putting things together we conclude CA

j ≤

O( logn
log logn · t∗j∗) ≤ O(M · logn

log logn · Cj).

Now we focus on bounding the completion time of jobs in J ′′
0 .

Lemma 17. For every job j ∈ J ′′
0 , the completion time of j in our schedule CA

j ≤ O(log n · c).

Proof. From the definition of set J0, for all j ∈ J ′′
0 the completion time Cj ≤ c ·δ in the LP solution.

This implies that at least a 1/2-fraction of every job j ∈ J ′′
0 is scheduled in the interval [0, 2c · δ]

in the LP solution. We take the LP solution restricted to J ′′
0 in the interval [0, c · δ], and invoke
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Theorem 13 to construct a schedule of jobs J ′′
0 . Theorem 13 guarantees that every job j ∈ J ′′

0 is
scheduled in an interval of length at most 2c · δ · (logm · log n+M2) + O(logm · c) = O(logm · c)
from our choice of δ. To complete the proof, it remains to account for the increase in completion
time caused by jobs in J ′

0 as our algorithm schedules J ′′
0 after scheduling jobs in J ′

0. However, from
Lemma 16 every job in J ′

0 has completion time at most O(logn · c). Thus the lemma follows.

Lemma 18. For any job j1 ∈ J0, the probability that j1 ∈ J ′′
0 is at most O(M · log n ·

Cj1
c ).

Proof. Consider the set U := {j1} ∪ (Γ−(j1) ∩ J0) of j1 and its ancestors. If j0 ≺ j1, then 0 ≤

Cj0 + c · d(j0, j1) ≤ Cj1 by the LP constraints and so d(j0, j1) ≤
Cj1
c . Then the diameter of U with

respect to semimetric d is bounded by 2Cj1/c and hence by Theorem 6.(b) the probability that U

is separated is bounded by ln(2n) · 4diam(U)
∆ ≤ O(M · log n ·

Cj1
c ).

We can now bound the expected completion time of every job in J0.

Lemma 19. For every job j ∈ J0,E[C
A
j ] ≤ O(M · log2 n) · Cj.

Proof. Fix a job j1 ∈ J0 and consider

E[C
A
j1 ] = E[C

A
j1 |(j1 ∈ J ′

0)] · Pr[(j1 ∈ J ′
0)] + E[C

A
j1 |(j1 ∈ J ′′

0 )] · Pr[(j1 ∈ J ′′
0 )]

(∗)
≤ O

(

M ·
log n

log log n
· Cj1

)

+O
(

M · log n ·
Cj1

c

)

·O(logn · c)

≤ O(M · log2 n) · Cj1 ,

where (*) follows from Lemmas 16, 17, 18.

We also note the following simple consequence of previous lemmas:

Lemma 20. For every job j ∈ J0, Cj ≤ O(logn · c). In other words, the makespan of our schedule
for J0 is at most O(logn · c).

4.2 Intermediate Batch Scheduling

Now we describe our algorithm to schedule jobs in the set Jγ for γ > 0, which is similar to that of
scheduling jobs in J ′′

0 . Recall that from the definition of set Jγ in Eq. (2), 2γ−1δ · c < Cj ≤ 2γδ · c
in the LP solution. We take the LP solution restricted to Jγ in the interval [0, 2γδ · c], and invoke
Theorem 13 to construct a schedule of jobs Jγ . Theorem 13 ensures that every job j ∈ Jγ is
scheduled in an interval of length at most O(2γδ · c · logm · logn) +O(logn · c). As a consequence,
we obtain the following lemma.

Lemma 21. Fix any γ∗ ≥ 0. For every j ∈ Jγ∗ , CA
j ≤ O(2γ

∗
· δ · logm · logn) +O(γ∗ · log n · c).

Proof. For γ = 0, 1, . . ., let S(Jγ) denote the schedule of jobs in the set Jγ . Our final schedule S
is simply a concatenation of schedules S(J0),S(J1), . . ., while inserting c empty time slots between
S(Jγ) and S(Jγ+1). Let Tγ denote the makespan of S(Jγ). From Lemma 20 and Theorem 13,
Tγ ≤ O(2γ · δ · c · logm · log n) +O(log n · c). Fix the job j∗ ∈ Jγ∗ with the highest completion time
in S . We can bound the completion time of j∗ as

CA
j∗ ≤

γ∗
∑

γ=0

Tγ ≤ O(γ∗ · log n · c) +

γ∗
∑

γ=1

O(2γ · δ · c · logm · log n)

≤ O(γ∗ · logn · c) +O(2γ
∗
· δ · c · logm · log n)
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which completes the proof.

We finish the proof of main theorem for the weighted sum of completion times of jobs.

Proof of Theorem 12. For every job j ∈ J0, from Lemma 19, we have E[CA
j ] ≤ O(M · log2 n) · Cj .

From the previous Lemma 21, for γ > 0 and j ∈ Jγ we have, CA
j ≤ O(γ · log n · c) + O(2γ ·

δ · c · logm · logn). On the other hand, for every j ∈ Jγ , by definition, Cj > 2γ · δ · c. Thus,
CA
j ≤ O(M · log2 n) · Cj .

5 Proof of Theorem 13

Recall that we are given a subset of jobs J ′ ⊆ J , and a solution (x, y, C) to the LP with r ≥ 5
and T ∈ N. It is promised that in (x, y, C), the completion times satisfy Cj ≤ T for every job
j ∈ J ′. Then there is a randomized polynomial time algorithm that schedules all jobs such that
CA
j ≤ O(logm · log n · T ) +O(logm · c) for every job j ∈ J ′.

5.1 Main Scheduling Subroutine

The following lemma is the main scheduling subroutine towards proving Theorem 13.

Lemma 22. Let C∗ ≥ 0 and δ = 1/64 log(2n). Consider the set J∗ ⊆ {j ∈ J ′ | C∗ ≤ Cj ≤ C∗+δ·c}.
Then there is a randomized rounding procedure that finds a subset J∗∗ ⊆ J∗, a partition of J∗∗ into
J∗∗ = ∪M

k=1J
∗∗(k) where J∗∗(k) are jobs assigned to machines of type k, and a schedule for J∗∗ in

an interval of length at most 5c+
∑

k
|J∗∗(k)|
sk·mk

such that every job j ∈ J∗ is scheduled with probability

at least 1
2 .

The rounding algorithm to prove the above lemma is the following:

Scheduling a Single Batch on Related Machines

(1) Run a CKR clustering on the semimetric space (J∗, d) with parameter ∆ := 1
4

and let V1, . . . , Vq be the clusters.
(2) Let V ′

ℓ := {j ∈ Vℓ | Γ
−(j) ∩ J∗ ⊆ Vℓ} for ℓ = 1, . . . , q.

(3) For all ℓ = 1, . . . , q, assign the jobs in V ′
ℓ to type k∗ satisfying the conditions

in Lemma 10.
(4) For all ℓ = 1, . . . , q, if V ′

ℓ is assigned to type k∗, assign all jobs in V ′
ℓ to the

machine of type k∗ which has the least load (breaking ties arbitrarily).

We prove few lemmas that will be helpful in proving the desired properties of the algorithm.
The first lemma shows that the clusters produced by the algorithm are not too large.

Lemma 23. For all ℓ = 1, . . . , q, one has |V ′
ℓ | ≤ O(sk∗c). Here, k∗ is the machine type that V ′

ℓ is
assigned in our algorithm. Thus, it takes O(c) time to process all jobs in V ′

ℓ .

Proof. We know by Theorem 6 that diam(V ′
ℓ ) ≤ diam(Vℓ) ≤ ∆ ≤ 1

4 . The lemma follows by
Lemma 10 and by our choice of k∗.

Further it is easy to see that the clusters respect precedence constraints.

Lemma 24. The solution V ′
1 , . . . , V

′
q is feasible in the sense that jobs on different machines do not

have precedence constraints.
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Proof. Consider jobs processed on different machines, say (after reindexing) j1 ∈ V ′
1 and j2 ∈ V ′

2 . If
j1 ≺ j2 then we did not have Γ−(j2) ⊆ V ′

2 . This contradicts the definition of the sets V ′
ℓ .

We will use the two statements above together with Theorem 6 to prove Lemma 22.

Proof of Lemma 22. Call the schedule produced by the above algorithm S(J∗). By Lemma 23, for
all ℓ = 1, . . . , q, the processing time of V ′

ℓ is at most O(c). By Lemma 24, there are no dependent
jobs in different sets of V ′

1 , . . . , V
′
q .

The interval in which the jobs in J∗ are scheduled can be divided into c-length time intervals
I1, · · · , Iℓ. To prove the lemma, it suffices to consider the case where ℓ ≥ 6. We say that a machine
of type k is full in a c-length interval if it is processing c ·sk jobs in S(J∗). From our greedy packing
and the bound on processing time of V ′

ℓ , it follows that there exists a machine type k ∈ [M ] such
that every machine i ∈ [mk] is full in I1, · · · Iℓ−5. Therefore,

c · (ℓ− 5) ≤ max
k

|J∗∗(k)|

sk ·mk
≤

∑

k

|J∗∗(k)|

sk ·mk
.

Thus, the total length of the interval used in a single batch scheduling is bounded by

c · ℓ ≤ 5c+
∑

k

|J∗∗(k)|

sk ·mk
.

It remains to prove that a fixed job j∗ ∈ J∗ is scheduled with good probability. Consider the set
U := {j∗}∪(Γ−(j∗)∩J∗) of j∗ and its ancestors in J∗. By the LP constraint Cj1+d(j1, j2) ·c ≤ Cj2 ,
rearranging we see that d(j1, j2) ≤ δ for every j1, j2 ∈ U . So the diameter of U is at most 2δ. Now
we appeal to Lemma 10. For our choice of ∆ = 1/4 and δ ≤ 1

64 log(2n) , we apply Theorem 6 to see

that the cluster is separated with probability at most log(2n) · 8δ
∆ ≤ 1

2 .

To schedule all jobs in J∗, we repeat the clustering procedure O(logm) times and simply schedule
the remaining jobs on the fastest machine.

Lemma 25. Let C∗ ≥ 0 and δ = 1/64 log(2n). Consider the set J∗ ⊆ {j ∈ J ′ | C∗ ≤ Cj ≤
C∗ + δ · c}. Then there is an algorithm with expected polynomial running time that finds disjoint
subsets J∗(k) ⊂ J∗, where J∗(k) are jobs assigned to machines of type k, and schedules all jobs in J∗

using at most O(logm · c) + |J∗|
m·smax

+
∑

k
|J∗(k)|
sk·mk

many time slots.

Proof. We run the above algorithm for 2 logm iterations. Input to iteration h+ 1 is the set of jobs
that are not scheduled in the first h iterations. For h ∈ {1, 2, . . . , 2 logm}, let J∗∗

h be the set of jobs
scheduled in iteration h, and let J∗

h+1 := J∗ \ {
⋃h

i=1 J
∗∗
i }. In this notation, J∗

1 := J∗.
Let S(J∗∗

h ) be the schedule of jobs J∗∗
h obtained from by Lemma 22. We schedule S(J∗∗

1 ) first,
then append schedule S(J∗∗

h ) after S(J∗∗
h−1) while inserting c empty time slots between them, for

h = 2, . . . , 2 logm. Let Ĵ := J∗
2 logm+1 be the set of jobs that were not scheduled in these 2 logm

iterations. We schedule all jobs in Ĵ consecutively on a single machine with the fastest speed after
the completion of S(J∗∗

2 logm).
From our construction, the length of a schedule for J∗, which is a random variable, is at most

O(logm · c) + ⌈ |Ĵ |
smax

+
∑

k
|J∗(k)|
sk·mk

⌉. For h ∈ {1, 2, . . . , 2 logm}, Lemma 22 guarantees that each job

j ∈ J∗
h gets scheduled in the hth iteration with probability at least 1/2. Therefore, the probability

that j ∈ Ĵ , i.e. it does not get scheduled in the first 2 logm iterations, is at most 1
2m . This implies

that E[|Ĵ |] ≤ |J∗|
2m . The claimed expected polynomial running time bound now simply follows from

appealing to Markov’s inequality.
Finally, by our construction precedence and communication delay constraints are satisfied.
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5.2 The Complete Algorithm

To schedule all jobs in J ′ we do the following.

The Complete Algorithm

(1) Let (x, y, C) be a solution to (LP) with r ≥ 5 for J ′.
(2) For δ = 1

64 log(2n) and h ∈ {0, 1, 2 . . . T−1
c·δ }, define

Jh = {j ∈ J : h · δ · c ≤ Cj < (h+ 1) · δ · c}
(3) FOR h = 0 TO T−1

c·δ DO

(4) Schedule the jobs in Jh using the algorithm in Subsection 5.1.
(5) Insert c new empty idle slots.

Proof of Theorem 13. First consider the case when T > δ · c. The total number of time slots used
by our algorithm can be upper bounded by

T

c · δ
·O(logm · c) +

T−1
c·δ∑

h=0

|Jh|

m · smax
+
∑

h,k

|J
(k)
h |

sk ·mk
= O(logm · log n) · T +

|J ′|

m · smax
+
∑

k

|J (k)|

sk ·mk
.

Here, J (k)
h is the set of jobs assigned on machines of type k when scheduling Jh, introduced in

lemma 25, and J (k) = ∪
T−1
c·δ
h=0 J

(k)
h . From lemma 10 and the choice of machine type in the algorithm,

∑

j∈J(k)

∑

t

∑

i∈[mk]
xj,i,t ≥ Ω(1/M) · |J (k)|. On the other hand, by the constraints of the LP, we

have

∑

j∈J(k)

T∑

t=0

∑

i∈[mk]

xj,i,t ≤
∑

j∈J

∑

t

∑

i∈[mk]

xj,i,t ≤ mk · sk · T.

Thus, |J(k)|
sk·mk

≤ O(M · T ), and
∑

k
|J(k)|
sk·mk

≤ O(M2 · T ). It is also implied from the same constraints
of the LP that |J ′| ≤ T ·m · smax. As M2 ≤ O(logm · log n), the proof follows assuming T > δ · c.

Now if T ≤ δ · c, then J ′ = J∗ and our algorithm does only one iteration. Thus from Lemma 25
the total number of time slots used by our algorithm is at most

O(logm · c) +
|J ′|

m · smax
+
∑

k

|J
′(k)|

sk ·mk
≤ O(logm · c) +O(M2 · T ).

This completes the proof.

Finally, we conclude this section by noting that above proof in fact gives an O(log2 n) approxi-
mation for the makespan objective on related machines for the unit length case.

6 A Reduction from Q | prec, c |
∑

wjCj to Q | prec, pj = 1, c |
∑

wjCj

An extension of the classic list scheduling algorithm of Graham [Gra66] is the speed based list
scheduling algorithm by Chudak and Shmoys [CS99]. In this setting, one has a set of jobs J with
precedence constraints and an assignment that determines on what machine type a job will be
executed. Then we process the jobs greedily in the sense that any available job is scheduled as early
as possible on one of the machines belonging to its assigned speed class. The makespan can then be
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upper bounded by the maximum chain length plus the sum of the loads (if summed over all speed
classes).

As in previous sections, we will consider a set J of jobs with processing time pj and m ma-
chines, partitioned into machine types (mk, sk)k∈[M ], meaning that there are mk machines of speed
sk available. We design a slight extension of speed based list scheduling that allows us to take
communication delays into account.

Speed-based List Scheduling (with Communication Delays)

Input: Jobs J with pj ≥ 0, machine types (mk, sk)k∈[M ]; assignment π : J → [M ];
communication delay c
Output: Feasible non-preemptive schedule

(1) Set σ(j) := ∅ for all j ∈ J
(2) FOR t = 0 TO ∞ DO FOR i = 1 TO m DO

(3) IF i is idle at time t THEN select any job j ∈ J satisfying the following
• σ(j) = ∅
• Every j′ ≺ j has been completed. Moreover if j′ ≺ j was scheduled

on machine i′ 6= i, then j′ must have finished by time t− c
• Machine i is of class π(j)

(4) Set σ(j) := ([t, t+
pj

sπ(j)
), i) (if there was such a job)

We provide an analysis which follows closely Chudak and Shmoys [CS99] as well as Gra-
ham [Gra66].

Lemma 26. Suppose we are given jobs J with processing time pj and a partial order ≺ as well as
machine types (mk, sk)k∈[M ] and an assignment π : J → [M ]. Denote Dk :=

∑

j∈J :π(j)=k
pj

mksk
as

the load on type k. Then the Speed-based List Scheduling algorithm produces a schedule of
length

M∑

k=1

Dk +max
{(∑

j∈C

pj
sπ(j)

)

+ (|C| − 1) · c | C ⊆ J is a chain
}

(4)

Proof. Consider the schedule produced by Speed-based List scheduling. Let j1 denote the last
job that finishes. For ℓ ≥ 1 suppose we have already constructed the sequence j1, . . . , jℓ. Then
we choose jℓ+1 as that job with jℓ+1 ≺ jℓ which is finished last in the schedule. We terminate the
procedure when we reach a chain jq ≺ . . . ≺ j2 ≺ j1 where jq does not have any predecessors. Let
ijℓ ∈ [m] be the machine index where jℓ is scheduled and let [tjℓ , tjℓ +

pjℓ
sπ(jℓ)

) be the time interval in

which jℓ is scheduled. We can make the observation that by the time tjℓ+1
+ c, all predecessors of

jℓ have been completed and moreover a time of c has passed. Hence if the period between tjℓ+1
+ c

and tjℓ is non-empty, then all machines in class π(jℓ) had to be busy during that period. We can
make the more general conclusion that for the constructed chain C := {jq, . . . , j1} it is true that for
every time unit in [0, tj1 +

pj1
sπ(j1)

) one of the following holds:

(a) a job from C is processed at time t
(b) a job from C has finished less than c time units ago
(c) in at least one class k, all machines are busy at t

We note that the duration of time that can fall into one of the categories (a), (b), (c) is indeed upper
bounded by (4). The claim is then proven.
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This can be combined with an assignment argument:

Lemma 27. Let J be a set of jobs with processing times pj, a partial order ≺ and machine types
(mk, sk)k∈[M ]. Suppose there is a pre-emptive migratory schedule with makespan T ∗. Then there is
an assignment π : J → [M ] such that each load Dk :=

∑

j∈J :π(j)=k
pj

mksk
satisfies Dk ≤ 4T ∗ and the

maximum chain length is ∆ ≤ 2T ∗.

Proof. After scaling the time horizon we may assume that the job lengths pj are multiples of 2 and
the individual parts in the schedule have unit length. Let T ∗ be the makespan of the schedule. Let
xjk := #job parts of j assigned to class k

pj
we see that we have a fractional solution to the assignment LP

M∑

k=1

xjk = 1 ∀j ∈ J (Assignment-LP-I)

∑

j∈J

xjk
pj

skmk
≤ T ∗ ∀k ∈ [M ]

∑

j∈C

M∑

k=1

xjk
pj
sk

≤ T ∗ ∀ chain C ⊆ J

0 ≤ xjk ≤ 1 ∀j ∈ J ∀k ∈ [M ]

We now perform a standard procedure in approximation algorithms that is usually called filtering.
Consider a job j and delete the 1/2 of its parts that are on the slowest machines and scale the
fractional solution by a factor of 2 on the remaining parts. Then we obtain a fractional solution
satisfying

M∑

k=1

yjk = 1 ∀j ∈ J (Assignment-LP-II)

∑

j∈J

yjk
pj

skmk
≤ 2T ∗ ∀k ∈ [M ]

0 ≤ yjk ≤ 1 ∀j ∈ J ∀k ∈ [M ]

Moreover due to the filtering, any assignment π : J → [M ] with yj,π(j) > 0 for all j ∈ J , satisfies
the following two properties:

(A) One has pj
sπ(j)

≤ 2T ∗.

(B) The maximum chain length w.r.t. π is ∆ ≤ 2T ∗.

If we imagine qjk :=
pj

skmk
as item sizes, then the seminal rounding argument of Shmoys-Tardos

shows that any fractional solution to (Assignment-LP-II) can be rounded to an integral solution
where the right hand side is exceeded by at most max{qjk : yjk > 0} ≤ 2T ∗. The obtained integral
solution is then the desired assignment π.

We use this for the main reduction:

Theorem 28. Suppose there is an α-approximation to Q | prec, pj = 1, c |
∑

wjCj. Then there is
an O(Mα)-approximation for Q | prec, c |

∑
wjCj.
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Proof. Let J be the set of jobs with processing times pj ∈ N and weights wj with original precedence
constraints ≺. Let OPT be the minimum weighted sum of completion times over all feasible
schedules. We run the α-approximation algorithm for Q | prec, pj = 1, c |

∑
wjCj treating each job

as pj many unit length tasks that form a chain where the last unit length task receives a weight
of wj and the other tasks receive weight 0. The algorithm will provide us with a schedule σ which
satisfies communication delays but it spreads tasks of the same job over different machines (and
even different machine types). Let Cj be the completion time of the last task of job j. Then
∑

j∈J wjCj ≤ αOPT by construction.
We abbreviate J∗(0) := {j ∈ J | Cj ≤ c} and J∗(r) := {j ∈ J | c2r−1 < Cj ≤ c2r} for

r ∈ Z≥1. We will create a schedule that schedules first J∗(0), then J∗(1), J∗(2), . . . where we start
the schedule for J∗(r) exactly c time units after the last job of J∗(r−1) is finished. Note that we can
re-sort the tasks of jobs in J∗(0) so that (i) the tasks of the same job are scheduled consecutively;
(ii) for every job j the last tasks is still completed by time Cj , (iii) the precedence constraints and
communication constraints (within J∗(0)) are still satisfied. Note that this re-sorting can be done
by sorting the jobs in non-increasing order of Cj ’s.

So we fix a value of r ≥ 1 and set T ∗ := c2r−1 and J∗ := J∗(r). It remains to show how to
schedule the jobs J∗ within a time interval of O(T ∗).

We partition the time horizon into intervals of length c each. Consider the jobs J∗ and let σ∗

be the schedule with makespan T ∗ which satisfies precedence constraints and communication delays
but is potentially preemptive and migratory. We construct a modified set J̃ by merging jobs whose
tasks are scheduled on the same machine in one such interval [βc, (β + 1)c[ with β ∈ Z≥0 (we call
these jobs compact); all other jobs are inherited without a change (we call such jobs spread out).

We denote the inherited migratory schedule for J̃ by σ̃; the completion time of a job is denoted
by C̃j and the start time is denoted by S̃j . Note that C̃j−S̃j ≥ pj but because of the preemption this
inequality might be strict. We create a new partial order ≺̃ such that one has j1≺̃j2 for j1, j2 ∈ J̃
if one of the following conditions is satisfied:

1. j1, j2 are assigned to the same machine in σ̃ and C̃j1 ≤ S̃j2 .

2. j1, j2 are assigned to different machines in σ̃ and j1 finishes in an interval before j2 is started.

Note that in particular this precedence order ≺̃ implies ≺. The maximum chain length is trivially
bounded by T ∗. But it is important to note that the maximum number of jobs in any chain of ≺̃ is
bounded by O(T ∗/c) as every job is either spread out and hence crosses an interval boundary or it
is the unique compact job included in an interval (on that machine). Then Lemma 27 provides us
with an assignment π : J̃ → [M ] such that the loads are Dk ≤ 4T ∗ and the maximum chain length
is ∆ ≤ 2T ∗. We use the Speed-based List Scheduling algorithm to find a non-preemptive
schedule respecting precedence constraints ≺̃ and communication delays while the the makespan is
bounded by

M∑

k=1

Dk +
∑

j∈C

pj
sπ(j)

+ (|C| − 1) · c ≤ 4MT ∗ + 2T ∗ +O
(T ∗

c

)

· c ≤ O(MT ∗)

for some chain C ⊆ J̃ .

7 Makespan Minimization on Related Machines

We now prove our result on makespan minimization on related machines, Theorem 2. The proof
essentially follows from first using Theorem 13 to obtain a schedule of cost O(log2 n) for the unit
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length case and then appealing to the reduction in Theorem 28, which increases the makespan
at most by a factor of O(log n). These two steps together give an O(log3 n)-approximation for
Q | prec, c | Cmax.

Note a small technicality here. Both Theorem 13 and Theorem 28 were proved for the weighted
completion time objective and not the makespan objective function. However, it is not hard to see
that proofs of both the theorems directly extend to the makespan problem.

For technical completeness, we give a formal proof of our result for makespan. Our proof also
serves the purpose of explaining how an algorithm for the sum of weighted completion times can
be used to obtain an algorithm for makespan. In our proof below, we first reduce the problem of
minimizing makespan to a special case of the problem of minimizing the weighted sum of completion
times. But we do not use the result on weighted completion time as a black box – that would only
imply an O(log4 n)-approximation. Instead, we tweak our rounding a bit, and use Theorem 13 and
Theorem 28 directly to obtain an O(log3 n)-approximation for makespan.

Proof. Consider an input instance I := (J,≺) of Q | prec, c | Cmax, and let T (∗) denote the optimal
makespan for any instance (∗) of the problem. We consider two cases:

• Case T (I) < c: In this case, we find all connected components, G1, G2, . . . Gq, in the under-
lying (undirected) graph of the input instance. Since T (I) < c, for v ∈ [q] all jobs in Gv

are scheduled on the same machine by an optimal solution. For every v ∈ [q], we create a
meta-job jv with processing time equal to the sum of processing times of jobs in Gv. Then we
appeal to the O(1)-approximation algorithm for makespan minimization on related machines
without precedence or communication delay constraints.

• Case T (I) ≥ c. Here we reduce I to an instance of I ′ := (J ′,≺′) of Q | prec, c |
∑

wjCj . We
create a new dummy job jD with pjD = 1 and weight wjD = 1. We define J ′ := J ∪ {jD}
and set weights wj = 0 for every job j ∈ J ′ \ {jD}. Moreover, we define the new precedence
constraints ≺′ by augmenting the precedence constraints of the instance I with precedence
constraints j ≺ jD from every job j ∈ J ′ \ {jD}.

Suppose S is a feasible schedule for the instance I ′. From our construction, the makespan of
S is (exactly) equal to the total weighted completion times of jobs in I ′. This follows because
only the dummy job jD has non-zero weight and it has to be scheduled at the last.

We now give an algorithm for solving the instance I ′. Similar to our weighted completion time
result, we solve the problem via a two step procedure. We treat each job j with processing
time pj as a chain of pj unit length jobs. Using standard arguments [DKR+20], we can assume
that this reduction is both of polynomial size and time. After this reduction, we get a new
input instance I ′′ := (J ′′,≺′) of Q | prec, pj = 1, c |

∑
wjCj .

We observe that T (I ′′) ∈ [T (I), 2T (I)]. This follows because i) the weight of all jobs except
jD is zero in our instance; ii) jD can be scheduled only after completing all the other jobs,
which requires at least T (I) time steps; iii) c ≤ T (I).

We solve our LP for the weighted completion time problem on the instance I ′′. Let (x, y, C)
be the optimal solution for the LP. We note that all jobs in the LP solution are scheduled
in the interval [0, 2T (I)]. Here we used the facts that c ≤ T (I) and that the LP can indeed
schedule all jobs in I ′′ within an interval of length c + T (I). We invoke Theorem 13 to
obtain a schedule S with cost at most O(logm · log n) · 2T (I). Finally we use Theorem 28
to convert this schedule S to a schedule S ′ where every job is scheduled on one machine in
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consecutive time steps. From the guarantees of Theorem 28, we know the cost of S ′ is at most
O(M · logm · logn) · T (I).

As noted earlier, the makespan of the schedule S ′ is (exactly) equal to the total weighted
completion time of jobs in I ′. Thus

Makespan of (S ′) ≤ O(M · logm · logn) · T (I)

which completes the proof.
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A Missing proofs on LP properties

We now give the postponed proof of Lemma 8.

Lemma. Let (x, y, C) be a solution to (LP) with r ≥ 5. Then d(j1, j2) := 1− yj1,j2 is a semimetric.

Proof. The first two properties from the definition of a semimetric are clearly satisfied. We verify
the triangle inequality. Consider three jobs j1, j2, j3 ∈ J . We set J̃ := {j1, j2, j3} and consider the
distribution (x̃, ỹ) ∼ D(J̃). For j ∈ J̃ , define Z(j) = (s̃(j), ĩ(s)) as the random variable that gives
the unique pair of indices such that x̃j,̃i(j),s̃(j) = 1. Then for j′, j′′ ∈ J̃ one has

d(j′, j′′) = Pr[Z(j′) 6= Z(j′′)] = Pr
[(
s̃(j), ĩ(j′)

)
6=

(
s̃(j′′), ĩ(j′′)

)]

Then indeed

d(j1, j3) = Pr[Z(j1) 6= Z(j3)] ≤ Pr[Z(j1) 6= Z(j2) ∨ Z(j2) 6= Z(j3)]
union bound

≤ Pr[Z(j1) 6= Z(j2)] + Pr[Z(j2) 6= Z(j3)] = d(j1, j2) + d(j2, j3).
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