
A Theory of Auto-Scaling for Resource Reservation in
Cloud Services

Konstantinos Psychas, Javad Ghaderi

Department of Electrical Engineering, Columbia University

ABSTRACT
We consider a distributed server system consisting of a large num-

ber of servers, each with limited capacity on multiple resources

(CPU, memory, disk, etc.). Jobs with different rewards arrive over

time and require certain amounts of resources for the duration of

their service. When a job arrives, the system must decide whether

to admit it or reject it, and if admitted, in which server to schedule

the job. The objective is to maximize the expected total reward

received by the system. This problem is motivated by control of

cloud computing clusters, in which, jobs are requests for Virtual

Machines or Containers that reserve resources for various services,

and rewards represent service priority of requests or price paid

per time unit of service by clients. We study this problem in an

asymptotic regime where the number of servers and jobs’ arrival

rates scale by a factor 𝐿, as 𝐿 becomes large. We propose a resource

reservation policy that asymptotically achieves at least 1/2, and
under certain monotone property on jobs’ rewards and resources,

at least 1−1/𝑒 of the optimal expected reward. The policy automati-

cally scales the number of VM slots for each job type as the demand

changes, and decides in which servers the slots should be created

in advance, without the knowledge of traffic rates. It effectively

tracks a low-complexity greedy packing of existing jobs in the sys-

tem while maintaining only a small number, 𝑔(𝐿) = 𝜔 (log𝐿), of
reserved VM slots for high priority jobs that pack well.

KEYWORDS
Scheduling, Loss Systems, Fluid Limits, Resource Allocation

1 INTRODUCTION
There has been a rapid migration of computing, storage, applica-

tions, and other services to cloud. By using cloud (e.g., Amazon

AWS [1], Microsoft Azure [22], Google Cloud [9]), clients are no

longer required to install and maintain their own infrastructure.

Instead, clients use the cloud resources on demand, by procuring

Virtual Machines (VMs) or Containers [2, 10] with specific config-

urations of CPU, memory, disk, and networking in the cloud data

center, depending on their needs.

A key challenge for the cloud service providers is to efficiently

support a wide range of services on their physical platform. They

usually offer QoS guarantees (in SLAs) [3] for clients’ applications

and services, and allow the number of VM instances to scale up or

down with demand to ensure QoS guarantees are met. Various pre-

dictive and reactive schemes have been proposed for dynamically

allocating VMs to different services, e.g., [8, 12, 15, 21, 27, 29], how-

ever, they mostly assume a dedicated hosting model where VMs

of each application run on a dedicated set of servers. Such models

do not consider potential consolidation of VMs in servers which is

known to significantly improve efficiency and scalability [6, 30].

This research was supported by NSF grants CNS-1717867 and CNS-1652115.

In this paper, we consider a cloud data center consisting of a

large number of servers. As an abstraction in our model, a VM is

simply a multi-dimensional object (vector of resource requirements)

that should be served by one server and cannot be fragmented. Each

server has a limited fixed capacity on its available resources (CPU,

memory, disk, networking). VM requests belong to a collection of

VM types, each with a specific resource requirement vector, and a

specific reward that represents its service priority or the price that

will be paid per time unit of service by the client.When aVM request

arrives, we must decide in an online manner whether to accept it,

and, if so, inwhich server to schedule it. The objective is tomaximize

the expected total reward received by the system. Note that finding

the right packing for a given workload is a hard combinatorial

problem (related to multi-dimensional Knapsack [17]).

In this paper, we study a stochastic version of the Online Multiple

Knapsack problem in an asymptotic regime, where the number of

servers 𝐿 is large and requests for VMs of type 𝑗 arrive at rate 𝜆 𝑗𝐿,

𝑗 = 1, · · · , 𝐽 , and each requires service with mean duration 1/𝜇 𝑗 .
The (normalized) load of the system is defined as 𝝆 := (𝜆 𝑗/𝜇 𝑗 , 𝑗 =
1, · · · , 𝐽). This is the heavy-traffic regime, e.g. [13, 14, 16, 18, 23, 33,

34], and it has been shown that algorithms with good performance

in such a regime also show good performance in other regimes.

The interesting scenario occurs when not all VM requests can be

scheduled (e.g., 𝝆 > 𝝆𝑐 for a critical load 𝝆𝒄 on the boundary

of system capacity), in which case a fraction of the traffic has to

be rejected even by the optimal policy. We propose an adaptive

reservation policy that makes admission and packing decisions

without the knowledge of 𝝆. Packing decisions include placement

of admitted VM in one of the feasible servers, and migration of at

most one VM across servers when a VM finishes its service.

Related Work. There is classical work on large loss networks,

e.g. [4, 13, 14, 18], where calls with different bandwidth require-

ments and priorities arrive to a telecommunication network. Trunk

reservation has been shown to be a robust and effective call admis-

sion policy in this setting, in which each call type is accepted if the

residual link bandwidth is above a certain threshold for that type.

The performance of trunk reservation policies has been analyzed

in the asymptotic regime where the call arrival rates and link’s

capacity scale up by a factor 𝑁 , as 𝑁 →∞. This is different from
our large-scale server model, where the server’s capacity is “fixed”

and only the number of servers scales (a.k.a. system scale-out as

opposed to scale-up).

The works [19, 20, 24, 25] consider a queueing model where VM

requests are placed in a queue and then served by the system. In

this paper, we are considering a loss model without delay, i.e., each

VM request upon arrival has to be served immediately, otherwise

it is lost. The recent works [7, 32] study a system with an infinite

number of servers and their objective is to minimize the number of

occupied servers. The auto-scaling algorithm proposed in [11] also

assumes such an infinite server model. These are different from our

Konstantinos Psychas, Javad Ghaderi

setting where we consider a finite number of servers and study the

total reward of served VMs by the system.

The works [16, 23, 31, 34] study the blocking probability in a

large-scale server system where all VMs have the same reward. The

work [31] assumes a subcritical system load and only shows local

stability of fluid limits. The works [16, 23, 34] show that, under a

power-of-d choices routing, the blocking probability drops much

faster compared to the case of uniform random routing. However,

there is no analysis of optimality, especially in a supercritical regime

where even the optimal policy has a non-zero blocking probability.

Moreover, such algorithms treat all VMs with the same priority

(reward) when making decisions, thus a low priority VM can po-

tentially block multiple high priority ones.

Contributions. We propose a dynamic resource reservation

policy that makes admission and packing decisions based on the

current system state, and prove that it asymptotically achieves at

least 1/2, and under certain monotone property on VMs’ rewards

and resources, at least 1 − 1

𝑒 of the optimal expected reward, as the

number of servers 𝐿 →∞ 1
. Further, simulations suggest that for

real cloud VM instances, the achieved ratio is in fact very close to

one.

2 MODEL AND DEFINITIONS
Cloud Model. We consider a collection of 𝐿 servers denoted by

the set L. Each server ℓ ∈ L has a limited capacity on different

resource types (CPU, memory, disk, networking, etc.). We assume

there are 𝑛 ≥ 1 types of resource.

VMModel. There is a collection of VM types denoted by the set

J . The VM types are indexed in arbitrary order from 1 to 𝐽 . Each

VM type 𝑗 requires a vector of resources R𝑗 = (𝑅1𝑗 , · · · , 𝑅
𝑛
𝑗
), where

𝑅𝑑
𝑗
is its requirement for the 𝑑-th resource, 𝑑 = 1, · · · , 𝑛.
VMs are placed in servers and reserve the required resources.

The sum of reserved resources by the VMs placed in a server should

not exceed the server’s capacity. A vector k = (𝑘1, · · · , 𝑘 𝐽) ∈ Z𝐽
+ is

said to be a feasible configuration if the server can simultaneously

accommodate 𝑘1 VMs of type 1, 𝑘2 VMs of type 2, · · · , 𝑘 𝐽 VMs of

type 𝐽 . We use K to denote the set of all feasible configurations

(including the empty configuration 0𝐽). The number of feasible

configurations will be denoted by 𝐶 := |K |.
We define KJ′ to be the set of feasible configurations that in-

clude only VMs from a subset of types J ′ ⊆ J , i.e.,

KJ′ = {k ∈ K : 𝑘 𝑗 = 0,∀𝑗 ∉ J ′}. (1)

We do not necessarily need the resource requirements to be

additive, only the monotonicity of the feasible configurations is

sufficient, namely, if k ∈ K , and k′ ≤ k (component-wise), then

k′ ∈ K . This will allow sub-additive resources as well, when the

cumulative resource used by the VMs in a configuration could be

less than the sum of the resources used individually [28].

Job and Reward Model. Jobs for various VM types arrive to

the system over time. We can consider two models for jobs:

(i) Revenue interpretation: a job of type 𝑗 is a request to create a

new VM of type 𝑗 .

(ii) Service interpretation: a job of type 𝑗 is a request that must

be served by an existing VM of type 𝑗 in the system.

1
The proofs of all Propositions and Theorems can be found in [26]

To simplify the formulations and use one model to capture both

interpretations, we assume that each VM can serve at most one job

at any time. As we will see, our algorithm works based on creating

“reserved VM slots” in advance. Hence, serving a newly arrived type-

𝑗 job can be interpreted as deploying a VM of type 𝑗 in its reserved

slot (revenue interpretation), or assigning it to an already deployed

VM of type 𝑗 in the slot (service interpretation).

Each job type 𝑗 is associated with a reward 𝑢 𝑗 which represents

its priority (service interpretation) or price paid per time unit of

service (revenue interpretation).

We define the feasible job placement k̂ = (ˆ𝑘1, · · · , ˆ𝑘 𝐽) to be the

set of jobs that are simultaneously being served in a single server,

where
ˆ𝑘 𝑗 corresponds to the number of type- 𝑗 jobs. Note that by

the definition of server configuration, it holds that k̂ ≤ k, for some

k ∈ K . Hence, k− k̂ can be viewed as the reserved VM slots, where

𝑘 𝑗 − ˆ𝑘 𝑗 is the number of reserved type- 𝑗 VM slots. We use k̂ℓ (𝑡) = k̂,
when at time 𝑡 , the job placement in server ℓ ∈ L is k̂.

Traffic Model. Jobs of type 𝑗 arrive according to a Poisson

process of rate 𝜆 𝑗𝐿, for a constant 𝜆 𝑗 > 0. Once scheduled in a

server (more accurately, in a reserved slot of type 𝑗), a job of type

𝑗 requires an exponentially distributed service time with mean

1/𝜇 𝑗 , and generates reward at rate 𝑢 𝑗 during its service. We define

the normalized workload of type- 𝑗 jobs as 𝜌 𝑗 := 𝜆 𝑗/𝜇 𝑗 and the

workload vector 𝝆 = (𝜌 𝑗 , 𝑗 ∈ J).

Definition 2.1 (Configuration Reward). The reward 𝑈 (k) of a
configuration k ∈ K is defined as its total reward per unit time

when its slots are full, i.e.,𝑈 (k) := ∑𝐽
𝑗=1

𝑢 𝑗k𝑗 .

Definition 2.2 (Configuration Ordering). For two vectors k, k′ ∈
K , we say k ≻ k′, if either 𝑈 (k) > 𝑈 (k′), or 𝑈 (k) = 𝑈 (k′) and
considering the smallest 𝑗 for which 𝑘 𝑗 ≠ 𝑘 ′

𝑗
, 𝑘 𝑗 > 𝑘 ′

𝑗
.

Definition 2.3 (MaxReward). Given a subset K𝑠 ⊆ K , the maxi-

mum reward configuration of K𝑠 is defined as

MaxReward(K𝑠) := arg max

k∈K𝑠

𝑈 (k),

where ties are broken based on the ordering in Definition 2.2.

Definition 2.4 (State Variables). Consider the systemwith𝐿 servers.

We use𝑋𝐿
k (𝑡) to denote the number of servers assigned to configura-

tion k ∈ K at time 𝑡 . To distinguish between servers assigned to the

same configuration k, we index them from 1 to𝑋𝐿
k (𝑡), starting from

the most recent server assigned to k (without loss of generality).

The system state at time 𝑡 can then be described as

S𝐿 (𝑡) := ((kℓ (𝑡), k̂ℓ (𝑡), 𝑐ℓ (𝑡)), ℓ ∈ L), (2)

where for each server ℓ ∈ L, kℓ (𝑡) ∈ K is its configuration, k̂ℓ (𝑡),
with k̂ℓ (𝑡) ≤ kℓ (𝑡), is its job placement, and 𝑐ℓ (𝑡) is its index among

the servers with configuration kℓ (𝑡).
The number of jobs of type 𝑗 in the system at time 𝑡 is given by

𝑌𝐿
𝑗 (𝑡) =

∑
ℓ∈L

ˆ𝑘ℓ𝑗 (𝑡) . (3)

We also define the vectors Y𝐿 (𝑡) = (𝑌𝐿
𝑗
(𝑡), 𝑗 ∈ J), and X𝐿 (𝑡) =

(𝑋𝐿
k (𝑡), k ∈ K). Clearly

∑
k∈K 𝑋𝐿

k (𝑡) = 𝐿 since there are 𝐿 servers.

A Theory of Auto-Scaling for Resource Reservation in Cloud Services

Optimization Objective. Given a Markov policy 𝜋 , we define

the expected reward of the policy per unit time as

𝐹𝜋 (𝐿) = lim

𝑡→∞
E
[∑
𝑗 ∈J

𝑌𝐿
𝑗 (𝑡)𝑢 𝑗

]
. (4)

Our goal is to maximize the expected reward, i.e.,

maximize𝜋𝐹
𝜋 (𝐿), (5)

where the maximization is over all Markov scheduling policies

𝜋 . Hence, when jobs are requests for VMs, this optimization is a

revenue maximization, whereas when jobs are requests to be served

by existing VMs, it is a weighted QoS maximization where each

service is weighted by its priority.

Note that under any Markov policy, the system state S𝐿 (𝑡) is a
continuous-time irreducible Markov chain over a finite state space,

hence it is positive recurrent and (4) is well defined. Let X𝐿 (∞)
and Y𝐿 (∞) be random vectors with the stationary distributions

of X𝐿 (𝑡) and Y𝐿 (𝑡), respectively, as 𝑡 → ∞. Note that if Y★(𝑡) is
the number of jobs in an 𝑀/𝑀/∞ system in which every job is

admitted, then Y𝐿 (∞) is stochastically dominated by Y★(∞) whose
stationary distribution is Poisson with mean 𝐿𝝆.

We study the problem (5) in the asymptotic regime where the

number of servers 𝐿 →∞, while the job arrival rates are 𝜆 𝑗𝐿, 𝑗 ∈ J .

Note that we do not make any assumption on the values of 𝜌 𝑗 .

Notice that as 𝑡 →∞, the scaled stationary random variables sat-

isfy
1

𝐿
X𝐿 (∞) ≤ 1 and 1

𝐿
Y𝐿 (∞) ≤ 1

𝐿
Y★(∞). This implies that the

sequence of scaled random variables is tight [5], therefore the (ran-

dom) limits x(∞) := lim𝐿→∞
1

𝐿
X𝐿 (∞), and y(∞) := lim𝐿→∞

1

𝐿
Y𝐿 (∞)

exist along a subsequence of 𝐿. The limits satisfy 𝑥k (∞) ≥ 0,∑
k∈K 𝑥k (∞) = 1, and y(∞) ≤ 𝝆, y(∞) ≤ ∑

k∈K 𝑥k (∞)k.
To unify the algorithm descriptions for revenue maximization

and QoS maximization, in the rest of the paper, we use the term

“slot” of type 𝑗 to refer to the resource (equal to a VM of type 𝑗)

reserved for one job of type 𝑗 in a server. Filled slots have jobs

already in them, while empty slots could accept jobs. Therefore,

the term configuration applies to all the slots in a server, while

placement applies to the filled slots in the server.

3 A STATIC OPTIMIZATION AND ITS
GREEDY SOLUTION

Given a workload reference vector Ŷ𝐿 = (𝑌𝐿
𝑗
, 𝑗 ∈ J), let 𝐹★(𝐿, Ŷ𝐿)

be the optimal value of the following linear program:

max

X,Y

∑
𝑗

𝑢 𝑗𝑌𝑗 (6a)

s.t. 𝑌𝑗 ≤ 𝑌𝐿
𝑗 , ∀𝑗 ∈ J (6b)∑

k∈K
𝑋k𝑘 𝑗 ≥ 𝑌𝑗 , ∀𝑗 ∈ J (6c)∑

k∈K
𝑋k = 𝐿, 𝑋k ≥ 0, ∀k ∈ K (6d)

where Y is the vector of jobs in the system, and X is the vector

of the number of servers assigned to each configuration. If we

choose Ŷ𝐿 = 𝝆𝐿, this optimization will provide an upper bound on

optimization (5), i.e., 𝐹𝜋 (𝐿) ≤ 𝐹★(𝐿, 𝝆𝐿), for any Markov policy 𝜋 .

The interpretation of the result is as follows. The average number

of type- 𝑗 jobs in the system cannot be more than its workload

(Constraint (6b)), and further, it cannot be more than the average

number of slots of type 𝑗 in the servers (Constraint (6c)). The sum of

number of servers in different configurations is 𝐿, so their average

should also satisfy (6d).

As 𝐿 → ∞, the normalized objective value
1

𝐿
𝐹★(𝐿, 𝝆𝐿) →

𝑈★[𝝆], which is the optimal value of the linear program below

max

x, y

∑
𝑗

𝑢 𝑗𝑦 𝑗 (7a)

s.t. 𝑦 𝑗 ≤ 𝜌 𝑗 ,∀𝑗 ∈ J (7b)∑
k∈K

𝑘 𝑗𝑥k ≥ 𝑦 𝑗 ,∀𝑗 ∈ J (7c)∑
k∈K

𝑥k = 1, 𝑥k ≥ 0, ∀k ∈ K (7d)

where 𝑥k can be interpreted as the ideal fraction of servers which

should be in configuration k when 𝐿 is large. Hence, one can con-

sider a static reservation policy where the cloud cluster is parti-

tioned and ⌊𝑥k𝐿⌋ servers are assigned to each non-zero configura-

tion k ∈ K (and the rest of servers can be empty to save resource

or used to serve more jobs). Then once a type- 𝑗 job arrives, it will

be routed to an empty slot of type 𝑗 in one of the servers, if any,

otherwise it is rejected. This will provide an asymptotic optimal

policy since it achieves the normalized reward𝑈★[𝝆], as 𝐿 →∞.
However, there are several issues with this approach: (i) solving

optimization (6) or its relaxation (7) has a very high complexity,

as the number of configurations is exponential in the number of

job types 𝐽 , and (ii) it requires knowing an accurate estimate of the

workload 𝝆 which might not be available.

We first address the complexity issue, by presenting a greedy

solution, and analyze its asymptotic performance below.

3.1 Greedy Solution
We describe a greedy algorithm, called Greedy Placement Algorithm

(GPA), for solving optimization (6).

GPA takes as input the workload reference vector Ŷ𝐿 , and returns
an assignment vector 𝑿̂𝐿

which indicates which configurations

should be used and in how many servers. The assignment consists

of at most 𝐽 configurations, which are found in 𝐽 iterations. In each

iteration 𝑖 , GPA maintains a set of candidate job types J [𝑖], and
finds a configuration k[𝑖]. Initially J [1] = J . In iteration 𝑖:

(1) It finds k[𝑖] = MaxReward(KJ[𝑖]), which is the configuration
of highest reward among the configurations that have jobs from

the set J [𝑖], according to Definition 2.3.

(2) It computes the number of servers𝑋𝐿
k[𝑖] that should be assigned

to k[𝑖], until at least one of the job types 𝑗 , for which 𝑘 𝑗 [𝑖] > 0,

has no more jobs left, or there are no more unused servers left.

We refer to this job type as 𝑗★.

(3) It then creates J [𝑖 + 1] by removing job type 𝑗★ from J [𝑖].
A pseudocode for GPA is given by Algorithm 1.We use the vector

X̂𝐿 = (𝑋𝐿
k , k ∈ K) to denote the output of GPA, which has at most

𝐽 non-zero elements corresponding to k[𝑖], 𝑖 = 1, . . . , 𝐽 .

We next define the limit of 𝑿̂𝐿/𝐿 for input 𝒀̂𝐿 = 𝐿𝝆, as 𝐿 →
∞, which we refer to as Global Greedy Assignment. To describe

Konstantinos Psychas, Javad Ghaderi

Algorithm 1 Greedy Placement Algorithm (GPA)

1: function GPA(Ŷ)
2: r← Ŷ ⊲ tracks the vector of number of jobs left

3: 𝑁 ← 𝐿 ⊲ tracks the number of servers left

4: 𝑖 ← 1, J [1] = J
5: while J [𝑖] ≠ ∅ do
6: k[𝑖] ← MaxReward(KJ[𝑖])
7: 𝑗★← argmin𝑗 :𝑘 𝑗 [𝑖]>0 ⌈

𝑟 𝑗
𝑘 𝑗 [𝑖] ⌉ ⊲ break ties arbitrarily

8: 𝑋k[𝑖] ← min

(
⌈ 𝑟 𝑗★

𝑘 𝑗★ [𝑖]
⌉, 𝑁

)
9: r← r − 𝑋k[𝑖]k[𝑖]
10: 𝑁 ← 𝑁 − 𝑋k[𝑖]
11: J [𝑖 + 1] ← J [𝑖] − { 𝑗★}
12: 𝑖 ← 𝑖 + 1
13: return 𝑋k[𝑗] , 𝑗 = 1, · · · , 𝐽

this assignment, we first define a unique ordering of the job types

through the following proposition.

Proposition 3.1. For any permutation 𝜎 = (𝜎1, 𝜎2, . . . , 𝜎𝐽) of job
types in J , let J𝜎

𝑗
:= {𝜎 𝑗 , . . . , 𝜎𝐽 }, and k(𝑗) := MaxReward(KJ

𝜎
𝑗).

Given aworkload 𝝆, there is a “unique” permutation𝜎 = (𝜎1, 𝜎2, . . . , 𝜎𝐽)
of job types, such that the following holds:

1) ∀𝑗 ∈ J , 𝑘
(𝑗)
𝜎 𝑗

> 0, and there are constants 𝑧 (𝑗) [𝝆] ≥ 0, such that

𝜌𝜎 𝑗
=

𝑗∑
ℓ=1

𝑘
(ℓ)
𝜎 𝑗

𝑧 (ℓ) [𝝆], (8)

2) for any two indexes 𝑗, 𝑗 ′ ∈ J , with 𝑗 < 𝑗 ′, if

𝜌𝜎 𝑗′ =

𝑗∑
ℓ=1

𝑘
(ℓ)
𝜎 𝑗′ 𝑧

(ℓ) [𝝆], (9)

then we should have 𝜎 𝑗 < 𝜎 𝑗 ′ .

We omit the proof of the above proposition due to space con-

straint. The Global Greedy Assignment is defined as follows

Definition 3.2 (Global Greedy Assignment). Define the index 𝐼𝝆 ≤
𝐽 for which ∑𝐼𝝆−1

𝑖=1
𝑧 (𝑖) [𝝆] < 1,

∑𝐼𝝆
𝑖=1

𝑧 (𝑖) [𝝆] ≥ 1,

with the convention that 𝐼𝝆 = 𝐽 + 1 if ∑𝐽
𝑖=1

𝑧 (𝑖) [𝝆] < 1. The global

greedy assignment x(𝑔) [𝝆] is defined as

𝑥
(𝑔)
k(𝑖)
[𝝆] =


𝑧 (𝑖) [𝝆], for 𝑖 < 𝐼𝝆

0, for 𝑖 > 𝐼𝝆

1 −∑𝑖−1
𝑗=1 𝑥

(𝑔)
k(𝑗)
[𝝆], for 𝑖 = 𝐼𝝆 ,

(10)

where k(𝑖) and 𝑧 (𝑖) [𝝆], 𝑖 = 1, . . . , 𝐽 , were defined in Proposition 3.1,

and k(𝐽 +1) := 0 (empty configuration). We call the ordered config-

urations k(𝑖) , 𝑖 = 1, . . . , 𝐽 + 1, the “global greedy configurations”

of workload 𝝆. For any configuration k ∈ K not in global greedy

configurations, 𝑥
(𝑔)
k [𝝆] = 0. When it is clear from the context, the

dependency [𝝆] will be omitted.

The following proposition states the connection between GPA

and Global Greedy Assignment 𝑥
(𝑔)
k [𝝆]. We omit its proof due to

space constraint.

Proposition 3.3. Let 𝑿̂𝐿 = GPA(𝐿𝝆). Then

lim

𝐿→∞

𝑋𝐿
k
𝐿

= 𝑥
(𝑔)
k [𝝆], ∀k ∈ K, (11)

where 𝑥
(𝑔)
k [𝝆] is the Global Greedy Assignment of Definition 3.2.

Note that clearly x(𝑔) [𝝆] is a feasible solution for optimization

(7) and it is easy to see that its corresponding objective value is

𝑈 (𝑔) [𝝆] :=
𝐽∑
𝑗=1

𝑢 𝑗

𝐽∑
ℓ=1

𝑘
(ℓ)
𝑗

𝑥
(𝑔)
k(ℓ)
[𝝆] . (12)

It is also easy to see that in optimization (7) we can replace the

inequality in (7c) with equality and the optimal value will not

change. Let x★[𝝆] be one such optimal solution to optimization (7)

for workload 𝝆. Then the optimal objective value is

𝑈★[𝝆] :=
∑
𝑗 ∈J

𝑢 𝑗

∑
k∈K

𝑘 𝑗𝑥
★
k [𝝆] . (13)

The following corollary is immediate from Proposition 3.3.

Corollary 3.4. Let 𝐹𝐺𝑃𝐴 (𝐿, 𝝆𝐿) be the total reward of GPA in

the system with 𝐿 servers given reference workload 𝒀̂𝐿 = 𝝆𝐿. Then

lim

𝐿→∞
𝐹𝐺𝑃𝐴 (𝐿, 𝝆𝐿)
𝐹★(𝐿, 𝝆𝐿) =

𝑈 (𝑔) [𝝆]
𝑈★[𝝆] .

The theorem below bounds the above ratio.

Theorem 3.5. The global greedy assignment x(𝑔) [𝝆] provides at
least

1

2
of the optimal normalized reward, i.e.,

𝑈 (𝑔) [𝝆]
𝑈★ [𝝆] ≥

1

2
, ∀𝝆 ≥ 0.

Theorem 3.5 can be improved when job types and rewards satisfy

a monotone greedy property described next.

Definition 3.6. We say the job types and the rewards have mono-

tone greedy property if for any two instances of the optimization

(7) with 𝝆1 ≥ 𝝆2,𝑈 (𝑔) [𝝆1] ≥ 𝑈 (𝑔) [𝝆2].

The next theorem describes the improved bound when the mono-

tone greedy property holds.

Theorem 3.7. If job types and rewards satisfy the monotone greedy

property, then, for any 𝝆,
𝑈 (𝑔) [𝝆]
𝑈★ [𝝆] ≥ 1 − 1/𝑒 .

Proposition 3.8. The worst-case ratio of 𝑈 (𝑔) [𝝆]/𝑈★[𝝆] is not
greater than 1 − 1/𝑒 .

Proof of Proposition 3.8 is by construction of an adversarial

example and is omitted due to space constraint.

Hence, the global greedy assignment achieves a factor within 1/2
to 1− 1/𝑒 of the optimal normalized reward in “all” the cases. How-

ever, GPA(𝝆𝐿) requires the knowledge of 𝝆. In the next section,

we propose a dynamic reservation algorithm that is appropriate

for use in online settings without the knowledge of 𝝆. Its achiev-
able normalized reward still converges to that of the global greedy

assignment and it can also adapt to changes in the workload.

A Theory of Auto-Scaling for Resource Reservation in Cloud Services

Algorithm 2 DRA: Dynamic Reservation Algorithm

1: function CRA(Ŷ𝐿,X𝐿
)

2: X̂𝐿 ← GPA (Ŷ𝐿).
3: Set rank of all servers to 𝐽 + 1.
4: 𝐼★← 𝐽

5: for 𝑖 = 1 to 𝐽 do ⊲ 𝐽 configurations found in GPA

6: 𝑍 ← 0, 𝑐 ← 𝑋𝐿
k[𝑖] ⊲ 𝑐 is the index of server

7: while 𝑍 < 𝑋𝐿
k[𝑖] do

8: 𝑍 ← 𝑍 + 1, 𝑐 ← 𝑐 − 1
9: if 𝑐 ≤ 0 then
10: if ℓ𝑒 ≠ ∅ then
11: Set rank of ℓ𝑒 to 𝑖 .

12: Reassign configuration of ℓ𝑒 to k[𝑖].
13: else
14: 𝐼★← min(𝐼★, 𝑖)
15: else
16: Set rank of ℓk[𝑖],𝑐 to 𝑖 .

1: procedure Arrival(𝑗, 𝑡) ⊲ Type- 𝑗 arrival at time 𝑡

2: if AG𝑗 ≠ ∅ then
3: Schedule job in AG𝑗 .

4: CRA (Y𝐿 (𝑡) + 𝑔(𝐿)1,X𝐿 (𝑡))
5: else
6: Reject job.

1: procedure Departure(𝑗, 𝑡) ⊲ Type- 𝑗 departure at time 𝑡

2: if RG𝑗 ≠ ∅ and the slot emptied is in Accept Group then
3: Migrate the job in RG𝑗 to the slot that emptied.

4: CRA (Y𝐿 (𝑡) + 𝑔(𝐿)1,X𝐿 (𝑡))

4 DYNAMIC RESERVATION ALGORITHM
We present a Dynamic Reservation Algorithm, called DRA, which

makes admission decisions and configuration assignments, without

the knowledge 𝝆. We first introduce the following notations:

• Recall the indexing of servers in the same configuration as in

Definition 2.4. We use ℓk,𝑖 to refer to the server with configuration
k and index 𝑖 .

• A key parameter of DRA is the reservation factor 𝑔(𝐿). It is the
number of empty slots (safety margin) that the algorithm ideally

wants to reserve for each job type if possible. For later analysis,

we assume that 𝑔(𝐿) = 𝜔 (log(𝐿)), and is 𝑜 (𝐿).
The configuration assignment occurs at update times. To simplify

the analysis, we consider update times to be times when a job is

admitted to or departs from the system. To avoid preemptions, only

servers that are empty (have no jobs running) can be assigned to a

new configuration.

At update time 𝑡 , DRA updates the workload reference vector

Ŷ𝐿 (𝑡) as

Ŷ𝐿 (𝑡) = Y𝐿 (𝑡) + 𝑔(𝐿)1, (14)

where Y𝐿 (𝑡) in the vector of jobs in the system, after any job ad-

mission or job departure at time 𝑡 . 𝑔(𝐿) is the reservation factor as

defined earlier.

Then DRA classifies the servers into two groups: Accept Group

(AG) and Reject Group (RG). Servers in Accept Group keep their

Servers of
rank 1 to 𝐽

Rank 𝐽 + 1 servers

…

…

𝒌[1]

𝒌[2]

𝒌[𝐽]

𝒌[𝐼⋆]

𝒌[𝐼⋆ + 1]

𝒌: ෠𝑋𝒌
𝐿 = 0

෠ 𝑋
𝒌
[1
]

𝐿

෠ 𝑋
𝒌
[𝐼
⋆
]

𝐿 𝑋
𝒌
[𝐼
⋆
]

𝐿

𝑋
𝒌
[1
]

𝐿

𝑋
𝒌𝐿

…

Figure 1: An example illustrating the state at the end of CRA.
Servers in each configuration are stacked from largest to
smallest index. k[1], . . . , k[𝐽] are the configurations returned
by GPA. The dashed boxes indicate how many more servers
need to be reassigned to a respective configuration to match
the solution of GPA (horizontal line). 𝐼★ is the first 𝑖 for
which 𝑋𝐿

k[𝑖] < 𝑋𝐿
k[𝑖] at the end of the procedure. Orange

servers are the servers of Reject Group.

current configurations andDRA attempts to have all their slots filled

by scheduling new jobs in them, while servers in Reject Group do

not have desirable configurations and DRA attempts to make them

empty, by not scheduling new jobs in them and possibly migrating

their jobs to servers in Accept Group, so they can be reassigned to

other configurations.

A pseudocode for DRA is given in Algorithm 2. It has three main

components which we describe in detail below:

Classification and Reassignment Algorithm (CRA). This is
the subroutine used byDRA to classify servers and possibly reassign

some of them. It attempts to greedily reduce the disparity between

the configuration assignment in the system X𝐿 (𝑡) and the output

of GPA X̂𝐿 (𝑡) = GPA(Ŷ𝐿 (𝑡)). To do so, it assigns ranks to servers

in different configurations, which range from 1 to 𝐽 + 1. Initially,
all servers are assigned rank 𝐽 + 1. Any empty server of rank 𝐽 + 1
can be reassigned to reduce the disparity between X𝐿 (𝑡) and X̂𝐿 (𝑡).
We use ℓ𝑒 to denote one of empty rank 𝐽 + 1 servers, and if no such

server exists ℓ𝑒 = ∅.
Iterating over configurations k[𝑖] found by GPA, for 𝑖 = 1, . . . , 𝐽 :

• If 𝑋𝐿
k[𝑖] < 𝑋𝐿

k[𝑖] , it increases 𝑋
𝐿
k[𝑖] by reassigning any ℓ𝑒 to k[𝑖],

until either (i) it matches 𝑋𝐿
k[𝑖] , or (ii) ℓ𝑒 = ∅. In either case, all

servers of configuration k[𝑖] get rank 𝑖 .
• If𝑋𝐿

k[𝑖] (𝑡) ≥ 𝑋𝐿
k[𝑖] , it assigns rank 𝑖 to all servers of configuration

k[𝑖] with indexes greater than 𝑋𝐿
k[𝑖] (𝑡) − 𝑋

𝐿
k[𝑖] (𝑡).

We use 𝐼★(𝑡) to denote the first 𝑖 for which 𝑋𝐿
k[𝑖] cannot be

matched to𝑋𝐿
k[𝑖] , i.e. the first 𝑖 at which ℓ𝑒 = ∅. If all configurations

are matched, then 𝐼★(𝑡) = 𝐽 . At the end of CRA, servers with rank

greater than 𝐼★(𝑡) and index 1 in any configuration are classified as

Reject Group, while the rest of the servers are classified as Accept

Group.

See Figure 1 for an illustrative example for the state of CRA.

Scheduling Arriving Job. When DRA needs to schedule an

arriving job of type 𝑗 , it places the job in one of the servers of

Accept Group with empty type- 𝑗 slot. If no such server exists, the

Konstantinos Psychas, Javad Ghaderi

job is rejected. We use AG𝑗 to denote one of the servers of Accept

Group with empty type- 𝑗 slot. If no such server exists AG𝑗 = ∅.
Migrating Job after Departure. Let RG𝑗 denote the highest

rank server among the Reject Group servers with type- 𝑗 jobs. If no

such server exists, RG𝑗 = ∅.
If a type- 𝑗 job departs from a server in Accept Group, DRA

migrates one of the type- 𝑗 jobs from RG𝑗 to the slot that emptied

because of the departure, if RG𝑗 ≠ ∅.
Initialization. Considering initialization at time 0, if servers

do not have configurations, but have jobs in them, we initialize

kℓ (0) = k̂ℓ (0), i.e., the configuration of each server ℓ is set to its job

placement. If servers have configurations, we keep their existing

configuration. Indexing among the servers of a configuration can

be arbitrary. We then run CRA that performs classification and

reassigns any possibly empty servers.

The following theorem states the main result regarding DRA.

Theorem 4.1. Let 𝐹𝐷𝑅𝐴 (𝐿) be the expected reward under DRA

and 𝐹★(𝐿) be the optimal expected reward in optimization (5). Then

lim

𝐿→∞
𝐹𝐷𝑅𝐴 (𝐿)
𝐹★(𝐿) ≥

1

2

.

Further, under the monotone greedy property (Definition 3.6),

lim

𝐿→∞
𝐹𝐷𝑅𝐴 (𝐿)
𝐹★(𝐿) ≥ 1 − 1

𝑒
.

The proof of Theorem 4.1 is based on analysis of fluid limits and

the choice of a suitable Lyapunov function.

5 CONCLUSIONS
In this paper, we proposed a VM reservation and admission pol-

icy that operates in an online manner and can guarantee at least

1/2 (and under certain monotone property, 1 − 1/𝑒) of the optimal

expected reward. Assumptions such as Poisson arrivals and expo-

nential service times are made to simplify the analysis, and the

policy itself does not rely on this assumption. The policy strikes a

balance between good VM packing and serving high priority VM

requests, by maintaining only a small number 𝑔(𝐿) = 𝜔 (log𝐿) of
reserved VM slots at any time.

Although we considered that the policy classifies and reassigns

servers at arrival and departure events, this was only to simplify

the analysis, and in practice CRA can make such updates periodi-

cally, by factoring all arrival or departures in the past period in its

input for the current period. Further, if a more accurate estimate of

the workload is available, we can incorporate that estimate in the

vector Ŷ used by DRA, to improve the convergence time. Moreover,

the policy can be extended to a multi-pool server system, where

constant fractions of servers belong to different server types. We

postpone the details to a future work.

REFERENCES
[1] Amazon AWS 2019. Amazon Web Services (AWS). https://aws.amazon.com/

[2] AWS container 2019. Amazon AWS Containers. https://aws.amazon.com/

containers/

[3] AWS SLA 2019. Amazon AWS Service Level Agreements (SLAs). //https://aws.

amazon.com/legal/service-level-agreements/

[4] N. G. Bean, R. J. Gibbens, and S. Zachary. 1995. Asymptotic analysis of single

resource loss systems in heavy traffic, with applications to integrated networks.

Advances in Applied Probability 27, 1 (1995), 273–292. https://doi.org/10.2307/

1428107

[5] Patrick Billingsley. 2008. Probability and measure. John Wiley & Sons.

[6] Antonio Corradi, Mario Fanelli, and Luca Foschini. 2014. VM consolidation: A

real case based on OpenStack Cloud. Future Generation Computer Systems 32

(2014), 118–127.

[7] Javad Ghaderi, Yuan Zhong, and Rayadurgam Srikant. 2014. Asymptotic op-

timality of BestFit for stochastic bin packing. ACM SIGMETRICS Performance

Evaluation Review 42, 2 (2014), 64–66.

[8] Mostafa Ghobaei-Arani, Sam Jabbehdari, and Mohammad Ali Pourmina. 2018. An

autonomic resource provisioning approach for service-based cloud applications:

A hybrid approach. Future Generation Computer Systems 78 (2018), 191–210.

[9] Google Cloud 2019. Google cloud computing services. https://cloud.google.com/

[10] Google Kubernetes 2019. Kubernetes at Google Cloud. https://https://cloud.

google.com/kubernetes/

[11] Yang Guo, Alexander Stolyar, and Anwar Walid. 2018. Online vm auto-scaling al-

gorithms for application hosting in a cloud. IEEE Transactions on Cloud Computing

(2018).

[12] Rui Han, Li Guo, Moustafa M Ghanem, and Yike Guo. 2012. Lightweight resource

scaling for cloud applications. In EEE/ACM International Symposium on Cluster,

Cloud and Grid Computing (ccgrid 2012). 644–651.

[13] PJ Hunt and TG Kurtz. 1994. Large loss networks. Stochastic Processes and their

Applications 53, 2 (1994), 363–378.

[14] PJ Hunt, CN Laws, et al. 1997. Optimization via trunk reservation in single

resource loss systems under heavy traffic. The Annals of Applied Probability 7, 4

(1997), 1058–1079.

[15] Jing Jiang, Jie Lu, Guangquan Zhang, and Guodong Long. 2013. Optimal cloud

resource auto-scaling for web applications. In IEEE/ACM International Symposium

on Cluster, Cloud, and Grid Computing. 58–65.

[16] A Karthik, Arpan Mukhopadhyay, and Ravi R Mazumdar. 2017. Choosing among

heterogeneous server clouds. Queueing Systems 85, 1-2 (2017), 1–29.

[17] Hans Kellerer, Ulrich Pferschy, and David Pisinger. 2004. Multidimensional

knapsack problems. In Knapsack problems. Springer, 235–283.

[18] Frank P Kelly. 1991. Loss networks. The annals of applied probability (1991),

319–378.

[19] Siva Theja Maguluri, Rayadurgam Srikant, and Lei Ying. 2012. Stochastic models

of load balancing and scheduling in cloud computing clusters. In 2012 Proceedings

IEEE Infocom. IEEE, 702–710.

[20] Siva Theja Maguluri, Rayadurgam Srikant, and Lei Ying. 2014. Heavy traffic

optimal resource allocation algorithms for cloud computing clusters. Performance

Evaluation 81 (2014), 20–39.

[21] Ming Mao, Jie Li, and Marty Humphrey. 2010. Cloud auto-scaling with deadline

and budget constraints. In IEEE/ACM International Conference on Grid Computing.

41–48.

[22] Microsoft Azure 2019. Microsoft cloud computing service. https://azure.microsoft.

com/

[23] Arpan Mukhopadhyay, A Karthik, Ravi R Mazumdar, and Fabrice Guillemin. 2015.

Mean field and propagation of chaos in multi-class heterogeneous loss models.

Performance Evaluation 91 (2015), 117–131.

[24] Konstantinos Psychas and Javad Ghaderi. 2017. On non-preemptive VM sched-

uling in the cloud. Proceedings of the ACM on Measurement and Analysis of

Computing Systems 1, 2 (2017), 35.

[25] Konstantinos Psychas and Javad Ghaderi. 2018. Randomized Algorithms for

Scheduling Multi-Resource Jobs in the Cloud. IEEE/ACM Transactions on Net-

working 26, 5 (2018), 2202–2215.

[26] Konstantinos Psychas and Javad Ghaderi. 2020. A Theory of Auto-Scaling for

Resource Reservation in Cloud Services. arXiv preprint arXiv:2005.13744 (2020).

[27] Chenhao Qu, Rodrigo N Calheiros, and Rajkumar Buyya. 2018. Auto-scaling web

applications in clouds: A taxonomy and survey. ACM Computing Surveys (CSUR)

51, 4 (2018), 1–33.

[28] Safraz Rampersaud andDaniel Grosu. 2014. A sharing-aware greedy algorithm for

virtual machine maximization. In IEEE 13th International Symposium on Network

Computing and Applications. 113–120.

[29] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. 2011. Efficient autoscal-

ing in the cloud using predictive models for workload forecasting. In IEEE 4th

International Conference on Cloud Computing. 500–507.

[30] Weijia Song, Zhen Xiao, Qi Chen, and Haipeng Luo. 2013. Adaptive resource

provisioning for the cloud using online bin packing. IEEE Trans. Comput. 63, 11

(2013), 2647–2660.

[31] Alexander L Stolyar. 2017. Large-scale heterogeneous service systems with

general packing constraints. Advances in Applied Probability 49, 1 (2017), 61–83.

[32] Alexander L Stolyar and Yuan Zhong. 2015. Asymptotic optimality of a greedy

randomized algorithm in a large-scale service system with general packing

constraints. Queueing Systems 79, 2 (2015), 117–143.

[33] Ward Whitt. 1985. Blocking when service is required from several facilities

simultaneously. AT&T technical journal 64, 8 (1985), 1807–1856.

[34] Qiaomin Xie, Xiaobo Dong, Yi Lu, and Rayadurgam Srikant. 2015. Power of d

choices for large-scale bin packing: A loss model. ACM SIGMETRICS Performance

Evaluation Review 43, 1 (2015), 321–334.

https://aws.amazon.com/
https://aws.amazon.com/containers/
https://aws.amazon.com/containers/
//https://aws.amazon.com/legal/service-level-agreements/
//https://aws.amazon.com/legal/service-level-agreements/
https://doi.org/10.2307/1428107
https://doi.org/10.2307/1428107
https://cloud.google.com/
https://https://cloud.google.com/kubernetes/
https://https://cloud.google.com/kubernetes/
https://azure.microsoft.com/
https://azure.microsoft.com/

