A Theory of Auto-Scaling for Resource Reservation in
Cloud Services

Konstantinos Psychas, Javad Ghaderi
Department of Electrical Engineering, Columbia University

ABSTRACT

We consider a distributed server system consisting of a large num-
ber of servers, each with limited capacity on multiple resources
(CPU, memory, disk, etc.). Jobs with different rewards arrive over
time and require certain amounts of resources for the duration of
their service. When a job arrives, the system must decide whether
to admit it or reject it, and if admitted, in which server to schedule
the job. The objective is to maximize the expected total reward
received by the system. This problem is motivated by control of
cloud computing clusters, in which, jobs are requests for Virtual
Machines or Containers that reserve resources for various services,
and rewards represent service priority of requests or price paid
per time unit of service by clients. We study this problem in an
asymptotic regime where the number of servers and jobs’ arrival
rates scale by a factor L, as L becomes large. We propose a resource
reservation policy that asymptotically achieves at least 1/2, and
under certain monotone property on jobs’ rewards and resources,
at least 1—1/e of the optimal expected reward. The policy automati-
cally scales the number of VM slots for each job type as the demand
changes, and decides in which servers the slots should be created
in advance, without the knowledge of traffic rates. It effectively
tracks a low-complexity greedy packing of existing jobs in the sys-
tem while maintaining only a small number, g(L) = w(logL), of
reserved VM slots for high priority jobs that pack well.

KEYWORDS

Scheduling, Loss Systems, Fluid Limits, Resource Allocation

1 INTRODUCTION

There has been a rapid migration of computing, storage, applica-
tions, and other services to cloud. By using cloud (e.g., Amazon
AWS [1], Microsoft Azure [22], Google Cloud [9]), clients are no
longer required to install and maintain their own infrastructure.
Instead, clients use the cloud resources on demand, by procuring
Virtual Machines (VMs) or Containers [2, 10] with specific config-
urations of CPU, memory, disk, and networking in the cloud data
center, depending on their needs.

A key challenge for the cloud service providers is to efficiently
support a wide range of services on their physical platform. They
usually offer QoS guarantees (in SLAs) [3] for clients’ applications
and services, and allow the number of VM instances to scale up or
down with demand to ensure QoS guarantees are met. Various pre-
dictive and reactive schemes have been proposed for dynamically
allocating VMs to different services, e.g., [8, 12, 15, 21, 27, 29], how-
ever, they mostly assume a dedicated hosting model where VMs
of each application run on a dedicated set of servers. Such models
do not consider potential consolidation of VMs in servers which is
known to significantly improve efficiency and scalability [6, 30].

This research was supported by NSF grants CNS-1717867 and CNS-1652115.

In this paper, we consider a cloud data center consisting of a
large number of servers. As an abstraction in our model, a VM is
simply a multi-dimensional object (vector of resource requirements)
that should be served by one server and cannot be fragmented. Each
server has a limited fixed capacity on its available resources (CPU,
memory, disk, networking). VM requests belong to a collection of
VM types, each with a specific resource requirement vector, and a
specific reward that represents its service priority or the price that
will be paid per time unit of service by the client. When a VM request
arrives, we must decide in an online manner whether to accept it,
and, if so, in which server to schedule it. The objective is to maximize
the expected total reward received by the system. Note that finding
the right packing for a given workload is a hard combinatorial
problem (related to multi-dimensional Knapsack [17]).

In this paper, we study a stochastic version of the Online Multiple
Knapsack problem in an asymptotic regime, where the number of
servers L is large and requests for VMs of type j arrive at rate A;L,
j =1,---,], and each requires service with mean duration 1/y;.
The (normalized) load of the system is defined as p := (4;/pj, j =
1,---,J). This is the heavy-traffic regime, e.g. [13, 14, 16, 18, 23, 33,
34], and it has been shown that algorithms with good performance
in such a regime also show good performance in other regimes.
The interesting scenario occurs when not all VM requests can be
scheduled (e.g., p > p. for a critical load p. on the boundary
of system capacity), in which case a fraction of the traffic has to
be rejected even by the optimal policy. We propose an adaptive
reservation policy that makes admission and packing decisions
without the knowledge of p. Packing decisions include placement
of admitted VM in one of the feasible servers, and migration of at
most one VM across servers when a VM finishes its service.

Related Work. There is classical work on large loss networks,
e.g. [4, 13, 14, 18], where calls with different bandwidth require-
ments and priorities arrive to a telecommunication network. Trunk
reservation has been shown to be a robust and effective call admis-
sion policy in this setting, in which each call type is accepted if the
residual link bandwidth is above a certain threshold for that type.
The performance of trunk reservation policies has been analyzed
in the asymptotic regime where the call arrival rates and link’s
capacity scale up by a factor N, as N — oo. This is different from
our large-scale server model, where the server’s capacity is “fixed”
and only the number of servers scales (a.k.a. system scale-out as
opposed to scale-up).

The works [19, 20, 24, 25] consider a queueing model where VM
requests are placed in a queue and then served by the system. In
this paper, we are considering a loss model without delay, i.e., each
VM request upon arrival has to be served immediately, otherwise
it is lost. The recent works [7, 32] study a system with an infinite
number of servers and their objective is to minimize the number of
occupied servers. The auto-scaling algorithm proposed in [11] also
assumes such an infinite server model. These are different from our

setting where we consider a finite number of servers and study the
total reward of served VMs by the system.

The works [16, 23, 31, 34] study the blocking probability in a
large-scale server system where all VMs have the same reward. The
work [31] assumes a subcritical system load and only shows local
stability of fluid limits. The works [16, 23, 34] show that, under a
power-of-d choices routing, the blocking probability drops much
faster compared to the case of uniform random routing. However,
there is no analysis of optimality, especially in a supercritical regime
where even the optimal policy has a non-zero blocking probability.
Moreover, such algorithms treat all VMs with the same priority
(reward) when making decisions, thus a low priority VM can po-
tentially block multiple high priority ones.

Contributions. We propose a dynamic resource reservation
policy that makes admission and packing decisions based on the
current system state, and prove that it asymptotically achieves at
least 1/2, and under certain monotone property on VMs’ rewards
and resources, at least 1 — % of the optimal expected reward, as the
number of servers L — oo !, Further, simulations suggest that for
real cloud VM instances, the achieved ratio is in fact very close to
one.

2 MODEL AND DEFINITIONS

Cloud Model. We consider a collection of L servers denoted by
the set L. Each server ¢ € L has a limited capacity on different
resource types (CPU, memory, disk, networking, etc.). We assume
there are n > 1 types of resource.

VM Model. There is a collection of VM types denoted by the set
J - The VM types are indexed in arbitrary order from 1 to J. Each
VM type j requires a vector of resources R; = (le., S R;’) where

RY is its requirement for the d-th resource,d = 1,--- ,n.

VMs are placed in servers and reserve the required resources.
The sum of reserved resources by the VMs placed in a server should
not exceed the server’s capacity. A vector k = (ky,--- ,kj) € Zi is
said to be a feasible configuration if the server can simultaneously
accommodate k1 VMs of type 1, k2 VMs of type 2, - - -, k; VMs of
type J. We use K to denote the set of all feasible configurations
(including the empty configuration 0;). The number of feasible
configurations will be denoted by C := | K].

We define K" to be the set of feasible configurations that in-
clude only VMs from a subset of types J’ C 7, i.e.,

KT ={keK:kj=0Yj¢ T’} (1)

We do not necessarily need the resource requirements to be
additive, only the monotonicity of the feasible configurations is
sufficient, namely, if k € K, and k’ < k (component-wise), then
k’ € K. This will allow sub-additive resources as well, when the
cumulative resource used by the VMs in a configuration could be
less than the sum of the resources used individually [28].

Job and Reward Model. Jobs for various VM types arrive to
the system over time. We can consider two models for jobs:

(i) Revenue interpretation: a job of type j is a request to create a
new VM of type j.

(ii) Service interpretation: a job of type j is a request that must
be served by an existing VM of type j in the system.

I The proofs of all Propositions and Theorems can be found in [26]

Konstantinos Psychas, Javad Ghaderi

To simplify the formulations and use one model to capture both
interpretations, we assume that each VM can serve at most one job
at any time. As we will see, our algorithm works based on creating
“reserved VM slots” in advance. Hence, serving a newly arrived type-
Jj job can be interpreted as deploying a VM of type j in its reserved
slot (revenue interpretation), or assigning it to an already deployed
VM of type j in the slot (service interpretation).

Each job type j is associated with a reward u; which represents
its priority (service interpretation) or price paid per time unit of
service (revenue interpretation).

We define the feasible job placement k= (I%l, e ,12]) to be the
set of jobs that are simultaneously being served in a single server,
where k j corresponds to the number of type-j jobs. Note that by
the definition of server configuration, it holds that k < Kk, for some
k € K. Hence, k — k can be viewed as the reserved VM slots, where
kj— I;j is the number of reserved type-j VM slots. We use ﬁ[(t) =k
when at time ¢, the job placement in server £ € L is k.

Traffic Model. Jobs of type j arrive according to a Poisson
process of rate A;L, for a constant A; > 0. Once scheduled in a
server (more accurately, in a reserved slot of type j), a job of type
Jj requires an exponentially distributed service time with mean
1/pj, and generates reward at rate u; during its service. We define
the normalized workload of type-j jobs as p; := A;j/uj and the
workload vector p = (pj,j € J).

Definition 2.1 (Configuration Reward). The reward U (k) of a
configuration k € K is defined as its total reward per unit time
when its slots are full, i.e., U(k) := 2521 ujk;.

Definition 2.2 (Configuration Ordering). For two vectors k, k’ €
K, we say k > K/, if either U(k) > U(k’), or U(k) = U(k’) and
considering the smallest j for which k; # k}, kj > k}.

Definition 2.3 (MaxReward). Given a subset Ks C K, the maxi-
mum reward configuration of Kj is defined as

MAXREWARD(K) := arg max U(k),
keKs

where ties are broken based on the ordering in Definition 2.2.

Definition 2.4 (State Variables). Consider the system with L servers.
We use le(t) to denote the number of servers assigned to configura-
tion k € K at time ¢. To distinguish between servers assigned to the
same configuration k, we index them from 1 to X (t), starting from
the most recent server assigned to k (without loss of generality).

The system state at time ¢ can then be described as

sh(t) = (K (1), K (1), (1), £ € L),)

where for each server £ € £, kf(t) € K is its configuration, K (),
with k(1) < k(1),is its job placement, and ¢’ (¢) is its index among
the servers with configuration k(¢).

The number of jobs of type j in the system at time ¢ is given by

YR =) k). (3)
tel

We also define the vectors YL(t) = (YjL(t),j € J), and XE(1) =
(le(t), k € K). Clearly Y xex X]f(t) = L since there are L servers.

A Theory of Auto-Scaling for Resource Reservation in Cloud Services

Optimization Objective. Given a Markov policy 7, we define
the expected reward of the policy per unit time as

T — 1 L .
F (L)—tangoIE[Z ! (t)u]]. @)
jeg
Our goal is to maximize the expected reward, i.e.,
maximize, F” (L), (5)

where the maximization is over all Markov scheduling policies
7. Hence, when jobs are requests for VMs, this optimization is a
revenue maximization, whereas when jobs are requests to be served
by existing VMs, it is a weighted QoS maximization where each
service is weighted by its priority.

Note that under any Markov policy, the system state SL(¢) is a
continuous-time irreducible Markov chain over a finite state space,
hence it is positive recurrent and (4) is well defined. Let XE (o)
and YL (c0) be random vectors with the stationary distributions
of XL (t) and YL (1), respectively, as t — co. Note that if Y*(¢) is
the number of jobs in an M/M/co system in which every job is
admitted, then YX (c0) is stochastically dominated by Y* (co) whose
stationary distribution is Poisson with mean Lp.

We study the problem (5) in the asymptotic regime where the
number of servers L — oo, while the job arrival rates are AL, j € J .
Note that we do not make any assumption on the values of p;.

Notice that as t — oo, the scaled stationary random variables sat-
isfy XL (c0) < 1and $YE(c0) < $Y*(c0). This implies that the
sequence of scaled random variables is tight [5], therefore the (ran-

dom) limits x(0) := limy %XL(oo), and y(oo0) := limy 00 %YL(oo)

exist along a subsequence of L. The limits satisfy xy(c0) > 0,
ke Xk(00) = 1, and y(c0) < p, y(0) < Fyeg xk(0)k.

To unify the algorithm descriptions for revenue maximization
and QoS maximization, in the rest of the paper, we use the term
“slot” of type j to refer to the resource (equal to a VM of type j)
reserved for one job of type j in a server. Filled slots have jobs
already in them, while empty slots could accept jobs. Therefore,
the term configuration applies to all the slots in a server, while
placement applies to the filled slots in the server.

3 A STATIC OPTIMIZATION AND ITS
GREEDY SOLUTION

Given a workload reference vector YL = (f/jL, jeg) let F*(L YY)
be the optimal value of the following linear program:

max uiYi 6a
max ZJ] 7Y, (62)
st Y < ?J.L, VieJ (6b)
> Xikj 2 Y, VieJ (6¢c)
kekK
ZXk:L, Xi >0, Vk € K (6d)
kekK

where Y is the vector of jobs in the system, and X is the vector
of the number of servers assigned to each configuration. If we
choose Y- = pL, this optimization will provide an upper bound on
optimization (5), i.e., F7(L) < F*(L, pL), for any Markov policy 7.
The interpretation of the result is as follows. The average number
of type-j jobs in the system cannot be more than its workload

(Constraint (6b)), and further, it cannot be more than the average
number of slots of type j in the servers (Constraint (6¢)). The sum of
number of servers in different configurations is L, so their average
should also satisfy (6d).

As L — oo, the normalized objective value %F* (L,pLl) —
U*[p], which is the optimal value of the linear program below

r)I(l,a})I(z]: ujyj (7a)
st. y;<ppVjieJ (7b)
D kixczypVied (7¢)
keK
Zxkzl, x>0, Vke K (7d)
keXK

where xj. can be interpreted as the ideal fraction of servers which
should be in configuration k when L is large. Hence, one can con-
sider a static reservation policy where the cloud cluster is parti-
tioned and | x L] servers are assigned to each non-zero configura-
tion k € K (and the rest of servers can be empty to save resource
or used to serve more jobs). Then once a type-j job arrives, it will
be routed to an empty slot of type j in one of the servers, if any,
otherwise it is rejected. This will provide an asymptotic optimal
policy since it achieves the normalized reward U*[p], as L — oo.

However, there are several issues with this approach: (i) solving
optimization (6) or its relaxation (7) has a very high complexity,
as the number of configurations is exponential in the number of
job types J, and (ii) it requires knowing an accurate estimate of the
workload p which might not be available.

We first address the complexity issue, by presenting a greedy
solution, and analyze its asymptotic performance below.

3.1 Greedy Solution

We describe a greedy algorithm, called Greedy Placement Algorithm
(GPA), for solving optimization (6).

GPA takes as input the workload reference vector Y, and returns
an assignment vector X which indicates which configurations
should be used and in how many servers. The assignment consists
of at most J configurations, which are found in J iterations. In each
iteration i, GPA maintains a set of candidate job types J [i], and
finds a configuration k[i]. Initially J[1] = J. In iteration i:

(1) It findsk[i] = MaxRewarp(KJL1]), which is the configuration
of highest reward among the configurations that have jobs from
the set 7 [i], according to Definition 2.3.

(2) It computes the number of servers)A(l]; ;1 that should be assigned
to k[i], until at least one of the job types j, for which k;[i] > 0,
has no more jobs left, or there are no more unused servers left.
We refer to this job type as j*.

(3) It then creates J [i + 1] by removing job type j* from 7 [i].

A pseudocode for GPA is given by Algorithm 1. We use the vector
XL = ()2{(“ k € K) to denote the output of GPA, which has at most
J non-zero elements corresponding to k[i],i=1,...,].

We next define the limit of XL/L for input vl = Lp,asL —
oo, which we refer to as Global Greedy Assignment. To describe

Algorithm 1 Greedy Placement Algorithm (GPA)

. function GPA(Y)
r—Y
N«L

1
2 > tracks the vector of number of jobs left
3:
4: i—1, J[l] = j
5
6
7

> tracks the number of servers left

while J[i] # @ do
k[i] « MAXREWARD(q(J[i])

j* — arg minjg 150 [ﬁ} > break ties arbitrarily

8:)A(k[i] «— min ([_kj’;]?l]-l’N)
9: I« I—Xk[i]k[i]

10: N « N—)A(k[i]

i Tli+1] Tl - {*}
12: i—i+1

13: returnXk[j],jzl,"']

this assignment, we first define a unique ordering of the job types
through the following proposition.

ProrosITION 3.1. For any permutation o = (o1, 02, ..., ay) of job
typesin g, letJJ." ={0oj,...,07}, andk) = MAXREWARD((](‘:T/J).
Given a workload p, there is a “unique” permutation o = (01, 02, . . ., ay)

of job types, such that the following holds:

)Vjed, kg) > 0, and there are constants z9) [p] > 0, such that

J
po, = D k)2 1pl ®)

=1
2) for any two indexes j, j’ € J, with j < j’, if

Jj
poy = ke = Ip), ©)

=1

then we should have oj < ojr.

We omit the proof of the above proposition due to space con-
straint. The Global Greedy Assignment is defined as follows

Definition 3.2 (Global Greedy Assignment). Define the index I, <
J for which

2 20 pl =1
z(D [p] < 1. The global

yet 20 pp] <1,

with the convention that I, = J + 1 if Z{:]
greedy assignment x(9 [p] is defined as

2D [p], fori<Ip
li?’)) [p] =40, fori>1I, (10)
-3 ol fori=1,,

where k(! and z(?) [pl.i=1,...,], were defined in Proposition 3.1,
andkU+D =0 (empty configuration). We call the ordered config-
urations k(9 i = 1,..., J + 1, the “global greedy configurations”
of workload p. For any configuration k € K not in global greedy
configurations, xlig) [p] = 0. When it is clear from the context, the
dependency [p] will be omitted.

Konstantinos Psychas, Javad Ghaderi

The following proposition states the connection between GPA

and Global Greedy Assignment x(g) [pl.

space constraint.

We omit its proof due to

PROPOSITION 3.3. Let XE

XL
lim —
L—oo

= GPA(Lp). Then
9 [pl, Vk € K, 1)

where xl((g) [p] is the Global Greedy Assignment of Definition 3.2.

Note that clearly x9) [p] is a feasible solution for optimization
(7) and it is easy to see that its corresponding objective value is

RO IR
=t =1

It is also easy to see that in optimization (7) we can replace the
inequality in (7c) with equality and the optimal value will not
change. Let x* [p] be one such optimal solution to optimization (7)
for workload p. Then the optimal objective value is

U*lpl = > u; > kixtlp (13)
jeJ kekK
The following corollary is immediate from Proposition 3.3.

COROLLARY 3.4. Let FOPA(L, pL) be the total reward of GPA in
the system with L servers given reference workload Y* = pL. Then

v [p]
- U*[pl

The theorem below bounds the above ratio.

FGPA(L pL)
lim
L—o F*(L pL)

THEOREM 3.5. The global greedy assignmentx(g) [p] provides at

(9)
least% of the optimal normalized reward, i.e., L[I]* [z)]] > % Vp > 0.

Theorem 3.5 can be improved when job types and rewards satisfy
a monotone greedy property described next.

Definition 3.6. We say the job types and the rewards have mono-
tone greedy property if for any two instances of the optimization
(7) with p1 > p2, U [p1] = U [p2]-

The next theorem describes the improved bound when the mono-
tone greedy property holds.

THEOREM 3.7. Ifjob types and rewards satisfy the monotone greedy
(9)
property, then, for any p, L{]i—[g)p]] >1-1]e.

PROPOSITION 3.8. The worst-case ratio ofU(g) [p]/U*[p] is not
greater than 1 — 1/e.

Proof of Proposition 3.8 is by construction of an adversarial
example and is omitted due to space constraint.

Hence, the global greedy assignment achieves a factor within 1/2
to 1 — 1/e of the optimal normalized reward in “all” the cases. How-
ever, GPA(pL) requires the knowledge of p. In the next section,
we propose a dynamic reservation algorithm that is appropriate
for use in online settings without the knowledge of p. Its achiev-
able normalized reward still converges to that of the global greedy
assignment and it can also adapt to changes in the workload.

A Theory of Auto-Scaling for Resource Reservation in Cloud Services

Algorithm 2 DRA: Dynamic Reservation Algorithm

1. function CRA(YL, XT)

2 XL« GPA (Yh).

3 Set rank of all servers to J + 1.
4: I* J

5 fori=1to Jdo

6 Z — 0, c— X{(‘[i]

while Z < XL | do

> J configurations found in GPA
> ¢ is the index of server

K[i

8: Z—Z+1l,c—c—-1

9 if ¢ < 0 then
10: if £ # @ then
11: Set rank of £, to i.
12: Reassign configuration of £, to k[i].
13: else
14: I* «— min(T*,)
15: else
16: Set rank of f[; to i.

1: procedure ARRIVAL(j, t) > Type-j arrival at time ¢
2 if AG; # @ then

3 Schedule job in AG;.

4 CRA (YL (t) + g(L)1,XE (1))

5 else

6 Reject job.

1: procedure DEPARTURE(/, t) > Type-j departure at time ¢
2 if RG; # @ and the slot emptied is in Accept Group then
3 Migrate the job in RG; to the slot that emptied.

4 CRA (YL(t) +g(L)1,XE(1)

4 DYNAMIC RESERVATION ALGORITHM

We present a Dynamic Reservation Algorithm, called DRA, which
makes admission decisions and configuration assignments, without
the knowledge p. We first introduce the following notations:

e Recall the indexing of servers in the same configuration as in
Definition 2.4. We use £ ; to refer to the server with configuration
k and index i.

o A key parameter of DRA is the reservation factor g(L). It is the
number of empty slots (safety margin) that the algorithm ideally
wants to reserve for each job type if possible. For later analysis,
we assume that g(L) = w(log(L)), and is o(L).

The configuration assignment occurs at update times. To simplify
the analysis, we consider update times to be times when a job is
admitted to or departs from the system. To avoid preemptions, only
servers that are empty (have no jobs running) can be assigned to a
new configuration.

At update time t, DRA updates the workload reference vector
YL (1) as

YE(t) = YE (1) + 9(D)1, (14)

where Y (1) in the vector of jobs in the system, after any job ad-
mission or job departure at time ¢. g(L) is the reservation factor as
defined earlier.

Then DRA classifies the servers into two groups: Accept Group
(AG) and Reject Group (RG). Servers in Accept Group keep their

B O o e

= S K[I*]
S =
R - <. k[2] Serversof K[I* + 1]
K[1] rank 1 to J

Figure 1: An example illustrating the state at the end of CRA.
Servers in each configuration are stacked from largest to
smallest index. k[1],...,k[]] are the configurations returned
by GPA. The dashed boxes indicate how many more servers
need to be reassigned to a respective configuration to match
the solution of GPA (horizontal line). I* is the first i for
which X]I(“[i] < X]f[i] at the end of the procedure. Orange

servers are the servers of Reject Group.

current configurations and DRA attempts to have all their slots filled
by scheduling new jobs in them, while servers in Reject Group do
not have desirable configurations and DRA attempts to make them
empty, by not scheduling new jobs in them and possibly migrating
their jobs to servers in Accept Group, so they can be reassigned to
other configurations.

A pseudocode for DRA is given in Algorithm 2. It has three main
components which we describe in detail below:

Classification and Reassignment Algorithm (CRA). This is
the subroutine used by DRA to classify servers and possibly reassign
some of them. It attempts to greedily reduce the disparity between
the configuration assignment in the system X% (t) and the output
of GPA XL (t) = GPA(YL(1)). To do so, it assigns ranks to servers
in different configurations, which range from 1 to J + 1. Initially,
all servers are assigned rank J + 1. Any empty server of rank J + 1
can be reassigned to reduce the disparity between XL (¢) and XL (¢).
We use £, to denote one of empty rank J + 1 servers, and if no such
server exists £, = @.

Iterating over configurations k[i] found by GPA, fori =1,...,J:

. IfX]f[i] <)A(l];[i], it increases XII; by reassigning any £, to k[i],

[i]
until either (i) it matches le[l.], or (ii) £ = @. In either case, all
servers of configuration k[i] get rank i.

o If le[l.] (t) = le[l.], it assigns rank i to all servers of configuration

k[i] with indexes greater than X]f[i] (t) — le[i] (1).

We use I*(t) to denote the first i for which XII{“ I cannot be

[i
matched to X{;[i], i.e. the first i at which £, = @.If all configurations
are matched, then I* (t) = J. At the end of CRA, servers with rank
greater than I*(¢) and index 1 in any configuration are classified as
Reject Group, while the rest of the servers are classified as Accept
Group.

See Figure 1 for an illustrative example for the state of CRA.

Scheduling Arriving Job. When DRA needs to schedule an
arriving job of type j, it places the job in one of the servers of
Accept Group with empty type-j slot. If no such server exists, the

job is rejected. We use AG; to denote one of the servers of Accept
Group with empty type-j slot. If no such server exists AG; = @.

Migrating Job after Departure. Let RG; denote the highest
rank server among the Reject Group servers with type-j jobs. If no
such server exists, RG; = @.

If a type-j job departs from a server in Accept Group, DRA
migrates one of the type-j jobs from RG; to the slot that emptied
because of the departure, if RG; # @.

Initialization. Considering initialization at time 0, if servers
do not have configurations, but have jobs in them, we initialize
kf(0) = 12"(0), i.e., the configuration of each server ¢ is set to its job
placement. If servers have configurations, we keep their existing
configuration. Indexing among the servers of a configuration can
be arbitrary. We then run CRA that performs classification and
reassigns any possibly empty servers.

The following theorem states the main result regarding DRA.

THEOREM 4.1. Let FPRA(L) be the expected reward under DRA
and F* (L) be the optimal expected reward in optimization (5). Then

] FDRA (L) 1
lim ——— > -.
L—oo F* (L) 2
Further, under the monotone greedy property (Definition 3.6),
FPRA(L 1
im S0y, 1
L—oo F*(L) e

The proof of Theorem 4.1 is based on analysis of fluid limits and
the choice of a suitable Lyapunov function.

5 CONCLUSIONS

In this paper, we proposed a VM reservation and admission pol-
icy that operates in an online manner and can guarantee at least
1/2 (and under certain monotone property, 1 — 1/e) of the optimal
expected reward. Assumptions such as Poisson arrivals and expo-
nential service times are made to simplify the analysis, and the
policy itself does not rely on this assumption. The policy strikes a
balance between good VM packing and serving high priority VM
requests, by maintaining only a small number g(L) = w(logL) of
reserved VM slots at any time.

Although we considered that the policy classifies and reassigns
servers at arrival and departure events, this was only to simplify
the analysis, and in practice CRA can make such updates periodi-
cally, by factoring all arrival or departures in the past period in its
input for the current period. Further, if a more accurate estimate of
the workload is available, we can incorporate that estimate in the
vector Y used by DRA, to improve the convergence time. Moreover,
the policy can be extended to a multi-pool server system, where
constant fractions of servers belong to different server types. We
postpone the details to a future work.

REFERENCES

[1] Amazon AWS 2019. Amazon Web Services (AWS). https://aws.amazon.com/

[2] AWS container 2019. Amazon AWS Containers. https://aws.amazon.com/
containers/

[3] AWS SLA 2019. Amazon AWS Service Level Agreements (SLAs). //https://aws.
amazon.com/legal/service-level-agreements/

[4] N. G.Bean, R. J. Gibbens, and S. Zachary. 1995. Asymptotic analysis of single
resource loss systems in heavy traffic, with applications to integrated networks.
Advances in Applied Probability 27, 1 (1995), 273-292. https://doi.org/10.2307/
1428107

w

]
6]

—r—

(16

(17

[18

[19

[20]

[21]

[22

[23

[24

[29]

Konstantinos Psychas, Javad Ghaderi

Patrick Billingsley. 2008. Probability and measure. John Wiley & Sons.

Antonio Corradi, Mario Fanelli, and Luca Foschini. 2014. VM consolidation: A
real case based on OpenStack Cloud. Future Generation Computer Systems 32
(2014), 118-127.

Javad Ghaderi, Yuan Zhong, and Rayadurgam Srikant. 2014. Asymptotic op-
timality of BestFit for stochastic bin packing. ACM SIGMETRICS Performance
Evaluation Review 42, 2 (2014), 64—66.

Mostafa Ghobaei-Arani, Sam Jabbehdari, and Mohammad Ali Pourmina. 2018. An
autonomic resource provisioning approach for service-based cloud applications:
A hybrid approach. Future Generation Computer Systems 78 (2018), 191-210.
Google Cloud 2019. Google cloud computing services. https://cloud.google.com/
Google Kubernetes 2019. Kubernetes at Google Cloud. https://https://cloud.
google.com/kubernetes/

Yang Guo, Alexander Stolyar, and Anwar Walid. 2018. Online vm auto-scaling al-
gorithms for application hosting in a cloud. IEEE Transactions on Cloud Computing
(2018).

Rui Han, Li Guo, Moustafa M Ghanem, and Yike Guo. 2012. Lightweight resource
scaling for cloud applications. In EEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (ccgrid 2012). 644-651.

PJ Hunt and TG Kurtz. 1994. Large loss networks. Stochastic Processes and their
Applications 53, 2 (1994), 363-378.

PJ Hunt, CN Laws, et al. 1997. Optimization via trunk reservation in single
resource loss systems under heavy traffic. The Annals of Applied Probability 7, 4
(1997), 1058-1079.

Jing Jiang, Jie Lu, Guangquan Zhang, and Guodong Long. 2013. Optimal cloud
resource auto-scaling for web applications. In IEEE/ACM International Symposium
on Cluster, Cloud, and Grid Computing. 58—65.

A Karthik, Arpan Mukhopadhyay, and Ravi R Mazumdar. 2017. Choosing among
heterogeneous server clouds. Queueing Systems 85, 1-2 (2017), 1-29.

Hans Kellerer, Ulrich Pferschy, and David Pisinger. 2004. Multidimensional
knapsack problems. In Knapsack problems. Springer, 235-283.

Frank P Kelly. 1991. Loss networks. The annals of applied probability (1991),
319-378.

Siva Theja Maguluri, Rayadurgam Srikant, and Lei Ying. 2012. Stochastic models
of load balancing and scheduling in cloud computing clusters. In 2012 Proceedings
IEEE Infocom. IEEE, 702-710.

Siva Theja Maguluri, Rayadurgam Srikant, and Lei Ying. 2014. Heavy traffic
optimal resource allocation algorithms for cloud computing clusters. Performance
Evaluation 81 (2014), 20-39.

Ming Mao, Jie Li, and Marty Humphrey. 2010. Cloud auto-scaling with deadline
and budget constraints. In IEEE/ACM International Conference on Grid Computing.
41-48.

Microsoft Azure 2019. Microsoft cloud computing service. https://azure.microsoft.
com/

Arpan Mukhopadhyay, A Karthik, Ravi R Mazumdar, and Fabrice Guillemin. 2015.
Mean field and propagation of chaos in multi-class heterogeneous loss models.
Performance Evaluation 91 (2015), 117-131.

Konstantinos Psychas and Javad Ghaderi. 2017. On non-preemptive VM sched-
uling in the cloud. Proceedings of the ACM on Measurement and Analysis of
Computing Systems 1, 2 (2017), 35.

Konstantinos Psychas and Javad Ghaderi. 2018. Randomized Algorithms for
Scheduling Multi-Resource Jobs in the Cloud. IEEE/ACM Transactions on Net-
working 26, 5 (2018), 2202-2215.

Konstantinos Psychas and Javad Ghaderi. 2020. A Theory of Auto-Scaling for
Resource Reservation in Cloud Services. arXiv preprint arXiv:2005.13744 (2020).
Chenhao Qu, Rodrigo N Calheiros, and Rajkumar Buyya. 2018. Auto-scaling web
applications in clouds: A taxonomy and survey. ACM Computing Surveys (CSUR)
51, 4 (2018), 1-33.

Safraz Rampersaud and Daniel Grosu. 2014. A sharing-aware greedy algorithm for
virtual machine maximization. In IEEE 13th International Symposium on Network
Computing and Applications. 113-120.

Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. 2011. Efficient autoscal-
ing in the cloud using predictive models for workload forecasting. In IEEE 4th
International Conference on Cloud Computing. 500-507.

Weijia Song, Zhen Xiao, Qi Chen, and Haipeng Luo. 2013. Adaptive resource
provisioning for the cloud using online bin packing. IEEE Trans. Comput. 63, 11
(2013), 2647-2660.

Alexander L Stolyar. 2017. Large-scale heterogeneous service systems with
general packing constraints. Advances in Applied Probability 49, 1 (2017), 61-83.
Alexander L Stolyar and Yuan Zhong. 2015. Asymptotic optimality of a greedy
randomized algorithm in a large-scale service system with general packing
constraints. Queueing Systems 79, 2 (2015), 117-143.

Ward Whitt. 1985. Blocking when service is required from several facilities
simultaneously. AT&T technical journal 64, 8 (1985), 1807-1856.

Qiaomin Xie, Xiaobo Dong, Yi Lu, and Rayadurgam Srikant. 2015. Power of d
choices for large-scale bin packing: A loss model. ACM SIGMETRICS Performance
Evaluation Review 43, 1 (2015), 321-334.

https://aws.amazon.com/
https://aws.amazon.com/containers/
https://aws.amazon.com/containers/
//https://aws.amazon.com/legal/service-level-agreements/
//https://aws.amazon.com/legal/service-level-agreements/
https://doi.org/10.2307/1428107
https://doi.org/10.2307/1428107
https://cloud.google.com/
https://https://cloud.google.com/kubernetes/
https://https://cloud.google.com/kubernetes/
https://azure.microsoft.com/
https://azure.microsoft.com/

