
SONIC: Application-aware Data Passing for Chained Serverless Applications

Ashraf Mahgoub
Purdue University

Karthick Shankar
Carnegie Mellon University

Subrata Mitra
Adobe Research

Ana Klimovic
ETH Zurich

Somali Chaterji
Purdue University

Saurabh Bagchi
Purdue University

Abstract
Data analytics applications are increasingly leveraging

serverless execution environments for their ease-of-use and
pay-as-you-go billing. The structure of such applications
is usually composed of multiple functions that are chained
together to form a workflow. The current approach of ex-
changing intermediate (ephemeral) data between functions
is through a remote storage (such as S3), which introduces
significant performance overhead. We compare three data-
passing methods, which we call VM-Storage, Direct-Passing,
and state-of-practice Remote-Storage. Crucially, we show that
no single data-passing method prevails under all scenarios
and the optimal choice depends on dynamic factors such as
the size of input data, the size of intermediate data, the appli-
cation’s degree of parallelism, and network bandwidth. We
propose SONIC, a data-passing manager that optimizes ap-
plication performance and cost, by transparently selecting
the optimal data-passing method for each edge of a server-
less workflow DAG and implementing communication-aware
function placement. SONIC monitors application parame-
ters and uses simple regression models to adapt its hybrid
data passing accordingly. We integrate SONIC with Open-
Lambda and evaluate the system on Amazon EC2 with three
analytics applications, popular in the serverless environment.
SONIC provides lower latency (raw performance) and higher
performance/$ across diverse conditions, compared to four
baselines: SAND, vanilla OpenLambda, OpenLambda with
Pocket, and AWS Lambda.

1 Introduction
Serverless computing platforms provide on-demand scala-

bility and fine-grained resource allocation. In this computing
model, cloud providers run the servers and manage all admin-
istrative tasks (e.g., scaling, capacity planning, etc.), while
users focus on the application logic. Due to its elasticity and
ease-of-use advantages, serverless computing is becoming
increasingly popular for advanced workflows such as data pro-
cessing pipelines [35,53], machine learning pipelines [11,55],
and video analytics [5,22,64]. Major cloud providers recently

introduced serverless workflow services such as AWS Step
Functions [4], Azure Durable Functions [45], and Google
Cloud Composer [24], which provide easier design and orches-
tration for serverless workflow applications. Serverless work-
flows are composed of a sequence of execution stages, which
can be represented as a directed acyclic graph (DAG) [17,53].
DAG nodes correspond to serverless functions (or λs1) and
edges represent the flow of data between dependent λs (e.g.,
our video analytics application DAG is shown in Fig. 1).

Exchanging intermediate data between serverless functions
is a major challenge in serverless workflows [34, 36, 47]. By
design, IP addresses and port numbers of individual λs are not
exposed to users, making direct point-to-point communication
difficult. Moreover, serverless platforms provide no guaran-
tees for the overlap in time between the executions of the
parent (sending) and child (receiving) functions. Hence, the
state-of-practice technique for data passing between server-
less functions is saving and loading data through remote stor-
age (e.g., S3). Although passing intermediate data through
remote storage has the benefit of cleanly separating com-
pute and storage resources, it adds significant performance
overheads, especially for data-intensive applications [47]. For
example, Pu et al. [53] show that running the CloudSort bench-
mark with 100TB of data on AWS Lambda with S3 remote
storage can be up to 500× slower than running on a cluster of
VMs. Our own experiment with a machine learning pipeline
that has a simple linear workflow shows that passing data
through remote storage takes over 75% of the computation
time (Fig. 2, fanout = 1). Previous approaches reduce this
overhead by implementing exchange operators optimized for
object storage [47, 52], replacing disk-based object storage
(e.g., S3) with memory-based storage (e.g., ElastiCache Re-
dis), or combining different storage media (e.g., DRAM, SSD,
NVMe) to match application needs [12, 37, 53]. However,
these approaches still require passing data over the network
multiple times, adding latency. Moreover, in-memory stor-
age services are much more expensive than disk-based stor-

1For simplicity, we denote a serverless function as lambda or λ.

Start

End

Long-Term Storage (S3)

Split_Video (λ𝟏𝟏)

Extract Frame (λ𝟐𝟏) Extract Frame (λ𝟐𝑵)

Classify Frame (λ𝟑𝟏) Classify Frame (λ𝟑𝑵)

…..

…..

Long-Term Storage (S3)

Memory = 40 MB, Exec-time = 2 Sec

Memory = 55 MB, Exec-time = 0.3 Sec

Memory = 500 MB, Exec-time = 0.7 Sec

Video_chunk_size = 1 MB

Frame_size = 0.1 MB

Fan-out degree (N) = 19

DAG parameters
Intermediate Data

Figure 1: DAG overview (DAG definition provided by the user and our
profiled DAG parameters) for Video Analytics application.

age (e.g., ElastiCache Redis costs 700× more than S3 per
GB [53]).

We show how cloud providers can optimize data exchange
between chained functions in a serverless DAG workflow with
communication-aware placement of lambdas. For instance,
the cloud provider can leverage data locality by scheduling
the sending and receiving functions on the same VM, while
preserving local disk state between the two invocations. This
data passing mechanism, which we refer to as VM-Storage,
minimizes data exchange latency but imposes constraints on
where the lambdas can be scheduled. Alternatively, the cloud
provider can enable data exchange between functions on dif-
ferent VMs by directly copying intermediate data between the
VMs that host the sending and receiving lambdas. This data
passing mechanism, which we refer to as Direct-Passing, re-
quires one copy of the intermediate data elements, serving as
a middle ground between VM-Storage (which requires no data
copying) and Remote storage (which requires two copies of
the data). Each data passing mechanism provides a trade-off
between latency, cost, scalability, and scheduling flexibility.
Crucially, we find that no single mechanism prevails across
all serverless applications, which have different data depen-
dencies. For example, while Direct-Passing does not impose
strict scheduling constraintsr of receiving functions copy data
simultaneously and saturate the VM’s outgoing network band-
width. Hence, we need a hybrid, fine-grained data passing
approach that optimizes data passing for every edge of an
application DAG.
Our solution: We propose SONIC, a management layer
for inter-lambda data exchange, which adopts a hybrid ap-
proach of the three data passing methods (VM-Storage, Direct-
Passing and Remote storage) to optimize application perfor-
mance and cost. SONIC exposes a unified API to application
developers which selects the optimal data passing method for
every edge in an application DAG to minimize data passing
latency and cost. We show that this selection depends on pa-
rameters such as the size of input, the application’s degree
of parallelism, and VM network bandwidth. SONIC adapts

Figure 2: Execution time comparison with Remote storage, VM storage,
and Direct-Passing for the LightGBM application with Fanout = 1, 3, 12.

The best data passing method differs in every case.

its decision dynamically as these parameters change. Since
locally optimizing data passing decisions at given stages in a
DAG can be globally sub-optimal, SONIC applies a Viterbi-
based algorithm to optimize latency and cost across the entire
DAG. Fig. 3 shows the workflow of SONIC. SONIC abstracts
its hybrid data passing selection and provides users with a
simple file-based API, so users always read and write data as
files to storage that appears local. SONIC is designed to be
integrated with a cluster resource manager (e.g., Protean [29])
that assigns VM requests to the physical hardware and op-
timizes provider-centric metrics such as resource utilization
and load balancing (Fig 4).

We integrate SONIC with the open-source Open-
Lambda [31] framework and compare performance to sev-
eral baselines: AWS-Lambda, with S3 and ElastiCache-
Redis (which can be taken to represent state-of-the-practice);
SAND [2]; and OpenLambda with S3 and Pocket [37]. Our
evaluation shows that SONIC outperforms all baselines for
a variety of analytics applications. SONIC achieves between
34% and 158% higher performance/$ (here performance is
the inverse of latency) over OpenLambda+S3, between 59%
and 2.3X over OpenLambda+Pocket, and between 1.9× and
5.6× over SAND, a serverless platform that leverages data
locality to minimize execution time.

In summary, our contributions are as follows:
(1) We analyze the trade-offs of three different intermediate
data passing methods (Fig. 5) in serverless workflows and
show that no single method prevails under all conditions in
both latency and cost. This motivates the need for our hybrid
and dynamic approach.
(2) We propose SONIC, which automatically selects data pass-
ing methods between any two serverless functions in a work-
flow to minimize latency and cost. SONIC dynamically adapts
to application changes.
(3) We evaluate SONIC’s sensitivity to serverless-specific
challenges such as the cold-start problem (set-up time for the
application’s environment when it is invoked for the first time),
the lack of point-to-point communication, and the provider’s
lack of knowledge of lambda input data content. SONIC shows
its benefit over all baselines with three common classes of
serverless applications, with different input sizes and user-
specified parameters.

Figure 3: Workflow of SONIC: Users provide a DAG definition and input data files for profiling. SONIC’s online
profiler executes the DAG and generates regression models that map the input size to the DAG’s parameters.

For every new input, the online manager uses the regression models to identify the best placement for every λ

and best data passing method for every pair of sending\receiving λs in the DAG
Figure 4: SONIC’s interaction with an

existing Resource Manager in the system.

Storage
Volume

Storage
Volume

Storage
Volume

ଵ

File

Direct-Passing

ଵ

File

ଶ

File

VM-Storage Remote-Storage

ଵ

File

ଶ

File

Long-Term Storage
(S3)

Figure 5: The three data passing options between two lambdas (λ1 and
λ2). VM-Storage forces λ2 to run on the same VM as λ1 and avoids

copying data. Direct-Passing stores the output file of λ1 in the source
VM’s storage, and then copies the file directly to the receiving VM’s

storage. Remote storage uploads and downloads data through a remote
storage (e.g., S3).

2 Rationale and Overview
We discuss the trade-offs of SONIC’s three data passing

methods and motivate our hybrid and dynamic approach.

2.1 data passing Methods

SONIC chooses from among the three data passing options
shown in Fig. 5 for each edge in the application DAG.
VM-Storage: This method saves the local state of the sending
λ in the VM’s storage and schedules the receiving λ(s) to
execute on the same VM. This method leverages data locality
to minimize latency, but imposes scheduling constraints. If the
sending VM’s memory cannot fit all receiving λs, this method
forces the scheduler to run the receiving λs serially or in
batches, sacrificing parallelism in favor of data locality. This
method is infeasible if the memory requirement of a single
receiving λ exceeds the VM’s capacity, or when the receiving
λ collects data from multiple λs running on different VMs.
Moreover, this data passing method may not be preferred by
the resource manager in high load scenarios, where spreading
the receiving functions over many servers is needed to avoid
hot-spots and achieve better load balancing.
Direct-Passing: This data passing method saves the output
of the sending λ on its VM storage and sends the λ’s access
information (IP address and File Path) to SONIC’s metadata
manager. When one of the receiving λs is scheduled to exe-
cute, the metadata manager uses the saved access information
to copy the data file directly to the destination VM with the
receiving λ. Direct-Passing allows higher degrees of paral-

lelism and poses no restrictions on λ placements compared
to VM-Storage, but requires data to be sent over the network
between source and destination VMs.
Remote-Storage: This data passing method involves upload-
ing output files to a remote storage system and download-
ing them at destination λ(s). This is the state-of-practice in
commercial serverless platforms and has been optimized in
several recent papers [12, 37, 53]. This method provides high
scalability with no restrictions on λ placement. It also has
the advantage of almost uniform data passing time with in-
creasing fanout degrees as shown in Fig. 6 due to the high
bandwidth of the storage layer. The disadvantage of Remote-
Storage is having two serial data copies in the critical path
— one from the source lambda to the remote storage and one
from the remote storage to the destination lambda.

2.2 Dynamic Data Passing Method Selection

The optimal choice of data passing method for a job depends
on the DAG’s parameters, which can vary due to dynamic
conditions such as the input size, changes in network band-
width, or changes in user-specified parameters (e.g., degree of
parallelism). For example, we run the LightGBM application
(application details are given in §5.3) with varying degrees
of fanout and find that VM-Storage achieves optimal end-to-
end execution time when the fanout is low (Fig. 2). However,
when the maximum degree of parallelism across all stages
is three, VM-Storage requires executing functions serially to
fit on the same VM, making Direct-Passing superior. With
a sufficiently high fanout, the sending VM faces a network
bottleneck, making Remote-Storage the optimal data passing
mechanism. Hence, no single data passing method prevails
under all conditions.

SONIC prefers the VM-Storage method in cases where the
receiving λ(s) can be scheduled on the same VM as the send-
ing λ while executing in parallel. However, in cases where
VM-Storage is infeasible or sacrifices parallelism, SONIC se-
lects between Direct-Passing or Remote-Storage methods.
This selection depends on two factors: (1) VM’s network
bandwidth (2) the fanout (i.e., parallelism) type and degree.
To understand how these two parameters impact the selection
between Direct-Passing and Remote-Storage, we show an
experiment on the LightGBM application, which has a Broad-
cast Fanout stage (identical data from the sending λ is sent

0

10

20

30

1 3 6 12 24

Ti
m

e
(s

ec
)

Fan-out (K)

LightGBM (t2.large)

Remote(S3) Direct-Passing

K=5
X

0

5

10

15

20

1 3 6 12 24

Ti
m

e
(s

ec
)

Fan-out (K)

LightGBM (m5.large)

Remote(S3) Direct-Passing

K=9
X

0

2

4

6

8

10

1 3 6 12 24

Ti
m

e
(s

ec
)

Fan-out (K)

LightGBM (m5.xlarge)

Remote(S3) Direct-Passing

K=18
X

Figure 6: Comparison between Remote-Storage and Direct-Passing for LightGBM workload with varying fanout degrees. Typically, beyond a certain
fanout, Remote has lower execution time than Direct-Passing. A more well-provisioned VM (m5.xlarge) will shift the crossover point to the right.

to all the receiving λs). We vary the fanout degree (K) while
using different VM types with varying network bandwidths in
Fig. 6. With low degrees of parallelism (i.e., low values of K),
Direct-Passing achieves lower latency than Remote-Storage.
This is because copying the data directly across the two VMs
is faster than copying the data twice over the network, to and
from the remote storage. However, with increasing values of
K, Direct-Passing suffers from the limited network bandwidth
of the VM of the sending λ, which becomes the bottleneck
as it tries to copy the intermediate data to K VMs simulta-
neously. In contrast, Remote-Storage can provide faster data
passing in this case, since the sending λ saves its output file
once to the remote storage and then every receiving λ down-
loads that file simultaneously. Thus, Remote-Storage provides
better scalability over Direct-Passing in cases of large fanout
degrees. The cross-over point shifts to the right as we go to
more well-resourced VMs, from a network bandwidth stand-
point (m5.xlarge > m5.large > t2.large). From this example,
we see that selecting the best data passing method depends
on the VM’s network bandwidth and DAG parameters.

We identify a number of trade-offs to be considered when
performing this optimization. First, a trade-off between data
locality and parallelism arises when the available VM’s com-
pute and memory capacities are not sufficient to execute all
receiving λ(s) in parallel. This preference of data locality
over parallelism can be beneficial for lightweight functions
communicating large volumes of data, while it can be harm-
ful for compute-heavy functions with small volumes of data.
Second, executing functions serially has the benefit of avoid-
ing cold-start executions, which can significantly increase
the execution time for functions that need to fetch many de-
pendencies before execution [58]. Finally, we differentiate
between two types of fanout stages: Scatter and Broadcast,
depending on whether the output data is split equally among
all outgoing edges (Scatter) or the same data is sent on all
outgoing edges (Broadcast). With Scatter fanout, the inter-
mediate data volume being sent is constant with the fanout
degree while with Broadcast fanout, the intermediate data
volume being sent increases linearly with the fanout degree.
Therefore, the optimal data passing method also depends on
the type of fanout and thus we cover both in our evaluation
applications (video analytics and MapReduce sort for Scat-
ter fanout and LightGBM for Broadcast fanout). In the next
section, we describe the design of each component in SONIC.

3 Design
In § 3.1, we provide an overview of SONIC’s usage model.

§ 3.2 describes SONIC’s online profiling. § 3.3 discusses how
SONIC estimates a job’s execution time for different input
data sizes. § 3.4 shows how SONIC selects globally optimized
data passing decisions. Finally, § 3.5 highlights further design
considerations.

3.1 Usage Model
We discuss SONIC’s usage model from the perspective of
application developers and the cloud provider’s resource man-
ager.
Application DAG: As shown in Fig. 3, application develop-
ers provide SONIC with an application represented as a DAG.
We assume users execute application DAGs multiple times
with potentially different input data. Each such execution in-
stance is referred to as a job. SONIC does not require the
FaaS provider to have access to the source code for the server-
less functions or hints about the resource utilization of these
functions. The DAG definition from the user includes: (1) an
executable for every λ; (2) the dependencies between λs; (3)
the fanout type in every stage (i.e., single, scatter, or broad-
cast). Users can also provide an upper limit on the execution
time or $ budget for a single job or a batch of jobs. Notice,
SONIC does not require users to specify the memory require-
ments for the functions in the DAG (this is a well-known pain
point for users of serverless frameworks [20, 54, 57]). This
is because SONIC predicts the memory footprint for every
function, using our simple regression modeling (§ 3.2) and
selects the right host VM size accordingly.
Data Passing Interface: SONIC abstracts the selection of
data passing methods from application developers. λ func-
tions write intermediate data to files using a standard file API
(read and write), like writing to local storage. All λs within a
job share a file namespace and if an application DAG has an
edge λs→ λr, SONIC ensures that λr reads from the same file
path that λs wrote to. It also ensures that all of a λr’s input
files are present in its local storage before it starts execution.
Resource Manager: SONIC’s target is to minimize com-
munication latency and cost, which are user-centric met-
rics. However, optimizing provider-centric metrics (e.g., load-
balancing, resource utilization, and fairness) is also impor-
tant. Fortunately, many resource management systems such

as Graphene [25], Protean [29], AlloX [38] and DRF [23]
are designed to optimize provider-centric metrics efficiently,
while respecting the dependencies between the functions (i.e.,
parent-child execution order). Hence, SONIC is designed to
integrate with a system from this category (which we refer
to as Resource Manager), as shown in Figure 4. First, the
user executes the DAG with a new input. Second, SONIC
uses the input size information to predict the memory foot-
prints, execution times, and intermediate-data sizes for the
DAG, which are key DAG parameters in selecting the best
VM size for every function and the best data passing method
for every edge in the DAG. Finally, the Resource Manager
uses SONIC’s hints and decides which VMs to allocate on
the available physical machines, and responds to SONIC with
the final placement information, i.e., which functions go on
which VMs. The Resource Manager may override SONIC’s
hint to use VM-Storage whenever its scheduling constraint is
not acceptable to the manager. Therefore, for that selection,
SONIC always proposes the second-best option.

3.2 Online Profiling and Model Training

SONIC profiles jobs online to determine the impact of changes
in input size to the following parameters: (1) each λ’s memory
footprint, (2) each λ’s compute time, (3) intermediate data
volume between any two communicating λs, and (4)the fanout
type and degree in every stage. Since the above parameters are
not dependent on the data passing method, initially SONIC
uses a default data passing policy (Remote Storage) while
it collects DAG parameters for the first N runs of the job
to train its models. N is either the number of jobs needed
to reach convergence (default) or explicitly set by the user.
Next, SONIC trains a set of prediction models that estimate
the DAG parameter values for new inputs. SONIC develops
polynomial regression models and splits the data collected
into training and validation sets, then performs 5-fold cross
validation to find the best model to avoid overfitting. We use
polynomial regression models as they can learn from limited
data points, are lightweight, and are interpretable [8].

"Online" profiling means that SONIC serves workloads
while the models are being trained, which is important for
practical adoption in production environments. In discussions
with commercial cloud providers, we have repeatedly sensed
an anathema to solutions that require offline training due to
the concern that one will constantly be taking the system
offline to (re-)train the models. However, if the system owner
has ready access to representative input traces, she can feed
SONIC with these representative traces offline to initialize the
prediction models and reduce the online training burden.

SONIC measures the compute time for every λ under two
conditions: cold execution (i.e., a new VM/container needs to
be created) and hot execution (i.e., a warm VM/container with
pre-loaded models/dependencies already exists). SONIC uses
the difference between the two execution times in deciding

whether to queue λs on the same VM and sacrifice parallelism
(hot execute), or to execute the λs on different VMs in parallel
with the additional data passing cost and startup latency (cold
execution).

3.3 Minimizing End-to-End Execution Time
We estimate the execution time τ of a stage Si as follows:

τ(Si) = DataPass(Si−1,Si)+Compute(Si) (1)

When VM-Storage is selected, all λs in a given stage are
forced to run on the same VM. If only one λ can run at a time,
the first λ incurs a cold execution time and all subsequent λs
experience hot executions. SONIC estimates τV M as follows:

τV M(Si) = 0+Cold(λi,1)+
K

∑
j=2

Hot(λi, j) (2)

Here we set DataPass(Si−1,Si) to zero since no additional
latency is incurred by VM-Storage passing. For simplicity,
we give here the upper bound, if all the λs are serialized. In
practice, we estimate based on batches that are serialized and
all λs within a batch can run concurrently. For Direct-Passing
and Remote Storage, we take the nature of the fanout type
into account. For Direct-Passing, with Broadcast-type fanout,
the runtime is given by:

τDirectB(Si) =
F×K

min(BW (V Mi−1),BW (V Mi))
+Cold(λi,1) (3)

Where F is the intermediate data size, K the fanout, and
BW (V Mi), the bandwidth of the VM type hosting λs in the
i-th stage. Notice that the bandwidth is limited by the slowest
of the sending and receiving VMs and that all execution times
are cold, yet only one execution is accounted for, since they all
run in parallel. For Scatter-type fanout, the equation becomes:

τDirectS(Si) =
F/K

min(BW (V Mi−1)/K,BW (V Mi))
+Cold(λi,1)

=
F

BW (V Mi−1)
+Cold(λi,1) (4)

Often cloud providers overprovision network bandwidth [14],
hence we assume location of the source and destination VMs
(intra- vs. inter-rack) does not affect the network bandwidth.
Also, we find that the bandwidths are symmetric between
VMs for all VM types; however, for remote storage, writ-
ing was faster than reading. Next, we show how we use the
previous equations for our optimization.

3.4 Online VM and Data Passing Selection
A major challenge to optimize the Perf/$ for the entire DAG is
to do local selections for each stage to achieve the global op-
timum. Consider Fig. 1 for example: if we used VM-Storage
passing between Split_Video and Extract Frame, all the
extracted frames will reside in a single VM. Selecting VM-
Storage between Extract Frame and Classify Frame will
force Classify Frame to execute serially since that sin-
gle VM does not have enough memory. However, if we
select Direct-Passing or Remote Storage passing between

Split_Video and Extract Frame, every extracted frame
will now reside in a separate VM. Therefore, we can use
VM-Storage between Extract Frame and Classify Frame
without sacrificing parallelism, lowering the DAG’s execution
time. Thus, greedily optimized decisions for individual stages
can lead to sub-optimal global DAG performance.

To overcome the issue of sub-optimal greedy decisions, we
apply the Viterbi algorithm [18] to find the globally optimized
solution. SONIC uses a recursive scoring algorithm to gen-
erate all possible lambda assignments in every stage in the
DAG based on the VM’s compute and memory capacities,
along with the λs’ predicted memory footprint. SONIC ex-
plores all possible λ-placement options under the constraints
of VM resources (CPU and memory primarily) and selects
the best data passing method for every pair of stages. Then,
SONIC constructs a dynamic programming table with all the
generated solutions. Finally, SONIC applies the Viterbi Algo-
rithm to find the best sequence of options (i.e., the optimum
Viterbi path) in the dynamic table. The selected solution is
the one with the best Perf/$ that also meets the user bounds
on execution time and cost budget. This approach relies on
the fact that the execution time up until stage i is equal to
the execution time to stage i−1 + data passing time between
the two stages. This makes the Markovian assumption true
(next state depends only on the current state) and makes the
computation tractable.

We choose the Viterbi algorithm as it is guaranteed to find
the true maximum a posteriori (MAP) solution [18,19] unlike
heuristic-based searching algorithms such as Genetic Algo-
rithms or Simulated Annealing. The runtime complexity of
the algorithm is O(P2×S), where P is the number of feasible
λ placements on VMs for a given stage and S is the number of
stages. P is upper bounded by the degree of parallelism of the
stage (e.g., AWS sets a limit of 1,000) and in practice is much
smaller considering many co-locations on VMs are infeasible.
The runtime increases with the number of stages in the DAG,
not the number of nodes or edges or fanout degree. This is
desirable as the number of stages is small in practice, where
a DAG of 8 stages is considered long for current serverless
applications [53]. This reduction in complexity happens be-
cause SONIC applies the same data passing method to all the
functions in a given stage.

3.5 Further Design Considerations

Fault tolerance. Most FaaS providers apply an automatic
retry mechanism upon execution failure (e.g., AWS Lambda,
Google Functions, and Azure Functions) to ensure that func-
tions are executed at-least-once. For this retry mechanism
to be successful, functions are required to be idempotent. To
achieve idempotence, SONIC’s file API assigns an ID to every
intermediate file in the DAG that is used by the function that
writes that file. Hence, a re-execution of this function simply
overwrites the files from the previous execution. However,

as highlighted in RAMP [7] and AFT [60], idempotence in
itself is not sufficient to achieve fault tolerance in serverless
environments, since it does not guarantee atomic visibility.
The problem happens when a sender λ generates only a subset
of its output files, and then fails, triggering an incomplete sub-
set of receiving λs, resulting in a corrupted state. Therefore,
SONIC applies the concept of atomic visibility by delaying the
execution of all receiving λs that belong to the same logical
request until all their input files are successfully written to
storage (either EBS in case of Local-VM or Direct-Passing, or
S3 in case of Remote Storage). Although this delaying mech-
anism can potentially increase the E2E latency of the DAG,
our evaluation shows that this additional latency is negligible:
6.3% for MapReduce, 3.3% for Video-Analytics, and 0.5%
for LightGBM. All the SONIC results in the evaluation are
with atomicity enabled.
DAGs with Content-Sensitive Structures. Our design as-
sumes that the stages in the DAG are static and known, while
the fanout degree in every stage can vary based on the in-
put. This is analogous to state machines created by serverless
orchestrators such as AWS Step-Functions [4]. Our video-
analytics application is an example of an input-dependent
fanout degree DAG and SONIC successfully predicts the
fanout for new input sizes. If the structure of the DAG’s stages
depends on the input content, then our estimate of the DAG
will be inaccurate. We evaluate the sensitivity of Sonic to
prediction errors in Sec. 5.6.3.
Scalability of SONIC. For scalability, SONIC adopts a simple
distributed design in which no state is shared across appli-
cation jobs. When a new job arrives, SONIC’s centralized
component makes the decision whether to use an existing in-
stance (if it is not overloaded) or to spin up a new instance to
handle the new job. There is a central scoreboard maintained
to keep track of the number of jobs being handled by each
instance. The central component is lightweight in terms of its
computational load and state. However, should it be necessary,
this itself can be distributed through standard state machine
replication (SMR) strategies [44].

4 Implementation
We implement SONIC as a data passing management layer

and we use OpenLambda as our serverless platform [31].
OpenLambda is an open-source platform that relies on Linux
containers for isolation and orchestration [51]. We choose
OpenLambda for its flexibility—SONIC needs to control the
lambda placement and needs IP addresses and administrative
access to the hosting VMs. This level of control is infeasible
to achieve on AWS Lambda or any other commercial offering.
We implement SONIC in C# (482 LOC) and deploy it on
EC2 instances, providing the same isolation guarantees as
AWS Lambda across users [6]. In our setup of SONIC on
OpenLambda, we use one separate container for each function
(OpenLambda’s design), while one VM can host multiple
containers for the same application.

SONIC’s data manager consists of two parts: a central-
ized manager that stores IP addresses and file paths, and a
distributed manager, deployed in every VM, executing the
SONIC-optimized data passing method. The distributed man-
ager also measures the actual DAG parameters during the
online phase and sends them to the online manager, which up-
dates the regression models in an incremental fashion. More-
over, since the network bandwidth can vary over time, we
monitor it using Cloudwatch [13] (default of every 5 min).
We use a weighted average of historic measures (as is com-
mon [56, 63]) when estimating data passing times. Thus
SONIC adjusts its decisions based on bandwidth fluctuations.
We use EBS storage as our storage for VM-Storage and Direct-
Passing methods. EC2 EBS-optimized instances (e.g., our
choice m5) have dedicated bandwidth for EBS I/O (minimizes
network contention with other traffic), and can be rightsized
for the predicted intermediate data volume.

5 Evaluation

5.1 Performance Metrics

Our primary performance metric is Perf/$. Since we are mini-
mizing end-to-end (E2E) execution time (i.e., latency), this is
given by: 1

Latency(sec) ×
1

Price($) . We also use raw latency as a
secondary metric, to separate the $-cost normalization effect.
For the first metric, higher is better, and for the second, lower
is better. When we refer simply to performance, we mean
Perf/$. When we refer to the secondary metric, we explicitly
say (E2E) execution time or latency.

The different data passing methods considered by SONIC
vary in their billing cost, which is sensitive to the selected
configurations for each method. Hence, our solution should
consider both latency and cost when selecting the best data
passing method. Consequently, we use the Perf/$ metric. We
also empirically demonstrate that SONIC performs compara-
bly to the baselines in terms of raw performance, and in many
cases, outperforms the baselines (Figures 7, 8, 13, 14). Fi-
nally, there is precedence of prior work in cloud optimization
using performance normalized by price [32, 40, 62]. SONIC’s
VM-Storage and Direct-Passing methods add additional cost
due to the extra local storage (e.g., EBS storage). However,
this additional price is comparable to that of remote storage
such as S3, and we include it in our evaluation.

5.2 Baselines and Methodology

We compare SONIC to the following baselines:
1. OpenLambda + S3 [31]: This is the OpenLambda frame-
work deployed on EC2 with S3 as its remote storage. A new
VM is created to host each λ in the DAG. The smallest VM
that has enough memory to execute the λ is selected.
2. OpenLambda + Pocket [37]: This is a variant of the
OpenLambda framework with Pocket (deployed in EC2) as
the remote storage. We use Pocket’s default storage tier

(DRAM) with r5.large instance types. The DRAM storage
tier strikes the balance between performance and cost and pro-
vides the best Perf/$ (Table 4 in [37]). Comparing the price
for one DRAM node to one SSD node in Pocket, DRAM is
also the cheapest tier. We vary the number of Pocket nodes
for each application to reach the best Perf/$. We include the
price of the storage nodes only, excluding master and meta-
data nodes. We use EC2’s per-second level pricing.
3. SAND [2]: This baseline leverages data locality by al-
locating all lambda functions on a single host with rich re-
sources and performing data passing between chained func-
tions through a local message bus.
4. AWS-λ: The commercial FaaS platform using two differ-
ent remote storage systems: S3 and ElastiCache-Redis.
5. Oracle SONIC: This is SONIC with fully accurate estima-
tion of DAG parameters and no data passing latency (mimick-
ing local running of all functions). Although impractical, this
serves as an upper-bound on performance for any of the three
data-exchange techniques selected by SONIC.
Similar to prior OpenLambda evaluations [50], we deploy
OpenLambda (and SONIC) on AWS EC2 General Purpose
instances (m5.large, m5.xlarge, m5.2xlarge) for their balance
between CPU, memory, and network bandwidth. We use the
same EC2 family with SAND for fairness. m5 instances have
a network bandwidth of upto 10 Gbps, which we rely on for
both Direct-Passing and Remote-Storage. All costs follow
pricing by Amazon for 01/2021, N. California (Region).

5.3 Applications

We use three analytics applications popular as serverless ap-
plications and that span the variety of DAG structures.
Video Analytics: Fig. 1 shows the DAG for the Video An-
alytics application, which performs object classification for
frames in a given video. It starts with a lambda that splits
the input video into chunks of fixed length (10 sec in our
case). Then, a second lambda is called for every chunk to
extract a representative frame. Next, a third lambda uses a
pre-trained deep learning model (MXNET [49]) to classify
the extracted frame. It outputs a probability distribution across
1,000 classes over which MXNET is trained. Finally, all the
classification results are written to long-term storage.
LightGBM: This application trains decision trees, combin-
ing them to form a random forest predictor using LightGBM
Python library [39]). First, a λ reads the training examples
and performs PCA. Second, a user-specified number of λs
train the decision trees in parallel (every λ randomly selects
90% for training, 10% for validation). A third λ collects and
combines the trained models; then tests the combined model
on held-out test data. Handwritten images’ databases: NIST
(800K images); MNIST (60K images) used as inputs [15,26].
MapReduce Sort: This application implements MapReduce
sort with serverless functions. In the first stage, K parallel
lambdas (i.e., mappers; K = user parameter) fetch the input

0

10

20

30

40

0

50

100

150

200
S

o
n

ic

A
W

S
-ƛ

+

S
3

A
W

S
-ƛ

+

E
L

-R
e

d
is

S
A

N
D

O
p

e
n

-ƛ
+

S
3

O
p

e
n

-ƛ
+

P

o
c

k
e

t

O
r

a
c

l
e

S
o

n
ic

Ti
m

e
(s

ec
)

Pe
rf

/$

Video Analytics: SONIC vs Baselines (Memory-sized)
Perf/$ E2E_Run_Time

+187% +34%

-19%

+442%

+59%

12.9X
0

20

40

60

80

100

0
2
4
6
8

10
12
14

S
o

n
ic

A
W

S
-ƛ

+

S
3

A
W

S
-ƛ

+

E
L

-R
e

d
is

S
A

N
D

O
p

e
n

-ƛ
+

S
3

O
p

e
n

-ƛ
+

P

o
c

k
e

t

O
r

a
c

l
e

S
o

n
ic

Ti
m

e(
Se

c)

Pe
rf

/$

LightGBM: Sonic vs Baselines (Memory-sized)
Perf/$
E2E_Run_Time

+5.6X

+101%

-14%

+11X +3.8X

+67%

0

50

100

150

200

250

0
0.2
0.4
0.6
0.8
1

1.2

S
o

n
ic

A
W

S
-ƛ

+

S
3

A
W

S
-ƛ

+

E
L

-R
e

d
is

S
A

N
D

O
p

e
n

-ƛ
+

S
3

O
p

e
n

-ƛ
+

P

o
c

k
e

t

O
r

a
c

l
e

S
o

n
ic

Ti
m

e
(s

ec
)

Pe
rf

/$

MapReduce-Sort: Sonic vs Baselines (Memory-sized)
Perf/$
E2E_Run_Time

+3.7X
+158%

-28%

+2.3X+189%
+2.6X

Figure 7: Performance of SONIC and the baselines for our three applications (memory-sized). Two performance metrics are shown: Perf/$ (bars; left axis)
and end-to-end execution time (lines; right axis). Relative improvements in Perf/$ due to SONIC are at the top of each bar for the corresponding baseline.

0

10

20

30

40

0

50

100

150

200

S
o

n
ic

A
W

S
-ƛ

+

S
3

A
W

S
-ƛ

+

E
L

-R
e

d
is

S
A

N
D

O
p

e
n

-ƛ
+

S
3

O
p

e
n

-ƛ
+

P

o
c

k
e

t

O
r

a
c

l
e

S
o

n
ic

Ti
m

e
(s

ec
)

Pe
rf

/$

Video Analytics: Sonic vs Baselines (Latency-optimized)
Perf/$ E2E_Run_Time

+262%
+34%

-19%

+36% +59%
+76%

0

20

40

60

80

100

0
2
4
6
8

10
12
14

S
o

n
ic

A
W

S
-ƛ

+

S
3

A
W

S
-ƛ

+

E
L

-R
e

d
is

S
A

N
D

O
p

e
n

-ƛ
+

S
3

O
p

e
n

-ƛ
+

P

o
c

k
e

t

O
r

a
c

l
e

S
o

n
ic

Ti
m

e(
Se

c)

Pe
rf

/$

LightGBM: Sonic vs Baselines (Latency-Optimized)
Perf/$
E2E_Run_Time

+67%

+4.5X

+101

-14%

+7X
+2.8X

0

50

100

150

200

250

0
0.2
0.4
0.6
0.8
1

1.2

S
o

n
ic

A
W

S
-ƛ

+

S
3

A
W

S
-ƛ

+

E
L

-R
e

d
is

S
A

N
D

O
p

e
n

-ƛ
+

S
3

O
p

e
n

-ƛ
+

P

o
c

k
e

t

O
r

a
c

l
e

S
o

n
ic

Ti
m

e
(s

ec
)

Pe
rf

/$

MapReduce-Sort: Sonic vs Baselines (Latency-Optimized)

Perf/$

E2E_Run_Time

+2.8X
+158%

-28%

+2.3X
+183%+188%

Figure 8: Performance of SONIC and the baselines for our three applications with the latency-optimized configuration.

file from a remote data store (e.g., S3) and then generate the
intermediate files. Next, K parallel lambdas sort the interme-
diate files and write their sorted output back to storage.

5.4 End-to-End Evaluation

We compare the E2E Perf/$ and latency of SONIC vs. other
baselines for our three applications. For Video Analytics, we
use a video of length 3 min and size of 15MB, which generates
a fanout degree of 19 (we vary the video size in § 5.6.3). For
LightGBM, we use an input size of 200MB and fanout degree
of 6, generating a random forest of 6 trees (we vary the input
size in § 5.5.2). For MapReduce Sort, we use an input size
of 1.5GB and a fanout degree of 30. All the results of SONIC
include its overheads (11ms for the DAG parameter inference
phase; 120ms for the Viterbi optimization phase).

We perform online profiling and training with 35 jobs, by
which we reach convergence for all applications with a low av-
erage Mean Absolute Percentage Error (MAPE) ≤ 15%. We
show the accuracy of SONIC’s predictions in Section. 5.6.1.
Memory configurations. SONIC infers memory require-
ments automatically from online profiling. Here, we describe
how we select the memory allocation for each baseline. AWS
Lambda and other serverless offerings scale compute re-
sources relative to a user-specified memory allocation. We
run the baselines under two different configurations, which
we call "memory-sized" and "latency-optimized". These are
respectively shown in Fig. 7 and Fig. 8. For the memory-sized
configuration, we give each lambda just enough memory that
it needs to execute. We determine each λ’s memory require-
ment by measuring the actual memory used when executing
the DAG once with all λs using the maximum memory limit
(3GB for AWS-λ). For the latency-optimized configuration,
we progressively increase the memory allocation as long as
a reduction in latency is observed. We report the results for
the run with the lowest latency. For OpenLambda, we use

SONIC’s memory footprint predictor to select the cheapest
VM that fits each lambda.

We draw several conclusions. First, although AWS-λ allows
users to rightsize the allocated memory for their applications,
it does not always lead to the best Perf/$ or latency. For exam-
ple, with Video Analytics and memory-sized configuration,
SONIC achieves 442% and 12.9× better Perf/$ over AWS-λ
with S3 and ElastiCache-Redis respectively. However, with
(memory) over-provisioning, the latency-optimized configu-
ration improves AWS-λ performance significantly, reducing
the gains of SONIC to 76% and 36% with S3 and ElastiCache-
Redis respectively (similar observation is shown w.r.t. raw la-
tency). The reason is that AWS-λ allocates all other resources
(e.g., CPU capacity, network bandwidth, etc.) proportionally
to the selected memory requirement [3]. Therefore, as the
allocated memory is increased, the latency decreases and the
cost also increases. But the latency decreases faster than the
cost increases, thus Perf/$ increases. However, beyond a cer-
tain point of over-provisioning, the latency does not decrease
further, and thus the Perf/$ begins to decrease.

For LightGBM and MapReduce Sort applications, we do
not see a significant improvement in Perf/$ for AWS-λ base-
lines with the latency-optimized configuration, since the mem-
ory footprint of these applications is close to the 3GB limit
to begin with leaving very little room for over-provisioning.
For AWS-λ, using ElastiCache-Redis as the remote stor-
age achieves 18% lower latency than using S3. However,
ElastiCache-Redis increases the cost significantly, causing a
reduction of Perf/$.

Compared to SAND, SONIC achieves 187% better Perf/$
with 2× lower latency in the memory-sized case for Video
Analytics application. The gain increases to 5.6× and 3.7×
for LightGBM and MapReduce Sort applications, respectively.
This is again due to the higher memory footprints of these
two applications compared to Video Analytics. This reduces
SAND’s ability to run more λs in parallel and forces a high

Figure 9: Scalability of SONIC, OpenLambda+S3, and SAND with equal
portions of our three apps running concurrently. SONIC maintains its
improvement over the entire scale, in both Perf/$/job and raw latency.

degree of serialization. This explains the spike in latency for
SAND in both applications.

Compared to OpenLambda, SONIC achieves 34% and 59%
improvement in Perf/$ with S3 and Pocket, respectively, for
Video Analytics. The performance with Pocket suffers com-
pared to vanilla OpenLambda (i.e., with S3) due to Pocket’s
higher-cost storage (e.g., r5.large) without proportional ben-
efit. Note that for OpenLambda, its performance turns out
to be identical for the memory-sized and latency-optimized
configurations as increasing the memory beyond SONIC’s
predicted values for each function gives no latency benefit.
Finally, Oracle-SONIC outperforms SONIC, as expected, but
not hugely — within 19%-28% across all applications. Re-
call that Oracle-SONIC has perfectly accurate predictors and
assumes no data passing latency.

5.5 Scalability

Here, we evaluate SONIC’s ability to scale to concurrent invo-
cations of a mix of the applications and larger data sizes.
5.5.1 Varying Degree of Concurrency

We compare SONIC to SAND and OpenLambda+S3 serv-
ing a mixture workload of our three applications, with equal
portions of invocations (jobs) per application. We use a cluster
of 52 VMs of type m5.large with 2 compute cores per VM.
We select SAND as it always prefers to keep data local, while
OpenLambda+S3 always uses Remote-Storage data passing.
OpenLambda+S3 is also the closest baseline to SONIC in
terms of performance (Fig. 7 and 8). We vary the level of
concurrent invocations from 15 (5 per app) to 60 (20 per app).
With 60 concurrent app invocations, the cluster executes a
total of 480 functions in parallel and all compute cores are
fully utilized (except for SAND). We show the Perf/$/job and
E2E runtime for every app in Figure 92. We notice that the

2We normalize by the number of jobs because naturally the total cost in-
creases with the number of jobs completed and the normalization brings out

gain of SONIC over both baselines is consistent across the dif-
ferent degrees of concurrency, which shows SONIC’s ability
to seamlessly scale with the number of concurrent invocations.
It is of course not surprising that the VM infrastructure scales
up — the question was would SONIC scale up as well. This
experiment answers that question in the affirmative (within
the scales of the experiment), for SONIC as well as for the two
baselines. This is expected from the design of SONIC where
most of its components are stateless and different instances are
spun up to handle more input jobs (Section 3.5). Since SAND
schedules the entire job to execute on a single VM, it cannot
utilize all the compute cores and hence suffers from very high
latency. In contrast, OpenLambda uses Remote-Storage pass-
ing between functions, which allows scheduling functions on
different VMs and utilizing the available compute resources.
SONIC’s hybrid approach achieves both lower E2E execu-
tion time along with high resource utilization, and therefore,
achieves better Perf/$ and raw latency than all baselines.
5.5.2 Varying Intermediate Data Size

In Fig. 12, we show the impact of changing the intermedi-
ate data size on SONIC’s performance vis-à-vis two baselines.
SONIC achieves lower E2E latency and higher Perf/$ across
all input sizes by predicting the corresponding DAG param-
eters and selecting the best co-location of lambdas and data
passing methods. Second, the normalized Perf/$ of SONIC
and OpenLambda+S3 increases with higher input sizes. The
reason is that the compute:data passing time ratio for this
application increases with higher input sizes. This, in turn,
is because the data passing time increases linearly with the
input size, whereas its computation time grows faster than
linear (PCA has quadratic compute complexity [65] and it
dominates the total computation time). Recall that the Oracle
assumes no data passing latency but it counts computation
time. Accordingly, the higher the compute:data passing time
ratio, the lower the gap between Oracle and the baselines
(except SAND that has no data passing component).

5.6 Microbenchmarks
Here we evaluate SONIC’s online training accuracy, sensitivity
to input content, prediction noise, and cold-start times.
5.6.1 Prediction Accuracy with Online Refinement

As discussed in Sec. 3.2, our solution profiles jobs to char-
acterize the relation between input size and the data passing
relevant parameters. This training phase is done online while
serving production jobs, and we use remote storage data pass-
ing (SONIC’s default) until convergence is achieved. We show
SONIC’s accuracy in prediction of execution parameters for
new input sizes across the three applications. First, we execute
the DAG of each application with jobs of varying input sizes
while we measure the DAG’s execution parameters (i.e., λ’s

the important trend that the metric is flat across the scales, implying perfect
scalability.

memory footprint, λ’s compute time, data volume on every
edge, and fanout degree in every stage). Next, we divide the
collected data into train and test sets. We fix the test set size
while we vary the number of jobs used for training to show
the reduction in error w.r.t. training with more jobs for every
application. In each training run, we generate the regression
models for all execution parameters in the DAG. For example,
PCA’s runtime regression estimated equation is: Y = 0.0024
X2 + 12.764, and PCA’s estimated memory equation is: Y =
16 X + 185.5, where X is the input size in MBs .

For Video Analytics, we collect 60 YouTube videos with
lengths that vary uniformly between 1 min and 1 hour and
belong to 5 different categories with equal representation
of each: News, Entertainment, Nature, Sports, and Cartoon.
We similarly execute the LightGBM and MapReduce Sort
applications with 60 jobs each. For LightGBM, we use the
MNIST database of handwritten digits [15]. The data has
60,000 training images and 10,000 test images. To execute the
DAG with varying input sizes, we sub-sample the training data
and vary the sampling rate between 5% and 100% uniformly.
For MapReduce Sort, we generate randomly shuffled data and
vary the size of the data between 3M records (255MB) and
12M records (1.5GB). We also vary the number of Mappers
and Reducers uniformly between 5 and 50.

Increasing the number of jobs used in training expectedly
reduces the prediction error for all applications. With 35 jobs
we reach convergence for all predictions with a low average
Mean Absolute Percentage Error (MAPE) ≤ 15% as shown
in Figures 10 for Video-Analytics. This low prediction error is
essential for SONIC to determine the best lambda placement
information and data passing decisions for new jobs with
new input sizes. Optionally, users can set a higher level of
acceptable error to reduce the number of training jobs.

We notice that Video Analytics incurs the highest predic-
tion error among the three applications. This is because our
collected videos vary significantly in their bitrate, which im-
pacts the relation between the input size and the video’s length.
Recall that SONIC is content-agnostic, it does not consider
any information that is dependent on the content of the data
when it makes its prediction. Although this negatively impacts
the prediction accuracy for content-dependent applications, it
allows SONIC to generalize to a wide range of applications
without the need for special processing for each type of ap-
plication. Furthermore, policies for public cloud providers
often prohibit any visibility into the client applications. We
evaluate SONIC’s sensitivity to input content in § 5.6.3.
5.6.2 SONIC’s Performance Improvement Root Causes

Here we highlight the root causes for SONIC’s improved
performance over baselines SAND and OpenLambda + S3.
We show an example DAG for LightGBM application along
with the data passing and lambda placement decisions made
by each approach in Figure 11. We also show SONIC’s se-
lected optimum Viterbi path in the table at the bottom. We run

0%
5%

10%
15%
20%
25%
30%
35%

5 15 25 35 45

M
ea

n
Ab

so
lu

te
 P

er
ce

nt
ag

e
Er

ro
r

(M
A

PE
)

Number of Profiled Jobs
Split_runtime Split_mem Split->Extract size
Extract_fanout Extract_runtime Extract_mem
Extract->Classify size Classify_runtime Classify_mem

Figure 10: Error in parameter estimation for Video Analytics application.
Convergence point is reached with e.g., 35 jobs. Split_mem,

Extract_mem, and Classify_mem represent memory footprints for Split,
Extract and Classify functions respectively. All parameters are predicted
using polynomial regression models, which take the application’s input

size in MBs as input.

Start

End

Long-Term Storage (S3)

PCA (𝑨)

Train
Model

(𝐁𝟏)

Train
Model
(𝑩𝑵)

..

..
Combine and Test (𝑪)

Long-Term Storage (S3)

Approach SONIC SAND OpenLambda + S3

Node A’s
placement 1 x m5.large 1 x m5.Xlarge 1 x m5.large

A-B data
passing

Direct-Passing
= 1.9 sec

Local-Passing
= 0.23 sec

Remote-Passing
= 8.3 sec

Node B’s
placement

3 x m5.large with
2 lambdas/VM 1 x m5.Xlarge 6 x m5.large with

1 lambda/VM

B-C data
passing

Direct-Passing
= 0.2 sec

Local-Passing
= 0.03 sec

Remote-Passing
= 0.23 sec

Node C’s
placement 1 x m5.large 1 x m5.Xlarge 1 x m5.large

E2E Latency 27.5 sec 71.4 sec 37.4 sec

E2E Cost 1K
runs ($) 1,196 1,877 1,797

PCA Train Combine

m
5.

l VM-Count = 1
Exec-Time = 9.4

Price (x1K) = $686

VM-Count = 3
Total Latency = 15.9 s

Price (x1K) = $480

VM-Count = 1
Total Latency = 2 s
Price (x1K) = $24

m
5.

xl VM-Count = 1
Exec-Time = 9.4

Price (x1K) = $1,370

VM-Count = 2
Total Latency = 15.2 s

Price (x1K) = $640

VM-Count = 1
Total Latency = 1.97 s

Price (x1K) = $48

m
5.

2x
l VM-Count = 1

Exec-Time = 9.4
Price (x1K) = $2,744

VM-Count = 1
Total Latency = 14.6 s

Price (x1K) = $840

VM-Count = 1
Total Latency = 1.96 s

Price (x1K) = $72

Direct
Passing

Direct
Passing

Figure 11: Example showing the benefits of SONIC over baselines. The
table at the bottom shows possible λ placements for each stage in the
LightGBM application and their corresponding latency and cost. We

highlight the best sequence of decisions that achieves the best Perf/$ for
the entire DAG.

the LightGBM application with a fanout degree of 6 and show
the E2E latency and Cost for all baselines. First, SAND lever-
ages data locality between all stages and hence uses the same
single VM of size m5.Xlarge for the entire application. This
causes the fanout stage (TrainModel) to experience serialized
execution as this single VM does not have enough resources
to execute all invocations in parallel and hence increases the
E2E latency to 71.4 sec. Compared to OpenLambda + S3,
we notice that passing data between PCA and TrainModel is
very slow with remote passing as it takes 8.3 sec. However, if
direct passing is used (as done by SONIC), the data passing
time becomes 1.9 sec only. We also notice that SONIC places
each pair of lambdas in one VM using a total of 3 VMs. This
makes direct passing faster as it only needs to transfer 3 copies
of the transformed training data. Recall that this application
has a broadcast fanout and all lambdas in TrainModel stage
get the same copy of PCA’s output file. In conclusion, with
SONIC’s optimized data passing and placement decisions, the

E2E latency is reduced by 27% over OpenLambda + S3 and
by 62 % over SAND, and the Cost is reduced by 33% over
OpenLambda + S3 and 36% over SAND.
5.6.3 Sensitivity to Input Content

SONIC uses only the input size information, as opposed
to content awareness, to predict DAG parameters for a new
job3. For example, for Video Analytics (Fig. 1) some of the
parameters like the intermediate data size are sensitive to the
video size (bytes), which depends on video bitrate specifica-
tion. We want to examine how SONIC’s performance would
be impacted on test videos different from training. In Fig. 13,
we show the performance gain for three variants of SONIC,
testing on a 396-sec video from the Sports category. First,
we train SONIC on 60 videos from the same Sports category,
which shows the best performance among the 3 variants. Sec-
ond, we show SONIC’s performance with training videos from
5 different categories (60 in all, split equally), which shows an
8% performance reduction vis-à-vis the first. The third variant
is trained with 60 videos from the News category, which has
a 25% lower bitrate than the Sports category on average. This
difference in categories causes a further performance reduc-
tion by 19% due to the error in predicting the fanout degree
(40%) and intermediate data size between the Split_Video
and Extract_Frame functions (21%). All three variants still
show a significant gain over SAND and OpenLambda base-
lines. As expected, the higher the difference in critical features
of the training and testing data (that can impact the DAG’s
parameters), the lower is SONIC’s performance. Critical fea-
tures are those that affect the compute time or the data passing
volume, e.g., video bitrate. One solution to this limitation is
to cluster the jobs based on the critical features and train a
separate prediction model for each cluster.
5.6.4 Tolerance to Prediction Noise

We examine SONIC’s sensitivity to prediction noise. We
use the MapReduce Sort application with 30 each of map
and reduce functions and apply varying levels of synthetic
noise to our memory footprint predictions. We show the im-
pacts of over-predicting (i.e., the predicted memory footprint
is higher than the actual), and under-predicting in Fig. 14. For
calibration, the natural error of SONIC in prediction of mem-
ory parameters is 7%. We draw several conclusions. First,
error levels of less than ±20% have little impact since with
low levels of noise, the (categorical) decisions by SONIC
for lambda-placement and data passing are unchanged. Sec-
ond, under-predicting (the bars with -ve errors) has lesser im-
pact on SONIC than over-predicting. Under-predicting causes
SONIC to allocate fewer VMs (1 VM per 3 lambdas in this ex-
periment) than without synthetic noise (1 VM per 2 lambdas).
This causes the execution of only two lambdas in parallel
while queuing the third lambda, increasing the job’s E2E exe-

3Although this hurts SONIC’s prediction accuracy for content-dependent
DAGs, it allows generalizing without application-specific processing. Fur-
ther, public cloud providers often are not allowed to look into client data.

cution time. On the other hand, over-estimation of the memory
causes SONIC to allocate more VMs than what the job actu-
ally needs (1 VM per lambda). The increase in latency with
under-prediction is partly compensated for by the reduction
in the $ cost, while with over-prediction, the increase in the $
cost dominates over the reduction in latency.

5.6.5 Varying Cold-Start Overheads

In this experiment, we evaluate the effect of varying
cold:hot execution times. We use a synthetic application
of one stage containing 10 parallel functions and vary the
function’s startup:steady state compute ratios. We compare
SONIC to two static baselines, SAND and OpenLambda+S3,
in Fig. 15. SAND always prefers data locality and hot execu-
tion over parallelism. We notice that this approach is benefi-
cial for lambdas that have a gap of 5× or more between cold
and hot execution times. However, this solution is counter-
productive when the gap between cold and hot executions
is lower, unnecessarily forcing lambdas to run sequentially.
The exact opposite happens with OpenLambda — it is com-
petitive with SONIC for cold to hot execution ratios of 2×
or less but suffers increasingly as the ratios become higher
as it always incurs cold-start costs. SONIC achieves close-to-
optimal performance across the entire range of cold-to-hot
execution ratios due to its ability to estimate the execution
times under cold and hot executions and to select the best
lambda placement and data passing approach dynamically.
In practice, we find that the ratio varies in the range [1,3.6]
(highest for Video Analytics’ Classify frame due to a heavy
NN model); prior work has shown that the ratio can be as high
as 9.6× (Figure 21 in [50]). We also evaluate SONIC with
varying fanout and ratios of compute time to total execution
time (=compute time+data passing time). SONIC’s gain over
OpenLambda is more significant at lower compute ratios as
data exchange dominates, while it is more significant over
SAND at higher fanouts (data locality hurts parallelism).

6 Related Work

Data-passing in serverless environments: We are not the
first to identify data-passing latency as a key challenge for
chained lambda execution [11,12,30,31,67]. Pocket [37] and
Locus [53] implement multi-tier remote storage solutions to
improve the performance and cost-efficiency of ephemeral
data sharing in serverless jobs. SONIC can leverage these
remote storage systems (e.g., we have evaluated SONIC with
Pocket) while automatically optimizing data-passing perfor-
mance with VM-Storage (as in SAND [2]) and Direct-Passing
methods, which minimize data copying. Pocket also requires
hints from the user about parameters of the DAG, which we
infer using our modeling approach.

Prior systems have shown that serverless functions can
communicate directly using NAT (network address transla-
tion) traversal techniques. ExCamera [22] uses a rendezvous
server and a fleet of long-lived ephemeral workers to enable

0
50
100
150
200
250

0%
20%
40%
60%
80%

100%

Sonic SAND Open-ƛ
+
S3

Sonic SAND Open-ƛ
+
S3

Sonic SAND Open-ƛ
+
S3

20K 30K 300K

Ti
m

e
(s

ec
)

N
or

m
al

iz
ed

 P
er

f/
$

Input Dataset Size (in Images)

LightGBM (Fanout=6)
Normalized Perf/$ E2E_Run_Time (sec)

18X 15X
5.5X

2X 2X
1.7X

Figure 12: Normalized Perf/$ of SONIC vs SAND and
OpenLambda+S3 with varying input sizes. We fix the
Fanout-degree=6 and change the number of images

used in training the Random-Forest model.

0
5
10
15
20
25
30
35

0

20

40

60

80

100

Sonic
Same
Cate-
gory

Sonic
All

Sonic
Unseen

Cate-
gory

Open-ƛ
+ S3

SAND Sonic
Zero

Error

Ti
m

e
(s

ec
)

Pe
rf

/$

Video Analytics: Content Sensitivity
Perf/$
E2E_Run_Time(sec)

-8% -11%

+206%

+61%
+19%

Figure 13: Effect of training SONIC on
YouTube video categories similar or dissimilar
to test. % over the bars represent the SONIC’s
(second bar from left) gain over that baseline.

0
20
40
60
80
100
120

0

0.3

0.6

0.9

1.2

S
o
n
ic

S
o
n
ic

-1
0
%

S
o
n
ic

-2
0
%

S
o
n
ic

-3
0
%

S
o
n
ic

+
1
0
%

S
o
n
ic

+
2
0
%

S
o
n
ic

+
3
0
%

S
o
n
ic

Z
e
r
o

Ti
m

e
(s

ec
)

Pe
rf

/$

Levels of Error

MapReduce Sort (Fanout=30): Varying Levels of Noise
Perf/$ E2E_Run_Time

-64% -64%

-24%-23% -35% -36% -29%

Figure 14: Impact of noise in SONIC’s memory
footprint predictions. Errors of less than ± 10%
have small effect and over-prediction has higher
effect than under-prediction. The values over the
bars are w.r.t. SONIC with zero error (rightmost).

0%
20%
40%
60%
80%

100%

1X 2X 4X 6X 8X 10X

N
or

m
al

iz
ed

 P
er

f/
$

Cold-to-Hot Execution Time Ratio

Simulated Application (Fanout=10)
Sonic SAND OpenLambda+S3

7.4X
3X

1.3X
1.6X

2.2X 2.8X

1.2X

Figure 15: Effect of varying ratios of cold to hot execution times on
SONIC, SAND, and OpenLambda+S3. Normalized Perf/$ is calculated by

dividing the Perf/$ by the max across the three techniques.

direct communication. However, it needs both endpoint lamb-
das to be executing at the time of the data transfer, which
SONIC does not. gg [21] is a framework for burst-parallel
applications that supports multiple intermediate data storage
engines, including direct communication between lambdas,
which users can choose from. In contrast, SONIC abstracts
and adaptively selects the optimal data-passing mechanism.

The need for processing state within serverless frameworks
is being increasingly recognized [9, 46, 53, 59], e.g., for fine-
grained state sharing or coordination among processes in
ML workflows. This trend will emphasize the importance of
efficient data passing among functions like SONIC provides.
Automated tuning systems of clusters configurations have
been proposed in [40–42]. However, these systems use black-
box machine learning optimization and rely on hundreds of
offline profiling runs to build accurate performance models.
Cloudburst proposes using a cache on each lambda-hosting
VM for fast retrieval of frequently accessed data in a remote
key-value store [61], adding a modicum of statefulness to
serverless workflows. SONIC does not cache data, but still
exploits data locality with its lambda placement.
Efficiency of serverless executions. There is flourishing
work to make serverless executions more efficient. One
strategy optimizes cold-start latencies, which will influence
SONIC’s function placement decisions as in § 5.6.5 (e.g.,
SOCK [50], SEUSS [10], and Firecracker [1].) Another strat-
egy optimizes in the isolation vs. agility spectrum (e.g., Fire-
cracker [1], MVE [16] (supporting hugely concurrent services
as in popular games), Spock [28], and Fifer [27] (hybrids of
serverless and other cloud technologies for microservices).
The data-passing selection in these works can benefit from
SONIC. Costless [17] optimizes lambda fusion and placement,
reducing the number of state transitions. This contribution is

orthogonal and beneficial to SONIC.
Cluster computing frameworks: Many distributed comput-
ing frameworks, such as Spark [66], Dryad [33], CIEL [48],
and Decima [43] use DAGs of jobs to schedule tasks. With
some engineering effort, SONIC can be used to support the
data passing on these DAGs. However, SONIC stays close to
the spirit of serverless in that it requires a minimal number of
user hints or configuration options.

7 Conclusion
Optimizing the cost and performance of analytics jobs on

serverless platforms requires minimizing the data passing la-
tency between chained lambdas. The optimal data passing
method depends on application-specific parameters, such as
the input data size and the degree of parallelism. We presented
SONIC, a system that jointly optimizes the inter-lambda data
exchange method and lambda placement. SONIC performs
online profiling to determine the relation between the ap-
plication’s input size and its DAG parameters. Afterward,
SONIC applies an online Viterbi algorithm, to globally mini-
mize the application’s end-to-end latency, normalized by cost.
SONIC achieves lower ($ cost-normalized) latency against
four competitive baselines for three popular serverless appli-
cations. Moreover, SONIC is able to adjust the best data pass-
ing method based on infrastructure changes such as network
bandwidth fluctuations. In ongoing work, we are designing
SONIC to handle conditional control flows in the application
DAG through content-aware prediction.

8 Acknowledgement
We thank our shepherd Mike Mesnier and all the re-

viewers for their insightful comments. This work is sup-
ported in part by NSF grants: 1919197, 2016704, NIH Grant
1R01AI123037, Lilly Endowment (Wabash Heartland Inno-
vation Network - WHIN), Amazon Research Awards (ARA),
and Adobe Research. This material was in part based upon
research supported by the U.S. Department of Energy, Office
of Science, Office of Biological and Environmental Research,
under contract DE-AC02-06CH11357. The funders had no
role in the design or execution of the work. Any opinions,
findings, and conclusions or recommendations expressed in
this paper are those of the authors and do not necessarily
reflect the views of the funding agencies.

References
[1] AGACHE, A., BROOKER, M., IORDACHE, A.,

LIGUORI, A., NEUGEBAUER, R., PIWONKA, P., AND
POPA, D.-M. Firecracker: Lightweight virtualization
for serverless applications. In 17th {USENIX} Sympo-
sium on Networked Systems Design and Implementation
({NSDI} 20) (2020), pp. 419–434.

[2] AKKUS, I. E., CHEN, R., RIMAC, I., STEIN, M.,
SATZKE, K., BECK, A., ADITYA, P., AND HILT, V.
Sand: Towards high-performance serverless comput-
ing. In 2018 USENIX Annual Technical Conference
(USENIX ATC) (2018), pp. 923–935.

[3] AMAZON. Aws lambda features. https://aws.amaz
on.com/lambda/features/, 2021.

[4] AMAZON. Aws step functions: Assemble functions into
business-critical applications. https://aws.amazon
.com/step-functions/, Last retrieved: Jan, 2021.

[5] AO, L., IZHIKEVICH, L., VOELKER, G. M., AND
PORTER, G. Sprocket: A serverless video processing
framework. In Proceedings of the ACM Symposium on
Cloud Computing (2018), pp. 263–274.

[6] AWS. Aws lambda faqs. https://aws.amazon.com
/lambda/faqs/, 2021.

[7] BAILIS, P., FEKETE, A., GHODSI, A., HELLERSTEIN,
J. M., AND STOICA, I. Scalable atomic visibility with
ramp transactions. ACM Transactions on Database
Systems (TODS) 41, 3 (2016), 1–45.

[8] BANKS, D. L., AND FIENBERG, S. E. Multivariate
statistics.

[9] BARCELONA-PONS, D., SÁNCHEZ-ARTIGAS, M.,
PARÍS, G., SUTRA, P., AND GARCÍA-LÓPEZ, P. On
the faas track: Building stateful distributed applications
with serverless architectures. In Proceedings of the 20th
International Middleware Conference (2019), pp. 41–
54.

[10] CADDEN, J., UNGER, T., AWAD, Y., DONG, H.,
KRIEGER, O., AND APPAVOO, J. Seuss: skip redun-
dant paths to make serverless fast. In Proceedings of the
Fifteenth European Conference on Computer Systems
(2020), pp. 1–15.

[11] CARREIRA, J., FONSECA, P., TUMANOV, A., ZHANG,
A., AND KATZ, R. A case for serverless machine learn-
ing. In Workshop on Systems for ML and Open Source
Software at NeurIPS (2018), vol. 2018.

[12] CARREIRA, J., FONSECA, P., TUMANOV, A., ZHANG,
A., AND KATZ, R. Cirrus: a serverless framework for
end-to-end ml workflows. In Proceedings of the ACM
Symposium on Cloud Computing (2019), pp. 13–24.

[13] CLOUDWATCH, A. Monitoring ec2 network utilization.
https://cloudonaut.io/monitoring-ec2-netwo
rk-utilization/, 2020.

[14] CORTEZ, E., BONDE, A., MUZIO, A., RUSSINOVICH,
M., FONTOURA, M., AND BIANCHINI, R. Resource
central: Understanding and predicting workloads for
improved resource management in large cloud platforms.
In Proceedings of the 26th Symposium on Operating
Systems Principles (2017), pp. 153–167.

[15] DENG, L. The mnist database of handwritten digit
images for machine learning research [best of the web].
IEEE Signal Processing Magazine 29, 6 (2012), 141–
142.

[16] DONKERVLIET, J., TRIVEDI, A., AND IOSUP, A. To-
wards supporting millions of users in modifiable virtual
environments by redesigning minecraft-like games as
serverless systems. In 12th {USENIX} Workshop on
Hot Topics in Cloud Computing (HotCloud 20) (2020).

[17] ELGAMAL, T. Costless: Optimizing cost of serverless
computing through function fusion and placement. In
2018 IEEE/ACM Symposium on Edge Computing (SEC)
(2018), IEEE, pp. 300–312.

[18] FORNEY, G. D. The viterbi algorithm. Proceedings of
the IEEE 61, 3 (1973), 268–278.

[19] FORNEY JR, G. D. The viterbi algorithm: A personal
history. arXiv preprint cs/0504020 (2005).

[20] FORUMS, A. How to set memory size of azure function?
https://social.msdn.microsoft.com/Forums/e
n-US/9a6e4728-d54a-488d-9007-5fdb80fc105e/
how-to-set-memory-size-of-azure-function?f
orum=AzureFunctions, 2018.

[21] FOULADI, S., ROMERO, F., ITER, D., LI, Q., CHAT-
TERJEE, S., KOZYRAKIS, C., ZAHARIA, M., AND
WINSTEIN, K. From laptop to lambda: Outsourcing
everyday jobs to thousands of transient functional con-
tainers. In 2019 USENIX Annual Technical Conference
(2019), pp. 475–488.

[22] FOULADI, S., WAHBY, R. S., SHACKLETT, B., BAL-
ASUBRAMANIAM, K. V., ZENG, W., BHALERAO, R.,
SIVARAMAN, A., PORTER, G., AND WINSTEIN, K.
Encoding, fast and slow: Low-latency video processing
using thousands of tiny threads. In 14th {USENIX}
Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 17) (2017), pp. 363–376.

[23] GHODSI, A., ZAHARIA, M., HINDMAN, B., KONWIN-
SKI, A., SHENKER, S., AND STOICA, I. Dominant
resource fairness: Fair allocation of multiple resource
types. In Nsdi (2011), vol. 11, pp. 24–24.

https://aws.amazon.com/lambda/features/
https://aws.amazon.com/lambda/features/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/lambda/faqs/
https://aws.amazon.com/lambda/faqs/
https://cloudonaut.io/monitoring-ec2-network-utilization/
https://cloudonaut.io/monitoring-ec2-network-utilization/
https://social.msdn.microsoft.com/Forums/en-US/9a6e4728-d54a-488d-9007-5fdb80fc105e/how-to-set-memory-size-of-azure-function?forum=AzureFunctions
https://social.msdn.microsoft.com/Forums/en-US/9a6e4728-d54a-488d-9007-5fdb80fc105e/how-to-set-memory-size-of-azure-function?forum=AzureFunctions
https://social.msdn.microsoft.com/Forums/en-US/9a6e4728-d54a-488d-9007-5fdb80fc105e/how-to-set-memory-size-of-azure-function?forum=AzureFunctions
https://social.msdn.microsoft.com/Forums/en-US/9a6e4728-d54a-488d-9007-5fdb80fc105e/how-to-set-memory-size-of-azure-function?forum=AzureFunctions

[24] GOOGLE. Cloud composer: A fully managed workflow
orchestration service built on apache airflow. https:
//cloud.google.com/composer, Last retrieved: Jan,
2021.

[25] GRANDL, R., KANDULA, S., RAO, S., AKELLA, A.,
AND KULKARNI, J. {GRAPHENE}: Packing and
dependency-aware scheduling for data-parallel clusters.
In 12th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 16) (2016), pp. 81–
97.

[26] GROTHER, P. J. Nist special database 19 handprinted
forms and characters database. National Institute of
Standards and Technology (1995).

[27] GUNASEKARAN, J. R., THINAKARAN, P., CHI-
DAMBARAM, N., KANDEMIR, M. T., AND DAS, C. R.
Fifer: Tackling underutilization in the serverless era.
arXiv preprint arXiv:2008.12819 (2020).

[28] GUNASEKARAN, J. R., THINAKARAN, P., KANDEMIR,
M. T., URGAONKAR, B., KESIDIS, G., AND DAS, C.
Spock: Exploiting serverless functions for slo and cost
aware resource procurement in public cloud. In 2019
IEEE 12th International Conference on Cloud Comput-
ing (CLOUD) (2019), IEEE, pp. 199–208.

[29] HADARY, O., MARSHALL, L., MENACHE, I., PAN, A.,
GREEFF, E. E., DION, D., DORMINEY, S., JOSHI, S.,
CHEN, Y., RUSSINOVICH, M., ET AL. Protean:{VM}
allocation service at scale. In 14th {USENIX} Sympo-
sium on Operating Systems Design and Implementation
({OSDI} 20) (2020), pp. 845–861.

[30] HELLERSTEIN, J. M., FALEIRO, J., GONZALEZ, J. E.,
SCHLEIER-SMITH, J., SREEKANTI, V., TUMANOV, A.,
AND WU, C. Serverless computing: One step for-
ward, two steps back. arXiv preprint arXiv:1812.03651
(2018).

[31] HENDRICKSON, S., STURDEVANT, S., HARTER, T.,
VENKATARAMANI, V., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. Serverless computation
with openlambda. In 8th {USENIX}Workshop on Hot
Topics in Cloud Computing (HotCloud 16) (2016).

[32] HSU, C.-J., NAIR, V., MENZIES, T., AND FREEH,
V. W. Scout: An experienced guide to find the best
cloud configuration. arXiv preprint arXiv:1803.01296
(2018).

[33] ISARD, M., BUDIU, M., YU, Y., BIRRELL, A., AND
FETTERLY, D. Dryad: Distributed data-parallel pro-
grams from sequential building blocks. In Proceedings
of the 2007 Eurosys Conference (March 2007), Associa-
tion for Computing Machinery, Inc.

[34] JONAS, E., SCHLEIER-SMITH, J., SREEKANTI, V.,
TSAI, C.-C., KHANDELWAL, A., PU, Q., SHANKAR,
V., CARREIRA, J., KRAUTH, K., YADWADKAR, N.,
ET AL. Cloud programming simplified: A berke-
ley view on serverless computing. arXiv preprint
arXiv:1902.03383 (2019).

[35] KIM, Y., AND LIN, J. Serverless data analytics with
flint. In 2018 IEEE 11th International Conference on
Cloud Computing (CLOUD) (2018), pp. 451–455.

[36] KLIMOVIC, A., WANG, Y., KOZYRAKIS, C., STUEDI,
P., PFEFFERLE, J., AND TRIVEDI, A. Understanding
ephemeral storage for serverless analytics. In 2018
USENIX Annual Technical Conference (USENIXATC
18) (2018), pp. 789–794.

[37] KLIMOVIC, A., WANG, Y., STUEDI, P., TRIVEDI, A.,
PFEFFERLE, J., AND KOZYRAKIS, C. Pocket: Elas-
tic ephemeral storage for serverless analytics. In 13th
{USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 18) (2018), pp. 427–444.

[38] LE, T. N., SUN, X., CHOWDHURY, M., AND LIU, Z.
Allox: compute allocation in hybrid clusters. In Proceed-
ings of the Fifteenth European Conference on Computer
Systems (2020), pp. 1–16.

[39] LIGHTGBM. Lightgbm’s documentation! https://li
ghtgbm.readthedocs.io/en/latest/index.html,
2021.

[40] MAHGOUB, A., MEDOFF, A. M., KUMAR, R., MI-
TRA, S., KLIMOVIC, A., CHATERJI, S., AND BAGCHI,
S. {OPTIMUSCLOUD}: Heterogeneous configuration
optimization for distributed databases in the cloud. In
USENIX Annual Technical Conference (USENIX ATC)
(2020), pp. 189–203.

[41] MAHGOUB, A., WOOD, P., GANESH, S., MITRA, S.,
GERLACH, W., HARRISON, T., MEYER, F., GRAMA,
A., BAGCHI, S., AND CHATERJI, S. Rafiki: a mid-
dleware for parameter tuning of nosql datastores for
dynamic metagenomics workloads. In Proceedings of
the 18th ACM/IFIP/USENIX Middleware Conference
(2017), pp. 28–40.

[42] MAHGOUB, A., WOOD, P., MEDOFF, A., MITRA,
S., MEYER, F., CHATERJI, S., AND BAGCHI, S.
{SOPHIA}: Online reconfiguration of clustered
nosql databases for time-varying workloads. In
2019 {USENIX} Annual Technical Conference
({USENIX}{ATC} 19) (2019), pp. 223–240.

[43] MAO, H., SCHWARZKOPF, M., VENKATAKRISHNAN,
S. B., MENG, Z., AND ALIZADEH, M. Learning
scheduling algorithms for data processing clusters. In

https://cloud.google.com/composer
https://cloud.google.com/composer
https://lightgbm.readthedocs.io/en/latest/index.html
https://lightgbm.readthedocs.io/en/latest/index.html

Proceedings of the ACM SIGCOMM (2019), ACM,
pp. 270–288.

[44] MARANDI, P. J., PRIMI, M., AND PEDONE, F. High
performance state-machine replication. In 2011
IEEE/IFIP 41st International Conference on Depend-
able Systems & Networks (DSN) (2011), IEEE, pp. 454–
465.

[45] MICROSOFT. Azure durable functions overview. https:
//docs.microsoft.com/en-us/azure/azure-fun
ctions/durable/, Last retrieved: Jan, 2021.

[46] MORITZ, P., NISHIHARA, R., WANG, S., TUMANOV,
A., LIAW, R., LIANG, E., ELIBOL, M., YANG, Z.,
PAUL, W., JORDAN, M. I., ET AL. Ray: A distributed
framework for emerging {AI} applications. In 13th
{USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 18) (2018), pp. 561–577.

[47] MÜLLER, I., MARROQUÍN, R., AND ALONSO, G. Lam-
bada: Interactive data analytics on cold data using server-
less cloud infrastructure. In Proceedings of the 2020
ACM SIGMOD International Conference on Manage-
ment of Data (2020), pp. 115–130.

[48] MURRAY, D. G., SCHWARZKOPF, M., SMOWTON, C.,
SMITH, S., MADHAVAPEDDY, A., AND HAND, S. Ciel:
A universal execution engine for distributed data-flow
computing. In Proceedings of the 8th USENIX Confer-
ence on Networked Systems Design and Implementation
(2011), NSDI’11, p. 113–126.

[49] MXNET. Using pre-trained deep learning models in
mxnet. https://mxnet.apache.org/api/python/
docs/tutorials/packages/gluon/image/pretra
ined_models.html, 2021.

[50] OAKES, E., YANG, L., ZHOU, D., HOUCK, K.,
HARTER, T., ARPACI-DUSSEAU, A., AND ARPACI-
DUSSEAU, R. {SOCK}: Rapid task provisioning with
serverless-optimized containers. In 2018 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 18)
(2018), pp. 57–70.

[51] OPENLAMBDA. An open source serverless computing
platform. https://github.com/open-lambda/ope
n-lambda, 2021.

[52] PERRON, M., CASTRO FERNANDEZ, R., DEWITT, D.,
AND MADDEN, S. Starling: A scalable query engine on
cloud functions. In SIGMOD (2020).

[53] PU, Q., VENKATARAMAN, S., AND STOICA, I. Shuf-
fling, fast and slow: scalable analytics on serverless in-
frastructure. In 16th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI}
19) (2019), pp. 193–206.

[54] RAUPACH, B. Choosing the right amount of memory for
your aws lambda function. https://medium.com/@r
aupach/choosing-the-right-amount-of-memory
-for-your-aws-lambda-function-99615ddf75dd,
2018.

[55] RAUSCH, T., HUMMER, W., MUTHUSAMY, V.,
RASHED, A., AND DUSTDAR, S. Towards a serverless
platform for edge {AI}. In 2nd {USENIX} Workshop
on Hot Topics in Edge Computing (HotEdge 19) (2019).

[56] RIBEIRO, V. J., RIEDI, R. H., BARANIUK, R. G.,
NAVRATIL, J., AND COTTRELL, L. pathchirp: Effi-
cient available bandwidth estimation for network paths.
In Passive and active measurement workshop (2003).

[57] RIBENZAFT, R. How to make aws lambda faster:
Memory performance. https://epsagon.com/obse
rvability/how-to-make-aws-lambda-faster-me
mory-performance/, 2018.

[58] SHAHRAD, M., FONSECA, R., GOIRI, I., CHAUDHRY,
G., BATUM, P., COOKE, J., LAUREANO, E., TRES-
NESS, C., RUSSINOVICH, M., AND BIANCHINI, R.
Serverless in the wild: Characterizing and optimizing
the serverless workload at a large cloud provider. In
2020 USENIX Annual Technical Conference (USENIX
ATC 20) (July 2020), USENIX Association, pp. 205–
218.

[59] SHANKAR, V., KRAUTH, K., PU, Q., JONAS, E.,
VENKATARAMAN, S., STOICA, I., RECHT, B., AND
RAGAN-KELLEY, J. Numpywren: Serverless linear al-
gebra. In ACM Symposium on Cloud Computing (SoCC)
(2020), pp. 1–14.

[60] SREEKANTI, V., WU, C., CHHATRAPATI, S., GONZA-
LEZ, J. E., HELLERSTEIN, J. M., AND FALEIRO, J. M.
A fault-tolerance shim for serverless computing. In
Proceedings of the Fifteenth European Conference on
Computer Systems (2020), pp. 1–15.

[61] SREEKANTI, V., WU, C., LIN, X. C., SCHLEIER-
SMITH, J., FALEIRO, J. M., GONZALEZ, J. E.,
HELLERSTEIN, J. M., AND TUMANOV, A. Cloudburst:
Stateful functions-as-a-service. https://arxiv.org/
pdf/2001.04592.pdf, 2020.

[62] TOOTAGHAJ, D. Z., FARHAT, F., ARJOMAND, M.,
FARABOSCHI, P., KANDEMIR, M. T., SIVASUBRAMA-
NIAM, A., AND DAS, C. R. Evaluating the combined
impact of node architecture and cloud workload char-
acteristics on network traffic and performance/cost. In
2015 IEEE International Symposium on Workload Char-
acterization (2015), IEEE, pp. 203–212.

https://docs.microsoft.com/en-us/azure/azure-functions/durable/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/
https://mxnet.apache.org/api/python/docs/tutorials/packages/gluon/image/pretrained_models.html
https://mxnet.apache.org/api/python/docs/tutorials/packages/gluon/image/pretrained_models.html
https://mxnet.apache.org/api/python/docs/tutorials/packages/gluon/image/pretrained_models.html
https://github.com/open-lambda/open-lambda
https://github.com/open-lambda/open-lambda
https://medium.com/@raupach/choosing-the-right-amount-of-memory-for-your-aws-lambda-function-99615ddf75dd
https://medium.com/@raupach/choosing-the-right-amount-of-memory-for-your-aws-lambda-function-99615ddf75dd
https://medium.com/@raupach/choosing-the-right-amount-of-memory-for-your-aws-lambda-function-99615ddf75dd
https://epsagon.com/observability/how-to-make-aws-lambda-faster-memory-performance/
https://epsagon.com/observability/how-to-make-aws-lambda-faster-memory-performance/
https://epsagon.com/observability/how-to-make-aws-lambda-faster-memory-performance/
https://arxiv.org/pdf/2001.04592.pdf
https://arxiv.org/pdf/2001.04592.pdf

[63] WANG, H., LEE, K. S., LI, E., LIM, C. L., TANG, A.,
AND WEATHERSPOON, H. Timing is everything: Accu-
rate, minimum overhead, available bandwidth estimation
in high-speed wired networks. In Proceedings of the
2014 Conference on Internet Measurement Conference
(2014), pp. 407–420.

[64] XU, R., ZHANG, C.-L., WANG, P., LEE, J., MITRA,
S., CHATERJI, S., LI, Y., AND BAGCHI, S. Approx-
det: content and contention-aware approximate object
detection for mobiles. In Proceedings of the 18th Con-
ference on Embedded Networked Sensor Systems (2020),
pp. 449–462.

[65] YI, X., PARK, D., CHEN, Y., AND CARAMANIS, C.
Fast algorithms for robust pca via gradient descent.
In Advances in neural information processing systems
(2016), pp. 4152–4160.

[66] ZAHARIA, M., CHOWDHURY, M., FRANKLIN, M. J.,
SHENKER, S., STOICA, I., ET AL. Spark: Cluster com-
puting with working sets. HotCloud 10, 10-10 (2010).

[67] ZHANG, T., XIE, D., LI, F., AND STUTSMAN, R. Nar-
rowing the gap between serverless and its state with
storage functions. In Proceedings of the ACM Sympo-
sium on Cloud Computing (2019), pp. 1–12.

	Introduction
	Rationale and Overview
	data passing Methods
	Dynamic Data Passing Method Selection

	Design
	Usage Model
	Online Profiling and Model Training
	Minimizing End-to-End Execution Time
	Online VM and Data Passing Selection
	Further Design Considerations

	Implementation
	Evaluation
	Performance Metrics
	Baselines and Methodology
	Applications
	End-to-End Evaluation
	Scalability
	Varying Degree of Concurrency
	Varying Intermediate Data Size

	Microbenchmarks
	Prediction Accuracy with Online Refinement
	Sonic's Performance Improvement Root Causes
	Sensitivity to Input Content
	Tolerance to Prediction Noise
	Varying Cold-Start Overheads

	Related Work
	Conclusion
	Acknowledgement

