
Stabilizing Neural Control Using Self-Learned Almost Lyapunov Critics

Ya-Chien Chang Sicun Gao

Abstract— The lack of stability guarantee restricts the prac-
tical use of learning-based methods in core control problems in
robotics. We develop new methods for learning neural control
policies and neural Lyapunov critic functions in the model-
free reinforcement learning (RL) setting. We use sample-based
approaches and the Almost Lyapunov function conditions to
estimate the region of attraction and invariance properties
through the learned Lyapunov critic functions. The methods
enhance stability of neural controllers for various nonlinear
systems including automobile and quadrotor control.

I. INTRODUCTION

Ensuring stability of neural control policies is critical

for the practical use of learning-based methods for control

design in robotics. There has been exciting progress to-

wards introducing control-theoretic approaches for enhancing

stability in reinforcement learning and imitation learning,

such as using Lyapunov methods [1]–[8], control barrier

functions [9]–[11], or control-theoretic regularization [12]–

[14]. However, three major questions are still open. First,

while giving direct control-theoretic prior or guidance can

improve performance, to what extent can a learning agent

self-supervise to achieve certifiable stability? Second, stability

requirements should be inherent to a system and not affected

by the choice of reward functions, which often do not focus

on stability. Can we achieve stability without restricting the

flexibility of reward engineering in reinforcement learning?

Third, the typical formulation of stability in learning is in

the form of reducing expected violation of certain constraints

asymptotically, which does not easily translate to certifiable

behaviors when the learned policies are practically deployed.

Is it possible to obtain stronger stability claims in the standard

control-theoretic sense, such as for estimating region of

attraction and forward invariance properties? Our goal is

to positively answer these questions to improve the reliability

and usability of learning-based methods for practical control

problems in robotics.

We propose new methods for incorporating Lyapunov

methods in deep reinforcement learning. We design a model-

free policy optimization process in which the agent attempts to

formulate a Lyapunov-like function through self-supervision,

in the form of a special critic function that is then used for

improving stability of the learned policy, without using or

being affected by the environment reward. Our work follows

the framework of actor-critic Lyapunov methods recently

proposed in [5] and extends it in the following ways. We

This material is based upon work supported by the United States Air Force and

DARPA under Contract No. FA8750-18-C-0092, AFOSR YIP FA9550-19-1-0041, NSF

Career CCF 2047034, and NSF NRI 1830399.

Y.-C. Chang, S. Gao are with the Department of Computer Science and Engineering,

UC San Diego, USA. (Email: yac021@eng.ucsd.edu; sicung@eng.ucsd.edu).

allow the agent to self-learn the Lyapunov critic function

by minimizing the Lyapunov risk [7] over its experience

buffer without accessing the rewards. This Lyapunov critic

function is represented as a generic feed-forward neural

network, randomly initialized. This design differs from the

typical choice of using a positive definite neural network to

construct the Lyapunov candidate, to capture values learned

from appropriately designed cost functions that only reflect

stability objectives, as in [5], [15]. The lack of restriction

and guidance turns out to be beneficial. In our approach,

the learning agent can formulate Lyapunov landscapes that

better enforce stability, compared to existing methods. In

fact, this form of self-learned Lyapunov candidate can often

be shown to satisfy the Almost Lyapunov conditions [16],

which allows us to use sample-based analysis to estimate its

region of attraction and forward invariance properties. We

show that the new design is important for learning certifiably

stable control policies for practical control problems such as

automobile path-tracking and quadrotor control.

Our work builds on the recent progress of model-free

and sample-based Lyapunov methods [5], [15]–[17]. Such

methods allow us to use sampled Lie derivatives of candidate

Lyapunov functions to estimate stability properties of neural

control policies without using analytic forms of the system

dynamics. We exploit the expressiveness of neural networks

for capturing Lyapunov landscapes that are too complex for

conventional choices such as sum-of-squares polynomials. We

believe the proposed methods further advance the promising

direction of developing rigorous neural control and certifica-

tion methods in reinforcement learning.

In all, we make the following contributions. We propose

new methods for training neural Lyapunov critic functions

(Section IV.A) and use it to improve stability properties of

neural control policies (Section IV.B) in a model-free policy

optimization setting. We show that the learned Lyapunov

critic function can be analyzed through sample-based methods

based on the Almost Lyapunov conditions, for estimating

its region of attraction and invariance properties (Section

IV.C). We demonstrate the benefits of the proposed methods

in comparison with standard policy optimization and existing

Lyapunov-based actor-critic methods (Section V).

II. RELATED WORK

Besides the most closely related work [5] discussed above,

our work is connected to various recent progress in safe

reinforcement learning, Lyapunov methods in reinforcement

learning, and data-driven methods for the analysis of control

and dynamical systems. Safe reinforcement learning is now a

large and active field [18], [19] focusing on learning with var-

ious forms of soft or hard safety constraints, often formulated

as Constrained Markov Decision Processes (CMDP) [20].

Lyapunov methods have seen various applications in this

context. It was first introduced in RL by the work of [2], which

uses predefined controllers and Lyapunov-based methods for

learning a switching policy with safety and performance

guarantees. [1] proposed a model-based RL framework that

uses Lyapunov functions to guide safe exploration and

uses Gaussian Process models of the dynamics to obtain

high-performance control policies with provable stability

certificates. [3] developed methods for constructing Lyapunov

function in the tabular setting that can guarantee global safety

of a behavior policy during training. The approach is extended

to policy optimization for the continuous control setting in

[4], showing benefits in various high-dimensional control

tasks. The work in [6] formulates the state-action value

function for safety costs as candidate Lyapunov functions and

model its derivative with Gaussian Processes with statistical

guarantees on the control performance. Similarly in [5],

candidate Lyapunov functions are constructed from value

functions with benefit in stabilizing the control performance.

In the work of [7], [15], neural networks are used to learn

Lyapunov functions for establishing certificates for stability

and safety properties.

Many other control-theoretic methods have also been

proposed to improve reinforcement learning [8]–[14]. These

methods typically involve introducing strong control-theoretic

priors, or use the neural policies as an oracle to extract low-

variance policies in simpler hypothesis classes. For instance,

the work in [9] uses control barrier functions to ensure

safety of learned control policies. The work in [12] proves

stability properties throughout learning by taking advantage

of the robustness of control-theoretic priors. Our goal is to

turn control-theoretic methods into general self-supervision

methods for enhancing stability.

III. PRELIMINARIES

Definition 1 (Dynamical Systems). An n-dimensional con-

trolled dynamical system is defined by

ẋ(t) = f (x(t),u(t)), u(t) = g(x(t)), x(0) = x0, (1)

where f : D → R
n is a Lipschitz-continuous vector field,

g : D→ R
m is a control function, and D⊆ R

n with 0,x0 ∈ D

defines the state space of the system. Each x(t) ∈D is called

a state vector and u(t) ∈ R
m is a control vector.

Definition 2 (Stability). We say that the system of (1) is

stable at the origin if for any ε ∈R
+, there exists δ (ε) ∈R

+

such that if ‖x(0)‖ < δ then ‖x(t)‖ < ε for all t ≥ 0. The

system is asymptotically stable at the origin if it is stable and

also limt→∞ x(t) = 0 for all ‖x(0)‖< δ .

Definition 3 (Lie Derivatives). Consider the system in (1)

and let V : D→ R be a continuously differentiable function.

The Lie derivative of V over f is defined as

L fV (x) =
n

∑
i=1

∂V

∂xi

dxi

dt
=

n

∑
i=1

∂V

∂xi

ẋi(t). (2)

It measures the rate of change of V over time along the

direction of the system dynamics of x(t).

Definition 4 (Lyapunov Conditions for Asymptotic Stability).

Consider a controlled system (1) with an equilibrium at the

origin, i.e., ∃ u ∈ R
m s.t. f (0,u) = 0. Suppose there exists

a continuously differentiable function V : D→ R satisfying

V (0) = 0, and ∀x∈D\{0},V (x)> 0, and L fV (x)< 0. Then

V is a Lyapunov function. The system f is asymptotically

stable at the origin if such Lyapunov function V can be found.

The recent work [16] proposed an approximate notion of

Lyapunov methods named Almost Lyapunov functions, which

allows the Lyapunov conditions to be violated in restricted

subsets of the space while still ensuring stability properties.

It is the basis of our sample-based approach for validating

learned Lyapunov candidates. We will discuss this notion and

our approach in detail in Section IV.C.

We will use the standard notations for reinforcement

learning in Markov Decision Processes (MDP) with state

space S, action space A and transition model P : S×S×A→
[0,1]. A reward function defines the reward for taking

action a in state s and transitioning into s′. Let πφ denote

a stochastic policy parameterized by φ . The goal of the

learning agent is to maximize the expected γ-discounted

cumulative return J(φ) = Es0,a0,... [∑
∞
t=0 γ tr(st ,at ,st+1)]. Pol-

icy optimization methods [21]–[24] estimate policy gradient

and use stochastic gradient ascent to directly improve policy

performance. A standard gradient estimator is

ĝ = Êt

[

∇φ logπφ (at |st)Ât

]

, (3)

where πφ is a stochastic policy and Ât estimates the advantage

that represents the difference between the Q value of an action

compared with the expected value of a state, to indicate

whether an action should be taken more frequently in the

future. The gradient steps will move the distribution over

actions in the right direction accordingly. The expectation

Êt [. . .] is estimated by the empirical average over finite batch

of samples. The proximal policy optimization algorithm (PPO)

[25] applies clipping to the objective function to remove

incentives for the policy to change dramatically, using:

JCLIP(φ) = Êt

[

min
(

rt(φ)Ât ,clip(rt(φ),1− ε,1+ ε)Ât

)]

,
(4)

where rt(φ) = πφ (at |st)/πold(at |st) and ε is a hyperparameter.

The clipping ensures the gradient steps do not overshoot in

the policy parameter space in each policy update.

IV. POLICY OPTIMIZATION WITH LYAPUNOV CRITICS

We now describe how to use self-learned candidate

Lyapunov functions to improve stability of neural control

policies. We will name these candidate Lyapunov functions as

Lyapunov critics, following [5]. We will first describe how to

learn Lyapunov critics through sampled trajectories, and then

how to integrate this critic values in advantage estimation

for policy optimization. We describe how sampling-based

certification of stability using Lyapunov critics, following the

framework of Almost Lyapunov functions. The full procedure

is as shown in Algorithm 1. The overall loop is close to

standard PPO [25], [26] with only additional steps at Line

11-12, for learning the Lyapunov critic, and Line 17, for

policy optimization guided by the new critic. We will explain

these steps in the following sections.

Algorithm 1 Policy Optimization with Self-Learned Almost

Lyapunov Critics (POLYC)

1: Initialize policy (actor) network πφ and the reward value

function network V r
η

2: Initialize Lyapunov function network Vθ randomly

3: Initialize replay buffer B as empty set

4: for episodes = 1, . . . ,K do

5: for t = 1, . . . ,T do
6: Sample at ∼ πφ (at |st)
7: Sample st+1 ∼ P(st +1|st ,at)
8: B← B∪ (st ,at ,rt ,st+1)
9: end for

10: Sample mini-batches of size N from B
11: Compute Lyapunov risk R f ,N,ρ,∆t(θ) under πφnew

12: θ ← θ −αθ ∇θ R f ,N,ρ,∆t(θ)
13: for each policy optimization step do
14: Sample mini-batches of transitions from B
15: δt ← rt + γV r

η (st+1)−V r
η (st) ⊲ cf. [26]

16: Â(st ,at)← δt + γδt+1 + · · ·+ γT−t+1δT−1

17: ÂL
β ← β min(0,−L fπφ

,∆tVθ (st))+(1−β)Â(st ,at)

18: r(φ)← πφnew
(a|s)/πφ (a|s)

19: JCLIP(φ ,β)← Ê

[

min
(

r(φ)ÂL
β ,clip(r(φ),1− ε,1+ ε)ÂL

β

)]

20: φ ← φ +αφ ∇φ JCLIP(φ ,β)
21: η ← η−αη ∇η Ê[(V

r
η (st)−G(st))

2] ⊲ G(st) = ∑
∞
k=0 γkrt+k

22: end for

23: end for

A. Self-Learning Lyapunov Critics

We represent candidate Lyapunov functions using neural

networks, draw samples of the system states, and use gradient

descent to learn network parameters that maximize the

satisfaction of the Lyapunov conditions in Definition 4.

Following [7], such learning can be achieved by minimizing

the following loss function named as the Lyapunov risk:

Definition 5 (Empirical Lyapunov Risk [7]). Consider dy-
namical system f with domain D. Let Vθ : D→ R be a
continuously differentiable function parameterized by θ . The
empirical Lyapunov risk of Vθ over f with a sampling
distribution ρ(D), written as R f ,N,ρ (θ), is defined as:

1

N

N

∑
i=1

(

max(−Vθ (si),0)+max(0,L f Vθ (si))

)

+V 2
θ (0) (5)

where s1, ...,sN are states sampled according to the sampling

distribution ρ . The empirical Lyapunov risk is nonnegative,

and when Vθ is a true Lyapunov function for f , this empirical

risk attains its global minimum R f ,N,ρ (θ) = 0, regardless of

the choice of the sample size N and distribution ρ .

In this original formulation, evaluating the Lyapunov risk

requires the full knowledge of the system dynamics f for

computing L fV . Our current setting is different. The learning

agent does not know the system dynamics f and can only

approximate the Lie derivative L fV along sampled trajectories

of the system, through finite differences:

L f ,∆tV (s) =
1

∆t

(

V (s′)−V (s)
)

, (6)

where s and s′ are two consecutive states and ∆t is the time

difference between them and lim∆t→0L f ,∆tV (s) = L fV (s). We

define the corresponding discretized Lyapunov risk objective

R f ,N,ρ,∆t where the only change from (5) above is that the

Lie derivative L fVθ (s) is replaced by the sampled estimate

L f ,∆tV (s) for all states.

At each iteration of the policy update (the main loop from

Line 4 to 23 in Algorithm 1), we collect trajectories of samples

from the controlled system fπ , and perform stochastic gradient

descent to minimize the discretized Lyapunov risk R f ,N,ρ,∆t(θ)
to learn the Lyapunov critic function Vθ (Line 11-12). Note

that the dependency of the dynamics f on the behavior policy

πφ is important. When the policy is updated, the controlled

system changes its dynamics, and the candidate Lyapunov

function should be learned correspondingly. Thus, we need to

be able to sample from the buffer of previous trajectories, and

estimate their Lie derivative values using the new policies

(Line 10-11). This dependency makes our approach inherently

on-policy in the current formulation, in the sense that the

critic is always learned from the behavior policy πφ and thus

not very sample-efficient. Off-policy learning of the Lyapunov

critic is possible through importance sampling and keeping

track of the policy and Lyapunov critic updates, which is a

promising direction that we leave open.

B. Stabilization via Policy Optimization

Once the Lyapunov critic is formulated, we use the learned

candidate Lyapunov functions as an additional critic value

for policy optimization. For a temporarily fixed candidate

Lyapunov function Vθ , the only term in the Lyapunov risk that

is affected by policy change is the Lie derivative term L f ,∆tVθ .

Thus, in policy optimization we now impose the additional

goal of ensuring L f ,∆tV (θ)< 0 to encourage the policy update

to improve the Lyapunov landscape for stabilization. We

combine the standard advantage estimate Â(st ,at) [25] and a

clipped Lie derivative term in each policy optimization step:

ÂL
β (st ,at) = (1−β)Â(st ,at)+β min(0,−L fπφ

,∆tV (st)) (7)

where β ∈ [0,1] balances the weights. With policy gradient

methods on this advantage estimate, the second term penalizes

actions that produce a positive Lie derivative which makes

min(0,−L fπφ
,∆tV (st))< 0. When the Lie derivative is nega-

tive, it does not bias the advantage estimate. We emphasize

that although the Lie derivative term is dependent on πφ , it

does not have a functional form but only accessed through

sampled values based on Equation (6). The true dynamics of

the system remains unknown to the learner.

With the definition of the advantage with Lyapunov critic in

(7), we can easily replace the standard advantage estimators in

various on-policy algorithms. For instance, the standard policy

gradient estimator becomes Eπφ
[∇φ logπφ (at |st)Â

t
β (st ,at)]. In

Algorithm 1 we use the PPO version [25] of policy update

(Line 19-20), which is what we use in the experiments.

Optionally, we can update the β parameter as a Lagrange

multiplier, by also taking gradient steps on β at some learning

rate α using β ← β−αE[L fπφ
,∆tV (s)], clipped between [1,0].

We have not observed much performance difference in doing

so, and have excluded this step in Algorithm 1 for simplicity.

C. Validating Almost Lyapunov Conditions

A major benefit of the proposed approach is that the self-

learned Lyapunov critic allows us to estimate the region of

attraction of the controlled system when learning is successful.

Since we do not have access to the dynamics of the system

and can only estimate the Lyapunov risk at sampled states,

we can not expect to certify that the learned Lyapunov critic

functions are true Lyapunov functions in the standard sense.

However, recent progress in relaxed conditions for Lyapunov

methods enabled the use of sample-based analysis to find

region of stability. In particular, the Lyapunov critic functions

can be analyzed through sampling using the Almost Lyapunov

conditions [16] defined as follows:

Proposition 1 (Almost Lyapunov Conditions [16]). Consider

a dynamical system in (1) defined by f with domain D⊆ R
n

and a continuously differentiable positive definite function V :

D→ [0,∞). Let c1,c2 > 0 be two constants and define B as the

region between two sublevel sets B= {x∈D : c1≤V (x)≤ c2}
for V . Let Ω⊆B be a measurable set. Suppose for some a> 0,

maxx∈BL fV (x)< aminx∈B V , and ∀x ∈Ω,L fV (x)≥−aV (x)
and ∀x ∈ Ω \B,L fV (x) < −aV (x). Then there exists ε̂ > 0

such that for any ε ∈ (0, ε̂), if the volume of each connected

component Ω∗ of Ω satisfies vol(Ω∗)≤ ε , then there exists

T > 0 such that for any x0 ∈ D with V (x0)< c2− r(ε), x(t)
stays within B for all t > 0 and moreover, it converges to

the sublevel set V (x)≤ c1 + r(ε) for any t > T . Here r(ε) =
hε1/n +gε for some constants h and g.

The full proof is in [16] where all constants are explicitly

constructed. Conceptually, the theorem relaxes the standard

Lyapunov conditions to allow a set Ω that contains the

violation states where the Lie derivative can be positive

(∀x ∈Ω,L fV (x)≥−aV (x)). As long as each component of

Ω is small enough (with volume less than ε), the violations

do not affect stability. Under mild conditions, the appropriate

region between sublevel sets of the system (written as B in the

definition) defines a forward invariant set for all trajectories,

and an approximate form of contraction where the trajectory

converges to near the lower level set of the region B.

With the Almost Lyapunov conditions, we can use an ε-net

over the space, chosen based on the Lipschitz constant of

the Lie derivative, such that using sampled L f ,∆tV value at

the center of each cell we can identify the set Ω of states

where the Lie derivatives violate the standard conditions. In

Figure 1, we show the results of such computation to compare

four different types of candidate Lyapunov functions for the

inverted pendulum controlled by neural network policies.

Each plot visualizes the sign of the Lie derivative of the

proposed Lyapunov candidate at uniformly sampled points

over the θ/θ̇ space. The grey dots represent cells where

the candidate Lyapunov function has negative Lie derivative

values (L fV <−aV (x) as required in Proposition 1), and the

red dots indicate cells that violate such condition. The value

of the Lyapunov candidate itself can be shown to be always

nonnegative in the domain in all four cases, and the black

contours represent the level sets of increasingly positive values.

The red dots indicate states where the standard Lyapunov

conditions are violated, and the patterns are different.

Fig. 1. The landscapes of four different Lyapunov candidates for the
inverted pendulum controlled by neural network policies.

• Figure 1(a) shows the self-learned Lyapunov critic ob-

tained after learning the neural control policy using Algorithm

1. We see that we can find a sublevel set of the Lyapunov

critic (inside the blue circle) where the Lie derivative is

positive only at a very small number of sparse regions (a few

red dots near the center). This landscape satisfies the Almost

Lyapunov conditions and the sublevel set defines forward

invariant set with attraction (Proposition 1).

• Figure 1(b) shows the landscape generated by the

Lyapunov actor-critic method (LAC) [5]. We see that the

Lyapunov conditions are satisfied more globally, although

with more violations closer to the origin. The function can

also be established as an Almost Lyapunov function where

the violation is sparse, which does not include the innermost

sublevel set. The level sets is also much larger than those in

(a), making it harder to find sublevel sets that are forward

invariant. On the other hand, as shown later in the next section,

the learned controller does always stabilize the system in all

sampled trajectories. This indicates that there may exist better

Lyapunov candidates for certifying the stability.

• Figure 1(c) shows the Lyapunov candidate fit for the

control policy learned by standard PPO. We see that much

more violation states are observed and it does not allow us

to find a region where Almost Lyapunov Conditions can

be validated. This indicates that the lack of Lyapunov critic

makes it hard to enforce stability properties.

• Figure 1(d) uses the quadratic Lyapunov function for

the linearized inverted pendulum obtained through LQR

directly as a Lyapunov candidate for the neural controller

trained by Algorithm 1, same as the one used in (a). We

see that the simple Lyapunov function does not satisfy the

Fig. 5. Experiments for automobile path tracking. (a) All methods learn to control well in the training environment. (b) 3D and 2D
landscape generated by the learned Lyapunov function from LY. Almost Lyapunov conditions are validated within the blue level set. (c)
Landscape generated by the learned Lyapunov critic from LAC. Second row: the control performance when tracking an unseen path (the
red curve). The blue curves indicate the trajectory of the vehicle, starting from the left and going towards the right.

Fig. 6. Control performance in the Walker and Hopper environments and learning curves over 5 random seeds. Our method typically learn
faster than PPO, and comparable to SAC. All methods can achieve high rewards, but the learned control behaviors are different.

in LAC does not create a landscape that enforces a region of

attraction in the sense of Almost Lyapunov conditions.

Mujoco Walker and Hopper. Walker and Hopper are

standard high-dimensional locomotion environment. For both

the goal is move forward as fast as possible and not

stabilization. The LAC method requires using cost functions

for stabilization objectives only, and thus does not work in

these environments. We can learn Lyapunov critics that are

independent from the reward, just focusing on stabilizing

the joint angles to hold the upright positions. As shown

in Fig 6, the LY controller maintains better pose and gaits

compared to SAC and PPO. The learning curves show that

LY does not slow down learning, and can be used in generic

high-dimensional control tasks to improve performance.

VI. CONCLUSION

We proposed new methods for training stable neural

control policies using Lyapunov critic functions. We showed

that the learned Lyapunov critics can be used to estimate

regions of attraction for the controllers based on Almost

Lyapunov conditions. We demonstrated the benefits of the

proposed methods in various nonlinear control problems.

Future work includes further improving sample complexity

of the Lyapunov critic learning as well as the validation

process for ensuring the Almost Lyapunov conditions.

REFERENCES

[1] F. Berkenkamp, M. Turchetta, A. P. Schoellig, and A. Krause, “Safe
model-based reinforcement learning with stability guarantees,” in
Advances in Neural Information Processing Systems 30: Annual

Conference on Neural Information Processing Systems 2017, 4-9

December 2017, Long Beach, CA, USA, 2017, pp. 908–918.
[2] T. J. Perkins and A. G. Barto, “Lyapunov design for safe reinforcement

learning,” J. Mach. Learn. Res., vol. 3, pp. 803–832, 2002.
[3] Y. Chow, O. Nachum, E. A. Duéñez-Guzmán, and M. Ghavamzadeh, “A

lyapunov-based approach to safe reinforcement learning,” in Advances

in Neural Information Processing Systems 31: Annual Conference

on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8

December 2018, Montréal, Canada, 2018, pp. 8103–8112.
[4] Y. Chow, O. Nachum, A. Faust, M. Ghavamzadeh, and E. A. Duéñez-

Guzmán, “Lyapunov-based safe policy optimization for continuous
control,” CoRR, vol. abs/1901.10031, 2019.

[5] M. Han, L. Zhang, J. Wang, and W. Pan, “Actor-critic reinforcement
learning for control with stability guarantee,” IEEE Robotics and

Automation Letters and IROS, 2020.
[6] M. Jin and J. Lavaei, “Control-theoretic analysis of smoothness for

stability-certified reinforcement learning,” in 57th IEEE Conference on

Decision and Control, CDC 2018, Miami, FL, USA, December 17-19,

2018. IEEE, 2018, pp. 6840–6847.
[7] Y.-C. Chang, N. Roohi, and S. Gao, “Neural lyapunov control,”

in Advances in Neural Information Processing Systems 32: Annual

Conference on Neural Information Processing Systems 2019, NeurIPS

2019, 8-14 December 2019, Vancouver, BC, Canada, 2019, pp. 3240–
3249.

[8] M. Gallieri, S. S. M. Salehian, N. E. Toklu, A. Quaglino, J. Masci,
J. Koutník, and F. Gomez, “Safe interactive model-based learning,”
2019.

[9] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end
safe reinforcement learning through barrier functions for safety-critical
continuous control tasks,” in The Thirty-Third AAAI Conference on

Artificial Intelligence, AAAI 2019, 2019, pp. 3387–3395.
[10] A. Taylor, A. Singletary, Y. Yue, and A. Ames, “Learning for safety-

critical control with control barrier functions,” 2019.
[11] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and

U. Topcu, “Safe reinforcement learning via shielding,” in Proceedings

of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-

18), the 30th innovative Applications of Artificial Intelligence (IAAI-18),

and the 8th AAAI Symposium on Educational Advances in Artificial

Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7,

2018, 2018, pp. 2669–2678.
[12] R. Cheng, A. Verma, G. Orosz, S. Chaudhuri, Y. Yue, and J. Burdick,

“Control regularization for reduced variance reinforcement learning,”
in Proceedings of the 36th International Conference on Machine

Learning, ICML 2019, ser. Proceedings of Machine Learning Research,
K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR, 2019, pp.
1141–1150.

[13] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a quadrotor
with reinforcement learning,” IEEE Robotics and Automation Letters,
vol. 2, no. 4, pp. 2096–2103, 2017.

[14] A. Liu, G. Shi, S.-J. Chung, A. Anandkumar, and Y. Yue, “Robust
regression for safe exploration in control,” ser. Proceedings of Machine
Learning Research, A. M. Bayen, A. Jadbabaie, G. Pappas, P. A. Parrilo,
B. Recht, C. Tomlin, and M. Zeilinger, Eds., vol. 120. The Cloud:
PMLR, 10–11 Jun 2020, pp. 608–619.

[15] S. M. Richards, F. Berkenkamp, and A. Krause, “The lyapunov neural
network: Adaptive stability certification for safe learning of dynamical
systems,” in 2nd Annual Conference on Robot Learning, CoRL 2018,

Zürich, Switzerland, 29-31 October 2018, Proceedings, 2018, pp. 466–
476.

[16] “Almost lyapunov functions for nonlinear systems,” Automatica, vol.
113, p. 108758, 2020.

[17] R. Bobiti and M. Lazar, “Automated-sampling-based stability verifica-
tion and doa estimation for nonlinear systems,” IEEE Transactions on

Automatic Control, vol. 63, no. 11, pp. 3659–3674, 2018.
[18] J. García and F. Fernández, “A comprehensive survey on safe

reinforcement learning,” J. Mach. Learn. Res., vol. 16, pp. 1437–1480,
2015.

[19] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy
optimization,” in Proceedings of the 34th International Conference on

Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August

2017, 2017, pp. 22–31.

[20] E. Altman, “Constrained markov decision processes,” 1999.
[21] R. J. Williams, “Simple statistical gradient-following algorithms for

connectionist reinforcement learning,” Machine learning, vol. 8, no.
3-4, pp. 229–256, 1992.

[22] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in ICML 2016, 2016, pp. 1928–1937.

[23] J. Schulman, S. Levine, P. Abbeel, M. I. Jordan, and P. Moritz, “Trust
region policy optimization,” in ICML 2015, 2015, pp. 1889–1897.

[24] Y. Wu, E. Mansimov, R. B. Grosse, S. Liao, and J. Ba, “Second-order
optimization for deep reinforcement learning using kronecker-factored
approximation,” in NIPS 2017, 2017, pp. 5285–5294.

[25] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[26] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
2018.

[27] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in Proceedings of the 35th International Conference on Machine

Learning, ser. Proceedings of Machine Learning Research, vol. 80.
Stockholmsmässan, Stockholm Sweden: PMLR, 10–15 Jul 2018, pp.
1861–1870.

[28] B. Rubí, R. Pérez, and B. Morcego, “A survey of path following
control strategies for uavs focused on quadrotors,” Journal of Intelligent

Robotic Systems, 05 2020.
[29] J. Snider, “Automatic steering methods for autonomous automobile

path tracking,” 04 2011.

