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Abstract— The lack of stability guarantee restricts the prac-
tical use of learning-based methods in core control problems in
robotics. We develop new methods for learning neural control
policies and neural Lyapunov critic functions in the model-
free reinforcement learning (RL) setting. We use sample-based
approaches and the Almost Lyapunov function conditions to
estimate the region of attraction and invariance properties
through the learned Lyapunov critic functions. The methods
enhance stability of neural controllers for various nonlinear
systems including automobile and quadrotor control.

I. INTRODUCTION

Ensuring stability of neural control policies is critical
for the practical use of learning-based methods for control
design in robotics. There has been exciting progress to-
wards introducing control-theoretic approaches for enhancing
stability in reinforcement learning and imitation learning,
such as using Lyapunov methods [1]-[8], control barrier
functions [9]-[11], or control-theoretic regularization [12]—
[14]. However, three major questions are still open. First,
while giving direct control-theoretic prior or guidance can
improve performance, to what extent can a learning agent
self-supervise to achieve certifiable stability? Second, stability
requirements should be inherent to a system and not affected
by the choice of reward functions, which often do not focus
on stability. Can we achieve stability without restricting the
flexibility of reward engineering in reinforcement learning?
Third, the typical formulation of stability in learning is in
the form of reducing expected violation of certain constraints
asymptotically, which does not easily translate to certifiable
behaviors when the learned policies are practically deployed.
Is it possible to obtain stronger stability claims in the standard
control-theoretic sense, such as for estimating region of
attraction and forward invariance properties? Our goal is
to positively answer these questions to improve the reliability
and usability of learning-based methods for practical control
problems in robotics.

We propose new methods for incorporating Lyapunov
methods in deep reinforcement learning. We design a model-
free policy optimization process in which the agent attempts to
formulate a Lyapunov-like function through self-supervision,
in the form of a special critic function that is then used for
improving stability of the learned policy, without using or
being affected by the environment reward. Our work follows
the framework of actor-critic Lyapunov methods recently
proposed in [5] and extends it in the following ways. We
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allow the agent to self-learn the Lyapunov critic function
by minimizing the Lyapunov risk [7] over its experience
buffer without accessing the rewards. This Lyapunov critic
function is represented as a generic feed-forward neural
network, randomly initialized. This design differs from the
typical choice of using a positive definite neural network to
construct the Lyapunov candidate, to capture values learned
from appropriately designed cost functions that only reflect
stability objectives, as in [5], [15]. The lack of restriction
and guidance turns out to be beneficial. In our approach,
the learning agent can formulate Lyapunov landscapes that
better enforce stability, compared to existing methods. In
fact, this form of self-learned Lyapunov candidate can often
be shown to satisfy the Almost Lyapunov conditions [16],
which allows us to use sample-based analysis to estimate its
region of attraction and forward invariance properties. We
show that the new design is important for learning certifiably
stable control policies for practical control problems such as
automobile path-tracking and quadrotor control.

Our work builds on the recent progress of model-free
and sample-based Lyapunov methods [5], [15]-[17]. Such
methods allow us to use sampled Lie derivatives of candidate
Lyapunov functions to estimate stability properties of neural
control policies without using analytic forms of the system
dynamics. We exploit the expressiveness of neural networks
for capturing Lyapunov landscapes that are too complex for
conventional choices such as sum-of-squares polynomials. We
believe the proposed methods further advance the promising
direction of developing rigorous neural control and certifica-
tion methods in reinforcement learning.

In all, we make the following contributions. We propose
new methods for training neural Lyapunov critic functions
(Section IV.A) and use it to improve stability properties of
neural control policies (Section IV.B) in a model-free policy
optimization setting. We show that the learned Lyapunov
critic function can be analyzed through sample-based methods
based on the Almost Lyapunov conditions, for estimating
its region of attraction and invariance properties (Section
IV.C). We demonstrate the benefits of the proposed methods
in comparison with standard policy optimization and existing
Lyapunov-based actor-critic methods (Section V).

II. RELATED WORK

Besides the most closely related work [5] discussed above,
our work is connected to various recent progress in safe
reinforcement learning, Lyapunov methods in reinforcement
learning, and data-driven methods for the analysis of control
and dynamical systems. Safe reinforcement learning is now a



large and active field [18], [19] focusing on learning with var-
ious forms of soft or hard safety constraints, often formulated
as Constrained Markov Decision Processes (CMDP) [20].
Lyapunov methods have seen various applications in this
context. It was first introduced in RL by the work of [2], which
uses predefined controllers and Lyapunov-based methods for
learning a switching policy with safety and performance
guarantees. [1] proposed a model-based RL framework that
uses Lyapunov functions to guide safe exploration and
uses Gaussian Process models of the dynamics to obtain
high-performance control policies with provable stability
certificates. [3] developed methods for constructing Lyapunov
function in the tabular setting that can guarantee global safety
of a behavior policy during training. The approach is extended
to policy optimization for the continuous control setting in
[4], showing benefits in various high-dimensional control
tasks. The work in [6] formulates the state-action value
function for safety costs as candidate Lyapunov functions and
model its derivative with Gaussian Processes with statistical
guarantees on the control performance. Similarly in [5],
candidate Lyapunov functions are constructed from value
functions with benefit in stabilizing the control performance.
In the work of [7], [15], neural networks are used to learn
Lyapunov functions for establishing certificates for stability
and safety properties.

Many other control-theoretic methods have also been
proposed to improve reinforcement learning [8]-[14]. These
methods typically involve introducing strong control-theoretic
priors, or use the neural policies as an oracle to extract low-
variance policies in simpler hypothesis classes. For instance,
the work in [9] uses control barrier functions to ensure
safety of learned control policies. The work in [12] proves
stability properties throughout learning by taking advantage
of the robustness of control-theoretic priors. Our goal is to
turn control-theoretic methods into general self-supervision
methods for enhancing stability.

III. PRELIMINARIES

Definition 1 (Dynamical Systems). An n-dimensional con-
trolled dynamical system is defined by

(1) = f(x(2),u(t)), ut) = g(x(1)), ¥(0) =x0, (1)

where f: D — R”" is a Lipschitz-continuous vector field,
g:D — R™ is a control function, and D C R" with 0,xy € D
defines the state space of the system. Each x(¢) € D is called
a state vector and u(t) € R™ is a control vector.

Definition 2 (Stability). We say that the system of (1) is
stable at the origin if for any € € R, there exists §(¢) € R*
such that if ||x(0)|| < & then ||x(¢)|| < € for all #+ > 0. The
system is asymptotically stable at the origin if it is stable and
also limy_,e.x(f) = 0 for all ||x(0)| < §.

Definition 3 (Lie Derivatives). Consider the system in (1)
and let V : D — R be a continuously differentiable function.
The Lie derivative of V over f is defined as

LV (x) = ; (97,5 = ; aTc,-x"(t)' 2

It measures the rate of change of V over time along the
direction of the system dynamics of x(t).

Definition 4 (Lyapunov Conditions for Asymptotic Stability).
Consider a controlled system (1) with an equilibrium at the
origin, i.e., 3 u € R" s.t. f(0,u) = 0. Suppose there exists
a continuously differentiable function V : D — R satisfying
V(0) =0, and Vx € D\ {0},V (x) >0, and LV (x) < 0. Then
V is a Lyapunov function. The system f is asymptotically
stable at the origin if such Lyapunov function V can be found.

The recent work [16] proposed an approximate notion of
Lyapunov methods named Almost Lyapunov functions, which
allows the Lyapunov conditions to be violated in restricted
subsets of the space while still ensuring stability properties.
It is the basis of our sample-based approach for validating
learned Lyapunov candidates. We will discuss this notion and
our approach in detail in Section IV.C.

We will use the standard notations for reinforcement
learning in Markov Decision Processes (MDP) with state
space S, action space A and transition model P: S X S XA —
[0,1]. A reward function defines the reward for taking
action a in state s and transitioning into s’. Let my denote
a stochastic policy parameterized by ¢. The goal of the
learning agent is to maximize the expected 7y-discounted
cumulative return J(¢) = Ey 4. [X720 ¥ (1,01, 541)]. Pol-
icy optimization methods [21]-[24] estimate policy gradient
and use stochastic gradient ascent to directly improve policy
performance. A standard gradient estimator is

¢ =1 [Vylogmy(a|s)A:], (3)

where 7y is a stochastic policy and A, estimates the advantage
that represents the difference between the Q value of an action
compared with the expected value of a state, to indicate
whether an action should be taken more frequently in the
future. The gradient steps will move the distribution over
actions in the right direction accordingly. The expectation
[, [...] is estimated by the empirical average over finite batch
of samples. The proximal policy optimization algorithm (PPO)
[25] applies clipping to the objective function to remove
incentives for the policy to change dramatically, using:

JP(9) =&, [min (r;(¢)A,,clip(r,(9),1 —&,1+€)A,)],
“)
where r,(9) = 7y (a;|s;)/ Toia(as|s;) and € is a hyperparameter.
The clipping ensures the gradient steps do not overshoot in
the policy parameter space in each policy update.

IV. PoLICY OPTIMIZATION WITH LYAPUNOV CRITICS

We now describe how to use self-learned candidate
Lyapunov functions to improve stability of neural control
policies. We will name these candidate Lyapunov functions as
Lyapunov critics, following [5]. We will first describe how to
learn Lyapunov critics through sampled trajectories, and then
how to integrate this critic values in advantage estimation
for policy optimization. We describe how sampling-based
certification of stability using Lyapunov critics, following the
framework of Almost Lyapunov functions. The full procedure



is as shown in Algorithm 1. The overall loop is close to
standard PPO [25], [26] with only additional steps at Line
11-12, for learning the Lyapunov critic, and Line 17, for
policy optimization guided by the new critic. We will explain
these steps in the following sections.

Algorithm 1 Policy Optimization with Self-Learned Almost
Lyapunov Critics (POLYC)

1: Initialize policy (actor) network 7y and the reward value

function network V

2: Initialize Lyapunov function network Vg randomly

3: Initialize replay buffer B as empty set

4: for episodes =1,...,K do
5: fort=1,...,T do
6:
7
8

Sample a; ~ g (ar|st)
Sample s;.11 ~ P(st + 1]s¢,a¢)
B FBU(S{,G[,V{,StJr])

9: end for
10: Sample mini-batches of size N from B
11: Compute Lyapunov risk Ry p a:(6) under 7,
12: 60— angRf,Nﬁp’A,(G)
13: for each policy optimization step do
14: Sample mini-batches of transitions from B
15: 6[ (*V{%’YVH(S[#,I)*V#(S{) > cf. [26]
16: zé s,,at)<—5t+Y5t+1+-~-+YT7’+15T,1A
17: A eBmin(O,—Lfﬂd,’A,Ve(As,))—|—(l—B)A(s,,at)
18: r(¢) « T (a|s)/7r¢ (als)
19: JCUP(p B) I [min (r(q))/i;cup(r(q)),l —e1 +8)AIL3)}
20: ¢ 0+ ayVyJP (9, B)
21: n<n- a,,VnIAE[(V,;(s,) —-G(s1))*) > Gls)= Yo Yrisk
22: end for
23: end for

A. Self-Learning Lyapunov Critics

We represent candidate Lyapunov functions using neural
networks, draw samples of the system states, and use gradient
descent to learn network parameters that maximize the
satisfaction of the Lyapunov conditions in Definition 4.
Following [7], such learning can be achieved by minimizing
the following loss function named as the Lyapunov risk:

Definition 5 (Empirical Lyapunov Risk [7]). Consider dy-
namical system f with domain D. Let Vg : D — R be a
continuously differentiable function parameterized by 6. The
empirical Lyapunov risk of Vy over f with a sampling
distribution p(D), written as Ry (6), is defined as:

1Y 5
¥ L (max (0.0 + max0 Lo (00) ) +%50) ©

where sp,...,sy are states sampled according to the sampling
distribution p. The empirical Lyapunov risk is nonnegative,
and when Vj is a true Lyapunov function for f, this empirical
risk attains its global minimum Ry, (6) = 0, regardless of
the choice of the sample size N and distribution p.

In this original formulation, evaluating the Lyapunov risk
requires the full knowledge of the system dynamics f for
computing L V. Our current setting is different. The learning
agent does not know the system dynamics f and can only

approximate the Lie derivative L ¢V along sampled trajectories
of the system, through finite differences:

LraV(s) = 5 (V) -V (), ©

where s and s are two consecutive states and Az is the time
difference between them and lima;_,o LAV (s) =LV (s). We
define the corresponding discretized Lyapunov risk objective
R n.p.a Where the only change from (5) above is that the
Lie derivative L;Vp(s) is replaced by the sampled estimate
Lsa:V (s) for all states.

At each iteration of the policy update (the main loop from
Line 4 to 23 in Algorithm 1), we collect trajectories of samples
from the controlled system f7, and perform stochastic gradient
descent to minimize the discretized Lyapunov risk Ry v p a:(6)
to learn the Lyapunov critic function Vp (Line 11-12). Note
that the dependency of the dynamics f on the behavior policy
Tty is important. When the policy is updated, the controlled
system changes its dynamics, and the candidate Lyapunov
function should be learned correspondingly. Thus, we need to
be able to sample from the buffer of previous trajectories, and
estimate their Lie derivative values using the new policies
(Line 10-11). This dependency makes our approach inherently
on-policy in the current formulation, in the sense that the
critic is always learned from the behavior policy 7y and thus
not very sample-efficient. Off-policy learning of the Lyapunov
critic is possible through importance sampling and keeping
track of the policy and Lyapunov critic updates, which is a
promising direction that we leave open.

B. Stabilization via Policy Optimization

Once the Lyapunov critic is formulated, we use the learned
candidate Lyapunov functions as an additional critic value
for policy optimization. For a temporarily fixed candidate
Lyapunov function Vj, the only term in the Lyapunov risk that
is affected by policy change is the Lie derivative term L7 a;Vg.
Thus, in policy optimization we now impose the additional
goal of ensuring L s o,V (6) < 0 to encourage the policy update
to improve the Lyapunov landscape for stabilization. We
combine the standard advantage estimate A(s;,a;) [25] and a
clipped Lie derivative term in each policy optimization step:

Af(sr,ar) = (1= B)A(s,ar) + Bmin(0, —Lp aV(s))) (D)

where 3 € [0,1] balances the weights. With policy gradient
methods on this advantage estimate, the second term penalizes
actions that produce a positive Lie derivative which makes
min(0, —Lf% AV (s:)) <0. When the Lie derivative is nega-
tive, it does not bias the advantage estimate. We emphasize
that although the Lie derivative term is dependent on 7y, it
does not have a functional form but only accessed through
sampled values based on Equation (6). The true dynamics of
the system remains unknown to the learner.

With the definition of the advantage with Lyapunov critic in
(7), we can easily replace the standard advantage estimators in
various on-policy algorithms. For instance, the standard policy
gradient estimator becomes Ex, [V log 7Ty (ars )A% (st,a;)]. In
Algorithm 1 we use the PPO version [25] of policy update



(Line 19-20), which is what we use in the experiments.
Optionally, we can update the B parameter as a Lagrange
multiplier, by also taking gradient steps on 3 at some learning
rate o using < B — aE[Lf% AV (s)], clipped between [1,0].
We have not observed much performance difference in doing
s0, and have excluded this step in Algorithm 1 for simplicity.

C. Validating Almost Lyapunov Conditions

A major benefit of the proposed approach is that the self-
learned Lyapunov critic allows us to estimate the region of
attraction of the controlled system when learning is successful.
Since we do not have access to the dynamics of the system
and can only estimate the Lyapunov risk at sampled states,
we can not expect to certify that the learned Lyapunov critic
functions are true Lyapunov functions in the standard sense.
However, recent progress in relaxed conditions for Lyapunov
methods enabled the use of sample-based analysis to find
region of stability. In particular, the Lyapunov critic functions
can be analyzed through sampling using the Almost Lyapunov
conditions [16] defined as follows:

Proposition 1 (Almost Lyapunov Conditions [16]). Consider
a dynamical system in (1) defined by f with domain D C R"
and a continuously differentiable positive definite function V :
D — [0,0). Let c1,c¢2 > 0 be two constants and define B as the
region between two sublevel sets B={x€D:c; <V(x) <c2}
for V. Let Q C B be a measurable set. Suppose for some a > 0,
maxcp LV (x) < aminepV, and Vx € Q,L;V(x) > —aV (x)
and Vx € Q\ B,LsV(x) < —aV(x). Then there exists € >0
such that for any € € (0,8), if the volume of each connected
component Q* of Q satisfies vol(Q*) < g, then there exists
T > 0 such that for any xy € D with V(xp) < ¢, —r(€), x(¢)
stays within B for all t > 0 and moreover, it converges to
the sublevel set V(x) < c1+r(€) for any t > T. Here r(€) =
he'/" 4 ge for some constants h and g.

The full proof is in [16] where all constants are explicitly
constructed. Conceptually, the theorem relaxes the standard
Lyapunov conditions to allow a set Q that contains the
violation states where the Lie derivative can be positive
(Vx € Q,L¢V(x) > —aV(x)). As long as each component of
Q is small enough (with volume less than €), the violations
do not affect stability. Under mild conditions, the appropriate
region between sublevel sets of the system (written as B in the
definition) defines a forward invariant set for all trajectories,
and an approximate form of contraction where the trajectory
converges to near the lower level set of the region B.

With the Almost Lyapunov conditions, we can use an £-net
over the space, chosen based on the Lipschitz constant of
the Lie derivative, such that using sampled Ly 4V value at
the center of each cell we can identify the set Q of states
where the Lie derivatives violate the standard conditions. In
Figure 1, we show the results of such computation to compare
four different types of candidate Lyapunov functions for the
inverted pendulum controlled by neural network policies.
Each plot visualizes the sign of the Lie derivative of the
proposed Lyapunov candidate at uniformly sampled points
over the 8/ space. The grey dots represent cells where

the candidate Lyapunov function has negative Lie derivative
values (LyV < —aV (x) as required in Proposition 1), and the
red dots indicate cells that violate such condition. The value
of the Lyapunov candidate itself can be shown to be always
nonnegative in the domain in all four cases, and the black
contours represent the level sets of increasingly positive values.
The red dots indicate states where the standard Lyapunov
conditions are violated, and the patterns are different.

6 (radis)

6 (radis)

Fig. 1.

The landscapes of four different Lyapunov candidates for the
inverted pendulum controlled by neural network policies.

e Figure 1(a) shows the self-learned Lyapunov critic ob-
tained after learning the neural control policy using Algorithm
1. We see that we can find a sublevel set of the Lyapunov
critic (inside the blue circle) where the Lie derivative is
positive only at a very small number of sparse regions (a few
red dots near the center). This landscape satisfies the Almost
Lyapunov conditions and the sublevel set defines forward
invariant set with attraction (Proposition 1).

e Figure 1(b) shows the landscape generated by the
Lyapunov actor-critic method (LAC) [5]. We see that the
Lyapunov conditions are satisfied more globally, although
with more violations closer to the origin. The function can
also be established as an Almost Lyapunov function where
the violation is sparse, which does not include the innermost
sublevel set. The level sets is also much larger than those in
(a), making it harder to find sublevel sets that are forward
invariant. On the other hand, as shown later in the next section,
the learned controller does always stabilize the system in all
sampled trajectories. This indicates that there may exist better
Lyapunov candidates for certifying the stability.

e Figure 1(c) shows the Lyapunov candidate fit for the
control policy learned by standard PPO. We see that much
more violation states are observed and it does not allow us
to find a region where Almost Lyapunov Conditions can
be validated. This indicates that the lack of Lyapunov critic
makes it hard to enforce stability properties.

e Figure 1(d) uses the quadratic Lyapunov function for
the linearized inverted pendulum obtained through LQR
directly as a Lyapunov candidate for the neural controller
trained by Algorithm 1, same as the one used in (a). We
see that the simple Lyapunov function does not satisfy the



Almost Lyapunov conditions and fails to capture the stability
properties of the learned controller.

V. EXPERIMENTS

We now show experimental results on the proposed
methods for various nonlinear control problems. Our im-
plementation follows Algorithm 1 (referred to as LY) and
optionally uses an additional entropy term in the advantage
estimates. We compare the performance with the closely
related work of Lyapunov-based Actor-Critic (LAC) [5], and
also standard implementations of Soft Actor-Critic (SAC) [27]
and PPO [25]. We use the following control environments:
the inverted pendulum, quadrotor control, automobile path-
tracking, and Mujoco Hopper and Walker.

Ly LAC

© (rad/s)
 (radis)

8 (radss)
© (rad/s)

© (rad) © (rad)

Fig. 2. Sample trajectories generated by the policies learned with each
algorithm in the inverted pendulum environment.

Inverted Pendulum. For the standard inverted pendulum
(Pendulum-v0 in OpenAl Gym), Figure 2 shows the system
trajectories under learned policies plotted in the -8 space.
The blue dots indicate initial positions and the red dots
indicate positions after stabilization. Both LY and LAC learn
stable controllers that reach the upright position without
falling down, i.e., showing monotonically decreasing 6 values.
In contrast, the policies trained with SAC and PPO show
horizontal lines that indicate falling down and crossing —,
by first swinging downwards and then back to the upright
position. As discussed in the previous section in Fig 1, both LY
and LAC learn Almost Lyapunov functions that are consistent
with the stable control behaviors.

Quadrotor control. We learn neural controller for the 6-
DOF quadrotor model, which has four control inputs and
twelve state variables. The control inputs €1,€»,Q3 and Q4
are the angular velocity of each rotor. The state variables
are the inertia frame positions (x,y,7), velocities (X,y,2),
rotation angles (¢, 8, ) and angular velocities (¢, 8, ). The
equations of motion of the quadrotor are given in [28] and
Figure 3(a) shows the schematic. The control problem is
known to be hard for policy gradient methods, typically
requiring imitation learning steps. In Figure 4, we see that
the LY method can learn stable tracking controller for the

system. Moreover, the learned Lyapunov critic is shown
in Fig 4(a) and its Lie derivatives is in Fig 4(b). Almost
Lyapunov conditions can be validated with in the blue level
set which certifies stable behavior shown in the trajectory. In
comparison, LAC fails to learn a working controller.

Fig. 3. (a) Schematic of 6-DOF quadrotor system with body frame B and
inertia frame I. (b) Schematic of wheeled vehicle.

Ly

z(m)

o N i
S100 075 050 025

@ (b)

)

Fig. 4. Quadrotor control for tracking a horizontal path. (a) shows
the Lyapunov critic learned in LY and (b) shows where Almost
Lyapunov conditions are validated (within the blue level set).

Automobile path-tracking control. The control problem of
following a target path and speed command is the core
of autonomous driving [29]. In the training environment,
the state has four dimensions including target velocity V;,
angular error 6, (1), distance to the path d,(z), and the vehicle
speed v(¢). The action space contains acceleration a(¢) and
a steering control &(r). The car dynamics follows standard
bicycle model [29] and Figure 3(b) shows a schematic. In this
experiment, we observe that all methods can obtain working
control policies in the training environment in Figure 5(a).
However, the Lyapunov landscape matters when applying the
policy on a different path, as illustrated in the bottom row in
Fig 5. LY methods generalizes well to unseen paths because
of its region of attraction, validated via the Almost Lyapunov
conditions within the blue level set of the learned Lyapunov
critic. In Figure 5(c), we see that the Lyapunov critic learned
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Fig. 5. Experiments for automobile path tracking. (a) All methods learn to control well in the training environment. (b) 3D and 2D

landscape generated by the learned Lyapunov function from LY. Almost Lyapunov conditions are validated within the blue level set. (c)
Landscape generated by the learned Lyapunov critic from LAC. Second row: the control performance when tracking an unseen path (the
red curve). The blue curves indicate the trajectory of the vehicle, starting from the left and going towards the right.
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Fig. 6. Control performance in the Walker and Hopper environments and learning curves over 5 random seeds. Our method typically learn
faster than PPO, and comparable to SAC. All methods can achieve high rewards, but the learned control behaviors are different.

in LAC does not create a landscape that enforces a region of
attraction in the sense of Almost Lyapunov conditions.

Mujoco Walker and Hopper. Walker and Hopper are
standard high-dimensional locomotion environment. For both
the goal is move forward as fast as possible and not
stabilization. The LAC method requires using cost functions
for stabilization objectives only, and thus does not work in
these environments. We can learn Lyapunov critics that are
independent from the reward, just focusing on stabilizing
the joint angles to hold the upright positions. As shown
in Fig 6, the LY controller maintains better pose and gaits
compared to SAC and PPO. The learning curves show that
LY does not slow down learning, and can be used in generic

high-dimensional control tasks to improve performance.

VI. CONCLUSION

We proposed new methods for training stable neural
control policies using Lyapunov critic functions. We showed
that the learned Lyapunov critics can be used to estimate
regions of attraction for the controllers based on Almost
Lyapunov conditions. We demonstrated the benefits of the
proposed methods in various nonlinear control problems.
Future work includes further improving sample complexity
of the Lyapunov critic learning as well as the validation
process for ensuring the Almost Lyapunov conditions.
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