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ABSTRACT

In this contribution we discuss the modeling and model reduction framework known as the
Loewner framework. This is a data-driven approach, applicable to large-scale systems,
which was originally developed for applications to linear time-invariant systems. In
recent years, this method has been extended to a number of additional more complex
scenarios, including linear parametric or nonlinear dynamical systems. We will provide
here an overview of the latter two, together with time-domain extensions. Additionally,
the application of the Loewner framework is illustrated by a collection of practical test
cases. Firstly, for data-driven complexity reduction of the underlying model, and secondly,
for dealing with control applications of complex systems (in particular, with feedback
controller design).
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1.1 INTRODUCTION: DATA-DRIVEN MODELING AND CONTROL

The physical complexity of dynamical systems describing time-dependent pro-
cesses stems from underlying non-linearities, the coupling dynamics, or the large
amount of degrees of freedom (variables or parameters). The latter aspect is
also related to enforcing specific accuracy requirements, that yield models of
large dimension which are hence challenging to use for control purposes or for
numerical simulations.

Simulating such complex dynamical systems is currently a common feature
of many numerical software toolboxes, and is widely used both in industry and



in academia. As numerical simulations become more involved, processing of
increased amounts of data is required. Consequently, the number of variables
under analysis is limited to the physical ones (even in the era of machine learning),
while the rest are discarded. Computing simplified, easy to use dynamical
models is one purpose of the model approximation and reduction discipline.
Such models may then be used in a many query optimisation and simulation
process. That is why it is of critical importance to construct reliable surrogate
models. Model reduction typically refers to a class of methodologies used
for reducing the computational complexity of large-scale models of dynamical
systems. The goal generally is to approximate the original system with a smaller
and simpler system with the same structure and similar response characteristics
as the original. For an overview of model reduction methods, we refer the reader
to [1, 14, 15, 3], and to the references therein. In many practical scenarios, a
complete mathematical description of the dynamical system under study is not
always available or not fully known. Instead of depending only on physical laws
(describing partial or ordinary differential equations), one can infer important
properties of the system directly from measured or computed data.

With the increasing emergence of data-driven applications in many fields
of the applied sciences, the need for incorporating measurements in the mod-
eling and controlling stage has steadily grown over the last decades. The main
challenge consists in using the available data in order to effectively construct sur-
rogate models or controllers. In this latter case, the controller has to be designed
based on experimental measurements, instead of a model description. Model-
based methods can hence be replaced by data-driven strategies that construct the
controller, directly from experimental data. Such techniques are also known as
direct methods and can be useful when control-oriented models are either too
complex or too costly to obtain.

The Loewner Framework (LF) is a data-driven model identification and re-
duction technique that was originally introduced in [37]. It is based on the
Loewner-matrix interpolation method elaborated by the third author of the cur-
rent paper, more than 20 years earlier, in the seminal contribution [2]. Using
only measured data, the LF constructs surrogate models directly and with low
computational effort. For recent tutorial papers on LF applied to linear dynam-
ical systems, we refer the reader to [7, 33]. Extensions that use time-domain
data were provided in [30, 10] (for a Hankel matrix approach) as well as in [41]
(for inferring transfer function measurements from time series). The Loewner
framework has been recently extended to certain classes of nonlinear systems,
such as bilinear systems in [6], and quadratic-bilinear systems in [22, 24]. An
adaptive extension of the original Loewner-based method in [2], named the AAA
(Adaptive-Antoulas-Anderson) algorithm, was recently proposed in [39]; it is
a data-driven rational approximation method that combines interpolation and
least-squares (LS) fitting.

In the first part of this contribution, the Loewner framework is mainly used as
amodel identification and reduction tool. In the second part, the same framework
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is used for feedback controller design. In the proposed setup, the reference con-
troller is not computed by means of a given model, but using input-output data
of the system. Consequently, the Loewner framework is used for synthesizing a
controller directly from measured data, which shows that it is also a data-driven
control tool. Data-driven control strategies consist in recasting the control design
problem as an identification one. By doing so, the model simplification process
is shifted directly to the controller design step. The Loewner-based data-driven
control methodology was extensively studied in recent years, starting with the
original contribution [34] and subsequently with [52, 27, 43, 44].

The main philosophy of the Loewner framework is as follows: starting with fre-
quency response measurements (or, alternatively, with time-domain sequences
of measured inputs and outputs), the data are arranged in a specific matrix for-
mat. Then, the dominant characteristics of the model are extracted by means
of an appropriate projection (by means of SVD’s). Thus, simplified / reduced
surrogate models can be computed without access to system’s description. Such
models typically need to preserve some of the original system’s properties, such
as stability or passivity. In what follows we will also cover practical issues such
as stability preservation/enforcement, as presented in [23].

We denote by R (resp. C) the set of real (resp. complex) numbers, C,
(C_) the open right (left) half plane and the complex variable by : = V-1. Let
A g = {z € C|det(zE — A) = 0} denote the set of singularities of the pencil
(A, E) and, more generally, let Ag denote the set of isolated singularities of the
complex function H.

The paper is organized as follows: after the introduction on data-driven mod-
eling and control in Section 1.1, we continue with an overview on the Loewner
framework for data-driven modeling in Section 1.2 with various subsections that
cover specific extensions of the framework. Section 1.3 contains three model
reduction examples in the Loewner framework, while Section 1.4 deals with the
Loewner data-driven control rationale. This illustrates how the Loewner tool can
be effective for both model-based or data-driven control approaches. Finally, 1.5
contains the concluding remarks together with a short summary of the paper.

1.2 THE LOEWNER FRAMEWORK FOR DATA-DRIVEN MODELING:
AN OVERVIEW

1.2.1 Generalities on the Loewner framework and model structures

The Loewner framework is a data-driven method aimed at building a time
invariant differential algebraic equation model / realization, with associated
transfer function Hy or HJ) (defined later). This model interpolates data
obtained from experimental measurements or the evaluation of a (collection
of) transfer function(s). As made clearer later in this section, according to
the mathematical structure and nature of the underlying system, H; has some
specific properties.



Although in this section we mainly focus on the Loewner framework as a
system identification tool, i.e. , by achieving (rational) interpolation properties,
the main application of the method is indeed for model reduction purposes
(when frequency response data are available). This will be illustrated in the third
part of the manuscript, i.e. , in Section 1.3, with several examples of applying
model order reduction. The model approximation and reduction provided in
the Loewner framework is granted by means of numerical compression of the
interpolation data (using a singular value decomposition). In this way, the
compressed model attains similar interpolation properties as the uncompressed
raw data model, but at the same time, it is of reduced order. Choosing a
truncation value is often dictated by the application, and it is typically done
as a compromise between enforcing high approximation quality at the cost of
increasing the dimension of the compressed data models.

In its original form presented in [37], H™) (J = {N}) is a descriptor
linear time invariant (LTI) dynamical model with transfer function H®™)
C\A@.g) = CP*" where N € N denotes the number of collected data. We
also denote with H,, the transfer function with McMillan degree n (I = {n}).
A complete description of this case is available in the recent surveys [9, 33].
Extension to parametric LTI (pLTI) model structure also exist [31]. In this
case, one obtains a multi-valued rational and polynomial transfer function
HWN-M) . (C x R)\Agwv.ay — CPX™ where J = {N, M} data are used (or
H, ,, where I = {r,q}), where M € N is the number of data along the parame-
ter variable (and ¢ € N is the rational and polynomial order along the parameter).
The resulting function both interpolates the complex and real parametric vari-
ables. From a different perspective, extensions to nonlinear model structures
have also been investigated. Among them, one can mention the bilinear and/or
quadratic forms, explored in a series of papers [22, 6,24, 4,25, 5]. In these cases,
the associated transfer function is a collection of multivariate coupled infinite
cascade of linear systems reading as HVV C\Agwv) — CP, HM-N) - (Cx
CN\Ag Ny — CP and HNVN2) 2 (C X C X L) \Agov vy, — CPXM
(J = {N1,N3,...}). The Loewner interpolation framework seeks a function
interpolating the Ny, N», ... data along each related multi-valued transfer func-
tions HND, H(N1-N2w) (Ny, N3, - - - € N). Similarly, we denote with H,, ...
the associated transfer function of order ry,r»,--- € N.

In all the cases mentioned here, the transfer function (or the set of transfer
functions) is rational and polynomial, and it interpolates the data. In comparison
to realization-driven model reduction, data-driven methods based on interpola-
tion construct models that match the original transfer function(s) at well chosen
points in the complex plane (also denoted as support points for barycentric rep-
resentations [16, 39]). As such, it provides a generalization of the Padé method
to an arbitrary (set of) point(s). Data-driven methods based on rational and poly-
nomial interpolation benefit also from the fact that it only requires the transfer
function evaluation, whereas projection methods require the internal model (sys-
tem matrices or operators). The latter are thus referred to as intrusive methods,
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while the former are non-intrusive or data-driven ones. In this section, a review
of the Loewner framework is provided, together with some of its extensions.
More specifically, section 1.2.2 presents the Loewner framework in its original
form, leading to a linear time invariant model. Extensions to linear parametric
and to bilinear systems are sequentially illustrated in sections 1.2.3 and 1.2.5. As
a direct extension, the time-domain Loewner, dealing with sampled time-domain
data instead of frequency domain data, is covered in section 1.2.4.

1.2.2 The Loewner framework in the LTI case

The main ingredient of the Loewner framework are summarized next in the multi-
input multi-output (MIMO) LTI case [1, chap. 4]. Let us consider this system
to be a m inputs p outputs dynamical one described by a n-th order differential
algebraic equation (DAE) model S : (E, A, B, C,0)! which explicitly reads as
Ex(t) = Ax(1)+Bu(z), y(t) = Cx(z), where E, A € R B € R™" C € RP*",
Its associated transfer function H : C\A (s gy — CP*" is

H(¢) = CO(£)B where ®(&) = (¢E - A)~' e ™, (1.1)

Importantly, as any rational and polynomial function, relation (1.1) can be char-
acterized in its Lagrangian basis with distinct Lagrange nodes (or support points)
Ai € C\A(a E). Then one can rewrite it in its barycentric formula form as follows

(for a; # 0), H(¢) = X1 Biqi (6)/ X1 @iqi(€) where q;(¢) = 1/(¢ = 4;). Let
this system generate right (column) data together with left (row) data, as

(A, ri,w;) fori=1,...,nand (,uj,l]T.,V]T-) forj=1,...,n, (1.2)
where w; = H(1;)r; and V]T. = l]T.H(yj), withr; € C™11; € CPXl, w; e CP¥!
andv; € cmx1 (m, p > 1). In addition, we define the set of distinct interpolation

points {zk},f’:l c C, leading to responses {(I)k}l’(":1 € CP*™  rearranged as
follows (N =7 +n),

{zdi = L5 U kY and {@ )7, = (@, v @), (1.3)

The method then consists in building the Loewner matrix L € C®" and shifted

Loewner matrix M € C® defined as follows, fori = 1, ...,7 and j=1,...,n
V? r; — l? Wi l? (H(,u]) - H(/li))l‘,'
Loy = - = >
. pivir = 40w, 17 (| () = AHQ))r;
v Hj = A - uj = A '

Additionally, let W = [wy,---,wz] and V = [vy,--- ,vﬂ]T. Finally, let
A = diag (A, , A7), M = diag (41, -, pn), R = [rf,-- ,rz] and L =
(11, --,1,.]. The following Sylvester equations ([1, chap. 6]) are hence satisfied
by the Loewner L and shifted Loewner M matrices:

1. Fixing the last component to zero is not restrictive: see e.g. [32] where the direct feed-through
term is equivalently incorporated in the E matrix.



ML - LA = VR - LW and MM - MA = MVR - LWA. (1.5)
Then, the descriptor realization SN) is given as2,
EMx(r) = AMx(1) + BMu(r) , y(r) = CVx(1), (1.6)

where EV) = —L e €27 AN = -M € C»", BV) =V € 2 and C'V) =
W e CP*7 and which associated transfer function H(V) : C\ Ay — CP
(A" denotes the Moore—Penrose pseudo-inverse of A)

H(N)(f) — C<N)(I)(N)(§)B(N) where (I)(N)(f) — (fE(N) _A(N))+ e Cr<n
1.7)
tangentially interpolates H at the given support points and directions defined in
(1.2), i.e. satisfies the conditions

HMN () = H(A,)r; and 1ITH™) () = 1T H (). (1.8)

Note that HN) is an interpolant of the data without any reduction. It refers to
the realization constructed using the N available data.

From now on, let us assume that n = 7, also referred to as the square case3.
Moreover, assuming that the number N = n + 7 of available data is large enough,
then it was shown in [37] that a minimal model H,- of dimension r < 7 = n still
satisfying the interpolatory conditions (1.8) can be computed by projecting the
realization (1.6), provided that the following holds (for k =1, ..., N)*

rank(z;L — M) = rank([L, M]) = rank([L? , M"1H) =r,  (1.9)
where z are asin (1.3). Let Y € C2" (resp. X € C’™") be the matrix containing
the first r left (resp. right) singular vectors of [IL, M] (resp. [L”,MH]#). Then,
S, : (E.,A,,B,,C,,0) where
E =Y/EMX A, =Y/AMX,B, =Y!B™) and C, = CV)X, (1.10)
is a descriptor realization of H,., given as H,. (¢) = C, @, (¢£)B, where @, (¢) =
(€E, — A,)~! € €™ encoding a minimal McMillan degree equal to v =
rank(L). Note that if r in (1.9) is greater than rank(L), then H, may ei-
ther have a direct feed-through term or a polynomial part. Finally, the number r
of singular vectors composing Y and X used to project the system H, in (1.10)
may be decreased at the cost of imposing an approximate interpolation of data,
leading to the reduced order rational and polynomial model. This allows a trade-
off between complexity of the resulting model and accuracy of the interpolation.
The Loewner framework thus is a landmark appropriate for identification, ap-
proximation and order reduction. Let us close this first part with two linear
differential algebraic equations examples where the Loewner framework is ap-
plied. Both continuous and sampled-time cases are considered, highlighting
how versatile this landmark is. More detailed, didactic examples are found in
surveys [9, 33].

2. The upper case letter N as superscript denotes here the number of considered data used to
construct the realization.

3. The term square refers to the square shape of the dynamic matrices A and E.

4. The lower case letter » as subscript denotes here the dimension of the realization instead of the
number of data measurements (denoted with the upper case letter N ).
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Remark 1. Because of its data-driven nature, the Loewner framework produces
reduced-order models for which the approximation quality strongly depends
on the data used in the process. One of the main attributes of the method
is that it compresses the available information (interpolation conditions) and
extracts relevant information. Moreover, it has been recently shown in [7],
Section 2.1.10, that the projected model indeed satisfies particular interpolation
properties. There, the left and right interpolation points, values and directions
are explicitly provided for the projected Loewner model.

Remark 2. Other data-driven approaches such as the AAA algorithm [39]
enforce interpolation at particular data points, based on a greedy selection
scheme. In this way, an indication of where to interpolate is provided.

Example 1 (Continuous-time rational and polynomial model interpolation).
We consider the rational and polynomial model H(s) = s + 1/(s + 1) =
(s> + s+ 1)/(s + 1) with a realization S : (E,A,B,C,0) given by: E =
[010;001; 001], A=[100;010;00 —1], BT = [001] and C = [111].
By sampling H along A; = {1,3,5,7} and u; = {2,4,6,8} with tangential
directions r; = 1; = 1 fori,j = 1,...,4 = n = n (N = 8) leads to the
measurements w; = {3/2,13/4,31/6,57/8} and v; = {7/3,21/5,43/7,73/9}.
Constructing the Loewner matrices as in (1.4), one obtains a 4-th order realiza-
tion Sy : (=L, -M, V,W). Following (1.9), the rank of the [L, M] matrix is
equal to r = 3. Computing the SVD of the [LL, M] matrix leads to the following
normalized singular values o = {1,5.59 - 1072,6.8804 - 1074,5.8311 - 10_17}
and thus suggests to preserve the r = 3 first columns of Y and X, as in (1.10).
After projection, this leads to a minimal order realization which related transfer
function exactly recovers the original H, with McMillan degree of v = 2 and
associated realization » = 3. In addition, computing the singularities of the
associated pencil (M, L) gives {—1, o0, 0o}, being exactly the one of the original
model H. The singularity in —1 is related to the rational part of H, 1/(s + 1)
(finite dynamic mode). The two singularities in co are related to the impulsive
(polynomial part) and non-dynamic (direct feed-through term) modes.

Example 2 (Interpolation in the sampled-time). Let us consider the discrete-
time model H(z) = z/(z — 1/2), with sampling period 2 = 1 second. We
evaluate the function on the unit circle centered in zero. Then, by choosing
/11, - {e—zo.lh’ezo.lh’e—ﬂh’eth}, W = {e_lh,elh,e_l3h,613h} and tangential
directionsr; =1; = 1fori,j =1,...,4 =n =n (N = 8), one obtains w; and
v;. By construction, the Loewner matrices of dimension 4 X 4 contain complex
entries. As data are provided in complex conjugate form, one may work with
real arithmetic by projecting (see §2.5.4 [33] for details).

By then solving (1.5), one readily obtains L. and M and the associated 4-
th order realization Sy : (-L,-M,V,W,0). Applying the rank revealing
factorisation (1.9) and (1.10), one obtains the McMillan degree v = rank(L) = 1
and r = 2. This suggests a constant term. By applying the procedure in



[28], the direct term is reconstructed by the infinite eigenvalue computation
of (M, L) pencil. In this case one finds D = 1. By removing it from the
data and re-computing the Loewner procedure, one finds v = r = 1 and the
sampled realization (E;, A, By, C1,D;) = (2.897,1.448,-0.9632, —-1.504, 1),
with transfer function H; = (z — 1.665 x 10719)/(z — 0.5), recovering almost
perfectly H.

1.2.3 Generalizations to parametric linear systems

The Loewner framework has been extended to parametric LTI (pLTI) systems,
first in [8] and in a more detailed manner in [31]5. In parametric model ap-
proximation and reduction, the aim is to construct reduced-order models that
match the response of the original model / data, along the dynamical parameter
& (usually complex) and along parameter p (real-valued). In what follows we
will only show how the two variable case works, i.e. with one single parame-
ter p € R (for further extensions, see [31]). We construct models which are
reduced both with respect to the complex variable (frequency) and to the real
one (parameter). In this configuration, let us consider such a m input p output
p-parametrized dynamical system described by a n-th order differential alge-
braic equation (DAE) model denoted S(p) : (E(p),A(p), B(p), C(p),0) given
as E(p)x(1) = A(p)x(2) + B(p)u(z) , y(t) = C(p)x(r) where E(p),A(p) €
R™" B(p) € R™™ C(p) € RP*", p € R, with associated transfer function H :
(CXR)\A(a(p).E(p)) — CP*™ given for ®(£, p) = (£E(p) — A(p))~' e C™,
as:

H(&, p) = C(p)® (£, p)B(p). (1.11)
As for the Loewner case, let us assume that function (1.11) can be expressed
using the distinct Lagrange support points A; and 7 ;, as (for a;; # 0)

?:11 Z;"H Biiqi;j (€, p) where 4 (€. ) = 1
! e (€. p) V2= e a0 (o - )
(1.12)
Note that the above structure is not restrictive at all since it provides a parametriza-
tion as a function of support points (see [39, 16]). Computation of the approxi-
mant is done in a similar way as for the non-parametric rational case: one seeks
the B;; and a;; of the rational barycentric formula (1.12). Assuming that H(&, p)
is sampled along the dynamical parameter ¢ and the parametric one p as

{zedie = L5, U kYo and {pipdy = (i} U v Y sy, (1L13)
leading to H(zk, p;) = @k ;. Thus the measurement matrix reads

H(¢, p) =

o= [ Pan Py } € CNM, (1.14)
Qe P

5. The approach developed in [31] interpolates more frequencies and parameter combinations than
the approach derived in [8]. This latter interpolates an extended Loewner matrix instead and
leads to the coefficients of a rational and polynomial function given in the Barycentric form.
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where (I)(ll) = (I)l _____ a/l,..., m € Cnxm’ q>(12) = q)l ’’’’’ /l,..., m € C"Xm @(21) =
Dy, m € C2™ and D) =P, n/1,...m € C¥™  The rows correspond
to frozen Values of zx related to the dynamlcal (complex) & parameter. The
columns correspond to frozen p; values related to the (real) p parameter. Sim-
ilarly to the non-parametric case mentioned in section 1.2.2, one may construct
the following one variable Loewner matrices: (i) L, € CHM®™"" associated to
D11y along A; Uy, (i) Ly, € Cmxm agsociated to the i-th row of [<I>(11), (D(lz)]
along p; and (iii) L, € C™7 associated to the j-th column of [® (11)’(1)(21)]
along zj.

Then the global two dimensional Loewner matrix L, = [L/Il{ LH Lgl]H €
Crmtnimtnm)x () - \where I, = [(elT L) ... (e% @@Ly )" and L, =
(L, ®€))! ... (L, ®€L)H]H

As in the non-parametric case, one important step is the determination of the
minimal rational orders n and m in (1.12) hidden in the data collection. This is
computed by evaluating the null-space of the single variable Loewner matrices
combinations

7 = max rankL,, and g = max rankL,,, (1.15)

where L, and L, are the one dimensional Loewner matrices associated to
the k-th row and /-th column of ®, respectively. Then, one can simply set
(n,m) = (r+1, g+ 1), partition the data (1.13)-(1.14), and reconstruct L,. The
two dimensional Lowner matrices ensure rank L, = rank L, = 77 — (n—r)(m-
q) = nm—1. The coefficients a;; and §;; of the two variables barycentric transfer

function interpolating the data, are obtained by computing the null-space of L,
as ¢ = ker L, where ¢ € C+DX(@+1)  Note that it is usually preferred to work
with real arithmetic, e.g. for model time domain simulation or control design and
analysis. In that case z; are compiled in a closed conjugate form and support
points are doubled (refer to §A.2 of [31] for detailed exposition). Note also that
a trade-off between accuracy and complexity with both the frequency and the
parameter variables can be obtained by decreasing the order » and g below the
one given by (1.15).

Following the barycentric formulae, and [31, 8], one may reconstruct the
associated multi-valued transfer function H, 4 : (C X R)\Ag, , — CP*™ as
follows (where ®(&, p) € CNra*Nra N, . =r +2q +2)

J/l,r(f) 0 0
H, 4(£,p) = COT (& p)Bwhere ®(£,0) = | A JL (p) 0 :
B 0 [Jn,q (p), 7]

(1.16)
with B = [0,7,0]7 € RV and C = [0,...,0,-1] € RM-a. Moreover,
the following holds for k = 1,...,r, I = 1,...,q and w = vect(®y)):
A-k = [¢ff, ... Cﬁq+1]H, Bk = [(ekiwe,)® ... (CrgriWrg+) 1" and

Hq+111¢k(77k — ;) and with
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X =1 n —x
Ty (x) = : e CU+D), (1.17)

X—=m M+l — X
Notice that (1.16) depends only on the extended Loewner matrix null-space c,

support points {4;}/], {r; };1:11 and the response data matrix {®(j1) };J;.l:’lq“

Remark 3 (Minimal realization in the multi-parametric case). Realization (1.16)
is no longer identical to the one in the single variable case as the resolvant
D (&, p) includes both the dynamic and parametric variables, leading instead to
an order N, 4 of r. Finding a minimal order realization is still an open problem.

Remark 4 (SIMO, MISO and MIMO cases). Both SIMO and MISO cases
can be addressed by tangential interpolating the data instead of the scalar (see
§A.1 of [31] for details). Extension to the MIMO case is not solved yet. The
tangential approach used in the non-parametric case and in most of multi-port
interpolation frameworks [21] is not applicable as is. An alternative approach
is presented in [35] but which "only" interpolates ® 11y, forgetting ®(12) and
D(2y).

Example 3 (Reynolds parameter dependent linearized Navier-Stokes model).
Let us consider a two-dimensional open square cavity fluid-flow problem where
air flows from left to right for three different Reynolds numbers Re = 4000, 5250,
or 6000. Such a configuration, illustrated on Figure 1.1 (top right), is described
in [12] and in [47]. For simulation, Navier-Stokes equations are used along a
mesh composed of 193, 874 triangles, corresponding to n = 680,974 degrees
of freedom for the velocity variables along the x and y axis. After linearization
around three fixed points for Reynolds numbers, and discretization along the flow
axis, {H;]»;:1 can be described as a DAE realization of order n = 680, 974 where
the input u(¢) is the vertical pressure actuator located upstream of the cavity and
the output y(¢) is a shear stress sensor, located downstream of the cavity. A
set of continuous-time n-th order realization S; : (E,A;, B, C,0) are obtained.
In [47], the IRKA approach [29] is used to sequentially approximate each
realization with a low dimensional one. The interpolation along the parameter
is done in a second step by interpolating each coefficients in the canonical
basis of the obtained reduced models. Here instead, the parametric Loewner
framework is applied. The frequency response of each configuration along
{Zk}kN=1 = z0 U{1wi, —lwk}}((;ol, where 7o € R, and wy logarithmically-spaced
frequencies. Then, twenty intermediate configurations between each Reynolds
numbers Re = 4000, 5250,6000 are constructed by linear interpolation. We
obtain {z; }V52, {p;}N 74! and thus @ € C*4! Our objective is to come
up with a parametrized linear model that is able to faithfully reproduce the
original transfer function data on a particular range of frequencies as well as on
a parameter range®.

6. Additional details and the data are available at https://morwiki .mpi-magdeburg.mpg.de/



Gain [dB]

Data-driven modeling and control of large-scale dynamical systems in the Loewner framework
1 1 1"

Singular values decay

values decay along €

values decay along p|

(25.05)

10°°

o/

10-10

Compensator

20 40 60 80 100
Order (r,q)

3 PR .

+ Original model (data) f

|| Approximated model H,,, ({r,q} = {60,20})| [\ |/
I X |

Phase [rad]

« Original model (data)

RN
\ §
R

‘t. b

— Approximated model Hy, ({r,q} = {60,20})] % s

10° 10t
Frequency [Hz] Frequency [Hz|

20

FIGURE 1.1 Top left: singular values drop of the one variable Loewner matrices (1.15). Top right:
schematic view of the geometry (with illustration of the control structure used in [45]). Bottom
frames: frequency response gain and phase of the original sampled data (blue dots) and resulting
parametric model Hgg 2o for some parametric values (solid orange lines).

Figure 1.1 (top left) depicts two types of singular values. The singular
values drop indicates reduction orders r = 30 and g = 20 for building the two
dimensional Loewner matrix. As a real valued rational function is preferred
rather than a complex one, the twice more support points are considered and
realization size is increased. The reduced linear parametric model is sampled
over the same frequency and parameter range as before. When comparing to the
original samples on Figure 1.1 (bottom), the overall result is satisfactory, with a
model of complexity r = 60 (instead of n = 680, 974) and g = 20 (instead of a
collection).

1.2.4 Generalization to modeling from time-domain data

For a linear, time-invariant SISO system, let the impulse response be denoted
with: h = { --- h_s,h_j,hg,h;,hy, --- }. Here we restrict our attention to
causal systems: hy = 0, k < 0; furthermore it is assumed that u(¢) = 0, r < 0.
Hence, one can write that

y(t) =hou(?) +hju(z—-1)+ --- +hgu(z—k)+ ---, t €Z,. (1.18)

In the formulation above, h; denotes the j " Markov parameter of the underlying
system. In the time domain, the data are samples of input and output signals

morwiki/index.php/Fluid_Flow_Linearized_Open_Cavity_Model



12

uy =[ug, -+, un—1], yv =1[yo. -+, yn-1l, (1.19)

where, for simplicity, we have used the shortened expressions u := u(k) and
Y :=y(k). The system identification problem consists in recovering a discrete-
time linear time invariant system compatible with the data in (1.19). We seek a
minimal realization (E, A, B, C,D):

Sp :Ex(t+1) = Ax(¢) + Bu(t), y(t) = Cx(¢) + Du(?), (1.20)

where E, A € R B, CT € R"™! D e R, with the transfer function

bz + -+ b1z +b
H(z) = CGE-A)'B+D=22s T UPOIERD0 (21
"+~ +ajz+ag

The Markov parameters in (1.18) can be explicitly written in terms of matrices
from the realization in (1.20), as follows:

ho =D, h; = CA*'B, Vk > 1. (1.22)

Moreover, another interpretation of Markov parameters is that they encode the
behavior of the transfer function in H(z) in (1.21) at z = co. More precisely, the
values hy’s represent the coefficients of the following Laurent series expansion
of the transfer function H(z) =hg +hz7' + hoz 2+ -+ hz K + -

In order to be able to accurately extract system invariants (poles, residues,
Markov parameters, etc.) from input-output data, there are certain conditions
that need to be imposed to sequence of control inputs applied. For example,
one of such conditions is the so-called persistence of excitation. However,
as explained in [30], this requirement of the input is not necessary when the
initial conditions are zero. For any k > 0, we introduce Hankel matrices Uy €
RMXL, Yy € RM*L a5 follows (Uk)i,j = Uk+i—1,k+j-15 (Yk)[,j = Yk+i—1,k+j-1,
foralll <i<M,1<j<L. LetalsoQp = (I-Iy,)Ypand Q; = (I-My,)Y,
where Iy, be the orthogonal projection onto the column space of Uy. Next, as
explaingd in [30], thge exists matrix Y, such that tﬁe n}gtrix pencil (60, 61),
where Qo = Y*Qo, Qi = Y*Qy, is regular (often Qg, Q; can be taken as the
leading n X n sub-matrices of Qg, Q). The following result in [30] gives a
realization for a model of dimension n:

Theorem 1. For zero initial conditions, the system has a minimal realization
E:Q()’ A:Ql’ B:qO» C:[hh'"shn]’ D:ho’

where qq is the first column of (30 and the Markov parameters h;’s are obtained
by solving the following linear system of equations

ug hy Yo
u u h; yi
=1 . (1.23)

u, -+ u U h, Yn
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The Markov parameters can hence be computed for any input u. The result

in Theorem 1 can indeed be further specialized for the case of u = [1,0,---,0].
Hence, when the input is an impulse, the output is a finite sequence of Markov
parameters, i.e. ,y = [hg, hy,--- ,hxy_1]. The realization in Theorem 1 is hence
appropriately modified; let S, be the new realization given by
hy h, - h, h, h; -+ hyy
_ h hy - hyy | _ hs  hy - hyp
E= = . |A=
: : .. : : : . (1.24)
hn hn+l e h2n—l hn+l hn+2 e h2n

C=|h;, hy,---, h,], B=C", D=h.

As in Section 1.2.2, we could further reduce the dimension of the fitted model
in (1.24) by means of projection (compressing the realization of order n to
one of order » by means of orthogonal matrices computed using the SVD [1,
chap. 3]). In this case, we enforce approximation, i.e. by fitting a model which
approximately explains the data. Hence, let Y € R™ (resp. X € R™") be
the matrix containing the first » left and respectively, right singular vectors
of the Hankel matrix denoted in (1.24) by E. The reduced-order realization
S, : (E.,A,,B,,C,,0) is computed:

E, =Y EX,A, =Y'AX B, =Y'B,C, =CX,and D, =hy. (1.25)
Example 4 (A structural mechanics model). As a numerical test case, we
consider the model of a building (the Los Angeles University Hospital) from
the NICONET benchmark examples collection [40]. The original model is a
second-order linear system of dimension ng = 24. It can be written equiv-
alently as a first-order linear system of dimension n = 48. We modify the
original model by scaling the vector B € R* with 10*. Then, the origi-
nal continuous-time LTI model of dimension n = 48 is discretized using a
classical Backward Euler first order scheme. The simulation time horizon is
[0,5]s, while the time step is At = 4 - 1073, The control input is chosen to
be u(t) = 15(cos(50¢) + 2cos(20) + 3cos(10¢)). Hence, by means of this
time-domain simulation, we collect N = 2001 measurements of the discretized
input and output, i.e. , as in (1.19). These values are depicted in the left pane of
Figure 1.2. The Markov parameters are extracted by following the approach in
[30], and are depicted in the right pane of Figure 1.2 (there, the magnitude of
the error between the true Markov parameters and the estimated ones is shown
in orange).

Next, form a 1000 x 1000 Hankel matrix as in (1.24). The decay of its
singular values is displayed in the left pane of Figure 1.3. Then, choose the
truncation order r = 20, and construct a realization of order r as presented in
(1.25). Finally, convert this discrete-time model back to the continuous time,
and compare the frequency response of the original model of order n, with that
of the reduced one of order r (on a range of 500 frequency points in the interval
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FIGURE 1.2 Samples of the input and output signals (left) and the true and recovered Markov
parameters (right).

[10°,10%]). The results (frequency responses and the approximation error) are
presented in the right pane of Figure 1.3. Indeed, the model is well approximated
by means of the proposed method.

Decay of the Hankel singular values Frequency responses and error

10°

[—original
Reduced (r=20)
|~ Approximation error]

1070

10° 10! 10°
Frequency

FIGURE 1.3 Decay of the Hankel singular values (left) and frequency responses computations:
original, reduced and the approximation error (right).
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Remark 5. As shown in this experiment, the estimated Markov parameters
illustrated in Figure 1.2 match the original ones quite well (up to O(107'%)
errors). This accurate matching is explained by the fact that the input and output
were assumed to be measured without noise. However, in practical applications
such measurements could be indeed perturbed by various exogenous sources. An
exact quantification of how the noise affects the Markov parameter estimation
will be studied in future works specifically for the method presented here (a
generic analysis is readily available in [36], Chapter §8).

1.2.5 Extensions to nonlinear systems

Consider a nonlinear system described by the following equations Sy

X(r) = £(x(1)) + g(x(1)u(r), y() = Cx(1), (1.26)
where t > 0, x(0) = x¢ and the nonlinear functions f, g : R" — R" are assumed
to be analytic in x(¢). Here, we will focus on an extension of the Loewner
framework to reducing bilinear systems. The motivation for this is that any
smooth, nonlinear system with analytical nonlinearities can be approximated by
a bilinear system. This is accomplished by means of Carleman linearization
[18, 50]. Since this is based on Taylor expansion and truncation, the resulting
bilinear system will approximate the original nonlinear system depending on the
number of terms kept in the expansion. We proceed by writing the truncated
Taylor series for the non-linear functions f and g, i.e.
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{f(x) ~ lecvzo Fix(M) = Fy+ Fix + Fox@ + .+ Fyx™V), (1.27)

g(x) » Y05 Gix®) = G+ Gix+...+ Gy xV7D.

where Fy, Gy € R"X‘,Fj, Gj e R™>" ;> 1 and N is the truncation index.
Here, the term Fy is usually chosen to be 0 in the case of non-existing forcing
terms (if indeed is non-zero, it can be incorporated in the state vector by means
of shifting). Additionally, F;, G| denote the Jacobian matrices of f and g,
respectively, and Fi, G denote the matrices of higher derivatives. Moreover
x(K) denotes the Kronecker product of the state variable x with itself (k times).
Then, introduce a new state variable

® LN
x?()=| x(1) xP@) ... xXM@) | eR"
where n™) = n+n?+ ... +nV = ”HNT’I" This is obtained by concatenating all

higher powers of vector x (up to N). In this way, by computing derivatives of
x(®) | we obtain a bilinear system with the following realization

X®(1) ~ A®x®(1) + N®x®()u(r) + B®u(r), y = C®x®(1), (1.28)

where x®(0) = 0 and the matrices A®, N® ¢ rrVxn™) e (C®)T e R™™ are

as in [26, Section 2.1.1]. In what follows, we employ a more generic definition
of bilinear systems Sg : (C, E, A, N, B), characterized by:

Ex(1r) = Ax(t) + Nx()u(r) + Bu(z), y(r) = Cx(1), (1.29)

where E, A, N € R B € R, C € RP*" andx € R", u,y € R. The
matrix E is assumed to be non-singular. Also, for simplicity of exposition,
we will discuss only the SISO case. More details on bilinear system model
order reduction can be found in [17, 13, 20]. Bilinear systems as in (1.29) are
equivalent to an infinite collection of coupled linear time-varying systems:

Ex; (1) = Ax () + Bu(s), Ex;(¢r) = Ax;(7) + Nx;_1(Hu(s), i > 2. (1.30)

The time-varying factor appears only in the matrices that scale the control
input u(z) at each level i > 2. Based on (1.30), the solution of (1.29) is
decomposed as x(1) = 32, x; (). Furthermore, the input-output representation
of the bilinear system Sp can be expressed in terms of the Volterra series
representation [50, 20]. Moreover, considering x;_;(¢) in the i equation as a

pseudo-input for i = 1,2, .. ., the frequency-domain behavior is described by a
series of generalized transfer functions as given also in [50, 20, 6]:
H;(s,52,...,5) =C®(s)) N®(s5)N --- ND(s;)B, (1.31)

where the resolvent of the pencil (A, E) is denoted by ®(¢) = (¢E—-A)~'.
The characterization of bilinear systems by means of the rational functions in
(1.31) suggests that reduction of such systems can be performed by means of
the Loewner framework. In what follows, we will review some highlights of
the procedure originally presented in [6]. We use the concept of multi-tuples,
composed of multiple interpolation points corresponding to evaluations of the
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transfer functions in (1.31). For simplicity, we will assume that one set of
right multi-tuples A, and one set of left multi-tuples u with the same number of
interpolation points (denoted with k), are given as

A={uh {4 o {dk, . A2, A}

(1.32)
p={{md {pu e} oo {p pos -k}

For the tuples in (1.32), we introduce the associated generalized controllability
and observability matrices, denoted with R € C"™*, and respectively with O €
Ck*n as in [6] [1, chap. 4].

Given the above notations, we introduce the following matrices, i.e. , the
generalized Loewner matrix L, and the generalized shifted Loewner matrix M

L=-O0EReCF* M=-0AR e Ck*, (1.33)

In addition, we define matrices T= ONR € Ck*k V= OB e Ck and W =
C R e C**_ Note that L and M as defined above are indeed Loewner matrices,
that is, they can be expressed as divided differences of appropriate transfer
function values of the underlying bilinear system; the following equalities hold:
o Higa (e, epg e ) ~Hp (e - o1 Ais 5 A1)
L(J’ l) =
Hj = A

_ ﬂjHj+i—l(ﬂ17"w/‘lj’/li—l"“vAl)_/ll'Hj+i—l(/117'"’/'tj—l’/liv"~’/ll)
My = A |

while V(], 1) = Hj(ﬂl, ce ,/,tj_l,/lj), W(l,i) = H,‘(/l,‘,/li_l, PN ,/11), and
T(j, i) = Hji(u1, ..o i1, 45, i, Aiz1, ..., A1), This result shows that all
quantities of the bilinear Loewner surrogate model can be indeed computed
using only data, and the realization is written concisely as

E=-L,  A=-M, N=T, B=V, C=W. (1.34)

It was shown in [6], that the bilinear model of dimension k in (1.34) matches
a total of 2k + k? transfer function values of the original bilinear system of
dimension n. If necessary, the model given is (1.34) is further reduced similarly
to the classical linear case, e.g., as in (1.10). This is done by projecting with
special matrices using the singular value decay of the Loewner pencil involved.
This provides a useful indicator for choosing the truncation order ([6]).

M(/. 1)

Example 5 (Viscous (bi)linearized Burgers’ equation model). We consider a
discretized model of the viscous Burgers’ equation (previously presented also in
[6]). The original partial differential equation is given by

ov(x,t) o t)ﬁv(x, 1) i(yv(x, 1)
ot ’ Ox 0x Ox
with initial and boundary conditions v(x,0) = f(x), x € [0,1], v(0,¢) =
u(t), v(1,¢t) =0, t > 0. The viscosity coefficient v(x,#) = v is assumed to be
constant and we consider zero initial conditions. Finally, we assume that the left
boundary is subject to a control.

), (x,1) € (0,1)x (0,T), (1.35)
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Start with a spatial discretization of equation (1.35), using an equidistant
1

step size h = —7 where n denotes the number of interior points of the inter-
val (0, 1). By using first-order derivative approximations schemes, a nonlinear
model is obtained (with quadratic-bilinear nonlinearities). Next, use the Car-
leman bilinearization technique to approximate this n"order nonlinear system
with a bilinear system of order N = n® + n.

Denote with Sp the 4070 order initial bilinear system obtained by means of
the Carleman bilinearization. The first step is to collect samples from generalized
bilinear transfer functions up to order two; the 400 interpolations points are
chosen logarithmically spaced in the interval [ 1073, 10°]z. Next, we construct the
bilinear Loewner matrices as presented in this section, and display the singular
value decay in the left pane of Figure 1.4. We construct a reduced-order model

of order r = 32; the poles are depicted in the right pane of Figure 1.4.

Singular values of bilinear Loewner matrices

10° T T T
[~-Loewner
s-Loewner|

Imaginary part

10710

10718

10 20 3 4 5 60 70 80 90 10 -80 70 -60 -50 R 'I’U %0 20 -0 0
cal part

FIGURE 1.4 The first 100 sv’s of the Loewner matrices (left) and the poles of the ROM (right).

Finally, perform time-domain simulation for a control input given by u(t) =
%(cos(27rt) +sin(207t)e~/%), on time span [0, 10]s. The observed outputs for
both the original and of the reduced-order bilinear systems are displayed in the
left pane of Figure 1.5, while the error is depicted in the right pane of Figure 1.5.

Outputs Output error between the original and reduced bilinear systems

[—tull biinear, N = 4970
|= -Loewner bilinear, r =32

10710

1012F

-0.01 101
0 1 2 3 4 7 8 9 1 0 1 2 3 4 5 6 7 8 9 10

5 6
Time(t) Time(t)

FIGURE 1.5 The observed outputs (left) and the approximation error in the time domain (right).

1.3 MODEL REDUCTION EXAMPLES (LARGE-SCALE SYSTEMS)

In this section, we illustrate how Loewner-based rational approximation and re-
duction features have been successfully applied to real-life industrial problems.
First, two benchmarks sequentially involving a generic business jet aircraft model
and measurements data obtained by Dassault-Aviation, a French aircraft supplier,
are considered [38, 48]. Second, a benchmark involving a simplified open chan-
nel model constructed by Electricité De France, the French electricity supplier is
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involved [19]. A gust oriented model described by an non-rational transfer func-
tion is considered (section 1.3.1), ground vibration experimental data (section
1.3.2), and a linear partial differential equation (section 1.3.3).

1.3.1 Gust load oriented generic business jet aircraft model

The gust load envelope monitoring, is an important element to guarantee in
aircraft structural integrity. One important certificate is to preserve and limit
the worst case loads along the wings in response to vertical gust episodes.
To this aim, we consider vertical gust disturbances w, modelled through the
so-called "1-cosine" profiles. The gust load envelope is the worst case load
responses along the wing span in reaction to the set of many differently chosen
time-domain vertical wind gust profiles affecting the aircraft structure. In the
preliminary conception step, the aircraft is designed so that the wings support a
given nominal load envelope, dictated by physical and industrial considerations.
The larger the supported loads are, the larger the structural stiffeners and mass
reinforcements should be, increasing its consumption during flight. Gust load
alleviation (GLA) control is aimed at lowering the loads envelope. To achieve
this GLA function, as illustrated in Figure 1.6, model-based control design
approaches are usually preferred. Following [48], we illustrate through a generic
business jet aircraft model constructed by Dassault-Aviation, how the Loewner
framework is a pivotal tool used in the industry to simplify the complexity of
these dynamical models, prior control design and analysis.

Generic BizJet aircraft H

Aicraft aeroelas-
tic and fluid model

Computational A Sens | .y
delay T ctuators ensors y
Flight
controller

GLA

FIGURE 1.6 Closed-loop architecture of the GLA problem.

At each flight and mass configuration, a linear dynamical model is constructed.
Generic aircraft models have the following continuous-time realization S
Ex(7) = Aox(?) + A1x(f — 71) + Apx(r — 12) + B,u(s) + By, w(z) ,

y(1) = Cox(1) + Cix(1 = 7n)

where E,Ag, A1, Ay € R B, € R B, € R Cy,C; € RP" and
x(t) € R", u(t) € R™, w(t) € R™ (m = n, +ny,) and y(t) € RP are
the internal variables, control input, exogenous gust input and output signals,
respectively. In the considered case, n, = 3, n, =1 (m =4), p =5 and
n ~ 500. The presence of internal delays is caused by the physical restitution

(1.36)
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of the gust impact over the fuselage at three different locations function of
the aircraft velocity. Moreover, due to the model construction method (see
e.g. [49] or [48]), the E matrix may also be rank deficient. Here, due to the
additional double derivative and delay structure added to accurately describe
the gust disturbance effect along the fuselage, rankE = n — 6. Following
(1.36), the gust load model transfer associated function H, from [u”,w’ |7 toy
thus reads, H(s) = (Co + Cie™™*)(sE — Ag — Aje™" — AzeTzs)_lB e Ccpxm,
We seek a simplified rational and polynomial model description to be used in
place of H(s) for fast simulation, control design and (modal) analysis. The
first step in the process consists in gridding the interpolation (support points)
along the imaginary axis and collecting the associated response (with n = n =

n =500, 2n = N and w; # w)): {Zk}kN:1 = {la)[,—la)[}?z/lz U {le,—le};lfl
and {@}Y | = {dDi,—dTi}lr.’:/lz U {ij_aj}?:p where w;,w; € R, are the
frequencies at which one evaluates each transfer H. In our application, the

w;, w;’s are logarithmically spaced.

Remark 6 (About a Padé approximation). One option is to replace the delays
with a Padé approximation. This preserves the gain but modifies the phase. While
this is classically used in many applications, it is, to the authors experience, not
the most accurate way to deal with internal and external delays. Indeed, Padé
often results in significant error in the phase, which can be inappropriate for
flexible structures. In addition, Padé will drastically increase the model internal
dimension which in turn is not appropriate for model reduction. The accuracy/
complexity ratio is not in favour of Padé (see also Figure 1.7).

Figure 1.7 illustrates the transfer function from the gust disturbance to a
wing bending moment output, used to monitor the gust envelope. It compares
the responses of the original irrational model H with its rational approximate
model H,, constructed with Loewner matrices and its rational approximation
obtained with Padé Hp,gs.

— Original model H —Original model H
— Loewner approx. model H, (n = 179) — Loewner approx. model H, (n = 179)
== +Padé approx. model H, (n = 389) =+Padé approx. model H,, (n = 389)

FIGURE 1.7 Left: frequency response gain. Right: frequency phase response. Comparison of the
original model with the rational approximation obtained by Loewner and Padé.

Figure 1.7 emphasizes the good performance of the rational model obtained
after reducing the complexity of the model. The phase is much well captured
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by the Loewner approach than with Padé, while using less internal variables. In
[48], this rational model is then used for GLA controller synthesis, leading to a
load envelope reduction which is achievable thanks to the Loewner framework.

1.3.2 Ground vibration tests on Business jet aircraft

We continue on the business aircraft benchmark provided by Dassault-Aviation,
moving to the vibration problem, related to fatigue and comfort issues. Anti-
vibration controllers are designed using model, targeting undesirable ampli-
fications of the aerodynamical effects on the fuselage around some specified
frequencies [46]. After control design, Ground Vibration Tests (GVT) are per-
formed to both validate the control performances and the original model. The
benchmark considered here illustrates the generic business jet GVT, performed
on a Falcon 7X at Istres, France, in 2015 [38].

Dassault-Aviation engineers implemented the control law on the real business
jet aircraft. Then, using shakers applied at some aircraft locations, the structure
was excited, thus simulating aerodynamic disturbances. Hundreds of sensors
were positioned on the aircraft and used for analysis’

Figure 1.8 (left) shows the singular frequency response of the (open-loop) data
collected between a single-input and 100-outputs, compared with the frequency
response of a rational models (with different complexity). The singular values
drop is also illustrated on Figure 1.8 (right).

Singular value frequency response Loewner pencil normalized singular values

O Original data {ww;, &}
— Loewner approx. model H,, (n = 212)
= Loewner approx. model H, (r = 30)

50 100 150 200 d
r

Frequency [Hz]

FIGURE 1.8 Left: singular value frequency response of the data (doted blue), minimal McMillan
degree model (solid orange) and 30-th order model (dashed black). Right: Loewner singular values.

In this industrial case, the Loewner framework is shown to be able to accu-
rately recover the transfer function from raw data. It allows engineers to re-adjust
the theoretical models with experiments, to detect some new phenomena and
re-tune the control laws. This step contributes to the quest for a so-called digital
twin 8.

7. https://drive.google.com/file/d/1H2GqlYkiny PZND2ekB6swSetoGcmFTK/view
video illustrates the kinematic effect of the control law acting on the tail surface to reduce the
vibrations.

8. Additional information may be found in [38] or in §2.4.7 of [42].
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1.3.3 Hydroeletricity open-channel benchmark

Let consider a model representing the level 4 of an open-channel as a function
of the inflow g; and outflow g,, inputs. Such a model is used by hydro-electricity
engineers from Electricité De France to monitor the level of a river in order
to control the available energy. In France, in May 2021, the hydraulic energy
represented about 10% of the total produced energy. These models in such
benchmarks belong to the class of linear partial differential equations (PDE),
coming from two nonlinear hyperbolic Saint-Venant equations, given as:

2
Z—f+2—g=0and%—?+a(%—ﬁ+gS2—iI=gS(1—J), (1.37)
where x € [0, L] is the spatial variable, ¢ the time variable, H(x,?) the water
depth, S(x, ) the wetted area, Q(x, t) the discharge, g the gravity acceleration
and J the Manning-Strickler friction®. Under mild assumptions a linearization
around an equilibrium point (Qq, Hy), detailed in [19], expresses the variation
relations (g, h), between inflow (g., being ¢ at x = 0), outflow (g,, being ¢
at x = L) and the water depth (4, at a given measurement point x) as follows,
h(x,s) = Ge(x,5)qe(5) — Gs(x, 5)gs(s), where
A (S)exlz(s)L+/11 (s)x _ /lz(s)e’l‘ (s)L+A2(s)x
Gi(x,s) = and
Bos(e/h(s)L _ e/lz(s)L)
Ai(s)et (9)x _ /lz(s)e’b(s)x
Bos(eti (9L — g2(s)L)
For a frozen measurement point x = x,,, one has h, (s) = H(s)u(s) =
G; (xm, 5)qi(s) + Go(xm, $)qo(s), where u(s) contains the g;(s) and g,(s)
and where H is now a one output two inputs complex-valued transfer function.
Figure 1.9 illustrates the approximation features and accurate reconstruction of
the open-channel phenomenon. To obtain this result, we consider complex con-
jugated points {zk},’(\;l = {1wy, —zwk}kN:/l2 (where 7 = n = 300 = N/2) sampled
between 107 and 10! in logarithmic space. Then, the responses H(s) and
H(s) = H(s)s/(s + 1072)(s + 1073), are computed. Dealing with H remains
standard with the framework presented so far. By approximating H removes
the integral action and enforces roll-off in high frequency, and thus allows to
deal with limited energy functions. In this latter case, the resulting interpolated
model should be post processed as H, — H, (s +1072)(s + 1073)/s to recover
the original one.

Both approaches lead to a perfect matching of the irrational transfer. Inter-
estingly, working with H instead of H leads to a model with all singularities on
the left hand side plus the O one. Working with the shifted function H illustrates
how one can perform grey box identification by simply shifting the original
data. Here, the integral action (physically known from open-channel models) is
removed and added afterward.

(1.38)

Go(x,s) =

9. Numerical values of this model are provided at https://morwiki.mpi-magdeburg.mpg.de/
morwiki/index.php/Hydro-Electric_Open_Channel
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FIGURE 1.9 Top: frequency response comparison between the original irrational model an two
approximated Loewner models. Bottom left: Singular values drop of the Loewner pencil for the two
models. Bottom right: eigenvalues of the resulting minimal order rational approximation.

1.4 CONTROL IN THE LOEWNER FRAMEWORK

Let us now deviate from the original purpose of the Loewner framework, initially
introduced to provide solutions to the identification, approximation and reduction
problems through the lens of rational and polynomial function construction. Here
instead, Loewner is used for feedback controller design. More specifically it is
used as in some traditional loop shaping methods, to fit a reference controller.
In the proposed setup, the reference controller is not computed by means of
a model but in terms of input-output data. Two applications are illustrated.
The first one involves experimental data and considers the design of a reference
tracking controller applied on a pulsed fluidic actuator (PFA), see section 1.4.2,
[43]). The second considers a numerical benchmark representing the boundary
control a wave equation, described by an infinite dimensional equation.



Data-driven modeling and control of large-scale dynamical systems in the Loewner framework
23 23 23

1.4.1 Data-driven control, virtual reference model and L-DDC ratio-
nale

In this section, the Loewner framework is used for synthesizing a controller di-
rectly from measured data, being then a data-driven control (DDC) framework°.
DDC consists in recasting the control design problem as an identification one.
The technique under consideration belongs to the so-called reference model
approaches and more specifically relies on the definition of a so-called ideal
controller, derived from a reference model. This framework is deployed in the
frequency-domain, with the use of the Loewner framework as the identification
tool in [34, 52], allowing to skip the controller complexity selection thanks to its
rank properties (see section 1.2). The Loewner data-driven control (L-DDC) is
thus a combination of determining the ideal controller from frequency-domain
data via a reference model and the use of the Loewner framework [37] to con-
struct a reduced order controller. Such an interpolatory-based data-driven con-
trol design solves problems faced by practitioners: (i) the controller design is
directly obtained using open-loop raw data collected on the experimental setup,
(ii) without any prior controller structure or order specification.

The L-DDC procedure boils down to two steps: first deriving the ideal
controller definition and second the controller identification via interpolation in
the Loewner framework. We recall the mains steps in the SISO case. Following
Figure 1.10, the objective is to find a controller with transfer function K :
C\Ak — C that minimizes the difference between the resulting closed-loop and
a given user-defined reference model M : C\Ay — C. This is made possible
through the definition of the ideal controller K*, being the LTI controller that
would have given the desired reference model behaviour if inserted in the closed-
loop. The latter is defined as K* = H"!M(Z/ — M)~!. In the data-driven case,
this definition may be recast as a discrete set of equations (where {zk}i\’:l e C,

b oM () = Bz MG (- M) (1.39)
where H(zy) is the evaluation of the considered model, if available. In an
experimental context, one usually considers sampling H at z; = 1wy (wr € Ry).
Finding a controller K that fits K*(z;) can be considered to be an identification
problem. In the Loewner framework, the control design boils down to finding a
transfer function K satisfying condition (1.39).

1.4.2 Pulsed fluidic actuator control

The design of active closed-loop flow controllers constitutes an important field of
research in fluid mechanics [51]. In most contributions, both the sensor(s) and the
actuator(s) are supposed to be lumped and ideal. To move towards experimental
applications and real-life validations, it is essential to consider realistic set-ups

10.The reader may notice that DDC methods have a long history dating to the proportional, integral,
derivative (PID) tuning method by Ziegler-Nichols in early 40’s or the self tuning regulator by
Astrom in the 90’s (see e.g. [53] for more details and references).
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FIGURE 1.10 Data-driven control problem formulation.

and is the core contribution of [43], where the L-DDC is applied on a PFA. PFA
are on/off actuators that blow air to modify the pressure in a flow setup. The
control setup considered is schematized on Figure 1.11.

fs1 = Nfo

fia

y(tyn) ¥,
i Average Y

fs2 fs1=Nfa
| !

[C K(z)} ) [ PWM '—-“U“' "k

r(n) e(rx)
k O k

FIGURE 1.11  PFA control setup (details are in [43]).

After exciting the PFA using a pseudo random binary sequence u(tx/,),
output data y(#x/,) are collected. The corresponding frequency responses u and
y are computed and transfer function values H(zwy ) are thus obtained. Applying
(1.39) with zx = 1wy and the Loewner approach, it leads to a singular value
decay indicating that a first or third order model is sufficient to recover the main
dynamics (see Figure 1.12). One important result is the ability of the L-DDC
to construct, directly from raw open-loop data, a control law performing well on
an experimental setup. Relevant in this context is that the L-DDC structure and
complexity is almost automatically chosen by the Loewner framework, and no
pole pre-assignment is required.

1.4.3 Transport phenomena benchmark

Let us consider the case of a one dimensional transport equation controlled at its
left boundary through a second order actuator. This model is used in [44] and
detailed in §2, Example 7 of [42]. This phenomenon is represented by a linear
PDE with constant coefficients interconnected with a second order linear ODE
actuator, as described in (1.40).

ayg;, D, 2x6yg;’ D Z 0. 5(x.0) = 0 and 5(0,1) = %ﬁf 0,1)  (1.40)
where (u(z)/(s2 + mwos + w%)u(O, s) = uyp(0,s)and x € [0 L] (L = 3) is the
spatial variable. Then, wo = 3 and m = 0.5 are the input actuator parameters.
The scalar model input is the vertical force applied at the left boundary, i.e. at
x = 0. We denote the input @(0, 7) in the time-domain or u(0, s) in the complex
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FIGURE 1.12 Top left: gain of the frequency responses of the ideal controller K* (blue dots) and
of the estimated controller K, (s) of order r = 1 (solid orange) and r = 3 (dotted black). Top right:
closed-loop response estimation using controller Ky and K3 of the averaged output y(#z) (solid
orange an dotted black). Bottom: time-domain closed-loop response to a reference trajectory r(#y)
(dashed black), averaged control signal u(#;) (dotted blue) and averaged output (solid orange).

one. Similarly, the output at location x is given as §(x, ¢) for the time-domain
and y(x, s) in the complex one. By applying the Laplace transform, one obtains
the transfer function from the input u(0, s) to the output y(x, s):
2
w
y(x,s) = ﬁe"‘zs—ozu(o, s) = G(x, s)u(0,s). (1.41)
Vs 52 + mwos + w;

Let us now consider that one single sensor is available and is located at x,,, =
1.9592 along the x-axis!'. The transfer from u(0, s), denoted by u(s) to y(x,,, s),
denoted by y(s) then reads y(s) = y(xm,s) = G(s,x,,)u(0,s) = H(s)u(s),
where H(s) is now a SISO complex-valued irrational transfer function.

1.4.3.1 A model-driven approximation and control

By Loewner interpolation, the transfer function H can be approximated by a
rational function H, (r = 33). Then, standard feedback synthesis methods can
be applied. In this example, the HINFSTRUCT function has been used [11]. Details
may be found in [44]. Here the model-based H,,-norm minimization oriented
control design allows to construct a filtered proportional integral (PI) of the form
K(s) = (kp + ki1) =1, where k,, ki, a € R.

s/a+1’

11.In the rest of the chapter, x will be discretized with 50 points from 0 to L = 3, and x;,, has been
chosen to be located at x (|50 x 2/3]).
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1.4.3.2 Data-driven control

Let us now apply the L-DDC rationale, instead of a model-based control design.
The reference model choice is a key factor for the L-DDC success, as for any
other model reference control procedure. Indeed, the latter should not only
represent a desirable closed-loop behaviour, but also achievable dynamics of
the considered system (i.e. the ideal controller should not internally destabilise
the plant). A reference model is said to be achievable by the plant if the
corresponding ideal controller internally stabilises the plant. Here let us skip
this point and focus on the equivalence of model vs. data-based design. Let the
reference model M be the closed-loop rational function obtained by the previous
approach interconnecting H, with the obtained filtered PI control law obtained
in the above section.

By computing the ideal controller through (1.39), we again compute the
Loewner pencil, leading to a minimal realization with n = 42. Obviously, such
a control order is prohibitive for classical control applications. The singular
values decay indicates that an order r = 2 is enough to catch the main dynamics
of the underlying controller. One obtains transfer function K, (s) = (1082.7(s +
0.1313))/(s(s + 5656)), being close to the values obtained by the model-based
approach!?. The controller and resulting close-loop frequency response gains
are shown in Figure 1.13.

-8 ¢ Tdeal controller K* (1) 10 Tt e -~ .
—L-DDC K, Ky
10 - Model-based K 0 S
A
12 a N
5,101 [~ PDE model H N
14 - cference model M N
720 losed-loop including Ky BN
16 o hR
230 N
18
-40
-20
1072 10° 10? 1072 107! 10°
Frequency [Hz] Frequency [Hz]
FIGURE 1.13 Left: frequency response of the controller (ideal, model-based and data-driven).

Right: open-loop vs. closed-loop frequency responses.

Interestingly, with reference to Figure 1.13, K, perfectly recovers the model-
based requested performances of M with a controller of rational order two
(indeed, we expected to observe this result since we knew from the model-based
approach presented in Section 1.4.3.1 that a rational control of this order leading
to this performance is achievable).

This example demonstrates how the Loewner framework can be effectively
used, either for model-based, or for data-driven control. Interestingly, by choos-
ing the closed-loop performances M obtained with the model-based approach,
the controller K, exactly recovers the original properties, while skipping the

12.The model based approach yield to 1084.9(s + 0.1313) /s (s + 5667).



Data-driven modeling and control of large-scale dynamical systems in the Loewner framework
27 27 27

model construction step and the order selection. This property reduces the
model construction step and allows a quick design of the controller. However,
this main advantage is balanced by the fact that in the model-based approach,
the stability assessment is usually carried out using the approximate model, here
H, . The latter being very accurate, the eigenvalues computation is traditionally
enough for concluding stability. On the contrary, in the second data-driven ap-
proach, stability cannot be analysed as easily. Still, [44] suggests an approach
based on the combination of Loewner with optimal H, projections.

Finally, we mention that all numerical experiments reported in this manuscript
were performed on a laptop computer with the following specifications: 16 GB
RAM and an Intel(R) Core(TM) i7-10510U CPU running at 1.80 GHz 2.30 GHz,
while the software platform used was MATLAB R2019a.

1.5 SUMMARY AND CONCLUSIONS

In this work, we have provided an inventory of selected extensions and ap-
plications of the Loewner framework. The main philosophy of this approach
is as follows: use the available data to construct a model or a controller; if
needed, apply compression techniques to reduce the complexity of the model or
of the controller. The Loewner framework was shown to be applicable for re-
ducing large-scale dynamical systems from computational fluid dynamics (such
as the linearized Navier-Stokes model with more than half a million degrees
of freedom), to data-driven modeling in aeronautics applications, and to vari-
ous benchmarks described by complicated dynamics (characterized by irrational
transfer functions, having multiple delays, with many input or output ports, with
nonlinear terms etc.). The key observation here is that one can accomplish all of
these successful endeavours by having access only to compressed data (transfer
function measurements, Markov parameters, etc.). Moreover, the Loewner data-
driven control approach was shown to faithfully recover the performance attained
by other classical model-based control approaches. Thus, one advantage is the
data-driven characteristic, and another is the robustness of the approach. The
Loewner framework is hence a valid alternative to intrusive methodologies, and
can be successfully used when data are available.
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