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Reducing Kidney Discard with Artificial Intelligence Decision Support:
The Need for a Transdisciplinary Systems Approach

Abstract

Purpose of Review A transdisciplinary systems approach to the design of an artificial intelligence (Al)
decision support system can more effectively address the limitations of Al systems. By incorporating
stakeholder input early in the process, the final product is more likely to improve decision-making and

effectively reduce kidney discard.

Recent Findings Kidney discard is a complex problem that will require increased coordination between
transplant stakeholders. An Al decision support system has significant potential, but there are challenges
associated with overfitting, poor explainability, and inadequate trust. A transdisciplinary approach provides
a holistic perspective that incorporates expertise from engineering, social science, and transplant healthcare.
A systems approach leverages techniques for visualizing the system architecture to support solution design

from multiple perspectives.

Summary Developing a systems-based approach to Al decision support involves engaging in a cycle of
documenting the system architecture, identifying pain points, developing prototypes, and validating the
system. Early efforts have focused on describing process issues to prioritize tasks that would benefit from

Al support.

Keywords: Kidney discard; Artificial intelligence; Transdisciplinary; Systems science; Decision-making



Introduction

The demand for kidneys far outpaces supply. In the U.S., nearly 150,000 people are on the waiting
list for kidney transplants, but only 24,273 kidneys were transplanted in 2019 [1]. Notably, despite the large
unmet need, 20% of procured deceased donor kidneys are discarded in current practice [2]. Even with lower
quality organs, transplantation has been proven to be life-extending, cost-effective, and often cost-saving
for appropriate candidates [3]. However, as shown in Figure 1, the discard rate rises exponentially with
measures of organ quality, such as higher Kidney Donor Profile Index (KDPI) scores [4]. The high discard
rate for higher KDPI scores represents a substantial opportunity for increased kidney utilization, primarily
from older donors with more comorbidity [5]. Artificial intelligence (Al) decision support may improve
kidney utilization, if effectively designed to support clinician decision-making and provide better real-time
access to data-driven predictions.

Al has been applied in many healthcare applications ranging from feature identification for
radiology images [6] to prediction of clinical events from electronic health records [7] to classification for
mental health diagnoses using social media data [8]. One popular approach to Al is deep learning, which is
a subfield of machine learning that uses algorithms inspired by the structure of the brain called artificial
neural networks. Essentially, the algorithms process data in layers to extract features. There can be hundreds
of hidden layers or “neurons” between the inputs and outputs of the model. Advances in deep learning aim
to increase accuracy while minimizing computations, maximizing speed, and reducing pre-processing
requirements. For example, deep convolutional networks (also called DenseNet) increase the number of
connections between layers in a feed-forward fashion to increase feature reuse [9]. A feature can be any
measurable property within the data, similar to the explanatory variables used in linear regression. However,
the features and number of layers are determined by the algorithm using the data, rather than by experts.
Compared to statistical models, Al models can incorporate more data types (e.g., numerical, image, natural
language) with fewer assumptions to improve prediction accuracy. In the context of transplant healthcare,
United Network for Organ Sharing (UNOS) maintains extensive records associated with donor and
recipient characteristics, donor-recipient matching, and patient outcomes [10]. Al models have the potential
to speed up the discovery of insights from these types of large data sets to improve quality of care, reduce
misdiagnosis, and optimize treatments.

However, Al systems can suffer from bias and make systematically poor judgements. For example,
IBM’s Watson used natural language processing to analyze electronic health records and medical databases
to make cancer treatment recommendations. MD Anderson agreed to test the prototype in their leukemia
department and cancelled the project after spending $62 million because it routinely gave clearly erroneous
recommendations, reducing clinician trust [11]. In the context of criminal justice, Al models that predict

the probability of recidivism for parole decisions tend to predict higher rates of reoffending for black people,



contributing to systemic racism [12-14]. Even in cases where Al systems show improved outcomes, they
can struggle with low adoption, a phenomenon known as algorithm aversion [15-16¢¢]. There is reason to
believe that Al can improve healthcare, but it must be executed carefully to avoid negative outcomes.

To effectively integrate Al into transplant healthcare, a transdisciplinary systems approach is
needed to design and evaluate the use of Al decision support systems in a participatory research
framework. A transdisciplinary approach leverages knowledge and methods from engineering, social
science, and the decision domain (transplant medicine) [17]. For complex systems, a systems approach
provides tools and techniques for quantifying interactions between system elements to discover emergent
properties [18]. Participatory research actively engages end-users, as well as decision-makers, early in the
research process to build mutual trust within the community and identify potential barriers early [19]. This
article highlights the promise and limitations of using Al decision support to motivate the use of a
transdisciplinary systems approach. We frame this discussion in the context of our active application of

this approach to the problem of kidney discard.

1. Promise and Limitations of Artificial Intelligence Decision Support

An Al decision support system may be able to increase decision speed, reduce cognitive burden to
improve decision outcomes, and facilitate communication between patients and clinicians. Although Al
decision support systems have substantial potential, there is limited evidence of benefits. Most existing
studies for Al systems are retrospective and have not been validated in a clinical setting [20+]. Integrating
Al into healthcare may be particularly helpful for standardizing care when there is high heterogeneity and
inconsistency between clinicians. The level of automation will vary depending on the decision context and
operator expertise. Automation levels can vary from no assistance, to suggestions, to supervised operation,
to unsupervised operation [21]. In many cases, the cost savings associated with Al systems are related to
faster operations and reduced labor costs.

In the context of transplant care, researchers have developed models to predict graft outcomes
and improve donor-recipient matching. In a 2020 review of 9 liver transplant models, the most common
Al approach for predicting graft survival was artificial neural networks, and the number of input variables
ranged from 10 to 276. When compared to more standard liver metrics [i.e., Model for End-Stage Liver
Disease (MELD), balance of risk (BAR), and survival outcome following liver transplantation (SOFT)],
multiple studies demonstrated that the Al predictions were more accurate [22¢¢]. In a 2019 review of 14
kidney transplant models, decision trees and artificial neural networks were the most common and had the

highest accuracy for predicting graft failure based on donor and recipient characteristics [23+¢]. However,



another 2019 review of 7 kidney transplant models found mixed evidence that machine learning
approaches exceeded the performance of traditional statistical models [24¢¢].

Despite increasing evidence that Al models are more accurate, there has been little progress
integrating these tools into transplant healthcare. We highlight three primary barriers, (1) overfitting and
bias, (2) explainability, and (3) trust and ethical decisions, which limit the effectiveness of Al models and

are being actively studied across engineering and social science disciplines to identify solutions.

Overfitting and Bias. Al systems struggle with overfitting, particularly for unbalanced data. A
model is overfitted when it closely matches training data and generates poor predictions for new scenarios.
This is often attributed to the data insufficiency problem, where there is inadequate data to properly train a
model or the data are highly unbalanced, which also reduces the number of training cases for an event of
interest. In the context of kidney transplants, the decision to accept a kidney is a complex calculus and some
key data are not available in the dataset (e.g., anticipated ischemic time, biopsy results, and recipient cardiac
status). Similarly, a model can be biased if the data are biased (e.g., due to racial or gender discrimination)
or the model systematically deviates from the data.

This limitation may be addressed via improved modeling techniques, training human operators to
compensate, or some combination. Deep learning models are able to adapt to changing data over time, as
shown in Figure 2. The model output is influenced by both the input data and the training data. As decisions
are made, those actions are used as feedback to train the model so it improves over time. For larger shifts,
retraining models for new information is a time-consuming and labor-intensive process, but transfer
learning and ensemble models can improve real-time predictions. Transfer learning, which only alters the
final deep learning layers to accommodate new data and labels, is the most promising approach to rapidly
accommodate incremental data changes [25]. Ensemble models are used to reduce the deep learning models'
variance and combine multiple predictions [26]. This is particularly valuable for fusing multiple
stakeholder- or task-specific Al models into a higher-level model. However, regardless of the effectiveness
of these techniques in theory, there will always be edge cases where the Al model makes poor predictions.
In those cases, users need to be able to compensate for model limitations. This will likely require users to
understand why a model might make mistakes and what type of information would be out of scope for the
Al inputs. For example, when deciding whether to perform a transplant, transplant surgeons often consider
information beyond what is available in the UNOS database, such as kidney imaging. When evaluating Al
models, the historical record is assumed to be the ground truth, given the lack of available counterfactuals.
However, researchers acknowledge that the historical record is likely biased and a research area focused on

Fairness, Accountability, and Transparency (FAccT or FAT) is developing [27].



Explainability. Al systems are unlikely to be adopted if they are perceived as black-boxes and
difficult to use. The technology acceptance model suggests that adoption is based on the ease of use and
usefulness [28], including for Al systems [29] in healthcare contexts [30]. Deep learning models are often
perceived as a black-box, making it difficult for clinicians to understand how a model works and how
trustworthy it is [31]. In addition, there will always be some measure of uncertainty inherent in the output
of an Al model. That uncertainty may be aleatoric (e.g., due to chance, poor compatibility between organ
and candidate), epistemic (e.g., measurement error, catch-all rejection reasons), and ontological (e.g.,
structural, model validation process does not align with model usage) [32].

Explainable models are able to communicate how and why a specific recommendation or outcome
has been derived [33]. Deep learning models may include anywhere from several to hundreds of layers and
are best known for extracting high-level abstract features. Developers can use feature relevance scores to
quantify the contribution of a specific feature to the model’s prediction and communicate that information
to the user via linguistic and numerical expressions [34]. However, in some cases, providing additional
information can reduce accuracy and increase confidence [35]. Even experts are sensitive to cognitive
biases and heuristics, such as confirmation bias, where users are more confident because the Al
recommendation aligns with their initial perception, and anchoring effects, where users under (or over)-
estimate the effect of choosing a different option because of anchoring on a provided number [36].
Experimental evidence is needed to ensure that the Al system’s communication has the desired effect [37].
For example, preliminary work on communicating uncertainty for deep learning models found that a

confidence bar visualization had little effect on decision-making [38].

Trust and Ethical Decisions. Even when there is a human-in-the-loop or in a supervisory role,
people do not always trust or collaborate well with recommendations from Al systems. They may not want
Al systems to make decisions dealing with ethics, including in medical contexts, even if the Al system is
limited to an advisory role [39+]. Even if the Al system makes the same decision as a person, people tend
to perceive the Al system as less trustworthy and more blameworthy [40]. In general, trust is reduced and
the Al is perceived as morally wrong, if the Al system errs, is biased, or engages in unethical behavior [41].

The way an Al system is framed can enhance trust, even in the context of moral decisions. For
example, anthropomorphism and perceptions of an Al having more mental capacity can increase trust [42]
but can also enhance perceptions of it being morally wrong if it errs [43]. In addition, when users have the
ability to make slight changes to the Al after it errs, those users continue to use it [44]. Trust, confidence,
and ultimately use of a system can be highly eroded by the perception that an Al system has errors or is

subject to potential errors or bias.



2. Value of a Transdisciplinary Systems Approach

A transdisciplinary systems approach solves complex problems that occur at the interfaces between
disciplines and limit the implementation of new technologies across domains. These domains can be
decomposed as a system of systems, with multiple parts that work together and are independent systems in
their own right, such as aerospace manufacturing [45]. This is particularly important for complex adaptive
systems, which evolve and adapt over time, such as disease dynamics [46]. By conceptualizing transplant
healthcare using these systems theories, we can leverage techniques for documenting existing and future
states to support the introduction of new technologies, like Al.

Transdisciplinary science is shifting how we scope problems, create models, and evaluate
interventions. For example, adequately modeling food and nutrition security requires integrated models of
the environment (e.g., to determine impacts of pollution on soil quality), agricultural systems (e.g., to
estimate food availability), public health (e.g., to predict malnutrition), and individual behavior (e.g., to
anticipate demand for certain types of food). Modeling these aspects separately fails to address the
challenges that occur at the interfaces (e.g., increased demand for fresh food may lead to unsustainable
farming practices, which further reduces cultivatable land) [47]. Systems dynamics and agent-based
modeling techniques are particularly effective for supporting these types of integrated simulations [48].
However, transdisciplinary research is only possible with interdisciplinary teams that bring together their
siloed theories, data collection methods, and analytical techniques from engineering, social science, and the
humanities into a holistic conceptual framework. In addition, by including domain experts and users in the
team, both academics and practitioners benefit from more relevant research, capacity building, and
increased potential for implementation [49].

To this end, model-based systems engineering (MBSE), first introduced in 1993, has developed
techniques to document and visualize complex systems to identify requirements and anticipate emergent
properties of complex systems. MBSE uses formal models to document a system and replaces the traditional
document-based approach to product development. This approach increases consistency and scales with
complexity for system specification, design, and validation. These methods rely on a system architecture,
which centralizes system documentation by articulating various views to represent the “sole source of truth”
[50]. The most popular modeling language is Systems Modeling Language (SysML) [51], which can be
visualized by Cameo Systems Modeler software [52]. First developed in 2003, SysML is used to describe
systems (i.e., making pictures) as well as support an executable system architecture (i.e., running
simulations). It is primarily used for design and validation of systems, rather than implementation. In the
design phase, SysML models can improve interoperability and support complex concurrent design

processes. In the validation phase, SysML models can support evaluation of the effect of a new technology



after implementation [53¢¢]. These tools have been extensively adopted in the defense and aerospace
industries to guide complex engineering design projects [54]. However, systems architecting practices have
historically approached human behavior as an afterthought. MBSE tools can facilitate communication
between disciplines by documenting and translating between the different perspectives (e.g., engineers and
psychologists) [55]. In the context of designing for human-machine teams, a recent SysML extension
articulates the roles and responsibilities of human versus machine team members and supports
interdependence analysis to evaluate teamwork outcomes [56¢]. There is increasing interest in applying

these techniques to other complex problems, especially in the context of healthcare [57-58].

3. Applying a Transdisciplinary Systems Approach to Reduce Kidney Discard

We are currently engaged in ongoing work to apply a transdisciplinary systems approach to the
design and implementation of an Al decision support system to reduce kidney discard. As summarized in
Figure 3, this approach is developed through a cyclical process wherein we (1) document the current system
architecture, (2) identify pain points that would benefit from Al support, (3) develop prototypes of an Al
decision support system, and (4) verify and validate the Al system to ensure we achieve desirable outcomes.
An iterative cyclical process incorporates multiple opportunities for stakeholder engagement that benefit
from a “fail fast” philosophy.

Based on interview data, we have developed a SysML activity diagram to represent the workflow,
which is one aspect of the organ allocation system architecture, across and between these stakeholder
groups (see Figure 4). In the transplant context, key stakeholders include organ procurement organizations
(OPO), transplant centers, and patients. In addition, we have identified six major process issues in the
kidney transplant workflow that could be alleviated via support from an Al decision support system. Much
of the work to place less desirable (“lower quality”) kidneys occurs after midnight (process issue 1:
environmental stress). Transplant centers receive organ offers via DonorNet and have one hour to evaluate
the offer and enter a decline or provisional acceptance of the offer (2: time pressure). Often, transplant
centers will provisionally accept an offer to keep their options open, even if there is a low likelihood that
they will ultimately accept the offer (3: local optimization). The transplant team receives access to extensive
information including the donor’s medical history, known risk factors for organ function (e.g., age, cause
of death, diabetes, hypertension, Hepatitis C infection status, KDPI). After the kidney is procured,
transplant center staff can adjust their decision as more information becomes available or based on patient
input and compatibility (4: evolving information). Ultimately, the surgeon has until the moment of
transplantation to decide to decline a kidney offer. Offers that are rejected at this stage are at the highest

risk of discard and very difficult to re-allocate.



When evaluating kidney offers, transplant teams must assess the benefits and costs of waiting for
a higher quality kidney versus moving forward with a lower quality kidney. In addition, when deciding
whether to perform a transplant with a given donor, surgeons consider many factors, ranging from medical
compatibility to assessment of complex donor clinical information including imaging and other diagnostics,
which can all affect the success of the transplant (5: complex decision space). Further, transplant centers,
and individual surgeons, vary in their ability to care for patients with complications (e.g., patients who get
Hepatitis C infections from donors) and risk posture based on recent failed transplants (6. heterogeneous
risk posture). All of these process issues interact with each other to increase the complexity of addressing
kidney discard via an Al decision support tool.

In addition to articulating the current system architecture, we are relying on stakeholder input to
prioritize which tasks to focus on for an Al decision support system. In the context of online workshops,
we engaged small groups of transplant stakeholders to organize tasks in an effort vs. impact prioritization
matrix. Focusing on the steps that are high effort to execute and high impact in affecting kidney discard,
the top candidates for an Al decision support system include (1) OPO efforts to reallocate denied kidneys

and (2) transplant center/patient decision-making to accept/deny high-risk kidney offers.

4. Conclusions

Al systems can improve healthcare delivery, but it is challenging to design an effective decision
support system. In the context of transplant healthcare, kidney discard is a complex problem that will require
coordination across stakeholders and shifting clinician behavior. An Al decision support system could
support efforts to better leverage real-time data-driven decision-making during this transition toward
increased kidney utilization. However, Al systems frequently suffer from overfitting, poor explainability,
and low user trust, reducing the likelihood of widespread adoption. Researchers in engineering and social
science disciplines are actively identifying strategies to improve human-machine interaction for these types
of systems. For overfitting, promising strategies include the use of transfer learning and ensemble models
as well as improved training to allow human users to compensate for model limitations. Deep learning
models can generate feature relevance scores to communicate how specific features contribute to a
prediction, but experimental evidence is needed to determine if these communications have the desired
outcomes. Trustworthy models tend to use anthropomorphism to increase perceptions of the Al having
mental capacity or allow users to make small changes to the model after it errs. However, there have been
few opportunities to examine the effect of combining these approaches in a real-world clinical environment.

Using a transdisciplinary systems approach in a participatory research framework, we can
iteratively refine an Al decision support system design to maximize potential effectiveness.

Transdisciplinary collaborations support the development of both the operation and interface of an Al



decision support system in tandem. Rather than solving a challenge like overfitting with technology alone,
there are opportunities to leverage human expertise to increase the system-level effectiveness. Similarly,
early engagement of domain experts (e.g., transplant stakeholders) can increase trust and the likelihood of
developing an implementable system. A system architecture is useful for visualizing the system for cross-
discipline conversations and solution development.

Based on ongoing work to develop an Al decision support system to reduce kidney discard, we
outline a cyclical approach for designing and testing the system design that involves (1) documenting the
system architecture, (2) identifying pain points, (3) developing prototypes, and (4) validating the system.
Based on stakeholder input, we have identified six system characteristics that will inform the design,
including environmental stress, time pressure, local optimization, evolving information, complex decision
space, and heterogeneous risk posture. We are developing prototype Al systems for (1) OPO efforts to
reallocate denied kidneys and (2) transplant center decisions to accept/deny high-risk kidney offers [59].
This approach is time consuming and requires extensive stakeholder engagement. But ultimately, this will

lead to a better product and better outcomes for patients.
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Figure Legends:
Figure 1. Kidney discard (dotted blue) increases for high Kidney Donor Profile Index (KDPI)

organs, despite high rates of graft survival after 5 years (solid green) based on Scientific
Registry Transplant Recipients (SRTR) data [1].

Figure 2. Summary of feedback loops from input and training data that allow a deep learning
model to adapt over time.

Figure 3. A transdisciplinary systems approach is supported by a cyclical development
process for an Al decision support system.

Figure 4. SysML activity diagram or workflow for kidney allocation based on (a) organ
procurement organization, (b) transplant center, and (c) transplant patient views.
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