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Abstract  
The role of human-machine teams in society is increasing, as big data and computing power explode. One popular 
approach to AI is deep learning, which is useful for classification, feature identification, and predictive modeling. 
However, deep learning models often suffer from inadequate transparency and poor explainability. One aspect of 
human systems integration is the design of interfaces that support human decision-making. AI models have multiple 
types of uncertainty embedded, which may be difficult for users to understand. Humans that use these tools need to 
understand how much they should trust the AI. This study evaluates one simple approach for communicating 
uncertainty, a visual confidence bar ranging from 0-100%. We perform a human-subject online experiment using an 
existing image recognition deep learning model to test the effect of (1) providing single vs. multiple recommendations 
from the AI and (2) including uncertainty information. For each image, participants described the subject in an open 
textbox and rated their confidence in their answers. Performance was evaluated at four levels of accuracy ranging 
from the same as the image label to the correct category of the image. The results suggest that AI recommendations 
increase accuracy, even if the human and AI have different definitions of accuracy. In addition, providing multiple 
ranked recommendations, with or without the confidence bar, increases operator confidence and reduces perceived 
task difficulty. More research is needed to determine how people approach uncertain information from an AI system 
and develop effective visualizations for communicating uncertainty. 
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Introduction 
Artificial intelligence (AI) recommendations are not only found in online shopping, streaming services, and smart 
home devices. Increasingly, there are efforts to embed AI recommendations in high-risk work contexts such as the 
military, healthcare, and manufacturing (Ashiku & Dagli, 2019; Gottapu & Dagli, 2018). Consequently, it is critical 
to understand how people use AI recommendations in situations with varying uncertainty and potential impacts. 

One popular approach to AI is deep learning. In the context of image recognition, deep learning models use 
neural networks to find similarities in each image and categorize them accordingly (see Exhibit 1). Neural networks 
are essentially rows of computational cells in layers that process information individually and pass information on to 
the next layer. The network learns and thus improves the more it is used. These networks start to recognize patterns 
between examples, which helps classify future examples or information. While neural networks excel at specific tasks 
as they learn from data, they are poor at extrapolation. It is possible to give prediction probabilities for different choices 
in clustering problems for deep learning models that use “softmax” functions in the last layer of the network. This 
probability is valuable for AI systems that interact with humans as a representation of uncertainty or confidence for 
each recommendation.  

 
 
 
 



2 
Copyright, American Society for Engineering Management, 2020 

Exhibit 1. Example of a Deep Learning Model with Artificial Neural Networks for Image Recognition. 

 
 
This study provides human participants with recommendations from an image recognition deep learning model to 
answer two primary research questions: 

1. Does human performance improve when participants receive multiple recommendations instead of a single 
recommendation? Do multiple recommendations need to be ranked? 

2. Does providing a confidence bar for each recommendation improve performance? 
This research draws on insights from the literature on communicating AI recommendations and communicating 
uncertainty. 
 
Communicating AI Recommendations 
It is important for human users to understand both the capabilities and limitations of AI when used for decision-
making. Experimental evidence suggests that a detailed example of how the AI will help the user in the activity may 
provide a better understanding for the users (Amershi et al., 2019). Raising awareness of mistakes made by the AI can 
increase acceptance of AI assistance. This “expectation-setting intervention” helps users understand how the AI works 
and be more accepting of mistakes (Kocielnik et al., 2019).  People are also sensitive to how AI recommendations are 
communicated. For example, when performing a 2D task (such as on a computer screen), people are more influenced 
by a 2D on-screen agent. However, when performing a 3D task (such as operating a machine), people are more 
influenced by the recommendations of a 3D robot interface (Shinozawa et al., 2005). This suggests that the AI 
recommendations need to be presented in a way that is consistent with the task.  
 
Communicating Uncertainty Information 
One strategy for communicating the limitations of AI is to include uncertainty or confidence information with the 
recommendations. However, one of the challenges is that there may be different types of uncertainty associated with 
the training and test data vs. the model (van der Bles et al., 2019). In addition, visual communications of risk (or 
uncertainty) that improve quantitative understanding differ from the types of visualizations that encourage behavior 
change. Being able to make comparisons between categories (e.g. part vs. whole) is effective for increasing 
understanding. Without the ability to make comparisons, it is much more challenging to interpret the information 
(Ancher et al., 2006). In a review of the health communication literature, Lipkus & Hollands (1999) find that providing 
numerical and written information in addition to visualizations improves the perception of risk and perceived 
helpfulness. The visual representation of risk (or uncertainty) is more effective for helping people make decisions that 
affect them positively (Lipkus & Hollands, 1999; Lipkus, 2007).  

 
Method 
Design 
We recruited 286 participants from Prolific, an online participant pool platform. In order to participate, participants 
had to be over 18 and speak English. Prolific is an alternative to Amazon mTurk created by a group of researchers 
from Oxford and Sheffield universities. The data quality of Prolific is comparable to Amazon mTurk, but Prolific 
offers a more diverse group of English-speaking participants in terms of geographical location and ethnicity (Peer et 
al., 2017).  

Participants performed an image recognition task. In a between-subjects design, participants were randomly 
assigned to one of six conditions:  

a) No Recommendation Control – no AI recommendation or confidence bar provided,  
b) 5 AI Recommendation/Alphabetical Control – top five recommendations by the AI in alphabetical order,  
c) 1 AI Recommendation/Text Only – top recommendation by AI,  
d) 1 AI Recommendation/Confidence Bar – top recommendation by AI with confidence bar,  
e) 5 AI Recommendation/Text Only – top five recommendations by the AI in ranked order, and 
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f) 5 AI Recommendation/Confidence Bar – top five recommendations by the AI in ranked order with confidence 
bar for each recommendation. 

The figures below show an example experimental stimulus for each condition.  Within each condition, each participant 
identified 24 images and answered additional survey questions. 
 

Exhibit 2. Example Stimulus for Each of the Six Conditions. 

 

 

 
 

Stimuli 
The images, AI recommendations, and confidence bars were drawn from the supplementary materials of Krizhevsky 
et al. (2012), which leverages the ImageNet database (Deng et al., 2010). The ImageNet database is made up of 12 
subsets consisting of 3.2 million images in 5,247 categories. Deng et al. (2010) used participants from Amazon mTurk 
to label these images. The Krizhevsky et al. (2012) model used in this study was trained on 1.2 million images in 
1,000 categories. To avoid overfitting, Krizhevsky et al. (2012) augmented the model by scaling all the input images 
to 256 x 256 resolution and by altering the RGB scales of all the images. From the 88 images provided in the 
supplementary materials by Krizhevsky et al., (2012), we selected 24 to use in this study where the image label was 
clearly a focus of the image and there was a mix of correct and incorrect AI recommendations. 
 
Measures 
Before viewing the images, participants completed two attention check questions: “In the instructions, an example 
image was given along with the correct label for that image. What was the correct answer for the example image?” 
(answer: “howler monkey”) and “How did the instructions say to describe the picture?” (answer: “be specific”). In 
addition, there was one attention check embedded in the images where participants were asked to identify the image 
that was explained in the instructions. These items were combined into an attention indicator, where 1 indicates that 
the participant passed all three of the attention checks and 0 indicates that they failed at least one. In addition, we 
measured the average time spent per image. 

For each of the 24 images, participants identified the subject of the image (“What is this a picture of?”) in an 
open textbox. The responses were manually categorized into the following types of accuracy: 

(1) Exact Match – answer matched the image label,  
(2) Synonym – answer was an alternate or similar name to the image label (e.g., Metal Nails instead of Nail), 
(3) Present – the answer was present in the image but not the image label (e.g. White Wall instead of Nail),   
(4) Category – the answer was a broader category, rather than specific (e.g. Hardware instead of Nail),  

where each level includes the previous level. In other words, if the response was “Category correct”, then it was also 
considered correct for the other levels. After each image, participants indicated their confidence on a 6-point scale that 
ranged from 0-100% confident (“How confident are you in your answer?”). 
 Following the series of images, participants rated the difficulty of the task (“How difficult was this task?”) 
on a 5-point Likert scale that ranged from “extremely difficult” to “extremely easy”. We also measured demographics 
including gender, education, and age. Four participants did not report their education level. Age was highly skewed, 
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so a log transformation was used to normalize the measure. A separate ANOVA was run for each definition of 
accuracy, where the outcome (or dependent) variable was the performance of an individual participant across 24 
images. Due to the high number of statistical tests, we focus on interpreting effects with p < 0.01 to reduce false 
positives. 
 
Results and Discussion 
Participants were predominantly female (67%) and approximately half had at least a 4-year college degree. The 
average age was 33 years old and ranged from 18 to 67 years old. Exhibit 3 summarizes measures across experimental 
conditions. The demographics and attention measures did not significantly vary across the experimental conditions. 
This suggests that the random assignment was successful and there are no systematic differences between the 
experimental groups. Older participants tended to spend more time per image, r(284) = 0.27, p < .001. In addition, 
participants that were more confident tended to spend more time per image, r(284) = 0.15, p = .01, and perceive the 
task as more difficult, r(284) = 0.26, p < .001. 

 
Exhibit 3. Mean and Standard Deviation for Each Experimental Condition. Accuracy, Confidence, and Task 

Difficulty Differed across Experimental Conditions. 
  Controls 1 AI Recommendation 5 AI Recommendations 
 Total No Rec Alphabetical 

Recs 
Text 
Only 

Confidence 
Bar 

Ranked 
Text 

Confidence 
Bar 

Participants 286 46 45 49 49 48 49 
Exact Match 
   Accuracy 

45%  
(31%) 

25%  
(27%) 

47%  
(35%) 

46%  
(35%) 

49%  
(39%) 

49%  
(40%) 

50%  
(37%) 

Synonym  
   Accuracy 

55%  
(32%) 

38%  
(31%) 

58%  
(33%) 

56%  
(36%) 

58%  
(38%) 

60%  
(33%) 

61%  
(35%) 

Present  
   Accuracy 

64%  
(30%) 

48%  
(33%) 

66%  
(31%) 

64%  
(34%) 

65%  
(37%) 

68%  
(31%) 

69%  
(32%) 

Category  
   Accuracy 

77%  
(27%) 

75%  
(20%) 

76%  
(28%) 

77%  
(31%) 

74%  
(34%) 

78%  
(27%) 

79%  
(30%) 

Confidence 69%  
(14%) 

63%  
(19%) 

67%  
(10%) 

71%  
(15%) 

66%  
(14%) 

73%  
(11%) 

73%  
(11%) 

Task  
   Difficulty 

3.2  
(1.1) 

3.8  
(1.0) 

4.3  
(1.0) 

3.3  
(1.1) 

3.2  
(1.1) 

2.7  
(1.0) 

2.9  
(1.1) 

% Passed  
   Attention 

75%  
(43%) 

78%  
(42%) 

76%  
(43%) 

80%  
(41%) 

80%  
(41%) 

69%  
(47%) 

69%  
(47%) 

Time per image 
(secs) 

22  
(15) 

21  
(12) 

27  
(14) 

23  
(18) 

18  
(14) 

23  
(16) 

22  
(12) 

% Male 33% 33% 33% 29 % 33% 33% 33% 
% College 50% 59% 36% 59% 45% 50% 52% 
Age 33 

(11) 
33  

(10) 
33  

(11) 
34  

(12) 
31  
(9) 

34  
(13) 

31  
(10) 

  
As shown in Exhibit 4, separate ANOVAs were conducted for each definition of accuracy. Performance differed 
across experimental conditions and confidence. In addition, there were weakly significant effects at the p < .05 level 
for attention and task difficulty. Tukey HSD post hoc tests indicated that when compared to the control condition, 
accuracy was higher in all of the AI conditions (p < .01), but there was no significant difference between the AI 
conditions (see Exhibits 3 and 5). This was true across all definitions of accuracy except Category accuracy, which 
uses the most lenient definition. In this case, there was no significant difference between the control and AI conditions 
(although post hoc tests indicated that a few comparisons approached, but did not achieve, statistical significance).  

Participants that were more confident tended to have higher Synonym and Category accuracy. From a 
metacognition perspective, the Category accuracy effect suggests that participants knew when they did or did not have 
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a vague sense (i.e. the category) of an image. More investigation is needed to determine the mechanism for Synonym 
accuracy. A one-way ANOVA indicates that the average confidence varied across experimental conditions, F(5, 280) 
= 4.41, p < .001. Post hoc comparisons using the Tukey HSD test suggest that participants in the 1 AI 
Recommendation/Text Only, 5 AI Recommendation/Text Only, and 5 AI Recommendation/Confidence Bar 
conditions were significantly more confident that the No Recommendation Control group (see Exhibit 3). This 
suggests that the confidence bar increased confidence (compared to the No Recommendation Control condition) when 
there were 5 AI recommendations, but not when there was only 1 AI recommendation. The confidence bar may help 
sort among multiple recommendations, but simply serves to decrease confidence if there are no alternative 
recommendations.  

A one-way ANOVA showed that the perceived task difficulty varied across the experimental conditions, F(5, 
280) = 6.28, p < .001. Tukey HSD post-hoc tests indicate that the 5 AI Recommendations/Alphabetical Control 
condition was perceived as significantly more difficult than the 5 AI Recommendations/Text Only condition (see 
Exhibit 3). In addition, the 5 AI Recommendations/Text Only and 5 AI Recommendations/Confidence Bar conditions 
were perceived as significantly less difficult than the No Recommendation Control condition. This suggests that 
providing multiple recommendations made the task less difficult, as long as the recommendations were ranked.      
 

Exhibit 4. Separate ANOVA for each Accuracy Definition. Accuracy Differed across Experimental 
Conditions (p < .01). 

 Exact Match Synonym Present Category 

 F 𝜂!	 F 𝜂!	 F 𝜂!	 F 𝜂!	

Experimental Condition 45.11*** 0.44 34.46*** 0.38 29.00*** 0.34 2.88* 0.05 

Confidence 6.31* 0.001 5.70* 0.01 1.64 0.00 6.37* 0.02 

Task Difficulty 3.40 0.01 1.936 0.00 0.65 0.00 0.08 0.00 

Attention 5.96* 0.01 5.10* 0.01 4.58* 0.01 2.97 0.01 

Time per Question  2.62 0.01 1.57 0.00 2.13 0.01 0.16 0.00 

% Male 2.50 0.00 1.16 0.00 0.80 0.00 0.54 0.00 

% College  0.94 0.00 0.07 0.00 0.03 0.00 0.00 0.00 

log(Age) 0.06 0.00 1.20 0.00 0.69 0.00 0.08 0.00 

Note: *p < .05, **p < .01, and ***p < .001 
 
When excluding the Control conditions, it is possible to examine the potential interaction of the number of AI 
recommendations and the use of the confidence bar. As shown in Exhibit 5, there is a significant difference due to 
the number of AI recommendations for all definitions of accuracy. However, the difference is weakly significant for 
the Exact Match accuracy (p < .05), which is the most restrictive definition of accuracy. Providing 5 
recommendations rather than 1 recommendation increased performance for exact match (50% vs. 47%), synonym 
(61% vs. 57%), present (68% vs. 64%), and category (79% vs. 75%) accuracy. However, the use of confidence bars 
was not associated with any significant differences, suggesting that this information did not improve participant 
accuracy. 
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Exhibit 5. Two-Way ANOVA for each Accuracy Definition. Accuracy Differed for the Number of AI 
Recommendations, but Not Use of Confidence Bar (p < .01).  

 Exact Match Synonym Present Category 

 F 𝜂!	 F 𝜂!	 F 𝜂!	 F 𝜂!	

Number of AI Recs  4.06* 0.02 8.59** 0.04 7.89** 0.04 11.47*** 0.06 

Bar 3.36 0.02 1.63 0.01 1.23 0.01 0.02 0.00 

Number of AI Recs * Bar 0.98 0.00 0.38 0.00 0.05 0.00 0.62 0.00 

Confidence 0.00 0.00 0.51 0.00 1.34 0.01 0.24 0.00 

Task Difficulty 2.60 0.01 1.51 0.01 0.48 0.00 0.01 0.00 

Attention 4.49* 0.02 2.82 0.00 3.14 0.02 3.61 0.02 

Time per Question  0.44 0.00 0.11 0.00 0.73 0.00 0.06 0.00 

% Male 2.55 0.01 1.31 0.01 0.88 0.00 0.34 0.00 

% College  0.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

log(Age) 0.12 0.00 0.65 0.00 0.29 0.00 0.43 0.00 

Note: *p < .05, **p < .01, and ***p < .001 
 

Exhibit 6. Mean Performance of the Participants in each Experimental Condition across all Accuracy 
Definitions. The AI Conditions Improved Performance for Exact Match, Synonym, and Present Accuracy. 
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Conclusion  
The results suggest that AI recommendations improve accuracy for human-led image recognition tasks across multiple 
definitions of accuracy. In addition, providing additional recommendations (5 vs. 1) improves accuracy, but the use 
of confidence bars was not associated with any significant differences. For Category accuracy, the broadest definition 
of accuracy, there was a weak difference between the experimental and control conditions. This suggests that there 
were some images that did not benefit from AI recommendations, when using the most generous definition of 
accuracy. In addition, when examining the effect of the number of AI recommendations, there was a weak effect for 
Exact Match accuracy, suggesting that additional recommendations may not help for narrow definitions of accuracy. 
This work suggests that AI recommendations are generally helpful even when the human and machine or AI 
components of a system have different definitions of accuracy. In this experiment, the Exact Match accuracy is the 
only case where the human and AI definitions match. For Synonym and Present accuracy, the human is recognizing 
more aspects of the image than the AI, yet the AI recommendations are still improving accuracy. 

The AI recommendation conditions differ in how they influenced confidence. Participants in the 1 AI 
Recommendation/Text Only, 5 AI Recommendations/Text Only, and 5 AI Recommendations/Confidence Bar 
conditions were significantly more confident that the No Recommendations Control group. This suggests that ranked 
AI recommendations are associated with higher confidence. In addition, the confidence bars are more helpful for 
increasing confidence when sorting through multiple recommendations. In terms of metacognition or people’s ability 
to “know what they know”, participants were able to distinguish between Category accuracy and wrong answers. 
However, they did not know when they were focusing on the same aspect of the image as the AI. More investigation 
is needed to determine the mechanism for Synonym accuracy.  

Providing multiple recommendations made the task seem less difficult, as long as the recommendations were 
ranked. The 5 AI Recommendations/Alphabetical Control condition was perceived as the most difficult while the 5 
AI Recommendations/Text Only and 5 AI Recommendations/Confidence Bar conditions were perceived as the least 
difficult. This suggests that providing multiple ranked recommendations with confidence bars from an AI system may 
increase human operator confidence and reduce the perceived difficulty of the task.  

Future research efforts will further investigate principles for designing AI recommendation communications. 
The research team will explore stimuli-level effects, the impact of AI recommendations that are not correct, and the 
role of attention. This work is based on a laboratory experiment and does not represent an ecologically valid task. As 
a result, these findings may not be directly generalizable to workplaces or specific applications. Further research is 
needed to determine if there are any differences based on domain or application.  
 
Recommendations 
AI recommendations are increasingly being integrated into a variety of engineering management contexts (e.g. 
healthcare, military, manufacturing, supply chain). However, to date, there is insufficient research on integrating 
uncertainty or confidence information into AI recommendation communications. The results of this study suggest that 
it may be valuable for AI systems to provide multiple ranked recommendations, particularly if the AI is trained on a 
narrower task than the human operators are performing. In the context of image recognition, the AI may be focused 
on specific features while a human analyst is examining the broader context and may focus on different features or 
levels of precision. Engineering managers must consider the task characteristics to determine the appropriate strategy 
for communicating AI recommendations and the impacts on human performance.  
 More research is needed on designing communications of uncertainty for AI outputs. This study found no 
evidence of a performance benefit associated with including uncertainty or confidence bars for each recommendation. 
However, there are many types of uncertainty. For example, temporal uncertainty refers to uncertainty about future 
events. Structural uncertainty refers to uncertainty that is introduced as a function of the model. Measurement 
uncertainty refers to uncertainty associated with measuring specific values and translational uncertainty refers to the 
uncertainty introduced in the communication process (Rowe, 1994). This work focuses on developing 
communications for a measure that incorporates multiple types (e.g. structural and metrical). Future work should 
explore strategies for designing communications that differentiate between kinds of uncertainty. In addition, future 
work should investigate combining visual and numerical uncertainty information. Ultimately, this research effort aims 
to develop communications that improve the performance of human-machine teams. 
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