Optimal Codes for the g-ary Deletion Channel

Jin Sima!, Ryan Gabrys? and Jehoshua Bruck!

'Department of Electrical Engineering, California Institute of Technology
?Department of Electrical and Computer Engineering, University of California San Diego

Abstract—The problem of constructing optimal multiple dele-
tion correcting codes has long been open until recent break-
through for binary cases. Yet comparatively less progress was
made in the non-binary counterpart, with the only rate one non-
binary deletion codes being Tenengolts’ construction that corrects
single deletion. In this paper, we present several g-ary t-deletion
correcting codes of length 7 that achieve optimal redundancy up

to a factor of a constant, based on the value of the alphabet size 4.

For small g, our constructions have O(n%g!) encoding/decoding

complexity. For large g, we take a different approach and the
construction has polynomial time complexity.

I. INTRODUCTION

In the last few years, considerable progress has been made
on the problem of coding for the binary deletion channel.
In [1], Brakensiek et al. constructed t-deletion correcting
codes of length n that require O(t?logtlogn) bits of re-
dundancy, which was a dramatic improvement over existing
coding schemes [9]. Several works quickly followed [1] that
further improved upon this result. For the case where t = 2,
[6] and [16] constructed two deletion correcting codes that
require 8logn and 7logn bits of redundancy, respectively.

For general ¢, Haeupler [7] gives an explicit systematic con-

2 n
struction which requires 9(tl?§ L 4 1) bits of redundancy. In

[3], another construction was derived by Cheng et al., which is
not systematic, but is order optimal in the sense that it requires
O(tlogn) bits of redundancy. An improved result in terms of
redundancy was presented in [14], in which a non-systematic
code that requires 8t log n bits of redundancy was constructed.

Despite this recent progress, the problem of constructing
codes for the g-ary deletion channel has received significantly
less attention. Tenengolts constructed a nearly optimal code
for the case of a single deletion [17]. The main idea in
[17] is to use a parity code to identify the symbol which
was deleted and an associated Levenshtein code to determine
the location of the deletion. For the case of multiple dele-
tions, the Helberg codes [9], which were originally proposed
for the binary deletion channel, were adapted and shown
to produce non-binary deletion correcting codes [10]. The
primary drawback to this class of codes is their low rate
[10]. Even for the case of two deletions the codes have rates
that do not approach 1 as n becomes large. It was shown
in [12] that the optimal redundancy of a g-ary f deletion
code asymptotically falls between tlogn + tlog g + o(log qn)
and 2flogn + tlog q + o(log qn).

This work was supported in part by NSF grants CCF-1816965 and CCF-
1717884.

978-1-7281-6432-8/20/$31.00 ©2020 IEEE

740

In this work, we attempt to bring the existing results for
non-binary codes closer to the results obtained in the binary
domain. We highlight the main contributions of this work
through the following two theorems.

Theorem 1. Let t be a constant with respect to k and suppose
that g < k. Then, there exists a non-systematic, efficiently
encodable/decodable t-deletion code of message length k over
an alphabet of size q that requires at most 2t(1 + €)(2logn +
log q) + o(log n) bits of redundancy.

Theorem 2. Let ¢ be a constant with respect to k and suppose
that ¢ > k. Then, there exists a non-systematic, efficiently
encodable/decodable t-deletion code of message length k over
an alphabet of size q that requires at most (30t + 1) log q bits
of redundancy.

As will be explained in more detail in Section III, the result
stated in the second theorem also extends to the case where ¢
is a constant fraction of code length n, when g is large enough.
A similar case when ¢ is a fraction of 7 and ¢ is a polynomial
of n was solved in [8].

We make use of two different approaches to obtain the
advertised results. For the results stated in the first theorem,
we rely on the syndrome compression technique, which is
introduced in our companion paper [15]. For the results in
the second theorem, we make use of results from repeat-free
sequences from [4]. To the best of the authors’ knowledge, the
best known constructions of non-binary codes for the deletion
channel can be found in [10] and so our results represent a
significant improvement over existing work.

This paper is organized as follows. In Section II, we present
our constructions for the case where 4 < k, which make
use of the syndrome compression technique. Section III uses
repeat-free sequences to construct codes when g > k. Finally
Section IV concludes the paper.

II. q-ARY CODES CORRECTING t DELETIONS FOR SMALL q

In this section we present t-deletion correcting codes for
g-ary alphabets where g is less than the message length k.
In particular, we consider the following two cases: (1) g <
logk. (2) logk < q < k. The redundancy of the resulting
g-ary t-deletion codes is 2t(1 + €)(21logk + log q) + o(log k)
bits. Before describing the code constructions, let us introduce
a few notations for this section. For a sequence u € [[q]]" =
{0,...,q — 1} of length m over the alphabet {0,...,q — 1},
let Bf(u) be its deletion ball with radius ¢, consisting of all
length m sequences obtained by deleting ¢ g-ary symbols and

ISIT 2020

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 12,2021 at 20:15:55 UTC from |IEEE Xplore. Restrictions apply.

inserting ¢ g-ary symbols in u. The following result comes
from a simple counting argument.

Claim 3. For any t and u € [[]]™, we have |B](u)| < m*q".
Define a binary matrix representation U for u € [[g]]™ as

Ul,m
c {0’ 1}[10gq] ><m’
uy uy Wiog q],m

logq],1 logq],2

ey
where the i-th symbol of u is given by the i-th column of U
forie[m] = {1,...,m}. Let U], i [[logq]] and U]‘?, je[m]
be the i-th row and j-th column of U respectively. Then the
deletion of the j-th symbol of u corresponds to the deletion
of the column U]? in the matrix U.

A. Case (1) :q <logk

In the following, we describe t-deletion correcting codes
for the case where g < logk. The basic idea, which will
be described in more details that follow, is to interpret our
non-binary sequences as a set of [logq]| sequences over the
binary alphabet as illustrated in (1). We will then use a
compound labeling which is defined using the labeling from
binary deletion codes [1] on each of these binary sequences to
form a code that can correct ¢ deletions. To further reduce the
size of the compound labeling, we adapt a technique called
syndrome compression [15]. Define

M(m,t) = {x € {0,1}" : For integers

¢ = [logt + loglog(t + 1) + 5] and d = O(t(log t)*log m)
and for any string p € {0,1}", every substring of consecutive
d bits in x contains p as a substring.}

The following results will be used.

Lemma 4. (c.f,, [1]) Fix an integer t > 2. Then for all large m,
there exists R(m) = O(t?log tlog m) and a hash function f; :
M(m, t) — {0,1}R0") 5o that for any distinct x,y € M (m,),
we have fi(x) # fi(y), ify € B?(x)\{x}.

Lemma 5. (c.f,, [15]) Let f : {0,1}" — [[20((loglogm-logm))]|
be a labeling function such that for any fixed x € {0,1}"
and any y € B](x), we have that f(x) # f(y). Then there
exists an integer a < 2'°8|B)|+ollogm) gych that for any
y € Bl (x)\{u}, we have that f(x) # f(y) mod a.

We begin by describing the labeling. According to
Lemma 4, there exists a labeling function fi(u) : {0,1}" —

(0,10 logtlogm) guch that f,(u) # fi(y) for any u €
M(m,t) and y € (Bs(u)\{u}) n M(m, t). Define the set

M(m,t,q) = {u € {0,1}™ : Ur e M(m,t),Vie [[1ogq1]}.
and the labeling function
fiw) = (Sl o) frUhg) € 10,1355,

Then, from definition of f¢(u), we have that f{(u) # f/(y)
for u e M(m,t,q) and y € M(m,t,q) n (B} (u)\{u}). The

size of fl(u) is R; = O(t?logtlogqlogm) bits, so we
cannot immediately apply Lemma 5. To resolve this issue, we
apply the syndrome compression technique in [15] on ftq (u)
and obtain a new labeling f{' in the next lemma.

Lemma 6. There exists a labeling ftq ! [q]I™ -
[[20((oglogm-logm)] and f is such that for any u € [[q]]™ and
y € (B{ (w)\{u}) n M(m, t,q), we have f* (u) # f]" (y).

Since the labeling ftq ! works for sequences u in M (m, t,q),
we need to encode the information u € IF;” to a sequence
in M(m,t,q). The next lemma, which can be proved fol-
lowing similar arguments in [3], shows that the sequences
in M(m, t,q) can be generated using an O(log m) bit seed s.

Lemma7. For any u € |[[gq]]", there exists a seed
s € {0,139008™) and a function qu(u,s), computable
in poly(m, t) time, such that T{ (u,s) € M(m,t,q).

We are now ready to present our code construction in
terms of the encoding process. Let & be the encoder that
takes a g-ary information sequence ¢ € [[¢]]™ as input and
outputs a g-ary codeword &£ (c) such that the i-th row of the
matrix representation of & (c) is f;(C]), where f; is given in
Lemma 4.

1) Let u € {0,1}F and suppose s is such that uy =

Tf(u,s) e M(k,t,q).

2) Suppose a € [[2R]] is such that ' (ur) # f*(y) mod
aforany y € B/ (ur) n M(k, t,q) where R = 2tlogk +
o(logk).

3) Then,

X = (uT, E(s,a, f{* (ur) mod a)> e [[q]]"

In the resulting codeword x above, we assume that s,a are
represented using g-ary symbols and similarly for the vector
&(s, a, f{* (ur) mod a).

Since f{'(ur) e [[20((loglogk)logk)]] it follows from
Lemma 5 that (a,f/'(ur) mod a) can be described us-
ing at most 4tlogk + O(logk) bits. Since the size of
s is O(logk) bits, the redundancy E&(s,a, f{'(ur) mod
a) can be represented by at most 4tlogk + O(logk) +
O(t*log qlog tlog(4tlogk)) bits, which is at most 4f(1 +
€) log k bits.

Theorem 8. Let z be the result of at most t deletions occurring
to x. Then, we can uniquely recover x from z.

Proof: Let z be a length n — t subsequence
of x. Then (zgi1,...,2n—t) is a length n — ¢ — k
subsequence of (Xgi1,...,%Xn). Since (Xgy1,...,%n) =

St(s,a,ftql (ur) mod a) is a codeword from a t-deletion
correcting code, we can recover (s,d, f*(ur) mod a)
from (zgi1,...,2n—t). Since Tf(u,s) e Mkt q), we
have that f;'(y) # f{'(T{(u,s)) mod a for y € M(k,t,q)
and y € B/ (T{7 (u,s)). Therefore, the sequence Tf (u,s) can
be recovered. Finally, given Tf (u,s) and s, we can recover u,
and from u we can recover X. |

741

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 12,2021 at 20:15:55 UTC from |IEEE Xplore. Restrictions apply.

B. Case (2) :logk <gq <k

We now present a t-deletion code for the case logk < q <
k, which is more involved than the case g < logk. There
are two key ideas in constructing the code. The first is to
narrow down the ranges of deletion locations to blocks of
length O(poly(t)logk), thus recovering most of the blocks
in the sequence. To further recover the remaining blocks, the
second idea decomposes a g-ary representation of a sequence
down to its symbol histogram information, which counts the
frequency of the symbols, and the its permutation information,
which records the index of each symbol. The second idea has
a similar flavor to the construction of g-ary single deletion
correcting codes in [17], where the symbol histogram and
ascending/descending order information are used.

To achieve the first part, we generate binary sequences that
satisfy a period constraint, similar to [2]. A sequence u €
{0, 1} has period p if u; = u;y, for i € [m — p]. Let L(u, p)
be the length of the longest subsequence of consecutive bits
in u that has period p. Denote

L(m,t) = {u :L(u,p) <2logm+t+1,Vpe [t]}

to be the set of sequences whose subsequences of any pe-
riod p € [t] has length at most 2logm + t + 1. The following
lemma provides a randomized algorithm to generate sequences
in L(m,t).

Lemma9. Let U, be a random string uniformly distributed
over {0,1}' where ¢ = 2logm + t + 1. Let g1 (Uy) € {0,1}™
be the sequence obtained by repeating U, and taking the
first m bits. Then for any sequence u € {0,1}", the bitwise
XOR g1(Uy) + u € L(m, t) with probability at least 1 — 1/m.

Lemma 7 and Lemma 9 imply the following lemma.

Lemma 10. Let U; be a random string uniformly distributed
over {0,1}¢, where ¢ = O(log m). Then there exists a map g :
{0,1}¢ — {0,1}™ such that for every string u € {0,1}", we
have thatu + g»(Uy) € M(m, t) n L(m,t) with probability at
least1 —1/m —1/poly(m).

Lemma 10 implies that for any sequence u € {0,1}", it is
possible to search in poly(m) time for a seed s that can be
described in O(logm) bits such that g»(s) + u e M(m, t) n
L(m,). For a sequence u € {0,1}"™ and integers {01, ...,0:},
where 1 < &1 < & < ... < & < m, let u(dy,...,6)
denote the length m — t subsequence obtained by deleting
bits us,, i € [t]. The next lemma shows that given u € L(m, t)
and u(dy,...,d), it is possible to narrow down the range
of 9;, i € [t].

Lemmall. If a sequence uw € L(m,t), then given u
and u(dy,...,0:), we can find at most t + 2 disjoint

intervals [a;,b;] < [m] for i € [t + 2], with
length T = (2t + 1)(2logm + t + 2) + t each, such
that {61,...,0} c Yie[1,t42] [a;,b;]. In addition,

for any j € [m]\(Uieppis2)lai bi]), the number of
deletions N; = |[j — 1f N %51,...,§t}| that occur in
interval [j — 1] can be determined.

Recall the matrix representation U of the g-ary codeword u.
In light of Lemma 11, we protect the first row U] from ¢
deletions and use it to determine the ranges where the deletions
occur. Since the deletion ranges have short length, most of the
symbols in sequence u € [[¢]]™ can be recovered. To this
end, the first row U] is generated such that U] € L(m,t) n
M(m, t). Define the set

Mil(m,t) ={u:ue[[qg]]", Ul € M(m,t) n L(m,t)}.

The following Lemma generates sequences in M7 (m, t) and
can be proved using similar arguments that prove Lemma 7.

Lemma 12. For any u € [[q]]™. there exists a seed s
of O(logm) bits and a function Tg(u,s) [[q]]™ x
{0,1}00ogm) _, [[4]]™, computable in poly(m,t) time, such
that TJ (u,s) € M(m, t).

Let u € M17(m,t) be a sequence and z = u(dy,...,d:) be
the length m — t subsequence of u after deleting the J;-th sym-
bol, i € [t]. Since U] € M(m,t), we can protect U] against ¢
deletions and recover it by using the code in Lemma 4.
Then given U] and its m — t subsequence Z], it is possible
from Lemma 11 to find t + 2 intervals [a;, b;], i € [t + 2]
each having length T = (2t 4+ 1)(2logm + t + 2) + ¢, that
contain all deletion locations. Split u into blocks u; =
(U(i—1)T41/--- i), © € [[m/T]], of length T. Then the
interval [a;, b;], i € [t + 2], covers at most two blocks in u.
Note that the symbol u; for j € [m]\(ufif[ai, b;]) can be
determined by

uj = Zzj_N,,)

where Nj is obtained from Lemma 11. Hence there are at
most 2t + 4 block errors in u after recovering Uj.

Next, we show how to correct the block errors. The idea
is to represent each block using its symbol frequency and the
symbol location. Specifically, for a g-ary sequence u € [[g]]™,
define its histogram vector H(u) : [[¢]]™ — [[m + 1]]7 by

H(u); = [{j:wj = i,j e [[m]]}],i < [[q]], 3)

where the i-th entry of H(u) is the number of occurrence
of i € [[g]] in u. Its location vector V(u) : [[g]]" — [m]™ is
defined by

V(u); = the index of the i-th largest symbol in u, (4)

where a symbol u; is larger than u;, if u; is lexicographically
larger than u; or if u; = u; and i > j. Note that by
definition, we have that uy), > Uy), > .- > Uy(y),-
The following lemma shows that a sequence u € [[g]]" is
uniquely determined by its histogram and the location vectors.

Lemma 13. Letu,y € Fi! be two sequences. If H(u) = H(y)
andV(u) = V(y), thenu =y

Next we show how to protect the histogram and location
vectors of u from block errors. Let the block histogram

vector BH(u) : [[q]]" — ([[T + 1]]’1>[m/ﬂ of the se-
quence u € [[g]]™ be given by
BH(u); = H(uw;),i € [[m/T]], (5)

742

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 12,2021 at 20:15:55 UTC from |IEEE Xplore. Restrictions apply.

where the i-th entry of BH(u) is the histogram vector of the i-
th block in u, i € [[m/T]]. Similarly, define the block location

m

vector BV (u) : [[g]]" — ([T]7) ™ by
BV(u); = V(w;),i¢€ [[m/T]], (6)

where the i-th entry BV (u); is the location vector of the i-th
block in u. According to Lemma 13, the sequence u can be
uniquely determined by BH(u) and BV (u).

Define the function FBH (u) =
(RS2444(RS2¢(BH(u)1), . .., RS2t (BH(u) 1)) which
is the redundancy of a systematic Reed-Solomon code
correcting 2t + 4 erasure errors that has length [7]
sequence with entries RSy;(BH(u);), i € [[m/T]]. Each
entry RSy (BH(u);) represents the redundancy of a
systematic Reed Solomon code correcting f substitution
errors in the length g sequence H(u;) for i € [[m/T]]. The
next lemma shows that f2(u) can be used to protect BH(u).
In the following, the function f; is from Lemma 4.

Lemmal4. Let u,y € M1(m,t) be two sequences such
thaty € B (u). If fi(Uf) = fi(Y]) and f*H(u) = fPH(y),
then BH(u) = BH(y).

We now protect the block location vector BV (u). Let

£BV(u) = RSy114(BV () (7N

be the redundancy of a systematic Reed-Solomon code correct-
ing 2t + 4 erasure errors in the length [m/T]| sequence BV (u)
with entries BV (u); = V(u;) for i € [[m/T]] (see Eq. (6)).
The next lemma shows that f°"(u) can be used to re-
cover BV (u).

Lemma 15. For sequences u,y € M1(n,t) such thaty €

Bi(w), if fi(lf) = fi(Y]) and fPV(u) = fP¥(y),
then BV (u) = BV (y).

Now we are ready to define the labeling function ftq2 (u)
for u e M1(m,t). Let

¢ (w) = (AU, £ (w), 2 (w)).

Then from Lemma 4, Lemma 11, Lemma 13, Lemma 14, and
Lemma 15, we have the following lemma.

Lemma 16. For two sequences w,y € Mi(m,t), ify €
B (w)\u, then f*(u) # fi*(y).

The image of the labeling function ftq2 (u) consists of RY
bits where R = O((2f + 4)loglogm = logm), Since the
size of f{?(u) is greater than o((loglogm) - logm), we
apply the syndrome compression technique twice, as we
did in Lemma 6 in Case (1). Then there exists a label-
ing function f73 [[q]]" — [[20((oglogm)logm)]] guch
that £°(u) # f*(y) for u,y € M7(m,t) and y € Byq(u)\u.
Since f{°(u) e [[20((oglogm)logm)]] " we use Lemma 5 and
find an integer & < 2\8?(u)\+o(logm) — n2logn-+tlogg+o(logm)
such that fP(u) # f°(y) moda for u,y € Mi(m,t)
and y € B/ (u)\u.

Define the code C(n,t,q) of length n as follows:
C(n,t,q) = {x = (Tg(u,s),é't((T] (u,s)) mod zx,zx,s)) :
ue {0, 1}k}.

Since fﬁS (Té7 (u,s)) satisfies the redundancy property,
it follows from syndrome compression that the
redundancy (;73(1";7 (u,s)) mod &,) can be described
by 2log|B!(u)| + o(logk) = 4tlogk + 2tlogq + o(logn)
bits. The seed s has length O(logk). Therefore, the total
redundancy is 4t(1 + €)logk + 2tlog g + o(logk) bits. The
correctness of the code can be proved by similar argument to
the one in the proof of Theorem 8.

Theorem 17. The code C(n,t,q) is a t-deletion code.

II1. q-ARY CODES CORRECTING f DELETIONS FOR LARGE
q

In this section, we consider the problem of coding for
deletions over large non-binary alphabets. Specifically, it is
assumed that g > k in this section. We will show that in this
regime we can construct efficiently encodable/decodable codes
capable of correcting ¢ deletions that requires roughly 30t log g
bits of redundancy. The approach taken in this section is fun-
damentally different than the syndrome compression technique
that has been used up to this point. Note that, compared to the
syndrome compression technique, the redundancy of our code
is high. However, the advantage of the approach discussed here
is that our methods are more applicable to a wider range of
t. In particular, the technique described here, which is similar
in spirit to the approach taken in [18] to correct errors in
permutations, has decoding/encoding complexity which scales
polynomially for any ¢ and, in addition, leads to efficiently
encodable/decodable codes for the regime where f is a small
constant fraction of n.

We will construct codes by making use of the L-spectrum,
which represents the set of all length L subsequences of
consecutive symbols that appear in a vector. For a vector
u € [[q]]" (where g > m), we denote the L-spectrum for
u, denoted Sz (u) as follows:

Sy(u) = {(ui, Uisty - otisr—1) € [[ql)F i€ [m—L+ 1]}.

Furthermore, we say that a sequence u € [[¢]]™ is L-substring
unique if |Sp(u)] = m — L + 1. The approach taken to
correcting deletions is motivated by the following two lemmas,
the first of which also appears in [5].

Lemma 18. (c.f,, [5]) Suppose u € [[q]]™ is (L — 1)-substring
unique. Then, u can be uniquely recovered from Sy (u).

For shorthand, for two sets A, B let AA B = (A\B) u (B\A)
denote their symmetric difference.

Lemma 19. Suppose u € [[g]]" is (L — 1)-substring unique
and z € [[q]]™ " is the result of t deletions occurring to u.
Then, |Sp(u) A Sp(z)] < 2L —1)t.

In light of the previous two lemmas, our approach will
consist of two basic steps:

743

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 12,2021 at 20:15:55 UTC from |IEEE Xplore. Restrictions apply.

1) Transform step: In this step, we convert our information
vectors into vectors which are L-substring unique.

2) Coding step: We add additional redundancy symbols to
our codewords to ensure that we can recover their L-
spectrum provided deletion errors are allowed to occur.

We begin by describing some results that are related to the
transform step. Define L{Z(m) so that

Z/lg(m) = {u € [[g]]™ : u is L-substring unique}.

The following result provides an algorithm to generate bi-
nary sequences in L{Z(m) for L = 2logm + 2. This algorithm
will be used in Lemma 21 to generate non-binary sequences
that L-substring unique.

Lemma 20. [4], There exists an invertible function hp,
{0,1}"=1 — {0,1}™, computable in poly(m) time, that takes
any binary sequence u € {0,1}’"*1 as input and outputs a
sequence hy(u) € U?(m) for L = 2logm + 2.

Lemma 20 can be used to generate sequences in L{g (m)
]m

Lemma 21. There exists an invertible function hy : [[4]
[[Z]]m“, computable in poly(m) time, such that hy(u) €
U} (m + 1) for any u € [[q]]™ where L = 3.

Now, we turn to describing the coding step (step 2)) of
our construction. We will interpret the 4-spectrum of our
codewords using indicator vectors. In particular, define the 4-
profile indicator vector IZ(u) e {0, 1}‘74, which is indexed by
the non-zero elements in [[]]*, by

1 if p e Sy(u),
17 (u), =
1@y 0 else.
for p € [[¢*]]. Note that the indices of the 1 entries in 1](u)
correspond to the 4-spectrum of u.
An immediate consequence of Lemma 19 is the following.

m

Corollary 22. Suppose u € [[q]]™ is 3-substring unique and
z € [[q]]"! is the result of t deletions occurring to u. Then,
we have that dH(IZ(u),IZ(z)) < 7t, where dy denotes the
Hamming distance.

For a vector v € {0, 1}‘74, let BCHy7;(v) denote the 28t log g
redundant bits from a systematic BCH code of dimension
q4 that is capable of correcting 7¢ substitution errors. The
idea now is to encode these 28tlogg bits of information
(which will be used to protect the indicator vectors for our
codewords), into the final 29t + 1 symbols of our codewords,
while reserving a portion of each symbol to store location
information. Let BCHyt(IZ(u))

Let r; = (r1,72,...,720) € [[55;]]%" be the output of
BCHyt(lz(u)) represented as %-ary symbols. Clearly, we can
represent 29t log % bits of information with r;. Note that this
encoding is possible since 29t log % > 28t log g, which holds
when log g > 291og(30t).

Let RS |5 be a Reed-Solomon code over [[%]] that can

2
correct either [%J substitution errors or ¢ erasures and the

code has minimum distance at least + 1. We assume RS[B
2

has dimension 29t and that for a vector v € [[5{-]] RS[1) (v)
outputs ¢ redundant symbols. Let
r= (v, RS i1 () € [0

We are now ready to present the t-deletion code in terms
of the encoding process. Suppose u € [[¢]]* is an information
vector of dimension k. The output of the encoding process will
be a vector x € [[g]]" where n = k + 1 + 30¢.

1) Suppose ur = h3(u) € [[q]]¥*! where h3 is defined in

Lemma 21.

2) Letr; = (r1,72,...,729t) € [[55:]]%" denote the 5} -ary
representation of BCH7t(IZ(uT)) € {0,1}%8tlogq,
)

3) Let r = = (Ry,Ry,...,R3t) €
(55 113

4) Define x = (x1,xp,...

(rl, Rslﬂj (r;

2

,Xy) so that
(uT)i ifie [k+1],
(i = (1), (imegry) if i€ [+ 1]

Theorem 23. Suppose x € [[q]]" is transmitted and z €
[[g]]" ! is received where z is the result of t deletions occurring
to x. Then given z it is possible to uniquely determine X.

X; =

IV. CONCLUSION

In this work, we constructed g-ary codes capable of cor-
recting deletions that significantly improves upon the current
state of the art. However, many important problems remain.
In particular, when g < n, our technique is only applicable
to the setup where t is a constant with respect to n since
the encoding/decoding complexity becomes exponential oth-
erwise. In addition, none of the constructions presented here
are systematic.

REFERENCES

[1] J. Brakensiek, V. Guruswami, and S. Zbarsky, “Efficient low-redundancy
codes for correcting multiple deletions,” in Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1884-
1892, SIAM, 2016.

[2] Y. Chee, H. Kiah, A.Vardy, V. Vu and E. Yaakobi “Coding for racetrack
memories,” IEEE Trans. Inform. Theory, vol. 64, no. 11, pp. 7094-7112,
2018.

[3] K. Cheng, Z. Jin, X. Li and K. Wu, “Deterministic document exchange
protocols, and almost optimal binary codes for edit errors,” IEEE 59th An-
nual Symposium on Foundations of Computer Science (FOCS), pp. 200—
211, 2018.

[4] O. Elishco, R. Gabrys, E. Yaakobi, and M. Medard, ‘“Repeat-free codes,”
available at arXiv:1909.05694, 2019.

[5] R. Gabrys and O. Milenkovic, “Unique reconstruction of coded strings
from multiset substring spectra,” IEEE Transactions on Information
Theory, vol. 65, no. 12, pp. 7682-7696, 2019.

[6] R. Gabrys and F. Sala, “Codes correcting two deletions,” IEEE Transac-
tions on Information Theory, vol. 65, no. 2, 2019.

[7] B. Haeupler, “Optimal document exchange and new codes for small
number of insertions and deletions,” IEEE 60th Annual Symposium on
Foundations of Computer Science (FOCS), pp. 334-347, 2019.

[8] B. Haeupler and A. Shahrasbi,”Synchronization strings: codes for in-
sertions and deletions approaching the singleton bound.” ACM SIGACT
Symposium on Theory of Computing (STOC), pp. 33—46. 2017.

[9] A.S.J. Helberg and H.C. Ferreira, “On multiple insertion/deletion correct-
ing codes,” IEEE Transactions on Information Theory, vol. 48, no. 1, pp.
305-308, 2002.

[10] T.A. Le and H.D. Nguyen, “New multiple insertion/deletion correcting
codes for non-binary alphabets,” IEEE Transactions on Information
Theory, vol. 62, no. 5, pp. 2682-2693, 2016.

744

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 12,2021 at 20:15:55 UTC from |IEEE Xplore. Restrictions apply.

[11] V.I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” Soviet Physics-Doklady, vol. 10, no. 8, pp. 707-710,
1966.

[12] V.I. Levenshtein, “Bounds for deletion/insertion correcting codes,” in
Proc. IEEE Int. Symp. Inf. Theory, Lausanne, Switzerland, 2002.

[13] C. Schoeny, A. Wachter-Zeh, R. Gabrys, and E. Yaakobi, “Codes
Correcting a Burst of Deletions or Insertions,” IEEE Transactions on
Information Theory, vol. 63, no. 4, pp. 1971-1985, 2017.

[14] J. Sima and J. Bruck, “Optimal k-deletion correcting codes,” in Proc.
IEEE Int. Symp. Inf. Theory, Paris, France, 2019.

[15] J. Sima, R. Gabrys, and J. Bruck, “Syndrome Compression for Optimal
Redundancy Codes,” Proc. ISIT, 2020.

[16] J. Sima, N. Raviv, and J. Bruck, “Two deletion correcting codes from
indicator vectors,” in IEEE Transactions on Information Theory, vol. 66,
no. 4, pp. 2375-2391, 2020.

[17] G. Tenengolts, “Nonbinary codes, correcting single deletion or inser-
tion,” IEEE Trans. Inform. Theory, vol. 30, no. 5, pp. 766-769, 1984.
[18] S. Yang, C. Schoeny, and L. Dolecek, “Theoretical bounds and construc-
tions of codes in the generalized cayley metric,” in IEEE Transactions

on Information Theory, vol. 65, no. 8, 2019.

745

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 12,2021 at 20:15:55 UTC from |IEEE Xplore. Restrictions apply.

