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Abstract

We present a technique for estimating the relative 3D ro-
tation of an RGB image pair in an extreme setting, where the
images have little or no overlap. We observe that, even when
images do not overlap, there may be rich hidden cues as to
their geometric relationship, such as light source directions,
vanishing points, and symmetries present in the scene. We
propose a network design that can automatically learn such
implicit cues by comparing all pairs of points between the
two input images. Our method therefore constructs dense
feature correlation volumes and processes these to predict
relative 3D rotations. Our predictions are formed over a
fine-grained discretization of rotations, bypassing difficulties
associated with regressing 3D rotations. We demonstrate our
approach on a large variety of extreme RGB image pairs,
including indoor and outdoor images captured under dif-
ferent lighting conditions and geographic locations. Our
evaluation shows that our model can successfully estimate
relative rotations among non-overlapping images without
compromising performance over overlapping image pairs."

1. Introduction

Estimating the relative pose between a pair of RGB im-
ages is a fundamental task in computer vision with appli-
cations including 3D reconstruction [39, 34], camera lo-
calization [3, 40, 42], simultaneous localization and map-
ping [8, 32] and novel view synthesis [29, 38]. Standard
methods for computing relative pose are highly dependent
on accurate correspondence. But what if the poses are so dif-
ferent that there is no overlap and hence no correspondence?

Our work takes a step towards this seemingly impossible
goal of estimating relative pose for pairs of RGB images that
have little or no overlap. In particular, we present a technique
for estimating relative 3D rotation for a pair of images with
(possibly) extreme relative motion. There are many appli-
cations where dense imagery is difficult to obtain that can
benefit from rotation estimation from non-overlapping views

Ihttps://ruojincai.github.io/ExtremeRotation/
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Figure 1: How can we estimate relative rotation between images
in extreme non-overlapping cases? Above we show two non-
overlapping image pairs capturing an urban street scene (top) and a
church (bottom). Possible cues to their relationship include sunlight
and direction of shadows in outdoor scenes (highlighted in red) and
lines parallel in 3D in indoor scenes (marked with yellow and blue
line segments), from which vanishing points can be derived.

[25, 1]. For example, when advertising homes on online
real estate sites, users may only provide a small number of
images—too sparse for current 3D reconstruction methods.
Rotation estimation can simplify downstream tasks, such as
3D reconstruction from sparse views.

How can we reason about relative rotation in extreme non-
overlapping settings? As humans, there are a number of cues
we might leverage. Consider the two image pairs in Fig. 1.
For the outdoor pair, we can infer relative orientation using
illumination cues, e.g., by analyzing which buildings are lit
or the directions of cast shadows. Geometric cues are also
useful. For example, from the pair of indoor images we can
infer a change in camera pitch from the set of parallel vertical
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Figure 2: Method overview. Given a pair of images, a shared-weight Siamese encoder extracts feature maps. We compute a 4D correlation
volume using the inner product of features, from which our model predicts the relative rotation (here, as distributions over Euler angles).

lines in 3D (colored in yellow) that suggest a vanishing point,
and we can infer a rightward camera rotation by analyzing
symmetries and the layout of the benches.

Given the presence of such “hidden” cues, one approach
to computing relative rotation would be to explicitly learn
such cues via supervision, e.g., by labeling vanishing points
and learning to predict them. However, in addition to the
drawbacks of requiring additional supervision, we do not
want to restrict our model to a set of handcrafted cues which
may or may not be relevant for the image pair provided at
test time. Instead, we want to learn to predict relative rotation
from pose supervision alone. As such, we ask: Can we guide
the network to reason about such hidden cues implicitly?
And what architecture would best achieve this goal?

Our key insight is that reasoning about cues such as van-
ishing points and illumination—while not achievable from
direct feature correspondence alone—nonetheless can be
realized through comparison of local properties like line ori-
entations (in the case of vanishing points) and shadows and
light sources (in the case of illumination). Crucially, any pair
of points between the image pair can provide evidence for
their geometric relationship.

We therefore turn to correlation volumes, a tool used in
correspondence tasks like optical flow or stereo. In a full
correlation volume, every pair of points from feature maps
derived from an image pair are compared. While dense cor-
relation volumes have demonstrated superior performance
for tasks like optical flow [46, 27, 43] and stereo matching
[33, 23, 47, 14] that compare highly overlapping images,
we find that they are also effective in finding implicit cues
that are not in the form of direct correspondence. As such,
we process image pairs—whether they overlap or not—by
constructing a dense 4D correlation volume (see Fig. 3). This
design allows us to both find explicit pixelwise correspon-
dence, in the case of overlapping pairs, as well as leverage
implicit cues for non-overlapping pairs.

To estimate the relative rotation, we process the corre-
lation volume with another network that computes proba-

bilities estimates over a fine-grained discretization over the
space of 3D rotations. Our framework is end-to-end trainable
and optimizes simple loss formulations, bypassing difficul-
ties associated with regressing 3D rotations.

We evaluate our method on a large variety of extreme
RGB image pairs, including indoor and outdoor images cap-
tured in different geographic locations under varying illumi-
nation. We also show that our models yield state-of-the-art
performance for overlapping pairs. Our models generalize
surprisingly well to new data—e.g., training a model on out-
door scenes in Manhattan yields median errors below 6° for
images captured in Pittsburgh and London.

2. Related Work

Extreme relative pose estimation. Non-overlapping im-
ages have been addressed in the context of related prob-
lems such as 2D alignment and mosaicing [36, 17], where
the goal is to piece together images that have small gaps
between them. Most prior work on the 3D relative pose es-
timation problem rely on correspondences or overlap, and
hence are not well suited for handling extreme cases. Sev-
eral works address extreme relative pose estimation between
two input RGB-D scans [48, 49]. Provided with input depth
values, these works perform scan completion and match
the completed scans. Caspi and Irani [5] consider image
sequences where the two cameras are rigidly attached and
move jointly, and search for consistent temporal behavior.
Littwin et al. [24] use inter-silhouette dissimilarities to esti-
mate the relative rotations for a set of cameras. In this work,
we propose a method for the more challenging problem of
extreme relative rotation given only a pair of RGB images
as input, without using depth, temporal coherence, or other
forms of additional data.

Traditional pose estimation. The problem of relative pose
estimation from overlapping views is traditionally divided
into two sequential steps: correspondence estimation us-
ing local feature matching [26, 2], followed by epipolar
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geometry—based pose estimation [|5]. As reliable correspon-
dence estimation can be challenging even for overlapping
images, several recent works propose end-to-end convolu-
tional neural networks that regress from images to relative
pose [28, 12, 20].

In particular, several works focus on 3D rotations and
propose parameterizations and architectures that allow for
better estimation using neural networks [52, 21]. Zhou et
al. [52] evaluate commonly used representations, including
quaternions and Euler angles, and discuss issues relating to
discontinuities in the rotation representation. Peretroukhin ef
al. [35] regress and combine multiple rotation estimates, pro-
ducing probabilistic estimates. Mohlin et al. [3 1] estimate
3D rotation uncertainty using the matrix Fisher distribution.
In our work, we discretize the space of 3D rotations and esti-
mate a distribution over this space to avoid issues associated
with direct regression to rotations.

Dense volumes for computing image relations. Dense vol-
umes that encode pairwise pixel comparisons allow for an
explicit representation of correspondence, and thus have
been used in a number of tasks that require correspondence
estimation. For instance, deep stereo matching approaches
typically compute cost volumes that compare feature descrip-
tors across disparity ranges [18, 19, 6, 50, 33, 23, 47, 14].
Cost volumes are also used to compute optical flow, in which
case 2D displacements are encoded within a volumetric rep-
resentation [46, 41, 27]. To define a matching cost, several
works compute dense correlations between image features,
forming correlation volumes [10, 41, 43]. In our work, we
also form correlation volumes. However, unlike prior work,
the input images are not necessarily highly correlated and
therefore the correlation volumes are tasked with learning
additional, more subtle, cues.

Several other recent techniques leverage dense volumes
for reconstruction tasks. Zhou et al. [54] use cost volumes
for the task of single-image reconstruction. Wei et al. [44]
use them to refine structure-from-motion predictions. As part
of their solution, they form a pose-based cost volume that is
provided with initial camera pose parameters, then uniformly
samples candidate poses around this initial estimate. In our
case, we build dense volumes for all pairs of pixels and
estimate rotations over the full space of possible rotations.

3. Method

Given a pair of RGB images (1, I5), our goal is to esti-
mate the 3D rotation matrix R between the two images. In
order to allow for discovery and use of hidden cues in the
difficult task of extreme rotation prediction, we use dense
correlation volumes that allow for discovering implicit cues
(Section 3.1). These dense volumes are fed to a fine-grained
relative rotation classification network (Section 3.2). An
overview of our approach is provided in Fig. 2.

Parameterization. We must choose a parameterization for
3D rotations suited to our problem. One standard represen-
tation for a 3D rotation matrix R is as three Euler angles
[a, B, ], denoting roll, pitch, and yaw angles, respectively:

R(a, 3,7) = Ra(a)Ry (B)R(7) (1

This general parameterization can be integrated directly with
our presented approach. However, we observe that for a
wide variety of scenes the absolute pitch can be recovered
from a single image using cues such as vanishing points.
Furthermore, cameras are typically upright, i.e., the input
images have zero roll.

Given these observations, we can instead represent the
relative orientation R with three angles [31, 82, Av], where
A~ denotes the relative yaw angle, 31 denotes the pitch of
I; and 2 denotes the pitch of Iy. Using this parameteri-
zation, the rotation matrices of the two images are defined
as R1(0, £1,0) and R5(0, B2, A7), and the relative rotation
matrix is defined as R = RoR7. In our experiments we
show that encoding this prior knowledge into the parameter-
ization leads to improved performance, although a generic
parameterization also shows significant improvement over
baseline methods.

3.1. Dense Correlation Volumes

Our proposed solution is inspired by traditional methods
that accumulate evidence for global quantities from local evi-
dence via voting schemes or other mechanisms. For instance,
as intuition, consider the problem of detecting vanishing
points from a single image. One approach is to have local
features like line segments vote on vanishing points using
accumulation methods similar to Hough transforms [16]. In
our case, where we are given an image pair and want to
estimate relative rotation, we observe that potentially any
pair of image patches can provide evidence for the global
geometric image relationship—for instance, two patches that
support related vanishing point locations, or two patches that
give evidence for light source directions.

To operationalize this intuition, we devise a network struc-
ture that performs pairwise comparisons between all pairs
of features across the two images. We first use convolu-
tional networks with shared weights to extract dense feature
descriptors f(I;) € RE*XH/4<W/4 where K is the num-
ber of channels, W is the image width and H is the image
height. We then compute a 4D dense correlation volume
C(f(I1),£(I2)), such that for each pair of spatial positions
(p,q) in I and (r, s) in I, we define the correlation score
at (p, ¢, s,r) as the dot product of the corresponding vectors
in the feature maps of the two images:

C(£(11),f(I2);p,q,7,8) = £(I1;p,q) - £(I2;7,5),  (2)

where f(I; x,y) denotes the feature vector for image I at
spatial position (z, y). Fig. 3 illustrates the correlation vol-
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Figure 3: 4D correlation volumes. A 4D correlation volume is
calculated from a pair of image feature maps. Given a feature vector
from Image 1, we compute the dot product with all feature vectors
in Image 2, and build up a 2D slice of size H x W. Combining
all 2D slices over all feature vectors in Image 1, we obtain a 4D
correlation volume of size H x W x H x W.

ume for an image pair. Note that the correlation volume C
can be computed efficiently using matrix multiplication.

Unlike prior work that uses correlation volumes to di-
rectly predict pixel-to-pixel correspondence as in optical
flow [46, 27, 43] or stereo [33, 23, 14], our correlation vol-
umes are implicitly assigned a dual role which emerges
through training on both overlapping and non-overlapping
pairs. When the input image pair contains significant overlap,
pointwise correspondence can be computed and transferred
onward to the rotation prediction module. When the input im-
age pair contains little to no overlap, the correlation volume
can assume the novel role of detecting implicit cues.

We visualize this dual role in Fig. 4, where we create
a heatmap for each image in a pair occluding each image
region in turn with a sliding window before feeding it to
our network, in order to assess each region’s approximate
importance towards computing the relative pose [51]. As
illustrated in the left pair, covering the region of overlap
significantly affect the model’s prediction for overlapping
pairs. For non-overlapping pairs, covering regions corre-
sponding to a strong vanishing point yields a steep drop in
performance. Please refer to the supplementary material for
additional visualizations.

Our dense correlation volume C is provided as input to a
rotation classification network g, that is tasked with predict-
ing the relative rotation.

Figure 4: Visualizing cues detected by our model for overlap-
ping (left) and non-overlapping (right) image pairs. We show
regions which, when blocked, affect the rotation error, with warmer
colors depicting larger errors (according to their associated color
bars). The full panoramas are shown above, with the ground-truth
and predicted perspective image regions marked in red and yellow,
respectively. These visualizations suggest that our method reasons
about pointwise correspondences for overlapping pairs (e.g. on top
of the refrigerator) and implicit cues for non-overlapping pairs (e.g.
related to vanishing points).

3.2. Relative Rotation Classification

The relative rotation classification network g, is con-
structed from three identical networks (without weight shar-
ing), where each network predicts one of the angles describ-
ing the relative rotation according to our three angle parame-
terization. Learning-based pose estimation methods typically
regress to rotation and translation parameters [28, 12]. How-
ever, commonly used 3D rotation representations, including
Euler angles and quaternions, are discontinuous and hence
challenging for direct regression in deep networks. To over-
come the problem of regressing discontinuous 3D rotations,
prior works have suggested using higher dimensional contin-
uous representations, e.g., in 5D and 6D [52].

As an alternative to directly regressing the relative angles,
we discretize the space of rotations, such that for each an-
gle we estimate a probability distribution over N bins. We
empirically set N = 360, and let each bin capture an angle
in the range [—180°,180°]. This discretization is related to
concurrent work that discretizes 3D rotations in terms of
rotation matrix columns [7]. Our fine-grained discrete angle
parameterization enables using a simple cross-entropy loss
to train our network. Overall, a sum of three cross-entropy
loss functions is used, one per angle. During training, the
ground truth is set using one-hot vectors (that empirically
yielded similar results as smoothed vectors).

4. Experiments

To validate our approach, we conduct extensive experi-
ments on a variety of extreme RGB image pairs capturing
both indoor and outdoor scenes. We compare with several
baseline techniques, evaluating performance on both overlap-
ping and non-overlapping image pairs. We also demonstrate
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the generalization power of our model, testing it on image
pairs from unseen cities. Finally, we present an ablation study
to examine the impact of the different components in our
proposed approach. Additional results and implementation
details are provided in the supplementary material.

4.1. Datasets

StreetLearn [30] is an outdoor dataset that contains ap-
proximately 143K panoramic views covering the cities of
Manhattan and Pittsburgh. We focus on a set of roughly
56K images from Manhattan, randomly allocating 1,000
panoramic views for testing.

SUN360 [45] is an indoor dataset that contains 9,962
panoramic views of different scenes downloaded from the
Internet, grouped into 50 different categories. We use ap-
proximately 7,500 panoramas for training and 830 among
the remaining panoramas for testing.

InteriorNet [22] is a synthetic indoor dataset. We use a
subset of InteriorNet that contains 10,050 panoramic views
from 112 different houses, where 82 houses are allocated for
training and the remaining 30 houses for testing.

For each panoramic view, we randomly sample 100
perspective views to obtain images with a resolution of
256 x 256 and a 90° FoV. We sample images distributed
uniformly over the range of [—180, 180] for yaw angles.
This yields, for example, an average of 3147 samples (per
1° bin) in our StreetLearn dataset. We assume zero roll (and
demonstrate in the supplementary material that our models
are insensitive to small roll angles at test time). To avoid
generating textureless images that focus on the ceiling/sky
or the floor, we limit the range over pitch angles to [—30, 30]
for the indoor datasets and [—45, 45] for the outdoor dataset.
Furthermore, in the InteriorNet dataset, since the dataset
is synthetic and panoramas are rendered at random camera
positions—leading to cases where the image is too close to
the geometry (e.g. the scene is largely occluded by a close
object or most of the panorama observes a wall), we use
MiDaS [37], a single view depth estimation method, to filter
out images that are too close the scene.

From these perspective images, we construct datasets
with and without camera translations, in order to understand
the effect of camera translation on our rotation estimation
problem. Datasets without translations are constructed by
sampling image pairs originating from the same panorama,
and datasets with translations, denoted as InteriorNet-T and
StreetLearn-T, are constructed by pairing up images from
different panoramas using translation distances smaller than
3m and 10m, respectively (SUN360 is constructed from
Internet panoramas that are not physically related in space).
For all datasets, we have ~1M training pairs sampled from
the same panorama, ~700K training pairs sampled from
different panoramas, and 1K test pairs. There is no overlap
between train and test scenes.

4.2. Baselines

SIFT-based relative rotation estimation. A geometry-
based technique that computes SIFT [26] features and then
estimates a rotation matrix with a 2-point algorithm [4] for
image pairs from the same panorama, or an essential matrix
for image pairs with translation, using RANSAC [13].

Learning-based feature matching, using pretrained net-
works for interest point detection and description (with
model fitting as described above). We evaluate a pretrained
SuperPointNet [9] (hereby called SuperPoint) and D2-
Net [11] (see supplemental material for results).

End-to-end relative rotation regression, where image fea-
tures are concatenated and fed to a regression model. We
evaluate models predicting a continuous representation in 6D
(hereby denoted as Reg6D) as proposed by Zhou et al. [52]
and additional representations, including quaternions as pro-
posed by En et al. [12], in the supplementary material.

For all end-to-end techniques, we also train models with only
overlapping pairs to better understand the impact of training
models with non-overlapping image pairs.

4.3. Evaluation Metrics

For an image pair, let R be the predicted rotation matrix
and R* be ground truth rotation matrix. We follow prior

. ¢ TR*Y_1
work and report the geodesic error arccos (% .

To analyze the performance of methods across different
overlap ratios, we divide the test image pairs into three cate-
gories: (i) large, indicating highly overlapping pairs (relative
rotations up to 45°), (ii) small, indicating pairs that partially
overlap (relative rotation angles € [45°,90°]), and (i) none,
indicating pairs with no overlap (relative rotations >90°).

4.4. Quantitative Evaluation

Table 1 reports the mean and median geodesic error, as
well as the percentage of image pairs with a relative rotation
error under 10°. Qualitative results are presented in Figure 7.
We analyze the results according to the amount of overlap:

Overlapping cases. For image pairs sampled from the same
panorama, our model produces very accurate results for
both indoor and outdoor scenes, with mean errors of 4.31°,
6.13°, and 3.23° for small overlapping pairs. For the regres-
sion baselines, adding non-overlapping pairs during training
causes the regression baseline performance to suffer on over-
lapping pairs, while our method does not see such a drop.

The performance of models trained on datasets with cam-
era translations is somewhat lower. For these, the overlapping
regions can be smaller due to the camera motion. In particu-
lar, for StreetLearn-T, the translations are large (up to 10m),
which can have a more dramatic effect on the overlap region.
Nonetheless, our method still achieves low median errors for
datasets with translation (around 3°).
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InteriorNet InteriorNet-T SUN360 StreetLearn StreetLearn-T
Overlap Method Avg(°])Med(°]) 10°(%T) Avg(°]) Med(°]) 10°(%T) Avg(°))Med(°]) 10°(%T) Avg(°]) Med(°]) 10°(%T) Avg(°]) Med(°]) 10°(%T)
SIFT* [26] 6.09 4.00 84.86 7.78 295 5552 5.46 388 9310 5.84 316 91.18 18.86  3.13 2237
SuperPoint* [9] 5.40 353  87.10 5.46 279 6597 4.69 3.18  92.12 6.23 3.61 91.18 6.38 1.79 16.45
Large Reg6D [52]-0 5.43 387 87.10 1045 691 67.76 7.18 579  81.28 3.36 2.71 97.65 1231 6.02 69.08
Reg6D [52] 9.05 590 6849 17.00 1195 41.79 1651 1243 4039 11.70 8.87 5824 36.71 2479 23.03
Ours-o 1.53 1.10  99.26 2.89 1.10 97.61 1.00 0.94 100.00 1.19 1.02 9941 9.12 291  87.50
Ours 1.82 0.88 98.76 8.86 1.86  93.13 1.37 1.09  99.51 1.52 1.09 9941 2498 248 7895
SIFT* [26] 2418 857 3973 1816 10.01 1852 1371 6.33 5677 1622 735 5581 3878 13.81 5.68
SuperPoint* [9] 16.72 8.43 21.58 11.61 5.82 11.73 17.63 7.70 26.69 19.29 7.60 24.58 6.80 6.85 0.95
Small Reg6D [52]-0 17.83 9.61 5137 21.87 1143 4414 18.61 11.66 39.85 7.95 434 8771 15.07 759 63.41
Reg6D [52] 2571 1556 33.56 4293 2892 23.15 4255 32.11 940 2477 15.11 30.56 46.61 3433 13.88
Ours-o 6.45 1.61 9589 10.24 138 89.81 3.09 141 98.50 232 141 98.67 13.04 349 84.23
Ours 4.31 1.16 96.58 3043 2.63 74.07 6.13 1.77  95.86 323 141 98.34 2784 319 7476
SIFT* [26] 109.30 92.86  0.00 9379 113.86 0.00 127.61 129.07 0.00 83.49 90.00 0.38 8590 106.84 0.38
SuperPoint* [9] 120.28 120.28  0.00 - — 0.00 149.80 165.24  0.00 - - 0.00 - - 0.00
None RegbD [52]-0 88.89 79.24 098 11050 116.25 1.17 101.21 99.64 094 133.08 167.19 246 132.67 15845 1.88
Reg6D [52] 4836 3293 1082 6091 5126 11.14 6474 56.55 3.77 2848 1886 2439 4923 3566 11.86
Ours 37.69 315 6197 4944 417 5836 3492 443 61.39 5.77 1.53 9641 3098 3.50 72.69
SIFT* [26] 13.68 5.04 4580 1224 569 2460 1812 502 3400 1729 553 3250 36.00 6.03 5.40
SuperPoint* [9] 8.19 4.08 41.40 6.62 3.38 25.90 11.09 4.00 25.80 11.52 4.80 22.90 6.42 2.62 2.80
All Reg6D [52]-0 3451 9.71 5040 4827 1559 3740 60.15 3451 2760 7336 20.03 4430 77.09 5529 31.60
Reg6D [52] 2590 13.02 40.70 40.38 2335 2530 49.05 3437 12770 2451 1531 3200 4650 33.14 29.90
Ours 1349 1.18 8690 29.68 2.58 7510 2045 223 7830 4.40 144 9750 2985 320 7430

Table 1: Rotation estimation evaluation on the InteriorNet, the SUN360, and the StreetLearn datasets. We report the mean and median
geodesic error in degrees, and the percentage of pairs with a relative rotation error under 10° for different levels of overlap, as detailed in
Section 4.3. Models trained only on overlapping pairs are denoted with “-0”. *Errors are computed only over successful image pairs, for
which these algorithms output an estimated rotation matrix (failure over more than 50% of the test pairs is shown in gray).

SuperPoint [9] achieves the smallest average errors on
StreetLearn-T large and small overlapping cases (6.38° and
6.80°). However, both SIFT and SuperPoint do not always
output an answer (model fitting-based techniques require a
sufficient number of detected inliers). Only successful image
pairs are considered for evaluation, and hence these errors
should be interpreted as errors over pairs for which they
produced an answer (full numbers provided in the supple-
mental material). Our method still significantly outperforms
SuperPoint in terms of the fraction of pairs with less than
10° error across all datasets, suggesting that SuperPoint fails
to give an answer.

Non-overlapping cases. Due to insufficient correspon-
dences on image pairs with large viewpoint changes, feature
matching-based methods (and regression models trained on
only overlapping pairs) unsurprisingly fail on pairs with no
overlap. The median errors of the strongest regression base-
line are all above 18° (and for several datasets are much
larger). In contrast, our method yields median errors consis-
tently below 5°, while the mean error rises to 6°—49°. This
indicates that our method is usually surprisingly accurate, but
sometimes makes large errors. It turns out that such errors
are primarily due to ambiguities, as detailed below.

To better understand cases when our method produces
incorrect rotations, we can look at the full distributions pre-
dicted by our method. Because our network outputs a proba-
bility distribution over 3D rotations, we can compute a top-2
error (i.e., the smaller of the errors over both the most likely

and second most likely prediction), to see whether the correct
rotation angles have high peaks in the learned probability
distributions. On the StreetLearn-T dataset, the mean error
significantly drops, from 24.98° to 6.49° on large overlap-
ping cases, 27.84° to 10.39° on small overlapping cases, and
30.98° to 15.72° on non-overlapping cases. This gap illus-
trates that the model is able to predict with large probability
the ground truth angle, but is confused with other likely ro-
tation estimates. For instance, given two images facing two
different roads at the crossing, there is an ambiguity between
90° and 180° rotations. We provide full distributions of pre-
diction errors (that demonstrate, for example, that there are
error modes at 90° and 180° rotations) and qualitative results
of failure cases in the supplemental material.

4.5. Generalization to Other Datasets

To demonstrate the generalization power of our model,
we test the model trained on StreetLearn on outdoor images
from Pittsburgh and London, using images from the Holicity
dataset [53], and compare to the regression model of Zhou et
al. [52]. Test images are split according to the overlap levels
detailed in Section 4.3. Figure 6 illustrates several qualitative
examples, also demonstrating how different these samples
are (e.g. captured in rural areas or on water).

Results are reported in Figure 5. Our StreetLearn-trained
model generalizes well to the other outdoor datasets, with all
median errors below 6°. In comparison, the median errors
for RegbD on small or non-overlapping pairs are larger on
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Figure 5: Generalization to new locations. We show the median
geodesic rotation error over test images from Manhattan, Pittsburgh,
and London for the models trained on Manhattan. Results are
reported for our model and the regression models proposed by
Zhou et al. [52] (RegbD-o is trained only on overlapping pairs).

Rotation Error Yaw Error Pitch Error
Avg(®) Med(®°) 10°(%) Avg(®) Med(®) Avg(®) Med(®)

Overlap Method

w/o RP 1.02  1.05 100.00 048 047 052 048
wlo Lgs, C 40.19 3341 887 3322 2319 1650 14.01
Large w/o Lgs 793 696 7833 507 3.90 322 291
wlo C 4379 4344 690 4374 4344 1.07 0.74
Ours (full) 137 1.09 99.51 057 0.51 .03 0.73

w/o RP 1.67 144 99.62 083 0.61 0.79  0.64
wlo Lgs,C 6797 6091 038 61.53 5419 19.71 1559
Small  w/o L 1575 12.65 3459 10.28 6.35 5.81 431
w/o C 6531 6932 1579 65.13 6931 204 1.10
Ours (full) 6.13 1.77 9586 470 0.72 176~ 0.97

w/o RP 39.01 2581 2392 3632 21.17 596 3.39
wlo Lgs,C 8329 7508 056 7842 68.89 18.16 14.72
None  w/o Lgs 4626 39.53 2.64 4098 34.08 1393 11.08
wlo C 121.16 13091 0.19 121.10 13091 197 126
Ours (full) 34.92 443 6139 3419 351 191 136

w/o RP 21.37 398 59.50 19.60 1.87 348  1.09
w/o Lgs,C 7046 57.87 220 6475 5270 1824 14.72
All w/o Ls 3036 19.97 26.50 2552 1261 9.60 5.88
wlo C 90.60 89.37 570 9051 8935 1.81 1.10
Ours (full) 2045 223 7830 19.52 1.07 1.69  1.07

Table 2: Ablation study, evaluating the effect of our rotation pa-
rameterization (RP), classification objective (Lqs) and correlation
volumes (C) on SUN360.

the other cities by 5-10°, suggesting that this baseline is
more sensitive to image appearance. For overlapping pairs,
we can see that RegbD-o obtains only slightly larger median
errors on the other cities (but still larger than ours), while it
completely fails on non-overlapping pairs.

This experiment, and also the strong performance ob-
tained on SUN360, a dataset constructed from Internet
panoramas originating from various sources, suggest that we
are not simply learning spurious correlations (e.g. learning
pose based on panorama stitching artifacts), as our models
can successfully predict relative rotations for pairs that are
significantly different from those they were trained on.

4.6. Ablation Study

We perform an ablation study to analyze the effect of in-
dividual algorithmic components (see Table 2). In particular,

we replace (i) the rotation parameterization, (ii) dense corre-
lation volumes with concatenated image features, and (iii)
the relative rotation classification objective with a regression
loss, regressing to a continuous representation in 6D.

For (i), instead of predicting the absolute pitch and the
relative yaw, we predict the roll, pitch and yaw [«, 3, 7] (di-
rectly decomposed from the relative rotation matrix). The
evaluation suggests that our parameterization generally does
not have a large effect on the final result. However, decom-
posing the absolute pitch per image is helpful to accurately
predict the pitch angle in non-overlapping cases.

Dense correlation volumes yield significant improve-
ments, particularly over relative yaw predictions, and boost
performance over regression models, indicating that net-
works with correlation volumes can better reason over geo-
metric relations between images with little to no overlap.

The impact of the classification loss is visible for both
overlapping and non-overlapping cases, especially for pitch
predictions. Using a regression loss instead of a classification
loss also degrades yaw accuracy for overlapping cases. The
significant improvements in the median error (e.g. 39.53° to
4.43° for non-overlapping pairs) illustrates that predicting
a distribution over discretized angles enables the model to
learn richer information in comparison to a regression model.

5. Conclusion

We presented a method for estimating 3D rotations be-
tween a pair of RGB images in extreme settings where the
images have little to no overlap. We demonstrate our method
on a wide variety of example pairs and show that our model
works surprisingly well on non-overlapping pairs, and can
generalize to new scenes (including new cities) compared to
the training data. Our key technical contribution is the use
of dense correlation volumes that perform all-pairs feature
correlations for this pose estimation problem, enabling our
network to detect both explicit and implicit cues. While we
focus on relative rotations in our work, we believe that our
method could be extended to compute whole camera poses,
including camera intrinsics like focal length. However, we
found that applying our approach directly to estimate rela-
tive translations did not work well for non-overlapping pairs.
Addressing translations may require new architectures or by
first predicting and removing rotation, as recently proposed
by Chen et al. [7]. In the future, we would also like to ex-
plore use of our internal features for other geometric tasks,
like lighting or depth prediction—we believe that the use
of non-overlapping relative pose as a proxy task may yield
image features that are useful for a range of other tasks.
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Pittsburgh test images . London test images

Figure 6: Generalization from Manhattan to Pittsburgh and London. Above we show results obtained by our StreetLearn model on
image pairs from new, never-before-seen cities. The full panoramas are shown on the left with the ground-truth perspective images marked
in red. We show our predicted viewpoints (in yellow) and the result by the Reg6D regression model [52] (in blue).

StreetLearn - 7 SUN360

Figure 7: Predicted rotation results. Full panoramas are shown on the left, with the ground-truth perspective images marked in red. We
show our predicted viewpoints (in yellow) and results from the Reg6D regression model [52] (in blue).
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