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Abstract

We present a technique for estimating the relative 3D ro-

tation of an RGB image pair in an extreme setting, where the

images have little or no overlap. We observe that, even when

images do not overlap, there may be rich hidden cues as to

their geometric relationship, such as light source directions,

vanishing points, and symmetries present in the scene. We

propose a network design that can automatically learn such

implicit cues by comparing all pairs of points between the

two input images. Our method therefore constructs dense

feature correlation volumes and processes these to predict

relative 3D rotations. Our predictions are formed over a

fine-grained discretization of rotations, bypassing difficulties

associated with regressing 3D rotations. We demonstrate our

approach on a large variety of extreme RGB image pairs,

including indoor and outdoor images captured under dif-

ferent lighting conditions and geographic locations. Our

evaluation shows that our model can successfully estimate

relative rotations among non-overlapping images without

compromising performance over overlapping image pairs.1

1. Introduction

Estimating the relative pose between a pair of RGB im-

ages is a fundamental task in computer vision with appli-

cations including 3D reconstruction [39, 34], camera lo-

calization [3, 40, 42], simultaneous localization and map-

ping [8, 32] and novel view synthesis [29, 38]. Standard

methods for computing relative pose are highly dependent

on accurate correspondence. But what if the poses are so dif-

ferent that there is no overlap and hence no correspondence?

Our work takes a step towards this seemingly impossible

goal of estimating relative pose for pairs of RGB images that

have little or no overlap. In particular, we present a technique

for estimating relative 3D rotation for a pair of images with

(possibly) extreme relative motion. There are many appli-

cations where dense imagery is difficult to obtain that can

benefit from rotation estimation from non-overlapping views

1https://ruojincai.github.io/ExtremeRotation/

Figure 1: How can we estimate relative rotation between images

in extreme non-overlapping cases? Above we show two non-

overlapping image pairs capturing an urban street scene (top) and a

church (bottom). Possible cues to their relationship include sunlight

and direction of shadows in outdoor scenes (highlighted in red) and

lines parallel in 3D in indoor scenes (marked with yellow and blue

line segments), from which vanishing points can be derived.

[25, 1]. For example, when advertising homes on online

real estate sites, users may only provide a small number of

images—too sparse for current 3D reconstruction methods.

Rotation estimation can simplify downstream tasks, such as

3D reconstruction from sparse views.

How can we reason about relative rotation in extreme non-

overlapping settings? As humans, there are a number of cues

we might leverage. Consider the two image pairs in Fig. 1.

For the outdoor pair, we can infer relative orientation using

illumination cues, e.g., by analyzing which buildings are lit

or the directions of cast shadows. Geometric cues are also

useful. For example, from the pair of indoor images we can

infer a change in camera pitch from the set of parallel vertical
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Figure 2: Method overview. Given a pair of images, a shared-weight Siamese encoder extracts feature maps. We compute a 4D correlation

volume using the inner product of features, from which our model predicts the relative rotation (here, as distributions over Euler angles).

lines in 3D (colored in yellow) that suggest a vanishing point,

and we can infer a rightward camera rotation by analyzing

symmetries and the layout of the benches.

Given the presence of such “hidden” cues, one approach

to computing relative rotation would be to explicitly learn

such cues via supervision, e.g., by labeling vanishing points

and learning to predict them. However, in addition to the

drawbacks of requiring additional supervision, we do not

want to restrict our model to a set of handcrafted cues which

may or may not be relevant for the image pair provided at

test time. Instead, we want to learn to predict relative rotation

from pose supervision alone. As such, we ask: Can we guide

the network to reason about such hidden cues implicitly?

And what architecture would best achieve this goal?

Our key insight is that reasoning about cues such as van-

ishing points and illumination—while not achievable from

direct feature correspondence alone—nonetheless can be

realized through comparison of local properties like line ori-

entations (in the case of vanishing points) and shadows and

light sources (in the case of illumination). Crucially, any pair

of points between the image pair can provide evidence for

their geometric relationship.

We therefore turn to correlation volumes, a tool used in

correspondence tasks like optical flow or stereo. In a full

correlation volume, every pair of points from feature maps

derived from an image pair are compared. While dense cor-

relation volumes have demonstrated superior performance

for tasks like optical flow [46, 27, 43] and stereo matching

[33, 23, 47, 14] that compare highly overlapping images,

we find that they are also effective in finding implicit cues

that are not in the form of direct correspondence. As such,

we process image pairs—whether they overlap or not—by

constructing a dense 4D correlation volume (see Fig. 3). This

design allows us to both find explicit pixelwise correspon-

dence, in the case of overlapping pairs, as well as leverage

implicit cues for non-overlapping pairs.

To estimate the relative rotation, we process the corre-

lation volume with another network that computes proba-

bilities estimates over a fine-grained discretization over the

space of 3D rotations. Our framework is end-to-end trainable

and optimizes simple loss formulations, bypassing difficul-

ties associated with regressing 3D rotations.

We evaluate our method on a large variety of extreme

RGB image pairs, including indoor and outdoor images cap-

tured in different geographic locations under varying illumi-

nation. We also show that our models yield state-of-the-art

performance for overlapping pairs. Our models generalize

surprisingly well to new data—e.g., training a model on out-

door scenes in Manhattan yields median errors below 6◦ for

images captured in Pittsburgh and London.

2. Related Work

Extreme relative pose estimation. Non-overlapping im-

ages have been addressed in the context of related prob-

lems such as 2D alignment and mosaicing [36, 17], where

the goal is to piece together images that have small gaps

between them. Most prior work on the 3D relative pose es-

timation problem rely on correspondences or overlap, and

hence are not well suited for handling extreme cases. Sev-

eral works address extreme relative pose estimation between

two input RGB-D scans [48, 49]. Provided with input depth

values, these works perform scan completion and match

the completed scans. Caspi and Irani [5] consider image

sequences where the two cameras are rigidly attached and

move jointly, and search for consistent temporal behavior.

Littwin et al. [24] use inter-silhouette dissimilarities to esti-

mate the relative rotations for a set of cameras. In this work,

we propose a method for the more challenging problem of

extreme relative rotation given only a pair of RGB images

as input, without using depth, temporal coherence, or other

forms of additional data.

Traditional pose estimation. The problem of relative pose

estimation from overlapping views is traditionally divided

into two sequential steps: correspondence estimation us-

ing local feature matching [26, 2], followed by epipolar
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geometry–based pose estimation [15]. As reliable correspon-

dence estimation can be challenging even for overlapping

images, several recent works propose end-to-end convolu-

tional neural networks that regress from images to relative

pose [28, 12, 20].

In particular, several works focus on 3D rotations and

propose parameterizations and architectures that allow for

better estimation using neural networks [52, 21]. Zhou et

al. [52] evaluate commonly used representations, including

quaternions and Euler angles, and discuss issues relating to

discontinuities in the rotation representation. Peretroukhin et

al. [35] regress and combine multiple rotation estimates, pro-

ducing probabilistic estimates. Mohlin et al. [31] estimate

3D rotation uncertainty using the matrix Fisher distribution.

In our work, we discretize the space of 3D rotations and esti-

mate a distribution over this space to avoid issues associated

with direct regression to rotations.

Dense volumes for computing image relations. Dense vol-

umes that encode pairwise pixel comparisons allow for an

explicit representation of correspondence, and thus have

been used in a number of tasks that require correspondence

estimation. For instance, deep stereo matching approaches

typically compute cost volumes that compare feature descrip-

tors across disparity ranges [18, 19, 6, 50, 33, 23, 47, 14].

Cost volumes are also used to compute optical flow, in which

case 2D displacements are encoded within a volumetric rep-

resentation [46, 41, 27]. To define a matching cost, several

works compute dense correlations between image features,

forming correlation volumes [10, 41, 43]. In our work, we

also form correlation volumes. However, unlike prior work,

the input images are not necessarily highly correlated and

therefore the correlation volumes are tasked with learning

additional, more subtle, cues.

Several other recent techniques leverage dense volumes

for reconstruction tasks. Zhou et al. [54] use cost volumes

for the task of single-image reconstruction. Wei et al. [44]

use them to refine structure-from-motion predictions. As part

of their solution, they form a pose-based cost volume that is

provided with initial camera pose parameters, then uniformly

samples candidate poses around this initial estimate. In our

case, we build dense volumes for all pairs of pixels and

estimate rotations over the full space of possible rotations.

3. Method

Given a pair of RGB images (I1, I2), our goal is to esti-

mate the 3D rotation matrix R between the two images. In

order to allow for discovery and use of hidden cues in the

difficult task of extreme rotation prediction, we use dense

correlation volumes that allow for discovering implicit cues

(Section 3.1). These dense volumes are fed to a fine-grained

relative rotation classification network (Section 3.2). An

overview of our approach is provided in Fig. 2.

Parameterization. We must choose a parameterization for

3D rotations suited to our problem. One standard represen-

tation for a 3D rotation matrix R is as three Euler angles

[α, β, γ], denoting roll, pitch, and yaw angles, respectively:

R(α, β, γ) = Rx(α)Ry(β)Rz(γ) (1)

This general parameterization can be integrated directly with

our presented approach. However, we observe that for a

wide variety of scenes the absolute pitch can be recovered

from a single image using cues such as vanishing points.

Furthermore, cameras are typically upright, i.e., the input

images have zero roll.

Given these observations, we can instead represent the

relative orientation R with three angles [β1, β2,∆γ], where

∆γ denotes the relative yaw angle, β1 denotes the pitch of

I1 and β2 denotes the pitch of I2. Using this parameteri-

zation, the rotation matrices of the two images are defined

as R1(0, β1, 0) and R2(0, β2,∆γ), and the relative rotation

matrix is defined as R = R2R
T
1 . In our experiments we

show that encoding this prior knowledge into the parameter-

ization leads to improved performance, although a generic

parameterization also shows significant improvement over

baseline methods.

3.1. Dense Correlation Volumes

Our proposed solution is inspired by traditional methods

that accumulate evidence for global quantities from local evi-

dence via voting schemes or other mechanisms. For instance,

as intuition, consider the problem of detecting vanishing

points from a single image. One approach is to have local

features like line segments vote on vanishing points using

accumulation methods similar to Hough transforms [16]. In

our case, where we are given an image pair and want to

estimate relative rotation, we observe that potentially any

pair of image patches can provide evidence for the global

geometric image relationship—for instance, two patches that

support related vanishing point locations, or two patches that

give evidence for light source directions.

To operationalize this intuition, we devise a network struc-

ture that performs pairwise comparisons between all pairs

of features across the two images. We first use convolu-

tional networks with shared weights to extract dense feature

descriptors f(Ii) ∈ R
K×H/4×W/4, where K is the num-

ber of channels, W is the image width and H is the image

height. We then compute a 4D dense correlation volume

C(f(I1), f(I2)), such that for each pair of spatial positions

(p, q) in I1 and (r, s) in I2, we define the correlation score

at (p, q, s, r) as the dot product of the corresponding vectors

in the feature maps of the two images:

C(f(I1), f(I2); p, q, r, s) = f(I1; p, q) · f(I2; r, s), (2)

where f(I;x, y) denotes the feature vector for image I at

spatial position (x, y). Fig. 3 illustrates the correlation vol-
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Figure 3: 4D correlation volumes. A 4D correlation volume is

calculated from a pair of image feature maps. Given a feature vector

from Image 1, we compute the dot product with all feature vectors

in Image 2, and build up a 2D slice of size H × W . Combining

all 2D slices over all feature vectors in Image 1, we obtain a 4D

correlation volume of size H ×W ×H ×W .

ume for an image pair. Note that the correlation volume C

can be computed efficiently using matrix multiplication.

Unlike prior work that uses correlation volumes to di-

rectly predict pixel-to-pixel correspondence as in optical

flow [46, 27, 43] or stereo [33, 23, 14], our correlation vol-

umes are implicitly assigned a dual role which emerges

through training on both overlapping and non-overlapping

pairs. When the input image pair contains significant overlap,

pointwise correspondence can be computed and transferred

onward to the rotation prediction module. When the input im-

age pair contains little to no overlap, the correlation volume

can assume the novel role of detecting implicit cues.

We visualize this dual role in Fig. 4, where we create

a heatmap for each image in a pair occluding each image

region in turn with a sliding window before feeding it to

our network, in order to assess each region’s approximate

importance towards computing the relative pose [51]. As

illustrated in the left pair, covering the region of overlap

significantly affect the model’s prediction for overlapping

pairs. For non-overlapping pairs, covering regions corre-

sponding to a strong vanishing point yields a steep drop in

performance. Please refer to the supplementary material for

additional visualizations.

Our dense correlation volume C is provided as input to a

rotation classification network gσ that is tasked with predict-

ing the relative rotation.

Figure 4: Visualizing cues detected by our model for overlap-

ping (left) and non-overlapping (right) image pairs. We show

regions which, when blocked, affect the rotation error, with warmer

colors depicting larger errors (according to their associated color

bars). The full panoramas are shown above, with the ground-truth

and predicted perspective image regions marked in red and yellow,

respectively. These visualizations suggest that our method reasons

about pointwise correspondences for overlapping pairs (e.g. on top

of the refrigerator) and implicit cues for non-overlapping pairs (e.g.

related to vanishing points).

3.2. Relative Rotation Classification

The relative rotation classification network gσ is con-

structed from three identical networks (without weight shar-

ing), where each network predicts one of the angles describ-

ing the relative rotation according to our three angle parame-

terization. Learning-based pose estimation methods typically

regress to rotation and translation parameters [28, 12]. How-

ever, commonly used 3D rotation representations, including

Euler angles and quaternions, are discontinuous and hence

challenging for direct regression in deep networks. To over-

come the problem of regressing discontinuous 3D rotations,

prior works have suggested using higher dimensional contin-

uous representations, e.g., in 5D and 6D [52].

As an alternative to directly regressing the relative angles,

we discretize the space of rotations, such that for each an-

gle we estimate a probability distribution over N bins. We

empirically set N = 360, and let each bin capture an angle

in the range [−180◦, 180◦]. This discretization is related to

concurrent work that discretizes 3D rotations in terms of

rotation matrix columns [7]. Our fine-grained discrete angle

parameterization enables using a simple cross-entropy loss

to train our network. Overall, a sum of three cross-entropy

loss functions is used, one per angle. During training, the

ground truth is set using one-hot vectors (that empirically

yielded similar results as smoothed vectors).

4. Experiments

To validate our approach, we conduct extensive experi-

ments on a variety of extreme RGB image pairs capturing

both indoor and outdoor scenes. We compare with several

baseline techniques, evaluating performance on both overlap-

ping and non-overlapping image pairs. We also demonstrate
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the generalization power of our model, testing it on image

pairs from unseen cities. Finally, we present an ablation study

to examine the impact of the different components in our

proposed approach. Additional results and implementation

details are provided in the supplementary material.

4.1. Datasets

StreetLearn [30] is an outdoor dataset that contains ap-

proximately 143K panoramic views covering the cities of

Manhattan and Pittsburgh. We focus on a set of roughly

56K images from Manhattan, randomly allocating 1,000

panoramic views for testing.

SUN360 [45] is an indoor dataset that contains 9,962

panoramic views of different scenes downloaded from the

Internet, grouped into 50 different categories. We use ap-

proximately 7,500 panoramas for training and 830 among

the remaining panoramas for testing.

InteriorNet [22] is a synthetic indoor dataset. We use a

subset of InteriorNet that contains 10,050 panoramic views

from 112 different houses, where 82 houses are allocated for

training and the remaining 30 houses for testing.

For each panoramic view, we randomly sample 100

perspective views to obtain images with a resolution of

256 × 256 and a 90◦ FoV. We sample images distributed

uniformly over the range of [−180, 180] for yaw angles.

This yields, for example, an average of 3147 samples (per

1◦ bin) in our StreetLearn dataset. We assume zero roll (and

demonstrate in the supplementary material that our models

are insensitive to small roll angles at test time). To avoid

generating textureless images that focus on the ceiling/sky

or the floor, we limit the range over pitch angles to [−30, 30]
for the indoor datasets and [−45, 45] for the outdoor dataset.

Furthermore, in the InteriorNet dataset, since the dataset

is synthetic and panoramas are rendered at random camera

positions—leading to cases where the image is too close to

the geometry (e.g. the scene is largely occluded by a close

object or most of the panorama observes a wall), we use

MiDaS [37], a single view depth estimation method, to filter

out images that are too close the scene.

From these perspective images, we construct datasets

with and without camera translations, in order to understand

the effect of camera translation on our rotation estimation

problem. Datasets without translations are constructed by

sampling image pairs originating from the same panorama,

and datasets with translations, denoted as InteriorNet-T and

StreetLearn-T, are constructed by pairing up images from

different panoramas using translation distances smaller than

3m and 10m, respectively (SUN360 is constructed from

Internet panoramas that are not physically related in space).

For all datasets, we have ∼1M training pairs sampled from

the same panorama, ∼700K training pairs sampled from

different panoramas, and 1K test pairs. There is no overlap

between train and test scenes.

4.2. Baselines

SIFT-based relative rotation estimation. A geometry-

based technique that computes SIFT [26] features and then

estimates a rotation matrix with a 2-point algorithm [4] for

image pairs from the same panorama, or an essential matrix

for image pairs with translation, using RANSAC [13].

Learning-based feature matching, using pretrained net-

works for interest point detection and description (with

model fitting as described above). We evaluate a pretrained

SuperPointNet [9] (hereby called SuperPoint) and D2-

Net [11] (see supplemental material for results).

End-to-end relative rotation regression, where image fea-

tures are concatenated and fed to a regression model. We

evaluate models predicting a continuous representation in 6D

(hereby denoted as Reg6D) as proposed by Zhou et al. [52]

and additional representations, including quaternions as pro-

posed by En et al. [12], in the supplementary material.

For all end-to-end techniques, we also train models with only

overlapping pairs to better understand the impact of training

models with non-overlapping image pairs.

4.3. Evaluation Metrics

For an image pair, let R be the predicted rotation matrix

and R
∗ be ground truth rotation matrix. We follow prior

work and report the geodesic error arccos
(

tr(RT
R

∗)−1
2

)

.

To analyze the performance of methods across different

overlap ratios, we divide the test image pairs into three cate-

gories: (i) large, indicating highly overlapping pairs (relative

rotations up to 45◦), (ii) small, indicating pairs that partially

overlap (relative rotation angles ∈ [45◦, 90◦]), and (i) none,

indicating pairs with no overlap (relative rotations >90◦).

4.4. Quantitative Evaluation

Table 1 reports the mean and median geodesic error, as

well as the percentage of image pairs with a relative rotation

error under 10◦. Qualitative results are presented in Figure 7.

We analyze the results according to the amount of overlap:

Overlapping cases. For image pairs sampled from the same

panorama, our model produces very accurate results for

both indoor and outdoor scenes, with mean errors of 4.31◦,

6.13◦, and 3.23◦ for small overlapping pairs. For the regres-

sion baselines, adding non-overlapping pairs during training

causes the regression baseline performance to suffer on over-

lapping pairs, while our method does not see such a drop.

The performance of models trained on datasets with cam-

era translations is somewhat lower. For these, the overlapping

regions can be smaller due to the camera motion. In particu-

lar, for StreetLearn-T, the translations are large (up to 10m),

which can have a more dramatic effect on the overlap region.

Nonetheless, our method still achieves low median errors for

datasets with translation (around 3◦).
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InteriorNet InteriorNet-T SUN360 StreetLearn StreetLearn-T

Overlap Method Avg(◦↓) Med(◦↓) 10◦(%↑) Avg(◦↓) Med(◦↓) 10◦(%↑) Avg(◦↓) Med(◦↓) 10◦(%↑) Avg(◦↓) Med(◦↓) 10◦(%↑) Avg(◦↓) Med(◦↓) 10◦(%↑)

Large

SIFT* [26] 6.09 4.00 84.86 7.78 2.95 55.52 5.46 3.88 93.10 5.84 3.16 91.18 18.86 3.13 22.37

SuperPoint* [9] 5.40 3.53 87.10 5.46 2.79 65.97 4.69 3.18 92.12 6.23 3.61 91.18 6.38 1.79 16.45

Reg6D [52]-o 5.43 3.87 87.10 10.45 6.91 67.76 7.18 5.79 81.28 3.36 2.71 97.65 12.31 6.02 69.08

Reg6D [52] 9.05 5.90 68.49 17.00 11.95 41.79 16.51 12.43 40.39 11.70 8.87 58.24 36.71 24.79 23.03

Ours-o 1.53 1.10 99.26 2.89 1.10 97.61 1.00 0.94 100.00 1.19 1.02 99.41 9.12 2.91 87.50

Ours 1.82 0.88 98.76 8.86 1.86 93.13 1.37 1.09 99.51 1.52 1.09 99.41 24.98 2.48 78.95

Small

SIFT* [26] 24.18 8.57 39.73 18.16 10.01 18.52 13.71 6.33 56.77 16.22 7.35 55.81 38.78 13.81 5.68

SuperPoint* [9] 16.72 8.43 21.58 11.61 5.82 11.73 17.63 7.70 26.69 19.29 7.60 24.58 6.80 6.85 0.95

Reg6D [52]-o 17.83 9.61 51.37 21.87 11.43 44.14 18.61 11.66 39.85 7.95 4.34 87.71 15.07 7.59 63.41

Reg6D [52] 25.71 15.56 33.56 42.93 28.92 23.15 42.55 32.11 9.40 24.77 15.11 30.56 46.61 34.33 13.88

Ours-o 6.45 1.61 95.89 10.24 1.38 89.81 3.09 1.41 98.50 2.32 1.41 98.67 13.04 3.49 84.23

Ours 4.31 1.16 96.58 30.43 2.63 74.07 6.13 1.77 95.86 3.23 1.41 98.34 27.84 3.19 74.76

None

SIFT* [26] 109.30 92.86 0.00 93.79 113.86 0.00 127.61 129.07 0.00 83.49 90.00 0.38 85.90 106.84 0.38

SuperPoint* [9] 120.28 120.28 0.00 – – 0.00 149.80 165.24 0.00 – – 0.00 – – 0.00

Reg6D [52]-o 88.89 79.24 0.98 110.50 116.25 1.17 101.21 99.64 0.94 133.08 167.19 2.46 132.67 158.45 1.88

Reg6D [52] 48.36 32.93 10.82 60.91 51.26 11.14 64.74 56.55 3.77 28.48 18.86 24.39 49.23 35.66 11.86

Ours 37.69 3.15 61.97 49.44 4.17 58.36 34.92 4.43 61.39 5.77 1.53 96.41 30.98 3.50 72.69

All

SIFT* [26] 13.68 5.04 45.80 12.24 5.69 24.60 18.12 5.02 34.00 17.29 5.53 32.50 36.00 6.03 5.40

SuperPoint* [9] 8.19 4.08 41.40 6.62 3.38 25.90 11.09 4.00 25.80 11.52 4.80 22.90 6.42 2.62 2.80

Reg6D [52]-o 34.51 9.71 50.40 48.27 15.59 37.40 60.15 34.51 27.60 73.36 20.03 44.30 77.09 55.29 31.60

Reg6D [52] 25.90 13.02 40.70 40.38 23.35 25.30 49.05 34.37 12.70 24.51 15.31 32.00 46.50 33.14 29.90

Ours 13.49 1.18 86.90 29.68 2.58 75.10 20.45 2.23 78.30 4.40 1.44 97.50 29.85 3.20 74.30

Table 1: Rotation estimation evaluation on the InteriorNet, the SUN360, and the StreetLearn datasets. We report the mean and median

geodesic error in degrees, and the percentage of pairs with a relative rotation error under 10◦ for different levels of overlap, as detailed in

Section 4.3. Models trained only on overlapping pairs are denoted with “-o”. *Errors are computed only over successful image pairs, for

which these algorithms output an estimated rotation matrix (failure over more than 50% of the test pairs is shown in gray).

SuperPoint [9] achieves the smallest average errors on

StreetLearn-T large and small overlapping cases (6.38◦ and

6.80◦). However, both SIFT and SuperPoint do not always

output an answer (model fitting-based techniques require a

sufficient number of detected inliers). Only successful image

pairs are considered for evaluation, and hence these errors

should be interpreted as errors over pairs for which they

produced an answer (full numbers provided in the supple-

mental material). Our method still significantly outperforms

SuperPoint in terms of the fraction of pairs with less than

10◦ error across all datasets, suggesting that SuperPoint fails

to give an answer.

Non-overlapping cases. Due to insufficient correspon-

dences on image pairs with large viewpoint changes, feature

matching-based methods (and regression models trained on

only overlapping pairs) unsurprisingly fail on pairs with no

overlap. The median errors of the strongest regression base-

line are all above 18◦ (and for several datasets are much

larger). In contrast, our method yields median errors consis-

tently below 5◦, while the mean error rises to 6◦–49◦. This

indicates that our method is usually surprisingly accurate, but

sometimes makes large errors. It turns out that such errors

are primarily due to ambiguities, as detailed below.

To better understand cases when our method produces

incorrect rotations, we can look at the full distributions pre-

dicted by our method. Because our network outputs a proba-

bility distribution over 3D rotations, we can compute a top-2

error (i.e., the smaller of the errors over both the most likely

and second most likely prediction), to see whether the correct

rotation angles have high peaks in the learned probability

distributions. On the StreetLearn-T dataset, the mean error

significantly drops, from 24.98◦ to 6.49◦ on large overlap-

ping cases, 27.84◦ to 10.39◦ on small overlapping cases, and

30.98◦ to 15.72◦ on non-overlapping cases. This gap illus-

trates that the model is able to predict with large probability

the ground truth angle, but is confused with other likely ro-

tation estimates. For instance, given two images facing two

different roads at the crossing, there is an ambiguity between

90◦ and 180◦ rotations. We provide full distributions of pre-

diction errors (that demonstrate, for example, that there are

error modes at 90◦ and 180◦ rotations) and qualitative results

of failure cases in the supplemental material.

4.5. Generalization to Other Datasets

To demonstrate the generalization power of our model,

we test the model trained on StreetLearn on outdoor images

from Pittsburgh and London, using images from the Holicity

dataset [53], and compare to the regression model of Zhou et

al. [52]. Test images are split according to the overlap levels

detailed in Section 4.3. Figure 6 illustrates several qualitative

examples, also demonstrating how different these samples

are (e.g. captured in rural areas or on water).

Results are reported in Figure 5. Our StreetLearn-trained

model generalizes well to the other outdoor datasets, with all

median errors below 6◦. In comparison, the median errors

for Reg6D on small or non-overlapping pairs are larger on

14571



Reg6D-o Reg6D Ours

Figure 5: Generalization to new locations. We show the median

geodesic rotation error over test images from Manhattan, Pittsburgh,

and London for the models trained on Manhattan. Results are

reported for our model and the regression models proposed by

Zhou et al. [52] (Reg6D-o is trained only on overlapping pairs).

Rotation Error Yaw Error Pitch Error

Overlap Method Avg(◦) Med(◦) 10◦(%) Avg(◦) Med(◦) Avg(◦) Med(◦)

Large

w/o RP 1.02 1.05 100.00 0.48 0.47 0.52 0.48

w/o Lcls, C 40.19 33.41 8.87 33.22 23.19 16.50 14.01

w/o Lcls 7.93 6.96 78.33 5.07 3.90 3.22 2.91

w/o C 43.79 43.44 6.90 43.74 43.44 1.07 0.74

Ours (full) 1.37 1.09 99.51 0.57 0.51 1.03 0.73

Small

w/o RP 1.67 1.44 99.62 0.83 0.61 0.79 0.64

w/o Lcls, C 67.97 60.91 0.38 61.53 54.19 19.71 15.59

w/o Lcls 15.75 12.65 34.59 10.28 6.35 5.81 4.31

w/o C 65.31 69.32 15.79 65.13 69.31 2.04 1.10

Ours (full) 6.13 1.77 95.86 4.70 0.72 1.76 0.97

None

w/o RP 39.01 25.81 23.92 36.32 21.17 5.96 3.39

w/o Lcls, C 83.29 75.08 0.56 78.42 68.89 18.16 14.72

w/o Lcls 46.26 39.53 2.64 40.98 34.08 13.93 11.08

w/o C 121.16 130.91 0.19 121.10 130.91 1.97 1.26

Ours (full) 34.92 4.43 61.39 34.19 3.51 1.91 1.36

All

w/o RP 21.37 3.98 59.50 19.60 1.87 3.48 1.09

w/o Lcls, C 70.46 57.87 2.20 64.75 52.70 18.24 14.72

w/o Lcls 30.36 19.97 26.50 25.52 12.61 9.60 5.88

w/o C 90.60 89.37 5.70 90.51 89.35 1.81 1.10

Ours (full) 20.45 2.23 78.30 19.52 1.07 1.69 1.07

Table 2: Ablation study, evaluating the effect of our rotation pa-

rameterization (RP), classification objective (Lcls) and correlation

volumes (C) on SUN360.

the other cities by 5-10◦, suggesting that this baseline is

more sensitive to image appearance. For overlapping pairs,

we can see that Reg6D-o obtains only slightly larger median

errors on the other cities (but still larger than ours), while it

completely fails on non-overlapping pairs.

This experiment, and also the strong performance ob-

tained on SUN360, a dataset constructed from Internet

panoramas originating from various sources, suggest that we

are not simply learning spurious correlations (e.g. learning

pose based on panorama stitching artifacts), as our models

can successfully predict relative rotations for pairs that are

significantly different from those they were trained on.

4.6. Ablation Study

We perform an ablation study to analyze the effect of in-

dividual algorithmic components (see Table 2). In particular,

we replace (i) the rotation parameterization, (ii) dense corre-

lation volumes with concatenated image features, and (iii)

the relative rotation classification objective with a regression

loss, regressing to a continuous representation in 6D.

For (i), instead of predicting the absolute pitch and the

relative yaw, we predict the roll, pitch and yaw [α, β, γ] (di-

rectly decomposed from the relative rotation matrix). The

evaluation suggests that our parameterization generally does

not have a large effect on the final result. However, decom-

posing the absolute pitch per image is helpful to accurately

predict the pitch angle in non-overlapping cases.

Dense correlation volumes yield significant improve-

ments, particularly over relative yaw predictions, and boost

performance over regression models, indicating that net-

works with correlation volumes can better reason over geo-

metric relations between images with little to no overlap.

The impact of the classification loss is visible for both

overlapping and non-overlapping cases, especially for pitch

predictions. Using a regression loss instead of a classification

loss also degrades yaw accuracy for overlapping cases. The

significant improvements in the median error (e.g. 39.53◦ to

4.43◦ for non-overlapping pairs) illustrates that predicting

a distribution over discretized angles enables the model to

learn richer information in comparison to a regression model.

5. Conclusion

We presented a method for estimating 3D rotations be-

tween a pair of RGB images in extreme settings where the

images have little to no overlap. We demonstrate our method

on a wide variety of example pairs and show that our model

works surprisingly well on non-overlapping pairs, and can

generalize to new scenes (including new cities) compared to

the training data. Our key technical contribution is the use

of dense correlation volumes that perform all-pairs feature

correlations for this pose estimation problem, enabling our

network to detect both explicit and implicit cues. While we

focus on relative rotations in our work, we believe that our

method could be extended to compute whole camera poses,

including camera intrinsics like focal length. However, we

found that applying our approach directly to estimate rela-

tive translations did not work well for non-overlapping pairs.

Addressing translations may require new architectures or by

first predicting and removing rotation, as recently proposed

by Chen et al. [7]. In the future, we would also like to ex-

plore use of our internal features for other geometric tasks,

like lighting or depth prediction—we believe that the use

of non-overlapping relative pose as a proxy task may yield

image features that are useful for a range of other tasks.
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Figure 6: Generalization from Manhattan to Pittsburgh and London. Above we show results obtained by our StreetLearn model on

image pairs from new, never-before-seen cities. The full panoramas are shown on the left with the ground-truth perspective images marked

in red. We show our predicted viewpoints (in yellow) and the result by the Reg6D regression model [52] (in blue).
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Figure 7: Predicted rotation results. Full panoramas are shown on the left, with the ground-truth perspective images marked in red. We

show our predicted viewpoints (in yellow) and results from the Reg6D regression model [52] (in blue).
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