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Figure 1: Our WikiScenes dataset combines 3D reconstructions, images, and language descriptions for dozens of landmarks, like the
Barcelona and Reims Cathedrals pictured above. WikiScenes enables new tasks that combine different modalities, such as associating
semantic concepts like “portal”, “facade”, and “tower” (colored in pink, blue and brown, respectively) with 3D structure across all cathedrals.

Abstract

The abundance and richness of Internet photos of land-
marks and cities has led to significant progress in 3D vi-
sion over the past two decades, including automated 3D
reconstructions of the world’s landmarks from tourist photos.
However, a major source of information available for these
3D-augmented collections—namely language, e.g., from im-
age captions—has been virtually untapped. In this work, we
present WikiScenes, a new, large-scale dataset of landmark
photo collections that contains descriptive text in the form
of captions and hierarchical category names. WikiScenes
forms a new testbed for multimodal reasoning involving im-
ages, text, and 3D geometry. We demonstrate the utility
of WikiScenes for learning semantic concepts over images
and 3D models. Our weakly-supervised framework connects
images, 3D structure, and semantics—utilizing the strong

*: indicates equal contribution.

constraints provided by 3D geometry—to associate semantic
concepts to image pixels and 3D points."

1. Introduction

Internet photos capturing tourist landmarks around the
world have driven research in 3D computer vision for over a
decade [43, 18, 16, 2, 40, 30]. Diverse photo collections of
landmarks are unified by the underlying 3D scene geometry,
despite the fact that a scene can look dramatically different
from one image to the next due to varying illumination, alter-
nating seasons, or special events. This geometric anchoring
can be exploited when learning a range of geometry-related
vision tasks, such as novel view synthesis [31, 26], single-
view depth prediction [25], and relighting [51, 50], that re-
quire large amounts of diverse training data. However, prior
work on tourist photos of landmarks has focused almost
exclusively on lower-level reconstruction tasks, and not on

https://www.cs.cornell.edu/projects/babel/
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higher-level scene understanding or recognition tasks.

We seek to connect such 3D-augmented image collections
to a new domain: language. Natural language is an effec-
tive way to describe the complexities of the 3D world; 3D
scenes exhibit features such as compositionality and physi-
cal and functional relationships that are easily captured by
language. For instance, consider the images of the Barcelona
and Reims Cathedrals in Fig. 1. Cathedrals like these have
common elements, such as facades, columns, arches, portals,
domes, etc., that tend to be physically assembled in consis-
tent ways across all cathedrals (and related buildings like
basilicas). Using modern structure from motion methods,
we can reconstruct 3D models of the world’s cathedrals, but
we cannot directly infer such rich semantic connections that
exist across all cathedrals. Such reasoning calls for methods
that jointly consider language, images, and 3D geometry.

However, despite impressive progress connecting images
to natural language descriptions across tasks such as image
captioning [48, 28, 4] and visual grounding [47, 21, 19],
little attention has been given to joint analysis of 3D vision
and language. In this work, we facilitate such multimodal
analysis with a new framework for creating 3D-augmented
datasets from Wikimedia Commons, a diverse, crowdsourced
and freely-licensed large-scale data source. We use this
framework to create WikiScenes, a new dataset that contains
63K paired images and textual descriptions capturing 99
cathedrals, along with their associated 3D reconstructions,
illustrated in Fig. 1. WikiScenes enables a range of new
explorations at the intersection of language, vision, and 3D.

We demonstrate the utility of WikiScenes for the specific
task of mining and learning semantic concepts over collec-
tions of images and 3D models. Our key insight is that while
raw textual descriptions represent a weak, noisy form of su-
pervision for semantic concepts, the underlying 3D structure
of scenes yields powerful physical constraints that grants ro-
bustness to data noise and can ground models. In particular,
we devise a novel 3D contrastive loss that leverages scene
geometry to regularize learning of semantic representations.
We also show that 3D scene geometry leads to improved
vision-language models in a caption-based image retrieval
task, where geometry helps in augmenting the training data
with semantically-related samples.

In summary, our key contributions are:

* WikiScenes, a large-scale dataset combining language,
images, and 3D models, which can facilitate research
that jointly considers these modalities.

* A contrastive learning method for learning semantic
image representations leveraging 3D models.

* Results that demonstrate that our proposed model can
associate semantic concepts with images and 3D mod-
els, even for never-before-seen locations.

2. Related Work

Joint analysis of 3D and language. We have recently seen
pioneering efforts to jointly analyze 3D and language. Chen
et al. [11] learn a joint embedding of text and 3D shapes
belonging to the ShapeNet dataset [9], and demonstrate these
embeddings on text-to-shape retrieval and text-to-shape gen-
eration. Achlioptas et al. [1] learn language for differen-
tiating between shapes. To do so, they generate a dataset
consisting of triplets of ShapeNet chairs with utterances dis-
tinguishing one chair from the other two. In contrast to these
object-centric works, Chen et al. [10] consider full 3D scenes.
They construct a multimodal dataset for indoor scenes and
localize 3D objects in the scene using natural language. We
also consider 3D scenes, but in our case, the 3D scenes cap-
ture complex architectural landmarks, and their images and
textual descriptions are gathered from Wikimedia Commons.

Vision and language. Many recent works connect images
to natural language descriptions. Popular tasks include in-
struction following [5, 32, 8], visual question answering
[6, 15, 22, 4], and phrase localization [29, 49, 45]. How-
ever, prior work has shown that models combining vision
and language often rely on simple signals or fail to jointly
consider both modalities. For instance, visual question an-
swering techniques often ignore the image content [3], and
visually-grounded syntax acquisition methods essentially
learn a simple noun classifier [23]. We assemble Internet col-
lections that are grounded to a 3D model, providing physical
constraints that can better connect language and vision.

Distilling information from Internet collections. Several
works mine Internet collections capturing famous landmarks
for objects [17, 36], events [38], or named parts [46] using
image clustering techniques. Other work analyzes camera
viewpoints in large-scale tourist imagery to automatically
summarize a scene [42] or segment it into components [41].

Other prior work analyzes image content together with
textual tags, geotags, and other metadata to organize image
collections. Crandall ef al. use image features and user tags
from geotagged Flickr images to discover and classify world
landmarks [13]. 3D Wikipedia analyzes textual descriptions
of tourist landmarks, leveraging photo co-occurrences to an-
notate specific 3D models like the Pantheon [39]. In contrast
to the above methods, which operate on each location in
isolation, our work aims to discover semantic concepts span-
ning a whole category of locations, such as all the world’s
cathedrals. We further use a contrastive learning framework
for detecting these concepts in unseen landmarks.

3. The WikiScenes Dataset

Our WikiScenes dataset consists of paired images and
language descriptions capturing world landmarks and cul-
tural sites, with associated 3D models and camera poses.
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Figure 2: Images paired with hierarchical WikiCategories from the root (top) to the leaf (bottom).

WikiScenes is derived from the massive public catalog of
freely-licensed crowdsourced data available in Wikimedia
Commons,? which contains a large variety of images with
captions and other metadata. Within Wikimedia Commons,
landmarks are organized into a hierarchy of semantic cate-
gories. In this work, we focus on cathedrals as a showcase of
our framework, although our methodology is general and can
be applied to other types of landmarks. We will also release
companion datasets featuring mosques and synagogues.

To create WikiScenes, we first assembled a list of cathe-
drals using prior work on mining landmarks from geotagged
photos [13]. Each cathedral corresponds to a specific cate-
gory on Wikimedia Commons, at which is rooted a hierarchy
of sub-categories that each contain photos and other relevant
information. We refer to a Wikimedia Commons category
as a WikiCategory. For example, “Cathédrale Notre-Dame
de Paris™ is the name of a WikiCategory corresponding
to the Notre Dame Cathedral in Paris. It has a descendent
WikiCategory called “Nave of Notre-Dame de Paris™* that
features photos of the nave (a specific region of a cathedral
interior), as well as yet more detailed WikiCategories. Each
landmark’s root WikiCategory node contains “Exterior”, “In-
terior” and “Views” subcategories. We download all images
and associated descriptions under these subcategories. We
extract two forms of textual descriptions for each image:

 Captions associated with images, describing the image
using free-form language (Figure 1).

* The WikiCategory hierarchy associated with each im-
age. Example hierarchies are shown in Figure 2.

Because data stored in Wikimedia Commons is not specific
to any single language edition of Wikipedia, our dataset
contains text in numerous languages, allowing for future
multilingual tasks like learning of cross-lingual represen-
tations [44]. However, one can also train with text from
a single language, such as English. Overall, WikiScenes
contains K images of cathedrals with textual descriptions.

’https://commons.wikimedia.org

3https://commons.wikimedia.org/wiki/Category:
Cath%C3%A9drale_Notre-Dame_de_Paris

‘https://commons.wikimedia.org/wiki/Category:
Nave_of_Notre-Dame_de_Paris

We integrate these Wikimedia Commons—sourced images
with 3D reconstructions of landmarks built using COLMAP
[40], a state-of-the-art SfM system that reconstructs cam-
era poses and sparse point clouds. For each 3D point in
the reconstructed scene, we track all its associated images
and corresponding pixel locations. In total, K images of
cathedrals were successfully registered in 3D. Example 3D
reconstructions are shown in Figure 1.

Dataset statistics. WikiScenes is assembled from  cathe-
drals spanning five continents and 23 countries. The lan-
guages most common in the captions are English ( ),
French ( ) and Spanish ( ). The Notre Dame
Cathedral in Paris represents the largest subset, with 5,700
images-description pairs. The median number of words in
a caption is seven; the average is significantly higher as
some captions contain detailed excerpts about their associ-
ated landmark. of all captions contain at least one
spatial connector,” suggesting that our captions describe rich
relationships between different parts of a structure. Please
see the supplemental material for detailed distributions over
attributes including language and collection size.

4. Mining WikiScenes for Semantic Concepts

To demonstrate the semantic knowledge encoded in our
dataset, we mine WikiScenes for semantic concepts asso-
ciated with the Cathedral landmark category. While the
raw textual descriptions are noisy, we show that we can dis-
till a clean set of concepts by exploiting within-scene 3D
constraints (Sec. 4.1). We then associate these concepts to
images (Sec. 4.2), and show that these concepts can be used
to train neural networks to visually recognize these concepts.

4.1. Distilling semantic concepts

To determine a set of candidate concepts, we first as-
semble a list of all nouns found in the leaf nodes of the
WikiCategories, hereby denoted as the leaf categories, as
empirically we found that the leaf categories are most repre-
sentative of the image content. Since we are interested in a

5The spatial connectors we consider are: above, over, below, under,
beside, behind, from, towards, left, right, east and west.
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Figure 3: We visualize the raw text captured in WikiScenes captions (left) and leaf tags (center). Larger words are more frequent in the
dataset. Our distilled concepts, obtained according to the algorithm described in Sec. 4.1, are listed on the right.

list of abstract concepts and not in detecting specific places
and objects, we filter out nouns detected as entities using
an off-the-shelf Named Entity Recognition (NER) tagger
[37]. Figure 3 (middle) visualizes the initial candidate list
as a word cloud (more frequent words appear larger). As
the figure illustrates, this list contains nouns that indeed de-
scribe semantic regions in the “Cathedral” category, but also
contains many outliers, or nouns not specifically related to
the “Cathedral™ category, such as “view” or “photograph™.

As an alternative, we can also extract nouns directly from
the captions (Figure 3, left). This results in a noisier list,
as the captions are generally longer with more diverse and
detailed descriptions. In addition, leveraging category names
leads to more images with noun descriptions—over 56K
images have at least one noun in their leaf category, whereas
only 22K images have an English caption with a noun.

To distill a clean set of semantic concepts from the initial
list, we identify and select concepts that pass two tests: they
are (1) well-supported in the collection (ie., they occur
frequently in the textual descriptions) and (2) coherent, in the
sense that they consistently reference identical or visually
similar elements. While well-supported concepts can be
determined by simple frequency measurements, coherence is
more difficult to assess from noisy Intermnet images and their
descriptions. However, because these images are physically
grounded via a 3D model, we can measure coherence in 3D.

For each candidate concept, e.g., “facade™, we construct
multiple visual adjacency praphs (one per landmark) over
the images associated with that concept. Note that an image
can be associated with multiple concepts, according to the
nouns detected in its leaf category. For each graph, nodes
v € V' correspond to images and two images are connected
by an edge e £ F if they share at least K common keypoints
in the 3D model (where K is empirically set to 10). We are
interested in measuring the degree to which the images of the
candidate concept are clustered together in 3D. Therefore,

for each landmark £, we compute the graph density:
2|E|
#
= (1)
T VIvI-D

The coherence of the candidate concept is measured as the
average graph density p, obtained by taking the average over
all corresponding landmark graphs with at least 10 nodes.
Finally, candidate concepts that appear in at least 25 land-
marks (roughly a quarter of the “Cathedral” category) and
have a coherency score p > (.08 are added to our distilled

set (Figure 3, right).
4.2. Associating images with distilled concepts

Although the distilled set of semantic concepts is con-
structed only from text appearing in the leaf categories, we
utilize both the image captions and leaf categories when
generating labels: an image is associated with a concept if
the concept is present either in the caption or in its leaf cate-
gories. An image can be associated with multiple concepts.

One exception is that text often includes concepts that are
spatially related to the main concept present in an image us-
ing spatial connectors such as “beside”, “next”, “from”, “to-
wards". Forexample, an image associated with the text “nave
looking towards portal” should be associated with “nave”,
but not necessarily with “portal”. Hence, we do not associate
concepts with images if the concept appears anywhere after
a spatial connector.

5. Learning Semantic Representations

WikiScenes can be used to study a range of different prob-
lems. Here, we focus on semantic reasoning over 2D images
and 3D models. In the previous section, we proposed a
technique for discovering semantic concepts and associating
these with images in WikiScenes. Now, we show how these
image-level pseudo-labels can provide a supervision signal
for learning semantic feature representations over an entire
category of landmarks.



Classification Loss

A A ] Pertal
Y

7| R \ 30 Contrastive Loss

Unmatched

| - — —) | Image
= L3
1 O — —)
/ Fz ,/ ] —]

Plo—d - =

Image Pair Feature Maprs

Figure 4: Overview of our contrastive leaming framework. Given
an image pair with shared keypoints (left), we jointly train a model
to classify the images into one of the C' concepts from the leamed
score maps and to output a higher similarity for pixels mapping to
the same point in 3D (in blue). Negative pairs are constructed by
sampling non-comesponding points from other images in the batch.

We seek to learn pixel-wise representations (in contrast
to whole-image representations), because we wish to eas-
ily map knowledge from 2D to 3D and vice versa. We
would also like our learned representations to be semanti-
cally meaningful. In other words, our distilled concepts
should be identifiable from these pixel-wise representations.
To this end, we devise a contrastive learning framework that
computes a feature descriptor for every pixel in the image.
We also show how our trained model can be directly utilized
to estimate feature descriptors for 3D points through their
associated images.

5.1. Training objectives

Owr training data consists of image pairs (I3, Is) with
shared keypoints, obtained from the corresponding SfM
model. We use convolutional networks with shared weights
to extract dense feature maps I and F; whose width and
height match those of the original images. For simplicity of
notation, we assume both images have dimensions w x h. To
train a feature descriptor model with such data, we propose
to use two complimentary loss terms: a novel 3D contrastive
loss that utilizes within-scene physical constraints and a
classification loss (Figure 4).

3D contrastive loss. We design a new 3D contrastive loss
to encourage within-scene consistency, such that pixels
from different images corresponding to the same 3D point
should have similar features. This is unlike prior works
on contrastive learning that use handcrafted data aupmenta-
tions [12, 20] or synthetic images [35] to generate positive
pairs—in our case the positive pairs are 2D pixels that are
projections of the same point in 3D. This loss relates images
with different characteristics, such as lighting and scale, al-
lowing to better focus on semantics and providing higher
robusiness against such nuisance factors.

Our leaming method works as follows: For each point p
in I; cormmesponding to point p* in I, (i.e., they are both pro-
jections of the same 3D point ), we formulate a contrastive
loss to maximize the mutual information between their de-
scriptors Fy (p) and Fa(p*). We consider a noise contrastive
estimation framework [34], consisting of the positive pair
(p,p*) and m negative pairs {(p, p; ) }:

edppt)

Lap=-1lo —— (2)
& ebprt) LY eb(pp) !

where the similarity ¢(p, p*) is computed as the dot product
of feature descriptors scaled by a temperature 7

¢(p,p*) = Fi(p) - Fa(p*) / 7. (3)

This loss can be interpreted as the log loss of a (m + 1)-way
softmax classifier that learns to classify p as p*. The points
p, are sampled uniformly from other images in the same
batch. To avoid collapsing the feature space, we normalize
all feature descriptors to unit length.

Semantic classification loss. For each image we also com-
pute a semantic classification loss. Given C' unique semantic
concepts, we obtain unnormalized score maps from the fea-
ture descriptors using a simple conv1x1 layer. That is, we
map the [K x hxw| feature descriptor tensor to a [C x hx w|
score map tensor, where each slice corresponds to one of the
semantic concepts.

Following the design proposed by Araslanov er al. [7],
we add a background channel and compule a pixel-
wise softmax to obtain normalized score maps ypx €
RE+1xhxw and image-level classification scores y € R,
derived from the score maps using the method of Araslanov
et al. Our semantic classification loss is defined as

Los = L7 + £, ()

where £5 is a classification loss on image-level scores y
and ﬁg‘;’c is a self-supervised semantic segmentation loss
over pixel-wise predictions (where high-confidence pixel
predictions serve as self-supervised labels). For both training
and evaluation, we only consider images labeled with a
single concept and the one-hot class label is set according to
our pseudo image label. We minimize a cross-entropy loss

for both image-level and pixel-level predictions.
5.2. Inference

At inference time, we can feed an image from a never-
before-seen location into our model (Figure 5). The model
outpuis pixel-wise feature descriptors and probability scores
over the semantic concepts for each pixel (and also for the
full image, if that is desired). We follow the procedure
described in [7] to extract 2D segmentations. To output prob-
ability scores for a 3D point in the scene, we process all the
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Figure 5: Segmenting an unseen 3D model of the interior of the
Aachen Cathedral in Germany. Color legend: nave, chapel, organ,
choir, facade.

images associated with this 3D point. The feature descriptors
of all its 2D projections are averaged, and we process this
average descriptor to output its associated probability scores.
We associate a 3D point with one of the semantic concepts if
its corresponding confidence score is greater than

6. Evaluation

In this section, we demonstrate our ability to learn seman-
tic concepts shared across multiple landmarks. Specifically,
we seek to answer the following questions:

* Is WikiScenes suitable for learning these concepts?
* How important is the 3D contrastive loss?

* How well does our model generalize to Internet photos
from never-before-seen locations?

We perform a variety of experiments to evaluate performance
across multiple tasks, including classification, segmentation,
and a caption-based image retrieval task that operates on the
raw captions directly. These experiments are complemented
with a visual analysis that highlights the unique characteris-
tics and challenges of our data.

6.1. Implementation details

Data. Out of the 99 WikiScenes landmarks, 70 landmarks
contain sufficient labeled data that can serve for training
and evaluating our models (images are labeled using the
approach described in Section 4.2). We create a 9:1 split at
the landmarks level, forming a test set for landmarks unseen
during training (WS-U). For the 63 landmarks in the training
set, we create a 9:1 split at the images level, forming a
test set for known landmarks (WS-K) to evaluate how well
our model can classify unseen images in familiar locations.
Overall, we use almost 9K labeled images for training, with
balanced class frequencies across the ten semantic concepts.

Training. We use a batch size of 32, corresponding to 16
image pairs. Only half of these are real pairs with shared
keypoints, as we also want to consider labeled images that

are not associated with any 3D reconstruction, possibly due
of a sparse sampling of views in these regions. Please refer
to the supplementary for additional implementation details.

6.2. Label quality

We assess the accuracy of our pseudo-labels by manu-
ally inspecting 50 randomly sampled training images for
each concept, and identifying images with incorrect labels
(i.e., the image does not picture all or part of the semantic
concept). We found an accuracy greater than 98%, suggest-
ing that our pseudo-labels are highly accurate. We found
that most errors are due to images that contain schematic
diagrams or scans of the concept (and not natural images
capturing it). Please refer to the supplementary material for
visualizations of our training samples.

6.3. 3D-consistency guided classification

Next we evaluate to what extent semantic concepts can
be learned across a multitude of landmarks, and the effect
of the 3D consistency regularization allowed by our dataset
on classification results. We perform an image classifica-
tion evaluation using our pseudo-labels, which we consider
ground-truth for evaluation purposes. We compare our model
to a model with the same architecture, trained using the se-
mantic classification loss but without our 3D contrastive loss,
hereby denoted as the baseline model—adapted from the
one proposed in Araslanov et al. [7].

For each model, we report the overall mean average pre-
cision (mAP), as well as a breakdown of AP per concept, in
Table 1. Results are reported for test images from known
locations (WS-K) and unseen locations (WS-U). As the table
illustrates, our model outperforms the baseline model in most
of the concepts and yields significant gains in mAP, boosting
overall performance by and , when evaluating
on WS-K and WS-U, respectively (and an improvement of
3.3 when averaging across images, which is less affected
by class frequencies). We provide additional experiments
and an analysis of errors in the supplementary material.

6.4. 2D and 3D segmentation

Our framework learns pixel-wise features that are use-
ful beyond classification, e.g., for producing segmentation
maps for 2D images and 3D reconstructions. We show seg-
mentation results for 2D images in Figure 6 and for 3D
reconstructions in Figures 1 and 5.

We manually label a random subset of test images (from
unseen landmarks) for evaluating 2D segmentation perfor-
mance and report standard segmentation metrics in Table 2.
Specifically, we labeled images spanning six concepts
that have definite boundaries (facade, portal, window, organ,
tower and statue). The distributions across these classes are
roughly uniform (with 24-50 images per class).
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Test Set Model mAP mAP* facade window chapel organ nave tower choir portal altar statue
WS-K Baseline (w/o Lgp) 708 717 872 892 602 897 858 641 615 680 500 520
i Ours 753 810 90.0 B85 687 90.7 BAT el 712 765 544 599
WS-U Baseline (w/o Lgp) 483 640 710 922 107 57.3 710 534 436 311 258 27.1
i Ours 520 673 TIT 934 165 494 713 461 441 352 399 400

Table 1: Classification Performance. We report mean average precision (mAP, * indicates averaging over all images, and not per class), and
per distilled concept average precision (AP). Results of our model are compared against a model trained without our 3D contrastive loss.
Performance is reported on images from known landmarks (WS-K) and unseen landmarks (WS-U). The best results are highlighted in bold.

wio Lap Input

Ours

GT Masks

Figure 6: Segmenting images of unseen landmarks. Pixels are
labeled facade, portal, organ, window, tower from left to right.

Model Ioll  Precision Recall
Baseline (wfo £5p) 254 68.6 28.4
Ours 27.2 50.8 29.6

Table 2: Image segmentation performance on manually labeled set

Table 2 shows the average intersection-over-union (Iol),
precision and recall on the manually labeled set. These
resulis show that our 3D-contrastive loss boosts performance
over all metrics. Precision is significantly higher (81% vs.
699, with a modest increase in IoU and recall

To evaluate 3D segmentation performance, as it is diffi-
cult to obtain ground-truth 3D segmentations for large-scale
landmarks whose reconstructions span thousands of points,
we design two proxy metrics to assess both complereness
and accuracy of the 3D results. These metrics are (i) the
fraction of ambiguous points #,,, and (ii) the interior-ex terior
error A, (both dependent on the confidence scores ).

The fraction of ambiguous points 8, quantifies the extent
to which the model associates concepts to 3D points with
high confidence. To compute 8, we measure the fraction
of points that are not associated with a concept, averaging
over all landmarks. For example, #, = 0 means that for

WS-K Ws-U
Method s fors Aos Dors fos fors Aos Aors

Baseline 0.50 0.78 0.10 0.09 056 0.83 0.13 0.10
Ours 0.43 0.70 0.10 0.06 040 0.69 0.11 0.06

Table 3: 3D Segmentation Evaluation. Proxy metrics & and A are
described in detail in Section 6.4. For both metrics, lower is better.

all points, the model’s predictions across all imapes was
consistent in 3D space, and thus the points were successfully
associated with concepts, and #, = 1 means that all points
are ambiguous in their semantic association.

Due to limited visual connectivity, 3D reconstructions of
landmarks typically are broken into one or more exierior re-
constructions and one or more interior reconstructions. Thus,
we devise the interior-exterior error A, to quantify to what
extent concepts that should be exclusively found in either
an exterior reconstruction or an interior reconstruction are
mixed into a single reconstruction. For example, for the
interior 3D reconstruction shown in Figure 5, we do not ex-
pect to see points labeled as “facade” or “tower”, since those
concepts appear outdoors. Inrerior concepts include “organ”,
“nave”, “altar”, and “choir”, and exterior concepts include
“portal”, “facade”, and “tower”. For each 3D reconstruction
m, the emmor Ay, is defined as

ﬂ$ = min ( Pe, 1 — Pext) 5 (5)

where p,,, is the probability of an exterior concept in the 3D
reconstruction (normalized over the sum of exterior and inte-
rior concepts in the reconstruction). We perform a weighted
averaging over all the reconstructions, such that larger 3D
reconstructions affect the average accordingly.

We report results for both 8, = 0.5 and 8, = 0.75 in
Table 3 (note that all our qualitative results are generated
using #, = 0.5). As illustrated in the table, our model sur-
passes the baseline model (trained without the 3D contrastive
loss) on both metrics, demonstrating that more points are
consistently associated with concepts, and that each point
cloud is more consistently segmented into exterior or inte-
rior concepts. Note that some structural parts are inherently
more ambiguous (for example, a “statue” is often placed on
a “facade™), hence many 3D points are not associated with
concepts (also for our model). We explore this further in
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Model R1 R5 R10 SI S5 S10 S1* S5* S10*

Pretrained 1.2 43 6.6 229 51.0 67.2 44.2 739 85.8
Baseline 3.2 11.9 19.2 51.9 80.6 88.0 69.2 89.3 94.6
Ours 4.0 13.9 22.5 64.0 81.9 91.2 76.0 91.2 96.3

Table 4: Caption-Based Image Retrieval Performance. We report
performance using a standard retrieval metric and our proposed
semantic metric (* indicates averaging over all images, and not
per class). Results of our model are compared against a model
trained without our 3D augmentations (baseline) and on the pre-
trained model [27]. Performance is reported on images from unseen
landmarks (WS-U). The best results are highlighted in bold.

“The organ in Exeter Cathedral in
Devon.”

“Statue of Saint Cecilia in the south
transept of York Minster.”

“York Minster as seen from across the street, York, England.”
Figure 7: Retrieving images from captions of unseen landmarks.
Above we show the top three retrievals next to the target image
(left), corresponding to the caption below.

the supplementary material, showing a confusion matrix for
our image classification model as well as the ancestor labels
associated with each concept.

6.5. Learning semantics from raw captions

To explore the utility of the raw captions without first
distilling concepts, we train a joint vision-language model
on images and their raw captions and evaluate it on a caption-
based image retrieval task. As with other tasks like classifi-
cation, we explore the benefit of having 3D geometry in this
experiment, showing that geometry can be used to perform
data augmentation and boost retrieval performance.

We finetune a state-of-the-art multi-task joint visual and
textual representation model [27] using the same landmarks-
level splits as above, training on landmarks from WS-K and
testing on unseen landmarks in WS-U. We compare models
finetuned on two different subsets: (1) a baseline subset,
provided with pairs of English-only captions and their cor-
responding images, and (2) a 3D-augmented subset, where,
in addition to the real image-caption pairs, we create new
image-caption pairs by associating images with captions
from other images with a large visual overlap (measured
by thresholding on an IoU ratio of 3D keypoints, set em-
pirically to 0.3). Performing such 3D-aware augmentation
enables use of additional images—for which a caption may
be unavailable—but whose content is similar to the original

image (while appearance and viewpoint may vary). Our 3D-
augmentation strategy yields a training dataset with roughly
1.5K more images and 9K more image-caption pairs (the
original training set contains nearly 20K pairs).

Table 4 shows caption-based image retrieval performance
using Recall@K (R1,R5,R10 in the table), which is a stan-
dard metric that measures the percentage of successful re-
trievals for which the target image is among the top-K re-
trievals. Additionally, to quantify how semantically accurate
these retrievals are, we use our semantic labels (obtained
according to the method described in Section 4.2) as a proxy
and propose a semantic measure S that measures the per-
centage of retrievals containing at least one image labeled
correctly. All metrics are reported for the two models and
also for the pretrained model [27] (without finetuning). For
our semantic metric, we report an average per class and
average over all the images in the test set.

Using 3D augmentations gives a boost in performance
across all metrics. Figure 7 illustrates several retrieval results
from our model. As illustrated in the bottom row, the model
can also align general concepts to our images, such as what a
cathedral should look like “from across the street”. We show
additional qualitative results in the supplementary material.

7. Conclusion

We have presented a new large-scale dataset at the inter-
section of vision, language, and 3D. We demonstrated the
use of our dataset for mining semantic concepts and for learn-
ing to associate these concepts with images and 3D models
from never-before-seen locations. We show that these tasks
benefit from having access to 3D geometry, allowing robust
distillation of semantics from noisy Internet collections.

Future applications. We believe our dataset could spark
research into many new problems. Automatic captioning
of images capturing tourist attractions is one interesting av-
enue for future research. The rich textual descriptions in
our dataset could allow users to virtually explore any tourist
attraction, serving as a virtual “tour guide”. Our dataset
could also enable automatic generation of new 3D scenes
and language-guided scene editing. While text-based 2D
image generation is a very active research area [14, 33, 24],
the problem of generating and modifying 3D scenes using
language is largely unexplored. Finally, our focus was on dis-
covery of well-supported concepts, but our dataset can also
benefit zero- or few-shot settings via the detailed descriptions
present in image captions, enabling rich conceptualization
of general visual concepts.
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