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Abstract

Energy-based models (EBMs) are a simple yet powerful framework for generative modeling. They are
based on a trainable energy function which defines an associated Gibbs measure, and they can be trained
and sampled from via well-established statistical tools, such as MCMC. Neural networks may be used
as energy function approximators, providing both a rich class of expressive models as well as a flexible
device to incorporate data structure. In this work we focus on shallow neural networks. Building from
the incipient theory of overparametrized neural networks, we show that models trained in the so-called
“active” regime provide a statistical advantage over their associated “lazy” or kernel regime, leading to
improved adaptivity to hidden low-dimensional structure in the data distribution, as already observed in
supervised learning. Our study covers both maximum likelihood and Stein Discrepancy estimators, and
we validate our theoretical results with numerical experiments on synthetic data.

1 Introduction

A central problem in machine learning is to learn generative models of a distribution through its samples.
Such models may be needed simply as a modeling tool in order to discover properties of the data, or as a
way to generate new samples that are similar to the training samples. Generative models come in various
flavors. In some cases very few assumptions are made on the distribution and one simply tries to learn
generator models in a black-box fashion [Goodfellow et al., 2014, Kingma and Welling, 2013], while other
approaches make more precise assumptions on the form of the data distribution. In this paper, we focus on
the latter approach, by considering Gibbs measures defined through an energy function f , with a density
proportional to exp{−f(x)}. Such energy-based models (EBMs) originate in statistical physics [Ruelle, 1969],
and have become a fundamental modeling tool in statistics and machine learning [Wainwright and Jordan,
2008, Ranzato et al., 2007, LeCun et al., 2006, Du and Mordatch, 2019, Song and Kingma, 2021]. If data is
assumed to come from such a model, the learning algorithms then attempt to estimate the energy function f .
The resulting learned model can then be used to obtain new samples, typically through Markov Chain Monte
Carlo (MCMC) techniques.

In this paper, we study the statistical problem of learning such EBMs from data, in a non-parametric setting
defined by a function class F , and with possibly arbitrary target energy functions. If we only assume a simple
Lipschitz property on the energy, learning such models will generally suffer from the curse of dimensionality
[von Luxburg and Bousquet, 2004], in the sense that an exponential number of samples in the dimension is
needed to find a good model. However, one may hope to achieve better guarantees when additional structure
is present in the energy function.
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An important source of structure comes from energy functions which capture local rather than global
interactions between input features, such as those in Local Markov Random Fields or Ising models. Such
energies can be expressed as linear combinations of potential functions depending only on low-dimensional
projections, and are therefore amenable to efficient approximation by considering classes F given by shallow
neural networks endowed with a sparsity-promoting norm [Bach, 2017a]. Analogously to the supervised
regime [Bach, 2017a, Chizat and Bach, 2020], learning in such variation-norm spaces F = F1 admits a
convex formulation in the overparametrized limit, whose corresponding class of Gibbs measures {ν(dx) ∝
exp{−f(dx)}, f ∈ F1} is the natural infinite-dimensional extension of exponential families [Wainwright and
Jordan, 2008]. Our main contribution is to show that such EBMs lead to a well-posed learning setup with
strong statistical guarantees, breaking the curse of dimensionality.

These statistical guarantees can be combined with qualitative optimization guarantees in this overparamerised
limit under an appropriate ‘active’ or ‘mean-field’ scaling [Mei et al., 2018, Rotskoff and Vanden-Eijnden,
2018, Chizat and Bach, 2018, Sirignano and Spiliopoulos, 2019]. As it is also the case for supervised learning,
the benefits of variation-norm spaces F1 contrast with their RKHS counterparts F2, which cannot efficiently
adapt to the low-dimensional structure present in such structured Gibbs models.

The standard method to train EBMs is maximum likelihood estimation. One generic approach for this is to
use gradient descent, where gradients may be approximated using MCMC samples from the current trained
model. Such sampling procedures may be difficult in general, particularly for complex energy landscapes,
thus we also consider different estimators based on un-normalized measures which avoid the need of sampling.
We focus here on approaches based on minimizing Stein discrepancies [Gorham and Mackey, 2015, Liu and
Wang, 2016], which have recently been found to be useful in deep generative models [Grathwohl et al., 2020],
though we note that alternative approaches may be used, such as score matching [Hyvärinen, 2005, Song and
Kingma, 2021, Song and Ermon, 2019, Block et al., 2020].

Our main focus is to study the resulting estimators when using gradient-based optimization over infinitely-
wide neural networks in different regimes, showing the statistical benefits of the ‘feature learning’ regime
when the target models have low-dimensional structure, thus extending the analogous results for supervised
least-squares [Bach, 2017a] and logistic [Chizat and Bach, 2020] regression. More precisely, we make the
following contributions:

• We derive generalization bounds for the learned measures in terms of the same metrics used for training
(KL divergence or Stein discrepancies). Using and extending results from the theory of overparametrized
neural networks, we show that when using energies in the class F1 we can learn target measures with
certain low-dimensional structure at a rate controlled by the intrinsic dimension rather than the ambient
dimension (Corollary 1 and Corollary 2).

• We show in experiments that while F1 energies succeed in learning simple synthetic distributions with
low-dimensional structure, F2 energies fail (Sec. 6).

2 Related work

A recent line of research has studied the question of how neural networks compare to kernel methods, with a
focus on supervised learning problems. Bach [2017a] studies two function classes that arise from infinite-width
neural networks with different norms penalties on its weights, leading to the two different spaces F1 and F2,
and shows the approximation benefits of the F1 space for adapting to low-dimensional structures compared
to the (kernel) space F2, an analysis that we leverage in our work. The function space F1 was also studied
by Ongie et al. [2019], Savarese et al. [2019], Williams et al. [2019] by focusing on the ReLU activation function.
More recently, this question has gained interest after several works have shown that wide neural networks
trained with gradient methods may behave like kernel methods in certain regimes [see, e.g., Jacot et al., 2018].
Examples of works that compare ‘active/feature learning’ and ‘kernel/lazy’ regimes include [Chizat and Bach,
2020, Ghorbani et al., 2019, Wei et al., 2020, Woodworth et al., 2020]. We are not aware of any works that

2



study questions related to this in the context of generative models in general and EBMs in particular.

Other related work includes the Stein discrepancy literature. Although Stein’s method [Stein, 1972] dates to
the 1970s, it has been popular in machine learning in recent years. Gorham and Mackey [2015] introduced
a computational approach to compute the Stein discrepancy in order to assess sample quality. Later,
Chwialkowski et al. [2016] and Liu et al. [2016] introduced the more practical kernelized Stein discrepancy
(KSD) for goodness-of-fit tests, which was also studied by Gorham and Mackey [2017]. Liu and Wang [2016]
introduced SVGD, which was the first method to use the KSD to obtain samples from a distribution, and
Barp et al. [2019] where the first to employ KSD to train parametric generative models. More recently,
Grathwohl et al. [2020] used neural networks as test functions for Stein discrepancies, which arguably yields
a stronger metric, and have shown how to leverage such metrics for training EBMs. The empirical success
of their method provides an additional motivation for our theoretical study of the F1 Stein Discrepancy
(Subsec. 4.2).

Finally, another notable paper close in spirit to our goal is Block et al. [2020], which provides a detailed
theoretical analysis of a score-matching generative model using Denoising Autoencoders followed by Langevin
diffusion. While their work makes generally weaker assumptions and also includes a non-asymptotic analysis
of the sampling algorithm, the resulting rates are unsuprisingly cursed by dimension. Our focus is on the
statistical aspects which allow faster rates, leaving the quantitative computational aspects aside.

3 Setting

In this section, we present the setup of our work, recalling basic properties of EBMs, maximum likelihood
estimators, Stein discrepancies, and functional spaces arising from infinite-width shallow neural networks.

Notation. If V is a normed vector space, we use BV (β) to denote the closed ball of V of radius β, and
BV := BV (1) for the unit ball. If K denotes a subset of the Euclidean space, P(K) is the set of Borel
probability measures, M(K) is the space of signed Radon measures and M+(K) is the space of (non-
negative) Radon measures. For ν1, ν2 ∈ P(K), we define the Kullback-Leibler (KL) divergence DKL(ν1||ν2) :=∫
K
log(dν1dν2

(x))dν1(x) when ν1 is absolutely continuous with respect to ν2, and +∞ otherwise, and the

cross-entropy H(ν1, ν2) := −
∫
K
log(dν2dτ (x))dν1(x), where dν2

dτ (x) is the Radon-Nikodym derivative w.r.t. the

uniform probability measure τ of K, and the differential entropy H(ν1) := −
∫
K
log(dν1dτ (x))dν1(x). If γ is a

signed measure over K, then |γ|
TV

is the total variation (TV) norm of γ. Sd is the d-dimensional hypersphere,
and for functions f : Sd → R, ∇f denotes the Riemannian gradient of f . We use σ(〈θ, x〉) = max{0, 〈θ, x〉}
to denote a ReLU with parameter θ.

3.1 Generative energy-based models

If F is a class of functions (or energies) mapping a measurable set K ⊆ R
d+1 to R, for any f ∈ F we can

define the probability measure νf as a Gibbs measure with density:

dνf
dτ

(x) :=
e−f(x)

Zf
, with Zf :=

∫

K

e−f(y)dτ(y) ,

where
dνf
dτ (x) is the Radon-Nikodym derivative w.r.t to the uniform probability measure over K, denoted τ ,

and Zf is the partition function.

Given samples {xi}ni=1 from a target measure ν, training an EBM consists in selecting the best νf with energy

f ∈ F according to a given criterion. A natural estimator f̂ for the energy is the maximum likelihood
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estimator (MLE), i.e., f̂ = argmaxf∈F
∏n
i=1

dνf
dτ (xi), or equivalently, the one that minimizes the cross-entropy

with the samples:

f̂ = argmin
f∈F

H(νn, νf ) = argmin
f∈F

− 1

n

n∑

i=1

log

(
dνf
dτ

(xi)

)

= argmin
f∈F

1

n

n∑

i=1

f(xi) + logZf .

(1)

The estimated distribution is simply νf̂ , and samples can be obtained by the MCMC algorithm of choice.

An alternative estimator is the one that arises from minimizing the Stein discrepancy (SD) corresponding
to a function class H. If H is a class of functions from K to R

d+1, the Stein discrepancy [Gorham and Mackey,
2015, Liu et al., 2016] for H is a non-symmetric functional defined on pairs of probability measures over K as

SDH(ν1, ν2) = sup
h∈H

Eν1 [Tr(Aν2h(x))], (2)

where Aν : K → R
(d+1)×(d+1) is the Stein operator. In order to leverage approximation properties on the

sphere, we will consider functions h defined on K = S
d. In this case, the Stein operator is defined by

Aνh(x) := (sν(x) − d · x)h(x)⊤ + ∇h(x) (see Lemma 5), where sν(x) = ∇ log(dνdτ (x)) is named the score
function. The term d · x is important for the spherical case in order to have SDH(ν, ν) = 0, while it does not
appear when considering K = R

d. The Stein discrepancy estimator is

f̂ = argmin
f∈F

SDH(νn, νf ). (3)

If H = BHd+1
0

= {(hi)d+1
i=1 ∈ Hd+1

0 | ∑d+1
i=1 ‖hi‖2H0

≤ 1} for some reproducing kernel Hilbert space (RKHS) H0

with kernel k with continuous second order partial derivatives, there exists a closed form for the problem (2)
and the corresponding object is known as kernelized Stein discrepancy (KSD) [Liu et al., 2016, Gorham
and Mackey, 2017]. For K = S

d, the KSD takes the following form (Lemma 6):

KSD(ν1, ν2) = SD2
B

H
d+1
0

(ν1, ν2) = Ex,x′∼ν1 [uν2(x, x
′)], (4)

where uν(x, x
′) = (sν(x)−d·x)⊤(sν(x′)−d·x′)k(x, x′)+(sν(x)−d·x)⊤∇x′k(x, x′)+(sν(x

′)−d·x′)⊤∇xk(x, x′)+
Tr(∇x,x′k(x, x′)), and we use ũν(x, x

′) to denote the sum of the first three terms (remark that the fourth
term does not depend on ν). One KSD estimator that can be used is

f̂ = argmin
f∈F

1

n2

n∑

i,j=1

ũνf (xi, xj). (5)

The optimization problem for this estimator is convex (Sec. 5), but it is biased. On the other hand, the
estimator

f̂ = argmin
f∈F

1

n(n− 1)

∑

i 6=j
ũνf (xi, xj), (6)

is unbiased, but the optimization problem is not convex.

3.2 Neural network energy classes

We are interested in the cases in which F is one of two classes of functions related to shallow neural networks,
as studied by Bach [2017a].
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Feature learning regime. F is the ball BF1(β) of radius β > 0 of F1, which is the Banach space of
functions f : K → R such that for all x ∈ K we have f(x) =

∫
Sd
σ(〈θ, x〉) dγ(θ), for some Radon measure

γ ∈M(Sd). The norm of F1 is defined as ‖f‖F1 = inf
{
|γ|

TV
| f(·) =

∫
Sd
σ(〈θ, ·〉) dγ(θ)

}
.

Kernel regime. F is the ball BF2
(β) of radius β > 0 of F2, which is the (reproducing kernel) Hilbert

space of functions f : K → R such that for some absolutely continuous ρ ∈M(Sd) with dρ
dτ̃ ∈ L2(Sd) (where

τ̃ the uniform probability measure over Sd), we have that for all x ∈ K, f(x) =
∫
Sd
σ(〈θ, x〉) dρ(θ). The norm

of F2 is defined as ‖f‖2F2
= inf

{∫
Sd
|h(θ)|2 dτ̃(θ) | f(·) =

∫
Sd
σ(〈θ, ·〉)h(θ) dτ̃(θ)

}
. As an RKHS, the kernel

of F2 is k(x, y) =
∫
Sd
σ(〈x, θ〉)σ(〈y, θ〉) dτ̃(θ).

Remark that since
∫
|h(θ)|dτ̃(θ) ≤ (

∫
|h(θ)|2 dτ̃(θ))1/2 by the Cauchy-Schwarz inequality, we have F2 ⊂ F1

and BF2
⊂ BF1

. The TV norm in F1 acts as a sparsity-promoting penalty, which encourages the selection of
few well-chosen neurons and may lead to favorable adaptivity properties when the target has a low-dimensional
structure. In particular, Bach [2017a] shows that single ReLU units belong to F1 but not to F2, and their L2

approximations in F2 have exponentially high norm in the dimension. Ever since, several works have further
studied the gaps arising between such nonlinear and linear regimes [Wei et al., 2019, Ghorbani et al., 2020,
Malach et al., 2021]. In App. D, we present dual characterizations of the maximum likelihood F1 and F2

EBMs as entropy maximizers under L∞ and L2 moment constraints (an infinite-dimensional analogue of
Della Pietra et al. [1997]; see also Mohri et al. [2012], Theorem 12.2).

The ball radius β acts as an inverse temperature. The low temperature regime β ≫ 1 corresponds to
expressive models with lower approximation error but higher statistical error: the theorems in Sec. 4 provide
bounds on the two errors and the results of optimizing such bounds w.r.t. β. In the following, we will assume
that the set K ⊂ R

d+1 is compact. We note that there are two interesting choices for K: (i) for K = S
d, we

obtain neural networks without bias term; and (ii) for K = K0 × {R}, where K0 ⊂ R
d with norm bounded

by R, we obtain neural networks on K0 with a bias term.

4 Statistical guarantees for shallow neural network EBMs

In this section, we present our statistical generalization bounds for various EBM estimators based on
maximum likelihood and Stein discrepancies, highligting the adaptivity to low-dimensional structures that
can be achieved when learning with energies in F1. All the proofs are in App. A.

4.1 Guarantees for maximum likelihood EBMs

The following theorem provides a bound of the KL divergence between the target probability measure and
the maximum likelihood estimator in terms of a statistical error and an approximation error.

Theorem 1. Assume that the class F has a (distribution-free) Rademacher complexity bound Rn(F) ≤ βC√
n

and L∞ norm uniformly bounded by β. Given n samples {xi}ni=1 from the target measure ν, consider the

maximum likelihood estimator (MLE) ν̂ := νf̂ , where f̂ is the estimator defined in (1). With probability at
least 1− δ, we have

DKL(ν||ν̂) ≤
4βC√
n

+ β

√
8 log(1/δ)

n
+ inf
f∈F

DKL(ν||νf ). (7)

If dν
dτ (x) = e−g(x)/

∫
K
e−g(y)dτ(y) for some g : K → R, i.e. −g is the log-density of ν up to a constant term,

5



then with probability at least 1− δ,

DKL(ν||ν̂) ≤
4βC√
n

+ β

√
8 log(1/δ)

n
+ 2 inf

f∈F
‖g − f‖∞. (8)

Equation (7) follows from using a classical argument in statistical learning theory. To obtain equation (8)
we bound the last term of (7) by 2 inff∈F ‖g − f‖∞ using Lemma 1 in App. A. We note that other metrics
than L∞ may be used for the approximation error, such as the Fisher divergence, but these will likely lead to
similar guarantees under our assumptions. Making use of the bounds developed by Bach [2017a], Corollary 1
below applies (8) to the case in which F is the F1 ball BF1(β) for some β > 0 and the energy of the target
distribution is a sum of Lipschitz functions of orthogonal projection to low-dimensional subspaces.

Assumption 1. The target probability measure ν is absolutely continuous w.r.t. the uniform probability mea-
sure τ over K and it satisfies ∀x ∈ K0,

dν
dτ (x,R) = exp(−∑J

j=1 ϕj(Ujx))/
∫
K0

exp(−∑J
j=1 ϕj(Ujy))dτ(y),

where ϕj are (ηR−1)-Lipschitz continuous functions on the R-ball of Rk such that ‖ϕj‖∞ ≤ η, and Uj ∈ R
k×d

with orthonormal rows.

Corollary 1. Let F = BF1
(β). Suppose K = K0 × {R}, where K0 ⊆ {x ∈ R

d|‖x‖2 ≤ R} is compact.
Assume that Assumption 1 holds. Then, we can choose β > 0 such that with probability at least 1− δ we have

DKL(ν||ν̂) ≤ Õ
((

1 +
√
log(1/δ)

)
JηR− 2

k+3n−
1

k+3

)

where the notation Õ indicates that we overlook logarithmic factors and constants depending only on the
dimension k.

Remarkably, Corollary 1 shows that for our class of target measures with low-dimensional structure, the KL

divergence between ν and ν̂ decreases as n− 1
k+3 . That is, the rate “breaks” the curse of dimensionality since

the exponent only depends on the dimension k of the low-dimensional spaces, not to the ambient dimension d.
This can be seen as an alternative, more structural approach to alleviate dimension-dependence compared to
other standard assumptions such smoothness classes for density estimation [e.g., Singh et al., 2018, Tsybakov,
2008]. As discussed earlier, a motivation for Assumption 1 comes from Markov Random Fields, where each
ϕj corresponds to a local potential defined on a neighborhood determined by Uj . Note that the bound scales
linearly with respect to the number of local potentials J . As our experiments illustrate (see Sec. 6), it is easy
to construct target energies that are much better approximated in F1 than in F2. Indeed, we find that the
test error tends to decrease more quickly as a function of the sample size when training both layers of shallow
networks rather than just the second layer, which corresponds to controlling the F1 norm.

4.2 Guarantees for Stein Discrepancy EBMs

We now consider EBM estimators obtained by minimizing Stein discrepancies, and establish bounds on
the Stein discrepancies between the target measure and the estimated one. As in Subsec. 4.1, we begin
by providing error decompositions in terms of estimation and approximation error. The following theorem
applies to the Stein discrepancy estimator when the set of test functions H is the unit ball of the space of
Fd+1 in a mixed F/ℓ2 norm, with F = F1 or F2. For F1, we will denote this particular setting as F1-Stein
discrepancy, or F1-SD. Although F1-SD has not been studied before to our knowledge, the empirical work
of Grathwohl et al. [2020] does use Stein discrepancies with neural network test functions, which provides
practical motivation for considering such a metric.

Theorem 2. Let K = S
d. Assume that the class F is such that supf∈F{‖∇if‖∞|1 ≤ i ≤ d + 1} ≤ βC1.

If H = BFd+1
1

= {h = (hi)
d+1
i=1 | hi ∈ F1,

∑d+1
i=1 ‖hi‖2F1

≤ 1} or H = BFd+1
2

= {h = (hi)
d+1
i=1 | hi ∈
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F2,
∑d+1
i=1 ‖hi‖2F2

≤ 1}, we have that for the estimator ν̂ defined in (3), with probability at least 1− δ,

SDH(ν, ν̂) ≤ 4
√
d+ 1(βC1 + C2

√
d+ 1 + d)√

n

+ 2(βC1 + d+ 1)

√
(d+ 1) log(d+1

δ )

2n

+ inf
f∈F

Eν

[∥∥∥∥−∇f(x)−∇ log

(
dν

dτ
(x)

)∥∥∥∥
2

]

where C2 is a universal constant and ∇f denotes the Riemannian gradient of f .

Notice that unlike in Theorem 1, the statistical error terms in Theorem 2 depend on the ambient dimension
d. While we do not show that this dependence is necessary, studying this question would be an interesting
future direction. Remark as well the similarity of the approximation term with the term 2 inff∈F ‖g − f‖∞
from equation (8), albeit in this case it involves the L∞ norm of the gradients. Furthermore, note that the
only assumption on the set F is a uniform L∞ bound on F1, while Theorem 1 also requires a more restrictive
Rademacher complexity bound on F . This illustrates the fact that the Stein discrepancy is a weaker metric
than the KL divergence.

In Theorem 3 we give an analogous result for the unbiased KSD estimator (6), under the following reasonable
assumptions on the kernel k, which follow [Liu et al., 2016].

Assumption 2. The kernel k has continuous second order partial derivatives, and it satisfies that for any
non-zero function g ∈ L2(Sd),

∫
Sd

∫
Sd
g(x)k(x, x′)g(x′)dτ(x)dτ(x′) > 0, and that supx,x′∈Sd k(x, x

′) ≤ C2,
supx,x′∈Sd ‖∇xk(x, x′)‖2 ≤ C3.

Theorem 3. Let K = S
d. Assume that the class F is such that supf∈F{‖∇f‖∞} ≤ βC1. Let KSD be the

kernelized Stein discrepancy for a kernel that satisfies Assumption 2. If we take n samples {xi}ni=1 of a target
measure ν with almost everywhere differentiable log-density, and consider the unbiased KSD estimator (6), we
have with probability at least 1− δ,

KSD(ν, ν̂) ≤ 2√
δn

((βC1 + d)2C2 + 2C3(βC1 + d))

+ C2 inf
f∈F

Ex∼ν

[∥∥∥∥∇ log

(
dν

dτ
(x)

)
−∇f(x)

∥∥∥∥
2
]
.

The statistical error term in Theorem 3 is obtained using the expression of the variance of the estimator (6)
[Liu et al., 2016]. Note that Assumption 2 is fulfilled, for example, for the radial basis function (RBF) kernel
k(x, x′) = exp(−‖x− x′‖2/(2σ2)) with C2 = 1, C3 = 1/σ2.

Making use of Theorem 2 (for F1-SD) and Theorem 3 (for KSD), in Corollary 2 we obtain adaptivity results
for target measures with low-dimensional structures similar to Corollary 1, also for F = BF1

(β). The class of
target measures that we consider are those satisfying Assumption 3, which is similar to Assumption 1 but for
K = S

d and with an additional Lipschitz condition on the gradient of ∇ϕj .

Assumption 3. Let K = S
d. Suppose that the target probability measure ν is absolutely continuous w.r.t. the

Hausdorff measure over Sd and it satisfies ∀x ∈ S
d, dνdτ (x) = exp(−∑J

j=1 ϕj(Ujx))/
∫
K0

exp(−∑J
j=1 ϕj(Ujy))dτ(y),

where ϕj are 1-homogeneous differentiable functions on the unit ball of Rk such that ‖ϕj‖∞ ≤ η, supx∈Sd ‖∇ϕj(x)‖2 ≤
η and ∇ϕj is L-Lipschitz continuous, and Uj ∈ R

k×d with orthonormal rows.

Corollary 2. Let F = BF1(β). Let Assumption 3 hold. (i) When ν̂ is the F1-SD estimator (2) and the
assumptions of Theorem 2 hold, we can choose the inverse temperature β > 0 such that with probability at
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least 1− δ we have that SDBd+1
F1

(ν, ν̂) is upper-bounded by

Õ

((
1 +

√
log(1/δ)

)
J(L+ η)(ηJ)

2
k+1 d

1
k+3n− 1

k+3

)

where the notation Õ indicates that we overlook logarithmic factors and constants depending only on the
dimension. (ii) When ν̂ is the unbiased KSD estimator (6) and the assumptions of Theorem 3 hold, β > 0
can be chosen so that with probability at least 1− δ we have that KSD(ν, ν̂) is upper-bounded by

Õ

(
δ−

1
k+3
(
J(L+ η)

) 2(k+1)
k+3 (ηJ)

4
k+3n− 1

k+3

)
.

Noticeably, the rates in Corollary 2 are also of the form O(n− 1
k+3 ), which means that just as in Corollary 1,

the low-dimensional structure in the target measure helps in breaking the curse of dimensionality.

Proof sketch. The main challenge in the proof of Corollary 2 is to bound the approximation terms in
Theorem 2 and Theorem 3. To do so, we rely on Lemma 7 in App. A, which shows the existence of ĝ in a ball of
F2 such that supx∈Sd ‖∇ĝ(x)−∇g(x)‖2 has a certain bound when g is bounded and has bounded and Lipschitz
gradient. Lemma 7 might be of independent interest: in particular, it can be used to obtain a similar adaptivity
result for score-matching EBMs, which optimize the Fisher divergence Ex∼ν [‖∇ log(dνdp (x))−∇f(x)‖2].

5 Algorithms

This section provides a description of the optimization algorithms used for learning F1/2-EBMs using the
estimators studied in Sec. 4, namely maximum likelihood, KSD, and F1-SD.

5.1 Algorithms for F1 EBMs

We provide the algorithms for the three models using a common framework. We define the function
Φ : R× R

d+1 → F1 as Φ(w, θ)(x) = wσ(〈θ, x〉). Given a convex loss R : F1 → R, we consider the problem

inf
µ∈P(Rd+2)

F (µ),

F (µ) := R

(∫
Φ(w, θ)dµ

)
+ λ

∫
(|w|2 + ‖θ‖22)dµ.

(9)

for some λ > 0. It is known [e.g., Neyshabur et al., 2015] that, since |w|2 + ‖θ‖22 ≥ 2|w|‖θ‖2 with equality
when moduli are equal, this problem is equivalent to

inf
µ∈P(R×Sd)

R

(∫
Φ(w, θ)dµ

)
+ λ

∫

R×Sd

|w|dµ.

And by the definition of the F1 norm, this is equivalent to inff∈F1 R (f) + λ‖f‖F1 , which is the penalized
form of inff∈BF1

(β)R (f) for some β > 0. Our F1 EBM algorithms solve problems of the form (9) for different
choices of R, or equivalently, minimize the functional R over an F1 ball. The functional R takes the following
forms for the three models considered:

(i) Cross-entropy: We have that R(f) = 1
n

∑n
i=1 f(xi) + log

(∫
K
e−f(x)dτ(x)

)
, which is convex (and differ-

entiable) because the free energy obeys such properties [e.g., by adapting Wainwright and Jordan, 2008,
Prop 3.1 to the infinite-dimensional case].
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(ii) Stein discrepancy: the estimator (5) corresponds to R(f) = suph∈H Eνn [
∑d+1
j=1 −(∇jf(x) + dxj)hj(x) +

∇jhj(x)], which is convex as the supremum of convex (linear) functions.

(iii) Kernelized Stein discrepancy: we have R(f) = 1
n2

∑n
i,j=1 ũνf (xi, xj), which is convex (in fact, it is quadratic

in ∇f).

In order to optimize (9), we discretize measures in P(Rd+2) as averages of point masses 1
m

∑m
i=1 δ(w(i),θ(i)),

each point mass corresponding to one neuron. Furthermore, we define the function G : (Rd+2)m → R as

G((w(i), θ(i))mi=1) := F


 1

m

m∑

i=1

δ(w(i),θ(i))


 (10)

= R


 1

m

m∑

i=1

Φ(w(i), θ(i))


+

λ

m

m∑

i=1

(|w(i)|2 + ‖θ(i)‖22).

Then, as outlined in Algorithm 1, we use gradient descent on G to optimize the parameters of the neurons,
albeit possibly with noisy estimates of the gradients.

Algorithm 1 Generic algorithm to train F1 EBMs

input m, stepsize s

Get m i.i.d. samples (w
(i)
t , θ

(i)
t ) from µ0 ∈ P(Rd+2).

for t = 0, . . . , T − 1 do
for i = 1, . . . ,m do

Compute estimates ∇̂w(i)G((w
(i)
t , θ

(i)
t )mi=1) and ∇̂θ(i)G((w(i)

t , θ
(i)
t )mi=1).

w
(i)
t+1 ← w

(i)
t − s∇̂w(i)G((w

(i)
t , θ

(i)
t )mi=1)

θ
(i)
t+1 ← θ

(i)
t − s∇̂θ(i)G((w(i)

t , θ
(i)
t )mi=1)

end for
end for

output Energy 1
m

∑m
i=1 Φ(w

(i)
T , θ

(i)
T ) ∈ F1.

Computing an estimate the gradient of G involves computing the gradient of R
(

1
m

∑m
i=1 Φ(w

(i), θ(i))
)
.

Denoting by zi = (w(i), θ(i)), z = (zi)
m
i=1 and by νz the Gibbs measure corresponding to the energy fz :=

1
m

∑m
i=1 Φ(w

(i), θ(i)), we have

(i) Cross-entropy: The gradient ofR(fz) with respect to zi takes the expression Eνn∇ziΦ(zi)(x)−Eνz∇ziΦ(zi)(x).
The expectation under νz is estimated using MCMC samples of the EBM. Thus, the quality of gradient
estimation depends on the performance of the MCMC method of choice, which can suffer for non-convex
energies and low temperatures.

(ii) F1 Stein discrepancy: The (sub)gradient of R(fz) w.r.t. zi equals Eνn [−β
∑d+1
j=1 ∇zi∇x(Φ(zi)(x))h⋆j (x)],

in which h⋆j are respectively maximizers of −(β∇jf(x) + dxj)hj(x) +∇jhj(x) over BF1
. The gradient

estimation involves d+ 1 optimization procedures over balls of F1 to compute h⋆j , which we solve using
Algorithm 1. Thus, the algorithm operates on two timescales.

(iii) Kernelized Stein discrepancy: Using (4), the gradient of R(fz) with respect to zi takes the expres-
sion Ex,x′∼νn [∇ziuνz(x, x′)], which can be developed into closed form. The only issue is the quadratic
dependence on the number of samples.
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5.2 Algorithms for F2 EBMs

Considering convex losses R : F1 → R as in Subsec. 5.1, the penalized form of the problem inff∈BF2
(β)R (f)

is

inf
‖h‖2≤1

R

(∫

Sd

σ(〈θ, ·〉)h(θ)dτ(θ)
)
+ λ

∫

Sd

h2(θ)dτ(θ).

To optimize this, we discretize the problem: we take m samples (θ(i))mi=1 of the uniform measure τ that we
keep fixed, and then solve the random features problem

inf
w∈R

m

‖w‖2≤1

R


 1

m

m∑

i=1

w(i)σ(〈θ(i), ·〉)


+

λ

m

m∑

i=1

|w(i)|2. (11)

Remark that this objective function is equivalent to the objective function G((w(i), θ(i))mi=1) in equation (10)
when (θ(i))mi=1 are kept fixed. Thus, we can solve (11) by running Algorithm 1 without performing gradient
descent updates on (θ(i))mi=1. That is, while for the F1 EBM training both the features and the weights are
learned via gradient descent, for F2 only the weights are learned.

5.3 Qualitative convergence results

The overparametrized regime corresponds to taking a large number of neurons m. In the limit m → ∞,
under appropriate assumptions the empirical measure dynamics corresponding to the gradient flow of
G((w(i), θ(i))mi=1) converge weakly to the mean-field dynamics Mei et al. [2018], Chizat and Bach [2018],
Rotskoff and Vanden-Eijnden [2018]. Leveraging a result from Chizat and Bach [2018] we argue informally
that in the limit m→∞, t→∞, with continuous time and exact gradients, the gradient flow of G converges
to the global optimum of F over P(Rd+2) (see more details in App. B).

In contrast with this positive qualitative result, we should mention a computational aspect that distinguishes
these algorithms from their supervised learning counterparts: the Gibbs sampling required to estimate the
gradient at each timestep. A notorious challenge is that for generic energies (even generic energies in F1),
either the mixing time of MCMC algorithms is cursed by dimension Bakry et al. [2014] or the acceptance
rate is exponentially small. The analysis of the extra assumptions on the target energy and initial conditions
that would avoid such curse are beyond the scope of this work, but a framework based on thermodynamic
integration and replica exchange [Swendsen and Wang, 1986] would be a possible route forward.

6 Experiments

In this section, we present numerical experiments illustrating our theory on simple synthetic datasets generated
by teacher models with energies f∗(x) = 1

J

∑J
j=1 w

∗
jσ(〈θ∗j , x〉), with θ∗i ∈ S

d for all i. The code for the
experiments is in https://github.com/CDEnrich/ebms_shallow_nn.

Experimental setup. We generate data on the sphere S
d from teacher models by using a simple rejection

sampling strategy, given an estimate of the minimum of f∗ (which provides an estimated upper bound on the
unnormalized density e−f

∗

for rejection sampling). This minimum is estimated using gradient descent with
many random restarts from uniform points on the sphere. For different numbers of training samples, we run
our gradient-based algorithms in F1 and F2 with different choices of step-sizes and regularization parameters λ,
using m = 500 neurons. We report test metrics after selecting hyperparameters on a validation set of 2000
samples. For computing gradients in maximum likelihood training, we use a simple Metropolis-Hastings
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Figure 1: Test metrics obtained for MLE, KSD and F1-SD training on a one-neuron teacher with positive
output weight. (top) Test performance measured with KL divergence estimates for w∗

1 = 2. (bottom left)
MLE on a teacher network with larger weight w∗

1 = 10. (bottom center/right) Test KSD and F1-SD for
models trained with the same metric with w∗

1 = 2. For reference, the black discontinuous lines show the
teacher KSD and F1-SD of the teacher model w.r.t. 5000 and 2000 test samples, respectively. Confidence
estimates are over 10 different data samplings.
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Figure 2: Test metrics obtained for MLE, KSD and F1-SD training on a two-neuron teacher with negative
output weights. (top) Test performance measured with cross-entropy estimates with w∗

1 , w
∗
2 = −5. (bottom

left) MLE on a teacher network with smaller weights w∗
1 , w

∗
2 = −2.5. (bottom center/right) Test KSD and

F1-SD for models trained with the same metric, for w∗
1 , w

∗
2 = −5. For reference, the black discontinuous

lines show the teacher KSD and F1-SD of the teacher model w.r.t. 5000 and 2000 test samples, respectively.
Confidence estimates are over 10 different data samplings.
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Figure 3: Test metrics obtained for MLE, KSD and F1-SD training on a four-neuron teacher with weights
w∗

1 , w
∗
2 = 7.5 and w∗

3 , w
∗
4 = −7.5. (top) Test performance measured with cross-entropy estimates. (bottom)

Test KSD and F1-SD for models trained with the same metric. For reference, the black discontinuous lines
show the teacher KSD and F1-SD of the teacher model w.r.t. 5000 and 2000 test samples, respectively.
Confidence estimates are over 10 different data samplings.

algorithm with uniform proposals on the sphere. To obtain non-negative test KL divergence estimates,
which are needed for the log-log plots, we sample large numbers of points uniformly on the hypersphere, and
compute the KL divergence of the restriction of the EBMs to these points. The sampling techniques that
we use are effective for the toy problems considered, but more refined techniques might be needed for more
complex problems in higher dimension or lower temperatures.

Learning planted neuron distributions in hyperspheres. We consider the task of learning planted
neuron distributions in d = 15 and d = 10. Remark that in this setting, when F = BF1

(β) with β large
enough there is no approximation error. We compare the behavior of F1 and F2 models with different
estimators in Figures 1, 2 and 3, corresponding to models with J = 1, 2, 4 teacher neurons, respectively. The
error bars show the average and standard deviation for 10 runs. In the three figures, the top plot in the
first column represents the test KL divergence of the F1 and F2 EBMs trained with maximum likelihood
for an increasing number of samples, showcasing the adaptivity of F1 to distributions with low-dimensional
structure versus the struggle of the F2 model. In Figures 1 and 2 the bottom plot in the first column shows
the same information for a teacher with the same structure but different values for the output weights. We
observe that the separation between the F1 and the F2 models increases when the teacher models have higher
weights.

In the three figures, the plots in the second column show the test KL divergence and test KSD, respectively,
for EBMs trained with KSD (with RBF kernel with σ2 = 1). We observe that we are able to train EBMs
successfully by optimizing the KSD; even though maximum likelihood training is directly optimizing the KL
divergence, the test KL divergence values we obtain for the KSD-trained models are on par, or even slightly
better, comparing at equal values of n. It is also worth noticing that in Figure 1, we observe a separation
between F1 and F2 in the KL divergence plot, but not in the KSD plot. It seems that in this particular
instance, although the training is successful, the KSD is too weak of a metric to tell that the F1 EBMs are
better than F2 EBMs.

In the three figures, the plots in the third column show the test KL divergences and test F1-SD for EBMs
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Figure 4: 3D visualization of the neuron positions, energies and densities, in d = 3. The teacher model has
two neurons with negative weights w∗

1 , w
∗
2 = −2.5, whose positions are represented by black sticks in all the

images. The positions of the neurons of the trained model are represented by blue and orange sticks for
negative and positive weights, resp. The two images on the left show the energies of the teacher and trained
models, respectively. The energies look qualitatively very similar up to an offset of ≈ 0.3. The two images on
the right show the Gibbs densities of the teacher and trained models, respectively.
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trained model and the teacher model (same as in Figure 4), versus
the iteration number.

trained with F1-SD. Remark that the error bars are wider due to the two timescale algorithm used for F1-SD,
which seems to introduce more variability. While the plots only go up to n = 3000, the test cross-entropy
curves show a separation between F1 and F2 very similar to maximum likelihood training when comparing at
equal values of n.

App. C contains additional experiments for the cases J = 1, w∗
1 = 10 and J = 2, w∗

i = −2.5, training with
KSD and F1-SD.

3D visualizations and time evolution in d = 3 (F1 EBM trained with MLE). Figure 4 shows a 3D
visualization of the teacher and trained models, energies and densities corresponding to two teacher neurons
with negative weights in d = 3. Since the dimension is small and the temperature is not too small, we used
train and test sizes for which the statistical error due to train and test samples is negligible. Interestingly,
while the F1 model achieves a KL divergence close to zero at the end of training (Figure 5), in Figure 4 we
see that the positions of the neurons of the trained model do not match the teacher neurons. In fact, there
are some neurons with positive weights in the high energy region. This effect might be linked with the fact
that there is a constant offset of around 0.3 between the teacher energy and the trained energy. The offset is
not reflected in the Gibbs measures of the models, which are invariant to constant terms.

Figure 5 also shows that for this particular instance, the convergence is polynomial in the iteration number. We
attach a video of the training dynamics: https://github.com/CDEnrich/ebms_shallow_nn/blob/main/

KLfeatzunnorm1.mp4.
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7 Conclusions and discussion

We provide statistical error bounds for EBMs trained with KL divergence or Stein discrepancies, and show
benefits of using energy models with infinite-width shallow networks in in “active” regimes in terms of
adaptivity to distributions with low-dimensional structure in the energy. We empirically verify that networks
in “kernel” regimes perform significantly worse in the presence of such structures, on simple teacher-student
experiments.

A theoretical separation result in KL divergence or SD between F1 and F2 EBMs remains an important open
question: one major difficulty for providing a lower bound on the performance for F2 is that L2 (or L∞)
approximation may be not be appropriate for capturing the hardness the problem, since two log-densities
differing substantially in low energy regions can have arbitrarily small KL divergence. Another direction for
future work is to apply the theory of shallow overparametrized neural networks to other generative models
such as GANs or normalizing flows.

On the computational side, in App. B we leverage existing work to state qualitative convergence results in an
idealized setting of infinite width and exact gradients, but it would be interesting to develop convergence results
for maximum likelihood that take the MCMC sampling into account, as done for instance by Bortoli et al.
[2020] for certain exponential family models. In our setting, this would entail identifying a computationally
tractable subset of F1 energies. A more ambitious and long-term goal is to instead move beyond the MCMC
paradigm, and devise efficient sampling strategies that can operate outside the class of log-concave densities,
as for instance Gabrié et al. [2021].
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A Proofs of Sec. 4

Theorem 1. Assume that the class F has a (distribution-free) Rademacher complexity bound Rn(F) ≤ βC√
n

and L∞ norm uniformly bounded by β. Given n samples {xi}ni=1 from the target measure ν, consider the

maximum likelihood estimator (MLE) ν̂ := νf̂ , where f̂ is the estimator defined in (1). With probability at
least 1− δ, we have

DKL(ν||ν̂) ≤
4βC√
n

+ β

√
8 log(1/δ)

n
+ inf
f∈F

DKL(ν||νf ). (7)

If dν
dτ (x) = e−g(x)/

∫
K
e−g(y)dτ(y) for some g : K → R, i.e. −g is the log-density of ν up to a constant term,

then with probability at least 1− δ,

DKL(ν||ν̂) ≤
4βC√
n

+ β

√
8 log(1/δ)

n
+ 2 inf

f∈F
‖g − f‖∞. (8)

Proof. In the first place, remark that for all ν1, ν2 ∈ P(K) that are absolutely continuous w.r.t. p, we have
DKL(ν1||ν2) =

∫
K
log(dν1dτ (x))dν1(x) −

∫
K
log(dν2dτ (x))dν1(x) = −H(ν1) +H(ν1, ν2), where H(ν1, ν2) is the

cross-entropy and H(ν1) is the differential entropy. Hence, for all ν1, ν2, ν3 ∈ P(K),

DKL(ν1||ν2)−DKL(ν1||ν3) = H(ν1, ν2)−H(ν1, ν3). (12)

Secondly, notice that for any ν ∈ P(K) and measurable f : K → R,

∫
f(x) dν(x) = −

∫
log(e−f(x)) dν(x) = −

∫
log

(
dνf
dτ

(x)

)
dν(x)− log

(∫
e−f(x)dτ(x)

)

= H(ν, νf )− log

(∫
e−f(x)dτ(x)

)
,

(13)

Thus, if we apply (13) on ν and its empirical version νn = 1
n

∑n
i=1 δxi , we obtain that with probability at

least 1− δ, for all f ∈ F :

|H(ν, νf )−H(νn, νf )| =

∣∣∣∣∣∣
1

n

n∑

i=1

f(xi)−
∫
f(x) dν(x)

∣∣∣∣∣∣
≤


2Rn(F) +

(
sup
f∈F
‖f‖∞

)√
2 log(1/δ)

n




≤ 2βC√
n

+ β

√
2 log(1/δ)

n
,

(14)

where we have used the Rademacher generalization bound (Mohri et al. [2012], Theorem 3.3) and the
Rademacher complexity bound from the assumption of the theorem.

We have

DKL(ν||ν̂) = DKL(ν||ν̂)− inf
f∈F

DKL(ν||νf ) + inf
f∈F

DKL(ν||νf )

= sup
f∈F

{
H(ν, ν̂)−H(ν, νf )

}
+ inf
f∈F

DKL(ν||νf )

≤ sup
f∈F

{
H(νn, ν̂)−H(νn, νf )

}
+

4βC√
n

+ β

√
8 log(1/δ)

n
+ inf
f∈F

DKL(ν||νf )

=
4βC√
n

+ β

√
8 log(1/δ)

n
+ inf
f∈F

DKL(ν||νf ).
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This proves (7). In the second equality we have used (12). For the inequality we have used (14) twice, i.e. that

H(ν, ν̂) = H(ν, νf̂ ) ≤ H(νn, νf̂ )+
2βC√
n
+β
√

2 log(1/δ)
n and that −H(ν, νf ) ≤ −H(νn, νf )+

2βC√
n
+β
√

2 log(1/δ)
n .

In the last equality we have used that by the definition of f̂ , H(νn, ν̂) = H(ν, νβf̂ ) = minf∈F H(ν, νf ).

For the proof of (8) we apply Lemma 1 into (7).

Lemma 1. Let g : K → R be such that dν
dτ (x) = e−g(x)/

∫
K
e−g(y)dτ(y), i.e. −g is the log-density of ν up to

a constant term. Then,

inf
f∈F

DKL(ν||νf ) ≤ 2 inf
f∈F
‖g − f‖∞

Proof. Notice that ν = νg. Thus, for any f ∈ F ,

DKL(ν||νf ) = DKL(νg||νf ) =
∫

log

(
dνg
dτ (x)
dνf
dτ (x)

)
dνg(x) =

∫
log




e−g(x)
∫
e−g(y)dτ(y)

e−f(x)
∫
e−f(y)dτ(y)


 dνg(x)

=

∫
(f(x)− g(x)) dνg(x)− log

(∫
e−g(y)dτ(y)

)
+ log

(∫
e−f(y)dτ(y)

)
.

(15)

Here, we bound
∫
(f(x)− g(x)) dνg(x) ≤ ‖f − g‖∞,

and applying Lemma 2 to f and g, we obtain

log

(∫
e−f(y) dτ(y)

)
− log

(∫
e−g(y) dτ(y)

)
≤ ‖f − g‖∞.

Plugging these two bounds into (15), we obtain DKL(ν||νf ) ≤ 2‖f − g‖∞, which yields the result.

We do not claim that the upper-bound in Lemma 1 is tight; it might be possible to provide a bound involving
a weaker metric. Regardless, it suffices for our purposes.

Lemma 2. Let f : K → R, g : K → R be measurable functions. For some α ∈ [0, 1],

log

(∫

K

e−f(y)dτ(y)

)
− log

(∫

K

e−g(y)dτ(y)

)
=

∫

K

e−(αf(y)+(1−α)g(y))
∫
K
e−(αf(x)+(1−α)g(x)) dτ(x)

(
f(y)− g(y)

)
dτ(y)

Proof. We define the function

F (α) = log

(∫

K

e−(αf(y)+(1−α)g(y)) dτ(y)

)
,

which has derivative

dF

dα
(α) =

−
∫
K
e−(αf(y)+(1−α)g(y))(f(y)− g(y)) dτ(y)
∫
K
e−(αf(x)+(1−α)g(x)) dτ(x)

= −
∫

K

(f(y)− g(y))pα(y) dτ(y),

where pα(y) is the density of the Gibbs probability measure corresponding to the energy αf + (1− α)g. We
make use of the mean value theorem:

log

(∫

K

e−f(y)dτ(y)

)
− log

(∫

K

e−g(y)dτ(y)

)
= F (1)− F (0) = dF

dα
(α)(1− 0)

= −
∫

K

(f(y)− g(y))pα(y) dτ(y).

19



Lemma 3 (Approximation of Lipschitz functions by F2 balls, Proposition 6 of Bach [2017a]). For δ greater
than a constant depending only on d, for any function f : {x ∈ R

d|‖x‖2 ≤ R} → R such that for all
x, y such that ‖x‖2 ≤ R, ‖y‖2 ≤ R we have |f(x)| ≤ η and |f(x) − f(y)| ≤ ηR−1‖x − y‖2, there exists
h{x ∈ R

d|‖x‖2 ≤ R} × {R} → R ∈ F2, such that ‖h‖F2
≤ δ and

sup
‖x‖2≤R

|h(x,R)− f(x)| ≤ C(d)η
(
Rδ

η

)−2/(d+1)

log

(
Rδ

η

)

Proof. From Bach [2017a]. Notice that the factor in the bound is
(
Rδ
η

)−2/(d+1)

log
(
Rδ
η

)
, while in the original

paper it is
(
δ
η

)−2/(d+1)

log
(
δ
η

)
. The R factor stems from the fact that we consider the neural network

features to lie in S
d, while Bach [2017a] considers them in the hypersphere of radius R−1.

Lemma 4 (Rademacher complexity bound for BF1
, Section 5.1 of Bach [2017a]; Kakade et al. [2009]).

Suppose that K ⊆ {x ∈ R
d+1|‖x‖2 ≤ R}. The Rademacher complexity of the function class BF1

is bounded by

Rn(BF1
) ≤ R√

n
.

Corollary 1. Let F = BF1(β). Suppose K = K0 × {R}, where K0 ⊆ {x ∈ R
d|‖x‖2 ≤ R} is compact.

Assume that Assumption 1 holds. Then, we can choose β > 0 such that with probability at least 1− δ we have

DKL(ν||ν̂) ≤ Õ
((

1 +
√
log(1/δ)

)
JηR− 2

k+3n−
1

k+3

)

where the notation Õ indicates that we overlook logarithmic factors and constants depending only on the
dimension k.

Proof. We will use (8) from Theorem 1. We have that g : K0 × {R} → R is defined as g(x,R) =∑J
j=1 gj(x,R) =

∑J
j=1 ϕj(Ujx,R).

By Lemma 3, there exists ψj : {x ∈ R
k|‖x‖2 ≤ R} ×R→ R such that ψj ∈ F2 and ‖ψj‖F2

≤ β/J , and

sup
x∈Rk:‖x‖2≤R

|ψj(x,R)− ϕj(x)| ≤ C(k)η
(
Rβ

ηJ

)−2/(k+1)

log

(
Rβ

ηJ

)
(16)

Hence, if we define g̃j : K0×{R} → R as g̃j(x,R) := ψj(Ujx,R), we have that g̃j belongs to F1 by an argument
similar to the one of Section 4.6 of Bach [2017a]. Namely, if we write ψj(x,R) =

∫
Sk
σ(〈θ, (x,R)〉) dγ(θ) for

some signed measure γ, we have

g̃j(x,R) =

∫

Sk

σ(〈θ, (Ujx,R)〉) dγ(θ) =
∫

Sk

σ(〈U⊤
j θ1:d, x〉+ θd+1R) dγ(θ) =

∫

Sd

σ(〈θ′1:d, x〉+ θ′d+1R) dγ
′(θ′),

where we used the change of variable θ′ = (U⊤
j θ1:d, θd+1), which maps S

k to S
d. Moreover, this shows that g̃j

has F1 norm ‖g̃j‖F1 ≤ ‖ψj‖F2 ≤ β/J , which means that g̃ =
∑J
j=1 g̃j ∈ F1 and ‖g̃‖F1 ≤ β. Moreover,

‖g̃j − gj‖∞ = sup
x∈K0

|g̃j(x,R)− gj(x,R)| = sup
x∈K0

|ψj(Ujx)− ϕj(Ujx)| ≤ sup
x∈Rk:‖x‖2≤R

|ψj(x)− ϕj(x)|

≤ C(k)η
(
Rβ

ηJ

)−2/(k+1)

log

(
Rβ

ηJ

)
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The first inequality holds because for all x ∈ K, ‖Ux‖2 ≤ ‖x‖2 ≤ R by the fact that U has orthonormal rows,
and the second inequality holds by (16). Thus,

inf
f∈BF1

‖g − f‖∞ ≤ ‖g − g̃‖∞ ≤
J∑

j=1

‖g̃j − gj‖∞ ≤ C(k)Jη
(
Rβ

ηJ

)−2/(k+1)

log

(
Rβ

ηJ

)
(17)

Notice that the assumptions of Theorem 1 are fulfilled: the Rademacher complexity bound for BF1 (Lemma 4)
implies that Rn(BF1

(β)) ≤ βR√
n

and it is also easy to check that supf∈BF1
(β) ‖f‖∞ ≤ β. Plugging (17) into

(8) we obtain

DKL(ν||ν̂) ≤ 4β

√
2R√
n

+ β

√
2 log(1/δ)

n
+ 2C(k)Jη

(
Rβ

ηJ

)−2/(k+1)

log

(
Rβ

ηJ

)
.

If we minimize the right-hand side w.r.t. β (disregarding the log factor), we obtain that the optimal value is

(
2B

k + 1

) k+1
k+3
(
A√
n

) 2
k+3

+B
k+1
k+3

(
A(k + 1)

2
√
n

) 2
k+3

log



R

η

(
2B
√
n

A(k + 1)

) k+1
k+3


 ,

and the optimal β is
(
2B
√
n/(A(k + 1))

) k+1
k+3 , where

A = 4
√
2R+

√
2 log(1/δ), B = 2C(k)(Jη)

k+3
k+1R− 2

k+1 .

Lemma 5 (Stein operator for functions on S
d). For a probability measure ν on the sphere S

d with a continuous
and almost everywhere differentiable density dν

dτ , the Stein operator Aν is defined as

(Aνh)(x) =
(
∇ log

(
dν

dτ
(x)

)
− dx

)
h(x)⊤ +∇h(x),

for any h : S
d → R

d+1 that is continuous and almost everywhere differentiable, where ∇ denotes the
Riemannian gradient. That is, for any h : Sd → R

d+1 that is continuous and almost everywhere differentiable,
the Stein identity holds:

Eν [(Aνh)(x)] = 0.

Proof. Let hi : S
d → R be the i-th component of h. Notice that

Eν

[
∇ log

(
dν

dτ
(x)

)
hi(x) +∇hi(x)

]
= Eν

[
∇
(
dν

dτ
(x)hi(x)

)
1

dν
dτ (x)

]
=

∫

Sd

∇
(
dν

dτ
(x)hi(x)

)
dτ(x) (18)

Now, if we take the inner product of the right-hand side with the canonical basis vector ek ∈ R
d+1, we obtain

〈∫

Sd

∇
(
dν

dτ
(x)hi(x)

)
dτ(x), ek

〉
=

∫

Sd

〈
(I − xx⊤)∇

(
dν

dτ
(x)hi(x)

)
, ek

〉
dτ(x)

=

∫

Sd

〈
∇
(
dν

dτ
(x)hi(x)

)
, ek − xkx

〉
dτ(x) = −

∫

Sd

dν

dτ
(x)hi(x)∇ · (ek − xkx)dτ(x),

where in the second equality we used that (I − xx⊤) the projection matrix to the tangent space of Sd at x, in
the third equality we used that it is symmetric, and in the last equality we used integration by parts on S

d

(∇· denotes the Riemannian divergence).
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To compute ∇ · (ek − xkx), remark that by the invariance to change of basis it is equal to the divergence of
the function g : Rd+1 → R

d+1 defined as x→ ek − xkx
‖x‖2 , when restricted to S

d. And we have

∇ · g(x) =
d+1∑

j=1

∂jgj(x) =
d+1∑

j=1

∂j

(
ek,j −

xkxj
‖x‖2

)
= −



d+1∑

j=1

xk
‖x‖2


+



d+1∑

j=1

2xkx
2
j

‖x‖4


− xk

‖x‖2

For x ∈ S
d, the right-hand side simplifies to −(d+1)xk +2xk − xk = −dxk, which means that the right-hand

side of (18) becomes

−
∫

Sd

dν

dτ
(x)hi(x)(−dxk) dτ(x) = dEν [hi(x)xk].

That means that Eν

[
∇ log

(
dν
dτ (x)

)
hi(x) +∇hi(x)− dhi(x)x

]
= 0, which concludes the proof.

Lemma 6 (Kernelized Stein discrepancy for probability measures on S
d). For K = S

d, and ν1, ν2 ∈ P(K)
with continuous, almost everywhere differentiable log-densities, the kernelized Stein discrepancy KSD(ν1, ν2)
is equal to

sup
h∈B

Hd
0

(Eν1 [Tr(Aν2h(x))])2 = Ex,x′∼ν1 [(sν2(x)− sν1(x))⊤(sν2(x′)− sν1(x′))k(x, x′)] = Ex,x′∼ν1 [uν2(x, x
′)],
(19)

where uν(x, x
′) = (sν(x)−d·x)⊤(sν(x′)−d·x′)k(x, x′)+(sν(x)−d·x)⊤∇x′k(x, x′)+(sν(x

′)−d·x′)⊤∇xk(x, x′)+
Tr(∇x,x′k(x, x′)).

Proof. The argument for the first equality is from Theorem 3.8 of Liu et al. [2016], but we rewrite it with our
notation. Using the Stein identity, which holds by Lemma 5, we have

Eν1 [Tr(Aν2h(x))] = Eν1 [Tr(Aν2h(x)−Aν1h(x))] = Eν1 [(sν2(x)− sν1(x))⊤h(x)],

sup
h∈B

Hd
0

Eν1 [(sν2(x)− sν1(x))⊤h(x)] = sup
h∈B

Hd
0

∫

Sd

dν1
dτ

(x)
d+1∑

i=1

(s(i)ν2 (x)− s(i)ν1 (x))hi(x)dτ(x)

= sup
h∈B

Hd
0

d+1∑

i=1

〈∫

Sd

dν1
dτ

(x)(s(i)ν2 (x)− s(i)ν1 (x))k(x, ·)dτ(x), hi(·)
〉

H0

=

√√√√
d+1∑

i=1

∥∥∥∥
∫

Sd

dν1
dτ

(x)(s
(i)
ν2 (x)− s(i)ν1 (x))k(x, ·)dτ(x)

∥∥∥∥
2

H0

=

√√√√
d+1∑

i=1

∫

Sd×Sd

dν1
dτ

(x)(s
(i)
ν2 (x)− s(i)ν1 (x))k(x, x′)

dν1
dτ

(x′)(s(i)ν2 (x′)− s(i)ν1 (x′))dτ(x)dτ(x′).

Given the form of the Stein operator for functions on S
d (Lemma 5), the proof of the second equality of (19)

is a straightforward analogy of the proof of Theorem 3.6 of Liu et al. [2016], which is for the Stein operator
for functions on R

d.

Theorem 4. Let K = S
d. Assume that the class F is such that supf∈F{‖∇if‖∞|1 ≤ i ≤ d + 1} ≤ βC1.

Assume that H = B∏d+1
i=1 Hi

= {(hi)d+1
i=1 | hi ∈ Hi,

∑d+1
i=1 ‖hi‖Hi

≤ 1}, where Hi are normed spaces of

functions from S
d to R. Assume that the following Rademacher complexity type bounds hold for 1 ≤ i ≤ d+1:

Eσ,Sn

[
suphi∈BHi

1
n

∑n
j=1 σjhi(xj)

]
≤ C2√

n
, Eσ,Sn

[
suphi∈BHi

1
n

∑n
j=1 σj∇ihi(xj)

]
≤ C3√

n
, and that ‖hi‖∞ ≤

M, ‖∇ihi‖∞ ≤M for all hi ∈ Hi.

If we take n samples {xi}ni=1 of a target measure ν with almost everywhere differentiable log-density, and

consider the Stein Discrepancy estimator (SDE) ν̂ := νf̂ , where f̂ is the estimator defined in (3), we have
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that with probability at least 1− δ, SDH(ν, ν̂) is upper-bounded by

4
√
d+ 1((βC1 +Rd)C2 + C3)√

n
+ 2M(βC1 + 1 +Rd)

√
(d+ 1) log((d+ 1)/δ)

2n
+ inf
f∈F

SDH(ν, νf ).

Proof. Notice that by the definition of the Stein operator,

Tr(Aνfh(x)) = Tr



(
∇ log

(
dνf
dτ

(x)

)
− dx

)
h(x)⊤ +∇h(x)


 = Tr

(
−(∇f(x) + dx)h(x)⊤ +∇h(x)

)

=

d+1∑

i=1

−(∇if(x) + dxi)hi(x) +∇ihi(x)

Thus,

sup
h∈H

Eν [Tr(Aνfh(x))]− Eνn [Tr(Aνfh(x))]

= sup
h∈H

d+1∑

i=1

(Eν [−(∇if(x) + dxi)hi(x) +∇ihi(x)]− Eνn [−(∇if(x) + dxi)hi(x) +∇ihi(x)])

= sup
∑

i |wi|2≤1
hi∈BHi

d+1∑

i=1

wi(Eν [−(∇if(x) + dxi)hi(x) +∇ihi(x)]− Eνn [−(∇if(x) + dxi)hi(x) +∇ihi(x)])

=

√√√√
d+1∑

i=1

(
sup

hi∈BHi

(Eν [−(∇if(x) + dxi)hi(x) +∇ihi(x)]− Eνn [−(∇if(x) + dxi)hi(x) +∇ihi(x)])
)2

=

√√√√
d+1∑

i=1

Φi(Sn)2,

where Φi(Sn) = suphi∈BHi
(Eν [−(∇if(x)+ dxi)hi(x)+∇ihi(x)]−Eνn [−(∇if(x)+ dxi)hi(x)+∇ihi(x)]). For

a fixed i, we can use a classical argument based on McDiarmid’s inequality (c.f. Mohri et al. [2012], Theorem
3.3) to obtain

P

(
Φi(Sn)− ES′

n

[
Φi(S

′
n)
]
≥ ǫ
)
≤ exp

(
−2ǫ2n
C2

4

)
,

where C4 =M(βC1+1+Rd) is a uniform upper-bound on {‖− (∇if(x)+dxi)hi(x)+∇ihi(x)‖∞ | hi ∈ BHi
}.

Thus, using a union bound, we obtain that

P

(
max

1≤i≤d+1

(
Φi(Sn)− ES′

n

[
Φi(S

′
n)
])
≥ ǫ
)
≤ (d+ 1) exp

(
−2ǫ2n
C2

)
,

and through a change of variables, that means that with probability at least 1− δ,

max
1≤i≤d+1

(
Φi(Sn)− ES′

n

[
Φi(S

′
n)
])
≤ C4

√
log((d+ 1)/δ)

2n

=⇒ max
1≤i≤d+1

Φi(Sn) ≤ max
1≤i≤d+1

ES′
n
Φi(S

′
n) + C4

√
log((d+ 1)/δ)

2n

=⇒

√√√√
d+1∑

i=1

Φi(Sn)2 ≤
√
d+ 1 max

1≤i≤d+1
Φi(Sn) ≤

√
d+ 1 max

1≤i≤d+1
ES′

n
Φi(S

′
n) + C4

√
(d+ 1) log((d+ 1)/δ)

2n

23



All that is left is to upper-bound ESnΦi(Sn) for any i using Rademacher complexity bounds:

ESn

[
sup

hi∈BHi

(Eν [−(∇if(x) + dxi)hi(x) +∇ihi(x)]− Eνn [−(∇if(x) + dxi)hi(x) +∇ihi(x)])
]

≤ ESn,S′
n


 sup
hi∈BHi

1

n

n∑

j=1

−((∇if(x′j) + dx′j,i)hi(x
′
j)− (∇if(xj) + dxj,i)hi(xj)) +∇ihi(x′j)−∇ihi(xj)




= Eσ,Sn,S′
n


 sup
hi∈BHi

1

n

n∑

j=1

σj

(
−((∇if(x′j) + dx′j,i)hi(x

′
j)− (∇if(xj) + dxj,i)hi(xj)) +∇ihi(x′j)−∇ihi(xj)

)

 ,

and this is upper-bounded by

2Eσ,Sn


 sup
hi∈BHi

1

n

n∑

j=1

σj
(
−(∇if(xj) + dxj,i)hi(xj) +∇ihi(xj)

)



≤ 2Eσ,Sn


 sup
hi∈BHi

1

n

n∑

j=1

σj(∇if(xj) + dxj,i)hi(xj)


+ 2Eσ,Sn


 sup
hi∈BHi

1

n

n∑

j=1

σj∇ihi(xj)




(20)

By Talagrand’s Lemma (Mohri et al. [2012], Theorem 5.7) and the uniform L∞ bound on {∇if |f ∈ F} (notice
that y 7→ (β∇if(xj) + dxj,i)y has Lipschitz constant uniformly upper-bounded by ‖β∇if(xj) + dxj,i‖∞,
which means that the assumptions of Talagrand’s Lemma are fulfilled), we have

Eσ,Sn


 sup
hi∈BHi

1

n

n∑

j=1

σj(∇if(xj) + dxj,i)hi(xj)


 ≤ (C1β +Rd)Eσ,Sn


 sup
hi∈BHi

1

n

n∑

j=1

σjhi(xj)


 ≤ (βC1 +Rd)C2√

n
,

where we used the Rademacher complexity bound of BHi . Using the Rademacher complexity bound of ∇ihi
as well, we conclude that the right-hand side of (20) can be upper-bounded by 2(βC1+Rd)C2+2C3√

n
. Thus, with

probability at least 1− δ, for all h ∈ H,

∣∣∣Eν [Tr(Aνfh(x))]− Eνn [Tr(Aνfh(x))]
∣∣∣ ≤ 2

√
d+ 1((βC1 +Rd)C2 + C3)√

n
+ C4

√
(d+ 1) log((d+ 1)/δ)

2n
(21)

We conclude the proof with an argument similar to the one of Theorem 1:

SDH(ν, ν̂)

= SDH(ν, ν̂)− inf
f∈F

SDH(ν, νf ) + inf
f∈F

SDH(ν, νf )

= sup
f∈F

{
sup
h∈H

Eν [Tr(Aν̂h(x))]− sup
h∈H

Eν [Tr(Aνfh(x))]
}

+ inf
f∈F

SDH(ν, νf )

≤ sup
f∈F

{
sup
h∈H

Eνn [Tr(Aν̂h(x))]− sup
h∈H

Eνn [Tr(Aνfh(x))]
}

+
4
√
d+ 1((βC1 +Rd)C2 + C3)√

n

+ 2C4

√
log((d+ 1)/δ)

2n
+ inf
f∈F

SDH(ν, νf )

=
4
√
d+ 1((βC1 +Rd)C2 + C3)√

n
+ 2M(βC1 + 1 +Rd)

√
(d+ 1) log((d+ 1)/δ)

2n
+ inf
f∈F

SDH(ν, νf ).

In the second equality we use the definition of the Stein discrepancy (equation (2)). The inequality follows

from (21) applied on νf and on ν̂ = νf̂ . The last equality holds because of the definition of f̂ and the
definition of C4.
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Theorem 2. Let K = S
d. Assume that the class F is such that supf∈F{‖∇if‖∞|1 ≤ i ≤ d + 1} ≤ βC1.

If H = BFd+1
1

= {h = (hi)
d+1
i=1 | hi ∈ F1,

∑d+1
i=1 ‖hi‖2F1

≤ 1} or H = BFd+1
2

= {h = (hi)
d+1
i=1 | hi ∈

F2,
∑d+1
i=1 ‖hi‖2F2

≤ 1}, we have that for the estimator ν̂ defined in (3), with probability at least 1− δ,

SDH(ν, ν̂) ≤ 4
√
d+ 1(βC1 + C2

√
d+ 1 + d)√

n

+ 2(βC1 + d+ 1)

√
(d+ 1) log(d+1

δ )

2n

+ inf
f∈F

Eν

[∥∥∥∥−∇f(x)−∇ log

(
dν

dτ
(x)

)∥∥∥∥
2

]

where C2 is a universal constant and ∇f denotes the Riemannian gradient of f .

Proof. Note that Lemma 5 provides the expression for the Stein operator Aν on S
d and shows that for any

ν ∈ P(Sd) with continuous and a.e. differentiable density, the class of continuous and a.e. differentiable
functions S

d → R
d+1 is contained in the Stein class of ν (which by definition is the set of functions h such

that the Stein identity Eν [Aνh] = 0 holds). Using the argument of Lemma 2.3 of Liu et al. [2016], we have
that for any ν1, ν2 ∈ P(K), for any h in the Stein class of ν1 we have

Eν1 [Aν2h(x)] = Eν1 [Aν2h(x)−Aν1h(x)]
= Eν1 [sν2(x)h(x)

⊤ +∇h(x)− dxh(x)⊤ − (sν1(x)h(x)
⊤ +∇h(x)− dxh(x)⊤)] = Eν1 [(sν2(x)− sν1(x))h(x)⊤],

which follows from the definition of the Stein operator and the Stein identity: Eν1 [Aν1h(x)] = 0. Thus, for
any ν ∈ P(K),

SDB
F

d+1
1

(ν, νf ) = sup
h∈B

F
d+1
1

Eν [Tr((sνf (x)− sν(x))h(x)⊤)]

= sup
h∈B

F
d+1
1

d+1∑

i=1

Eν



(
−∇if(x)−∇i log

(
dν

dτ
(x)

))
hi(x)




= sup
∑

i |wi|2≤1,
|γi|TV≤1

d+1∑

i=1

Eν



(
−∇if(x)−∇i log

(
dν

dτ
(x)

))
wi

∫

Sd

σ(〈θ, x〉)dγi(θ)




≤ Eν

[
sup

∑
i |wi|2≤1,
|γi|TV≤1

d+1∑

i=1

wi

(
−∇if(x)−∇i log

(
dν

dτ
(x)

))∫

Sd

σ(〈θ, x〉)dγi(θ)
]

= Eν

[
sup

∑
i |wi|2≤1,

{θ(i)}⊂S
d

d+1∑

i=1

wi

(
−∇if(x)−∇i log

(
dν

dτ
(x)

))
σ(〈θ(i), x〉)

]

= Eν

[( d+1∑

i=1

sup
{θ(i)}⊂Sd

((
−∇if(x)−∇i log

(
dν

dτ
(x)

))
σ(〈θ(i), x〉)

)2)1/2]

= Eν

[( d+1∑

i=1

(
−∇if(x)−∇i log

(
dν

dτ
(x)

))2)1/2]
= Eν

[∥∥∥∥−∇f(x)−∇ log

(
dν

dτ
(x)

)∥∥∥∥
2

]

(22)
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Moreover, by Lemma 4:

Eσ,Sn


 sup
h∈BF1

1

n

n∑

j=1

σjh(xj)


 = Rn(BF1

) ≤ 1√
n
. (23)

And

Eσ,Sn


 sup
h∈BF1

1

n

n∑

j=1

σj∇ih(xj)


 = Eσ,Sn


 sup
|γ|TV≤1

1

n

n∑

j=1

σj

∫

Sd

∇iσ(〈θ, xj〉)dγ(θ)




= Eσ,Sn


 sup
θ∈Sd,|w|≤1

w

n

n∑

j=1

σj1〈θ,xj〉≥0θi


 = Eσ,Sn


 sup
θ∈Sd

∣∣∣∣∣∣
1

n

n∑

j=1

σj1〈θ,xj〉≥0θi

∣∣∣∣∣∣




≤ Eσ,Sn


 sup
θ∈Sd

∣∣∣∣∣∣
1

n

n∑

j=1

σj1〈θ,xj〉≥0

∣∣∣∣∣∣


 ≤ C2

√
d+ 1√
n

,

(24)

where the last inequality follows from the Rademacher complexity bound on the hyperplane hypothesis, which
is obtained through a VC dimension argument (Bach [2017a], Section 5.1; Bartlett and Mendelson [2002],
Theorem 6). Moreover, ‖h‖∞ ≤ 1 and ‖∇ih‖∞ ≤ 1 for all h ∈ F1. The proof concludes by plugging (22),
(23), (24) into Theorem 4. Since BFd+1

2
⊂ BFd+1

1
, all the upper-bounds of the proof hold for H = BFd+1

2
as

well.

Theorem 5. Let K = S
d. Let KSD be the kernelized Stein discrepancy for a positive definite ker-

nel k with continuous second order partial derivatives, such that for any non-zero function g ∈ L2(Sd),∫
Sd

∫
Sd
g(x)k(x, x′)g(x′)dτ(x)dτ(x′) > 0. If we take n samples {xi}ni=1 of a target measure ν with almost

everywhere differentiable log-density, and consider the unbiased KSD estimator (6), we have with probability
at least 1− δ,

KSD(ν, ν̂) ≤ 2√
δn

sup
f∈F

(Varx∼ν(Ex′∼ν [ũνf (x, x
′)]))1/2

+
√
Ex,x′∼ν [k(x, x′)2] inf

f∈F
Ex∼ν

[∥∥∥∥∇ log

(
dν

dτ
(x)

)
− β∇f(x)

∥∥∥∥
2
]

Proof. For the kernelized Stein discrepancy estimator we can write

KSD(ν, ν̂)

= KSD(ν, ν̂)− inf
f∈F

KSD(ν, νf ) + inf
f∈F

KSD(ν, νf )

= sup
f∈F

{
Ex,x′∼ν [uν̂(x, x

′)]− Ex,x′∼ν [uνf (x, x
′)]
}
+ inf
f∈F

KSD(ν, νf )

= sup
f∈F

{
Ex,x′∼ν [ũν̂(x, x

′)]− Ex,x′∼ν [ũνf (x, x
′)]
}
+ inf
f∈F

KSD(ν, νf )

≤ sup
f∈F





1

n(n− 1)


∑

i 6=j
ũν̂(xi, xj)−

∑

i 6=j
ũνf (xi, xj)





+

2√
δn

sup
f∈F

(Varx∼ν(Ex′∼ν [uνf (x, x
′)]))1/2

+ inf
f∈F

KSD(ν, νf ) =
2√
δn

sup
f∈F

(Varx∼ν(Ex′∼ν [uνf (x, x
′)]))1/2 + inf

f∈F
KSD(ν, νf )

The third equality holds because of the definition of ũν in terms of uν . In the first inequality we have used
that for any ν̃ (different from ν) with almost-everywhere differentiable log-density, 1

n(n−1)

∑
i 6=j ũν̃(xi, xj)
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has expectation Ex,x′∼ν [ũν̂(x, x′)] and variance Varx∼ν(Ex′∼ν [ũν̃(x, x′)])/n by the theory of U-statistics (Liu
et al. [2016], Theorem 4.1; Serfling [2009], Section 5.5). Thus, by Chebyshev’s inequality, with probability at
least 1− δ, we have that Ex,x′∼ν [ũν̃(x, x′)] ≤ 1

n(n−1)

∑
i 6=j ũν̃(xi, xj) +

1√
nδ

(Varx∼ν(Ex′∼ν [ũν̃(x, x′)]))1/2.

Moreover, using the argument of Theorem 5.1 of Liu et al. [2016], by Lemma 6,

KSD(ν, νf ) = Ex,x′∼ν [(sν(x)− sνf (x))⊤(sν(x′)− sνf (x′))k(x, x′)]

≤
√
Ex,x′∼ν [k(x, x′)2]

√
Ex,x′∼ν

[(
(sν(x)− sνf (x))⊤(sν(x′)− sνf (x′))

)2]

≤
√
Ex,x′∼ν [k(x, x′)2]

√
Ex,x′∼ν

[
‖sν(x)− sνf (x)‖2‖sν(x′)− sνf (x′)‖2

]

=
√
Ex,x′∼ν [k(x, x′)2] Ex∼ν

[
‖sν(x)− sνf (x)‖2

]
,

where Ex∼ν
[
‖sν(x)− sνf (x)‖2

]
is known as the Fisher divergence.

Theorem 3. Let K = S
d. Assume that the class F is such that supf∈F{‖∇f‖∞} ≤ βC1. Let KSD be the

kernelized Stein discrepancy for a kernel that satisfies Assumption 2. If we take n samples {xi}ni=1 of a target
measure ν with almost everywhere differentiable log-density, and consider the unbiased KSD estimator (6), we
have with probability at least 1− δ,

KSD(ν, ν̂) ≤ 2√
δn

((βC1 + d)2C2 + 2C3(βC1 + d))

+ C2 inf
f∈F

Ex∼ν

[∥∥∥∥∇ log

(
dν

dτ
(x)

)
−∇f(x)

∥∥∥∥
2
]
.

Proof. We apply Theorem 5. We can bound

sup
f∈F

(Varx∼ν(Ex′∼ν [uνf (x, x
′)]))1/2 ≤ sup

f∈F
(Ex∼ν(Ex′∼ν [uνf (x, x

′)])2)1/2 ≤ sup
f∈F

(Ex∼ν(Ex′∼ν [uνf (x, x
′)2]))1/2

≤ sup
f∈F

sup
x,x′∈Sd

|uνf (x, x′)| ≤ ((βC1 + d)2C2 + 2C3(βC1 + d)),

and
√
Ex,x′∼ν [k(x, x′)2] ≤ C2.

Lemma 7. For a function g : Sd → R, we define the partial derivative ∂ig : Sd → R as the restriction to S
d

of the partial derivative of the polynomial power series extension of g to R
n (i.e. the extension of a spherical

harmonic to R
n is the polynomial whose restriction to S

d is equal to the spherical harmonic (Atkinson and Han
[2012], Definition 2.7)). We denote by ∂g = (∂ig)

d+1
i=1 the vector of partial derivatives of g. The Riemannian

gradient ∇g : Sd → R
d+1, which is intrinsic (does not depend on the extension chosen), fulfills

∇g(x) = (∇ig(x))d+1
i=1 :=


∂ig(x)−

d+1∑

i=1

∂jg(x)xjxi



d+1

i=1

.

That is, ∇g(x) is the projection of ∂g(x) to the tangent space of Sd at x.

For δ greater than a constant depending only on d, for any function g : Sd → R such that for all x, y ∈ S
d we

have |g(x)| ≤ η and |g(x)− g(y)| ≤ η‖x− y‖2, and ‖∇g(x)‖2 ≤ η and ‖∇g(x)−∇g(y)‖2 ≤ L‖x− y‖2, and
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g is even, there exists ĝ ∈ F2 such that ‖ĝ‖F2 ≤ δ and

sup
x∈Sd

|ĝ(x)− g(x)| ≤ C(d)η
(
δ

η

)−2/(d+1)

log

(
δ

η

)
, (25)

sup
x∈Sd

‖∇ĝ(x)−∇g(x)‖2 ≤ C(d)(L+ η)

(
δ

η

)−2/(d+1)

log

(
δ

η

)
,

where C(d) are constants depending only on the dimension d.

Proof. We will use some ideas and notation of the proof of Prop. 3 of Bach [2017a]. We can decompose
g(x) =

∑
k≥0 gk(x), where gk(x) = N(d, k)

∫
Sd
g(y)Pk(〈x, y〉)dτ(y). gk is the k-th spherical harmonic of g

and Pk is the k-th Legendre polynomial in dimension d + 1. Analogously, for any i between 1 and d + 1
we can decompose ∇ig(x) =

∑
k≥0(∇ig)k(x), where (∇ig)k(x) = N(d, k)

∫
Sd
∇ig(y)Pk(〈x, y〉)dτ(y). Define

∇̃ig : Rd+1 → R to be the spherical harmonic extension of ∇ig.

Like Bach [2017a], we define ĝ(x) =
∫
Sd
σ(〈θ, x〉)ĥ(θ)dτ(θ), where ĥ(x) =

∑
k,λk 6=0 λ

−1
k rkgk(x) for some

r ∈ (0, 1). Equivalently, ĝ(x) =
∑
k,λk 6=0 r

kgk(x). Since gk is a homogeneous polynomial of degree k (Atkinson
and Han [2012], Definition 2.7), we have that ĝ(x) =

∑
k,λk 6=0 gk(rx) = g(rx).

With this choice of ĝ, the first equation of (25) holds by Prop. 3 of Bach [2017a].

Using this characterization of ĝ, by the chain rule we compute the Riemannian gradient

∇ĝ(x) = ∂ĝ(x)− 〈∂ĝ(x), x〉x = ∂(g ◦ (y → ry))(x)− 〈∂(g ◦ (y → ry))(x), x〉x = r∂g(rx)− r〈∂g(rx), x〉x

The polynomial power series extension ∇̃g of ∇g is by definition equal to ∇g(x) = ∂g(x) − 〈∂g(x), x〉x =∑
k≥0(∂g)k(x)−〈(∂g)k(x), x〉x for x ∈ S

d. Since the terms of
∑
k≥0(∂g)k(x)−〈(∂g)k(x), x〉x are polynomials

on x, this expression is equal to the polynomial power series of ∇g by uniqueness of the polynomial power
series. Thus, for all x ∈ R

d+1,

∇̃g(x) =
∑

k≥0

(∂g)k(x)− 〈(∂g)k(x), x〉x =
∑

k≥0

∂(gk)(x)− 〈∂(gk)(x), x〉x = ∂g(x)− 〈∂g(x), x〉x. (26)

The second equality follows from Lemma 8, which states that ∂(gk) = (∂g)k. Hence, by (26), we have

r∂g(rx) − r〈∂g(rx), rx〉rx = r∇̃g(rx) = r
∑
k≥0(∇g)k(rx) = r

∑
k≥0 r

k(∇g)k(x). Thus, in analogy with
Bach [2017a], we have

r∂g(rx)− r〈∂g(rx), rx〉rx = r
∑

k≥0

rk(∇g)k(x) = r
∑

k≥0

rkN(d, k)

∫

Sd

∇g(y)Pk(〈x, y〉)dτ(y)

= r

∫

Sd

∇g(y)


∑

k≥0

rkN(d, k)Pk(〈x, y〉)


 dτ(y) = r

∫

Sd

∇g(y) 1− r2
(1 + r2 − 2r(〈x, y〉))(d+1)/2

dτ(y).

Hence, keeping the analogy with Bach [2017a] (and Bourgain and Lindenstrauss [1988], Equation 2.13), we
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obtain that

∥∥∇g(x)− r∂g(rx)− r〈∂g(rx), rx〉rx
∥∥
2
=

∥∥∥∥∥

∫

Sd

(∇g(x)− r∇g(y)) 1− r2
(1 + r2 − 2r(〈x, y〉))(d+1)/2

dτ(y)

∥∥∥∥∥
2

≤
∫

Sd

‖∇g(x)− r∇g(y)‖2
1− r2

(1 + r2 − 2r(〈x, y〉))(d+1)/2
dτ(y)

≤
∫

Sd

‖∇g(x)−∇g(y)‖2
1− r2

(1 + r2 − 2r(〈x, y〉))(d+1)/2
dτ(y) + (1− r)

∫

Sd

‖∇g(y)‖2
1− r2

(1 + r2 − 2r(〈x, y〉))(d+1)/2
dτ(y)

≤ C2(d)(1− r)Lip(∇g)
∫ 1

0

td

(1− r)d+1 + td+1
dt+ (1− r)

∫

Sd

(
sup
x∈Sd

‖∇g(x)‖2
)
∑

k≥0

rkN(d, k)Pk(〈x, y〉)


 dτ(y)

≤ C3(d)Lip(∇g)(1− r) log
(
1/(1− r)

)
+ (1− r)

(
sup
x∈Sd

‖∇g(x)‖2
)
≤ C4(d)(1− r)(η + L log(1/(1− r)))

In the last equality we have used that ∂ig is L-Lipschitz by assumption. And

‖∇g(x)−∇ĝ(x)‖22 = ‖∇g(x)− r∂g(rx)− r〈∂g(rx), x〉x‖22
≤ ‖∇g(x)− r∂g(rx)− r〈∂g(rx), x〉x‖22 + ‖(1− r2)r〈∂g(rx), x〉x‖22
≤ ‖∇g(x)− r∂g(rx)− r〈∂g(rx), rx〉rx‖21 ≤ (C4(d)(1− r)(η + L log(1/(1− r))))2.

(27)

In the second equality we have used that ∇g(x) − ∇ĝ(x) is orthogonal to x (because it belongs to the
tangent space at x), and the Pythagorean theorem. As in Bach [2017a], for δ > 0 large enough the argument
is concluded by taking 1 − r = (C1(d)η/δ)

2/(d+1) ∈ (0, 1), which means that the (square root of the)

error in the right-hand side of (27) is C4(d)(C1(d)η/δ)
2/(d+1)

(
η + L log(C1(d)η/δ)

−2/(d+1)
)
≤ C5(d)(L +

η)(δ/η)−2/(d+1) log(δ/η).

Using that g is η-Lipschitz, by the argument of Bach [2017a] we have that ‖ĥ‖L2(Sd) ≤ C1(d)η(1− r)(−d−1)/2,

where C1(d) is a constant that depends only on d and consequently ‖ĝ‖F2 ≤ C1(d)η(1− r)(−d−1)/2. And for
our choice of r, this bound becomes ‖ĝ‖F2

≤ C1(d)η((C1(d)η/δ)
2/(d+1))(−d−1)/2 = δ.

Lemma 8. For g : Sd → R with spherical harmonic decomposition g(x) =
∑
k≥0 gk(x) and with partial

derivative with spherical harmonic decomposition ∂ig(x) =
∑
k≥0(∂ig)k(x), we have (∂ig)k(x) = ∂i(gk)(x).

Proof. Remark that the spherical harmonics on S
d can be characterized as the restrictions of the homogeneous

harmonic polynomials on R
d+1 (Atkinson and Han [2012], Definition 2.7). k-th degree homogeneous

polynomials are of sums of monomials of the form αi1,...,irx
i1
1 · · · · · xirr , where

∑r
l=1 il = k, and harmonic

polynomials are those such that ∆p =
∑d+1
i=1

∂2p
∂x2

i
= 0. Thus, for all k ≥ 0, gk can be seen as the restrictions

to S
d of homogeneous harmonic polynomials of degree k.

Notice that the i-th partial derivative of a homogeneous harmonic polynomial p of degree k is a homogeneous
harmonic polynomial of degree k − 1. That is because by commutation of partial derivatives, we have

∆(∂ip) =

d+1∑

j=1

∂jj∂ip =

d+1∑

j=1

∂i∂jjp = ∂i(∆p) = 0.

Thus, ∂i(gk) are homogeneous harmonic polynomials of degree k − 1, which means that their restrictions to
S
d are spherical harmonics. Since ∂ig(x) = ∂i(

∑
k≥0 gk(x)) =

∑
k≥0 ∂i(gk)(x) and the spherical harmonic

decomposition is unique, ∂i(gk) must be precisely the spherical harmonic components of ∂ig.
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Corollary 2. Let F = BF1(β). Let Assumption 3 hold. (i) When ν̂ is the F1-SD estimator (2) and the
assumptions of Theorem 2 hold, we can choose the inverse temperature β > 0 such that with probability at
least 1− δ we have that SDBd+1

F1

(ν, ν̂) is upper-bounded by

Õ

((
1 +

√
log(1/δ)

)
J(L+ η)(ηJ)

2
k+1 d

1
k+3n− 1

k+3

)

where the notation Õ indicates that we overlook logarithmic factors and constants depending only on the
dimension. (ii) When ν̂ is the unbiased KSD estimator (6) and the assumptions of Theorem 3 hold, β > 0
can be chosen so that with probability at least 1− δ we have that KSD(ν, ν̂) is upper-bounded by

Õ

(
δ−

1
k+3
(
J(L+ η)

) 2(k+1)
k+3 (ηJ)

4
k+3n− 1

k+3

)
.

Proof. We will use Theorem 2. Let g : Sd → R be defined as g(x) =
∑J
j=1 gj(x) =

∑J
j=1 ϕj(Ujx), where

ϕj : {x ∈ R
k+1|‖x‖2 ≤ 1} → R.

Let ϕ̂j : S
k → R be the restriction of ϕj to S

k. By Lemma 7, there exists ψ̂j : S
k → R such that ψ̂j ∈ F2 and

‖ψ̂j‖F2 ≤ β/J , and

sup
x∈Sd

|ϕ̂j(x)− ψ̂j(x)| ≤ C(k)(L+ η)

(
β

ηJ

)−2/(k+1)

log

(
β

ηJ

)
, (28)

sup
x∈Sd

‖∇ϕ̂j(x)−∇ψ̂j(x)‖2 ≤ C(k)(L+ η)

(
β

ηJ

)−2/(k+1)

log

(
β

ηJ

)

Moreover, if we denote by ψj : {x ∈ R
k+1|‖x‖2 ≤ 1} → R the 1-homogeneous extension of ψ̂j , we can write

the (Euclidean) gradient of ψj at the point rx (with r ∈ [0, 1], x ∈ S
d) in terms of the (Riemannian) gradient

of ψ̂j at x:

∇ψj(rx) = r∇ψ̂j(x) + ψ̂j(x)

Thus, by Equation 28, and renaming C(k),

sup
‖x‖2≤1

‖∇ϕj(x)−∇ψj(x)‖2 ≤ sup
x∈Sd

‖∇ϕ̂j(x)−∇ψ̂j(x)‖2 + sup
x∈Sd

|ϕ̂j(x)− ψ̂j(x)|

≤ C(k)(L+ η)

(
β

ηJ

)−2/(k+1)

log

(
β

ηJ

)

Hence, if we define g̃j : Sd → R as g̃j(x) := ψj(Ujx), we check that g̃j belongs to F1: if ψ̂j is such that

∀x ∈ S
d, ψ̂j(x) =

∫
Sk
σ(〈θ, x〉)dγ(θ), then ψj(x) =

∫
Sk
σ(〈θ, x〉)dγ(θ) when ‖x‖2 ≤ 1, and

g̃j(x) = ψj(Ujx) =

∫

Sk

σ(〈θ, Ujx〉)dγ(θ) =
∫

Sk

σ(〈U⊤
j θ, x〉)dγ(θ) =

∫

Sd

σ(〈θ′, x〉)dγ′(θ′)

This also shows that g̃j has F1 norm ‖g̃j‖F1 ≤ ‖ψ̂j‖F2 ≤ β/J , which would mean that g̃ =
∑J
j=1 g̃j ∈ F1

and ‖g̃‖F1
≤ β. Moreover,

sup
x∈Sd

‖∇g̃j(x)−∇gj(x)‖2 = sup
x∈Sd

‖∇(ψj ◦ Uj)(x)−∇(ϕj ◦ Uj)(x)‖2

≤ sup
x∈Sd

‖U⊤
j (∇ψj(Ujx)−∇ϕj(Ujx))‖2 = sup

x∈Sd

‖∇ψj(Ujx)−∇ϕj(Ujx)‖2

≤ sup
‖y‖2≤1

‖∇ψj(y)−∇ϕj(y)‖2 ≤ C(k)(L+ η)

(
β

ηJ

)−2/(k+1)

log

(
β

ηJ

)
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The first inequality holds because the Riemannian gradient is the orthogonal projection of the Euclidean
gradient of the extension, and orthogonal projections are 1-Lipschitz. The following equality holds because
Uj has orthonormal rows. The second inequality holds because for all x ∈ S

d, ‖Ujx‖2 ≤ ‖x‖2 = 1 by the fact
that Uj has orthonormal rows, and the third inequality holds by (28).

Thus, for part (i), we have

inf
f∈BF1

Eν

[∥∥∥∥− β∇f(x)−∇ log

(
dν

dτ
(x)

)∥∥∥∥
2

]
≤ inf
f∈BF1

sup
x∈Sd

∥∥∥∥β∇f(x)−∇ log

(
dν

dτ
(x)

)∥∥∥∥
2

≤ sup
x∈Sd

‖∇g̃(x)−∇g(x)‖2 ≤
J∑

j=1

sup
x∈Sd

‖∇g̃j −∇gj‖2 ≤ C(k)J(L+ η)

(
β

ηJ

)−2/(k+1)

log

(
β

ηJ

)

Plugging this into Theorem 2 and using that supf∈BF1
{‖∂if‖∞|1 ≤ i ≤ d+ 1} ≤ 1, we obtain

DKL(ν||ν̂) ≤
4
√
d+ 1(β + C2

√
d+ 1 + d)√

n
+ 2(β + d+ 1)

√
(d+ 1) log(d+1

δ )

2n

+ C(k)J(L+ η)

(
β

ηJ

)−2/(k+1)

log

(
β

ηJ

)
.

If we optimize this bound with respect to β as in the proof of Corollary 1, we obtain

4(C2

√
d+ 1 + d)√
n

+ 2(d+ 1)

√
log(d+1

δ )

2n
+

(
2B

k + 1

) k+1
k+3
(
A√
n

) 2
k+3

+B
k+1
k+3

(
A(k + 1)

2
√
n

) 2
k+3

log




1

ηJ

(
2B
√
n

A(k + 1)

) k+1
k+3


 ,

and the optimal β is
(
2B
√
n/(A(k + 1))

) k+1
k+3 , where

A = 4
√
d+ 1 +

√
2(d+ 1) log((d+ 1)/δ), B = C(k)J(L+ η)(ηJ)

2
k+1 .

For part (ii), we plug

inf
f∈BF1

Eν

[∥∥∥∥− β∇f(x)−∇ log

(
dν

dτ
(x)

)∥∥∥∥
2

2

]
≤ inf
f∈BF1

sup
x∈Sd

∥∥∥∥β∇f(x)−∇ log

(
dν

dτ
(x)

)∥∥∥∥
2

2

≤ sup
x∈Sd

‖∇g̃(x)−∇g(x)‖22 ≤




J∑

j=1

sup
x∈Sd

‖∇g̃j −∇gj‖2




2

≤
(
C(k)J(L+ η)

(
β

ηJ

)−2/(k+1)

log

(
β

ηJ

))2

into Theorem 3, and we obtain (using the notation of Theorem 3) that with probability at least 1− δ,

KSD(ν, ν̂) ≤ 2√
δn

((βC1 + d)2C2 + 2C3(βC1 + d) + C4) + C2

(
C(k)J(L+ η)

(
β

ηJ

)−2/(k+1)

log

(
β

ηJ

))2

≤ 2√
δn

(
(βC1 + d+ C3)C2 +

∣∣∣∣2C3(d− C2) + C4 −
C2

3

d2
C2

∣∣∣∣

)2

+ C2

(
C(k)J(L+ η)

(
β

ηJ

)−2/(k+1)

log

(
β

ηJ

))2

=
(Aβ +B)2√

n
+D2β−4/(k+1) log

(
β

ηJ

)2

,
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where A,B,D are defined appropriately. If we set β to minimize Aβ+B
n1/4 + Dβ−2/(k+1), we obtain β =

(
2n1/4D
A(k+1)

) k+1
k+3

, and the right-hand side becomes


A 2

k+3

(
2D

k + 1

) k+1
k+3

n− 1
2(k+3) +

B

n1/4




2

+D2

(
A(k + 1)

2D

) 4
k+3

n− 1
k+3 log




1

ηJ

(
2n1/4D

A(k + 1)

) k+1
k+3




2

.

B Qualitative convergence results

B.1 F1 EBMs dynamics

For a (Fréchet-) differentiable functional F : P(Rd+2) → R, the Wasserstein gradient flow (µt)t≥0 of F is
the generalization of gradient flows to the metric space P(Rd+2) endowed with the Wasserstein distance
W 2

2 (µ1, µ2) := infπ∈Π(µ1,µ2)

∫
Rd+2×Rd+2 ‖x − y‖22 dπ(x, y) [Ambrosio et al., 2008]. One characterization of

Wasserstein gradient flows is as the pushforward µt = (Φt)#µ0 of the initial measure µ0 by the evolution
operator Φt which maps initial conditions (w0, θ0) to the solution at time t of the ODE:

d(w, θ)

dt
= −∇

(
δ

δµ
F (µt)

)
(w, θ),

where δ
δµF (µ) : R

d+2 → R is the Fréchet differential or first variation of F at µ.

For any m > 0, we define the m-particle gradient flow t → um(t) = ((w
(i)
t , θ

(i)
t ))mi=1 as the solution of the

ODE

d(w
(i)
t , θ

(i)
t )

dt
= −∇

(
δ

δµ
F (µm,t)

)
(w

(i)
t , θ

(i)
t ),

where µm,t =
1
m

∑m
i=1 δ(w(i)

t ,θ
(i)
t )

. For the functional F defined in (9), we have that ∇
(
δ
δµF (µm,t)

)
(w

(i)
t , θ

(i)
t )

is equal to 〈dR( 1
m

∑m
j=1 Φ(w

(j)
t , θ

(j)
t )),∇Φ(w(i)

t , θ
(i)
t )〉+λ(w(i)

t , θ
(i)
t ), which is equal to m times the gradient of

the function G((w(i), θ(i))mi=1) := F ( 1
m

∑m
j=1 Φ(w

(j), θ(j))) with respect to (w(i), θ(i)). Thus, um(t) is simply
the gradient flow of G (up to a time reparametrization).

Theorem 6. [Chizat and Bach [2018], Thm. 3.3; informal] Let R be a convex differentiable loss defined on
a Hilbert space with differential dR Lipschitz on bounded sets and bounded on sublevel sets which satisfies
a technical Sard-type regularity assumption. Let (µt)t≥0 be a Wasserstein gradient flow corresponding to

F in (9), such that the support of µ0 is contained in B(0, rb) and separates the spheres raS
d+1 and rbS

d+1

for some 0 < ra < rb. If (µt)t converges to µ∞ in W2, then µ∞ is a global minimizer of F . Moreover,
if (µm,t)t≥0 is the empirical measure of (um(t))t≥0 and µm,0 → µ0 weakly, we have limt,m→∞ F (µm,t) =
limm,t→∞ F (µm,t) = F (µ∞).

Theorem 6 states that when the number m of particles (read neurons) goes to infinity, the function value of
the gradient flow of the function G((w(i), θ(i))mi=1) converges to a global optimum of F over P(Rd+2). Remark
that Algorithm 1 corresponds to the gradient descent algorithm on G((w(i), θ(i))mi=1) with noisy gradient
estimates. Thus, in the small stepsize and exact gradient limits, the iterates of Algorithm 1 approximate the
gradient flow of G((w(i), θ(i))mi=1). This reasoning provides an informal justification that Algorithm 1 should
have a sensible behavior in the appropriate limits.
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Observation 1. While Theorem 6 assumes that R is defined on a Hilbert space, this assumption is not

convenient in our case because R(f) = 1
n

∑n
i=1 f(xi) + log

(∫
K
e−f(x)dx

)
is not well defined on L2(Rd), as

it involves pointwise evaluations. However, following the argument of Chizat and Bach [2018], up to the
technical Sard-type regularity assumption, it suffices to show that F (µ) is a convex differentiable loss with a
first variation δ

δµF (µ) such that

• The restriction of δ
δµF (µ) to (w, θ) ∈ S

d+1 fulfills

∥∥∥∥ δ
δµF (µ)(·) − δ

δµF (µ
′)(·)

∥∥∥∥
C1(Sd+1)

≤ L‖h2(µ) −

h2(µ
′)‖BL, where h2 :M(Rd+2)→M(Sd+1) is defined as

∫
Sd+1 ϕ(x) dh2(µ)(x) =

∫
Rd+2 |y|2ϕ(y/|y|) dµ(y)

and ‖ · ‖BL is the bounded Lipschitz norm.

• The restriction of δ
δµF (µ) to (w, θ) ∈ S

d+1 is bounded on sublevel sets of F (µ) in L∞ norm.

To apply Theorem 6, we must check that the two statements in Observation 1 hold. Since for the maximum
likelihood loss we have:

δ

δµ
F (µ)(w, θ) =

1

n

n∑

i=1

Φ(w, θ)(xi)−
∫
K
Φ(w, θ)(x) exp

(
−
∫
Rd+2 Φ(w

′, θ′)(x)dµ(w′, θ′)
)
dτ(x)

∫
K
exp

(
−
∫
Rd+2 Φ(w′, θ′)(x)dµ(w′, θ′)

)
dτ(x)

+ λ(w2 + ‖θ‖22),

we obtain that for all (w, θ) ∈ R
d+2 and µ, µ′ ∈ P(Rd+2),

δ

δµ
F (µ)(w, θ)− δ

δµ
F (µ′)(w, θ)

=−
∫
K
Φ(w, θ)(x) exp

(
−
∫
Rd+2 Φ(w

′, θ′)(x)dµ(w′, θ′)
)
dτ(x)

∫
K
exp

(
−
∫
Rd+2 Φ(w′, θ′)(x)dµ(w′, θ′)

)
dτ(x)

+

∫
K
Φ(w, θ)(x) exp

(
−
∫
Rd+2 Φ(w

′, θ′)(x)dµ′(w′, θ′)
)
dτ(x)

∫
K
exp

(
−
∫
Rd+2 Φ(w′, θ′)(x)dµ′(w′, θ′)

)
dτ(x)

=

∫
K
Φ(w, θ)(x) exp

(
−
∫
Rd+2 Φ(w

′, θ′)(x)dµt(w′, θ′)
)(∫

Rd+2 Φ(w
′′, θ′′)(x)d(µ− µ′)(w′′, θ′′)

)
dτ(x)

∫
K
exp

(
−
∫
Rd+2 Φ(w′, θ′)(x)dµt(w′, θ′)

)
dτ(x)

−
∫
K
Φ(w, θ)(x) exp

(
−
∫
Rd+2 Φ(w

′, θ′)(x)dµt(w′, θ′)
)
dτ(x)

∫
K
exp

(
−
∫
Rd+2 Φ(w′, θ′)(x)dµt(w′, θ′)

)
dτ(x)

·
∫
K

∫
Rd+2 Φ(w

′′, θ′′)(x)d(µ− µ′)(w′′, θ′′) exp
(
−
∫
Rd+2 Φ(w

′, θ′)(x)dµt(w′, θ′)
)
dτ(x)

∫
K
exp

(
−
∫
Rd+2 Φ(w′, θ′)(x)dµt(w′, θ′)

)
dτ(x)

where µt = tµ+(1−t)µ′. For (w, θ) ∈ S
d+1 and for all x ∈ K, we have |Φ(w, θ)(x)| = |wσ(〈θ, x〉)| ≤ diam(K)/2

and ‖∇(w,θ)Φ(w, θ)(x)‖2 = ‖(σ(〈θ, x〉), w1(〈θ, x〉))‖2 ≤
√

diam(K)2 + 1, which means that ‖Φ(·)(x)‖C1 ≤√
diam(K)2 + 1. Moreover, for x ∈ K,

∫
Rd+2 Φ(w

′′, θ′′)(x)d(µ − µ′)(w′′, θ′′) =
∫
Sd+1 Φ(w

′′, θ′′)(x)d(h2(µ) −
h2(µ

′))(w′′, θ′′) ≤ diam(K)‖h2(µ)− h2(µ′)‖BL/2. Hence,

∥∥∥∥
δ

δµ
F (µ)(·)− δ

δµ
F (µ′)(·)

∥∥∥∥
C1(Sd+1)

≤ 2max
x∈K
‖Φ(·)(x)‖C1(Sd+1)

∣∣∣∣
∫

Rd+2

Φ(w′′, θ′′)(x)d(µ− µ′)(w′′, θ′′)

∣∣∣∣

≤
√

diam(K)2 + 1diam(K)‖h2(µ)− h2(µ′)‖BL

33



This shows the first point in Observation 1. For the second point, we have the following bound:
∥∥∥∥
δ

δµ
F (µ)(w, θ)

∥∥∥∥
∞
≤ 2 sup

(w,θ)∈Sd+1

|Φ(w, θ)(x)|+ λ

B.2 F2 EBMs dynamics

F2 is an RKHS with kernel k(x, y) =
∫
Sd
σ(〈x, θ〉)σ(〈y, θ〉)dp(θ) and for the ReLU unit this kernel has a

closed-form expression [Cho and Saul, 2009]. Thus, one approach to optimize EBMs with energies over
F2-balls is to apply the representer theorem and to write an optimizer f ∈ F2 as f(·) =∑n

i=1 αik(xi, ·) for
some α ∈ R

n, as well as ‖f‖2F2
=
∑n
i=1 αiαjk(xi, xj). Then, f becomes a finite-dimensional linear function

of α, and thus any loss F that is convex in f is also convex on α. However, this approach scales quadratically
with the number of samples and in practical terms, it is quite far from the way neural networks are typically
trained.

The approach that we use to optimize EBMs over F2-balls is to sample random features (θi)
m
i=1 on S

d from a
probability measure with density q(·) and consider an approximate kernel km(x, y) = 1

m

∑m
i=1

1
q(θi)

σ(〈x, θi〉)σ(〈y, θi〉)
[Rahimi and Recht, 2008, Bach, 2017b]. The functions in the finite dimensional RKHS Hm with kernel km are
of the form h(x) =

∑m
i=1 vi(q(θi)m)−1/2σ(〈x, θi〉) with norm ‖h‖Hm = ‖v‖2, or through a change of variables,

h(x) = 1
m

∑m
i=1 wiσ(〈x, θi〉) with norm ‖h‖Hm = ‖(wi

√
q(θi))

m
i=1‖2/

√
m.

Thus, learning a distribution with log-densities restricted in a ball of Hm reduces to learning the outer layer
weights (wi)

n
i=1. Namely, for R as in Subsec. 5.1, we optimize the loss

G((wi)
m
i=1) := R


 1

m

m∑

i=1

wiσ(〈θi, ·〉)


+

λ

m

m∑

i=1

w2
i q(θi),

which is convex. The gradient flow for G (with scaled gradient m∇iG((wj)mj=1)) is

dwi
dt

=

〈
dR


 1

m

m∑

j=1

wjσ(〈θj , ·〉)


 , σ(〈θi, ·〉)

〉
+ 2λwiq(θi), (29)

and we can approximate it by gradient descent, which converges to the optimum (w⋆i )
m
i=1 if the gradients are

exact and the stepsize is well chosen.

The connection between learning in Hm balls and learning in F2 balls is not straightforward. Applying
Proposition 2 of Bach [2017b] and making use of the eigenvalue decay of the F2 kernel on S

d [Bach, 2017a],

for an appropriate choice of q we have that for all f ∈ BF2
, there exists f̂ ∈ Hm with ‖f̂‖Hm

≤ 2 such that

‖f − f̂‖L2(p) ≤ O
(
(m/ log(m))−(d+3)/2

)
. This L2 error bound is sufficient to produce a quantitative result

for least squares regression. However, for the three losses considered in this paper we would need bounds
for ‖f − f̂‖∞ and ‖∇f −∇f̂‖∞, which do not seem to be available (Bach [2017b] does provide a bound on

‖f − f̂‖∞, but under the assumption that kernel eigenfunctions have a common L∞ norm bound, which does
not hold for spherical harmonics in S

d).

Nonetheless, a mean-field qualitative approach analogous to the F1 case is still possible (see Proposition 2.6
of Chizat and Bach [2018]). The learning objective in F2 can be written as

F (h) := R

(∫

Sd

σ(〈θ, x〉)h(θ)dτ̃(θ)
)
+ λ

∫

Sd

h2(θ)dτ̃(θ),

and the mean-field dynamics is

dht(θ)

dt
=−

〈
dR

(∫

Sd

σ(〈θ′, ·〉)ht(θ′)dτ̃(θ′)
)
, σ(〈θ, ·〉)

〉
− 2λht(θ) (30)
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Figure 6: (Left column) Test
cross entropy and test KSD for
model trained with KSD at dif-
ferent training sample sizes n,
in d = 15. The teacher model
has one neuron of positive weight
w∗

1 = 10 and random position in
the hypersphere. (Right column)
Test cross entropy and test F1-
SD for model trained with F1-SD
at different training sample sizes
n, in d = 10. The teacher model
has one neuron of positive weight
w∗

1 = 10 and random position in
the hypersphere.

If we choose q(·) = 1, we have that (29) is the m-particle approximation of (30). Let h⋆ be the global
minimizer of F , which is reached at a linear rate by (30) because F is strongly convex. Skipping through the
details, the argument of Lemma C.15 of Chizat and Bach [2018] could be adapted to yield:

lim
t,m→∞

G((wt,i)
m
i=1) = lim

m,t→∞
G((wt,i)

m
i=1) = lim

m→∞
G((w⋆i )

m
i=1) = F (h⋆).

C Additional experiments

In this section, we show plots corresponding to additional experiments. Figure 6 shows results for KSD and
F1-SD training in the case J = 1, w∗

1 = 10. Compared to the plots for J = 1, w∗
1 = 2 shown in Figure 1, the

separation between the F1 and F2 EBMs becomes much more apparent. Figure 7 shows results for KSD and
F1-SD training in the case J = 2, w∗

1 = −2.5. The separation between the F1 and F2 EBMs is smaller than
in the case J = 2, w∗

1 = −5 shown in Figure 2.

D Duality theory for F1 and F2 MLE EBMs

In this section we present the dual problems of minf∈F H(νn, νf ) (i.e. problem (1)) for the cases F = F1,F2

(Subsec. D.1), F = BF1(β) (Subsec. D.2) and F = BF2(β) (Subsec. D.3). The dual problems take the form
of entropy maximization under hard constraints, L∞ and L2 moment penalizations, respectively. The tools
used involve a generalized minimax theorem and Fenchel duality, which was also used for results of the same
flavor in finite dimensions (c.f. Mohri et al. [2012]). The proofs are in App. E.
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Figure 7: (Left column) Test
cross entropy and test KSD for
model trained with KSD at dif-
ferent training sample sizes n, in
d = 15. The teacher model has
two neurons of negative weights
w∗

1 , w
∗
2 = −2.5 and random posi-

tions in the hypersphere. (Right
column) Test cross entropy and
test F1-SD for model trained with
F1-SD at different training sam-
ple sizes n, in d = 10. The
teacher model has two neurons of
negative weights w∗

1 , w
∗
2 = −2.5

and random positions in the hy-
persphere.

D.1 Duality for the unconstrained problem

Consider the following entropy maximization problem under generalized moment constraints:

min
ν∈P(K)

β−1DKL(ν||τ)

s.t. ∀θ ∈ S
d,

∫
σ(〈θ, x〉) dν(x) = 1

n

n∑

i=1

σ(〈θ, xi〉),
(31)

recalling that τ is the uniform probability measure over K and letting β > 0 be arbitrary. The constraints
in this problem can be interpreted either (i) as an equality constraint in C(Sd), i.e., the set of continuous
functions on S

d, or (ii) as an equality constraint in L2(Sd), i.e., the set of square-integrable functions on S
d.

Each interpretation yields a different dual problem.

By the Riesz-Markov-Kakutani representation theorem, the set of signed Radon measuresM(Sd) can be seen
as the continuous dual of C(Sd). Hence, in the case (i), the Lagrangian for problem (31) is L1 :M(K)×M(Sd)×
C(K)×R→ R defined as L1(ν, µ, g, λ) =

∫
log
(
dν
dτ (x)

)
dν(x)+

∫ (∫
σ(〈θ, x〉) dν(x)− 1

n

∑n
i=1 σ(〈θ, xi〉)

)
dµ(θ)−

∫
g(x)dν(x) + λ

(∫
dν(x)− 1

)
, and the dual problem is

sup
µ∈M(Sd)

− 1

n

n∑

i=1

∫
σ(〈θ, xi〉) dµ(θ)−

1

β
log

(∫
exp

(
−β
∫
σ(〈θ, x〉) dµ(θ)

)
dτ(x)

)
(32)

which is equivalent to the MLE problem (1) when F = F1.

Let τ̃ to denote the uniform probability measure over S
d. In the case (ii), the Lagrangian for prob-

lem (31) is L2 : M(K) × L2(Sd) × C(K) × R → R defined as L2(ν, h, g, λ) =
∫
log
(
dν
dτ (x)

)
dν(x) +

∫ (∫
σ(〈θ, x〉) dν(x)− 1

n

∑n
i=1 σ(〈θ, xi〉)

)
h(θ) dτ̃(θ)−

∫
g(x)dν(x)+λ

(∫
dν(x)− 1

)
, and the dual problem is

sup
h∈L2(Sd)

− 1

n

n∑

i=1

∫
σ(〈θ, xi〉)h(θ) dτ̃(θ)−

1

β
log

(∫
exp

(
−β
∫
σ(〈θ, x〉)h(θ) dτ̃(θ)

)
dτ(x)

)
(33)

which is equivalent to the MLE problem (1) when F = F2.

The following theorem shows that problems (31)-(32)-(33) have the same optimal value.
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Theorem 7. Strong duality holds between the entropy maximization problem (31) and each of the two dual
problems (32)-(33).

D.2 Duality for the F1-ball constrained problem

Using νn = 1
n

∑n
i=1 δxi

to denote the empirical measure, consider the following problem, which can be seen
as an L∞-penalized version of (31):

min
ν∈P(K)

β−1DKL(ν||τ) + max
θ∈Sd

∣∣∣∣
∫
σ(〈θ, x〉) d(ν − νn)(x)

∣∣∣∣ (34)

As shown in Theorem 8, the dual of this problem is a modified version of (32) in which µ is constrained to
have TV norm bounded by 1:

max
µ∈M(Sd)
|µ|TV≤1

− 1

n

n∑

i=1

∫
σ(〈θ, xi〉) dµ(θ)−

1

β
log

(∫
exp

(
−β
∫
σ(〈θ, x〉) dµ(θ)

)
dτ(x)

)

(35)

Remark that by the definition of F1, the problem (35) is equivalent to MLE problem (1) in the case
F = BF1

(β).

Theorem 8. The problem (35) is the dual of the problem (34), and strong duality holds. Moreover, the
solution ν⋆ of (35) is unique and its density satisfies

dν⋆

dτ
(x) =

1

Zβ
exp

(
−β
∫
σ(〈θ, x〉) dµ⋆(θ)

)
,

where µ⋆ is a solution of (34) and Zβ is a normalization constant.

D.3 Duality for the F2-ball constrained problem

The following problem can be seen as an L2-penalized version of (31):

min
ν∈P(K)

β−1DKL(ν||τ) +
(∫

Sd

(∫
σ(〈θ, x〉) d(ν − νn)(x)

)2

dτ̃(θ)

)1/2

(36)

And as shown in Theorem 9, the dual of this problem is a modified version of (33) in which h is constrained
to have L2 norm bounded by 1:

max
h∈L2(Sd)
‖h‖L2≤1

− 1

n

n∑

i=1

∫
σ(〈θ, xi〉)h(θ) dτ̃(θ)−

1

β
log

(∫
exp

(
−β
∫
σ(〈θ, x〉)h(θ) dτ̃(θ)

)
dτ(x)

)

(37)

Remark that by the definition of F2, the problem (35) is equivalent to MLE problem (1) in the case
F = BF2

(β).

Theorem 9. The problem (37) is the dual of the problem (36), and strong duality holds. Moreover, the
solution ν⋆ of (37) is unique and its density satisfies

dν⋆

dτ
(x) =

1

Zβ
exp

(
−β
∫
σ(〈θ, x〉) h⋆(θ)dτ̃(θ)

)
,

where h⋆ is a solution of (36) and Zβ is a normalization constant.
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E Proofs of App. D

Theorem 10. [Kneser [1952]] Let X be a non-empty compact convex subset of a locally convex topological
vector space space E and Y a non-empty convex subset of a locally convex topological vector space space F .
Let the function f : X × Y → R be such that:

(i) For each y ∈ Y , the function x 7→ f(x, y) is upper semicontinuous and concave,

(ii) For each x ∈ X, the function y 7→ f(x, y) is convex.

Then we have

sup
x∈X

inf
y∈Y

f(x, y) = inf
y∈Y

max
x∈X

f(x, y).

Lemma 9. The KL divergence DKL(ν||τ) =
∫
log
(
dν
dτ

)
dν is convex and lower semicontinuous in ν.

Proof. See Theorem 1 of Posner [1975].

Observation 2. Notice that for any functional f :M(K)→ R, we have

min
ν∈P(K)

f(ν) = min
ν∈P(K)

f(ν)−
∫
g(x)dν(x) + λ

(∫
dν(x)− 1

)

= min
ν∈M(K)

sup
λ∈R,g∈C(K):g≥0

f(ν)−
∫
g(x)dν(x) + λ

(∫
dν(x)− 1

)
.

Theorem 7. Strong duality holds between the entropy maximization problem (31) and each of the two dual
problems (32)-(33).

Proof. We start with (32). First, we prove that it is indeed the dual problem of (31). As stated in the main
text, the problem (31) admits a Lagrangian L1 :M(K)×M(Sd)× C(K)× R→ R defined as

L1(ν, µ, g, λ) = β−1

∫
log

(
dν

dτ
(x)

)
dν(x) +

∫ 

∫
σ(〈θ, x〉) dν(x)− 1

n

n∑

i=1

σ(〈θ, xi〉)


 dµ(θ)−

∫
g(x)dν(x)

+ λ

(∫
dν(x)− 1

)

The Lagrange dual function is

F1(µ, g, λ) = inf
ν∈M(K)

L1(ν, µ, g, λ) = −β−1

∫
exp

(
−β
(∫

σ(〈θ, x〉) dµ(θ) + g(x)− λ
)
− 1

)
dτ(x)

− 1

n

n∑

i=1

∫
σ(〈θ, xi〉) dµ(θ)− λ,

(38)

where we have used that at the optimal ν, the first variation of L1 w.r.t. ν must be zero:

0 =
d

dν
L1(ν, µ, g, λ) = β−1 log

(
dν

dτ
(x)

)
+ β−1 +

∫
σ(〈θ, x〉) dµ(θ)− g(x) + λ,

=⇒ dν

dτ
(x) = exp

(
−β
(∫

σ(〈θ, x〉) dµ(θ) + g(x)− λ
)
− 1

)
.
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The Lagrange dual problem is

sup
µ,λ,g≥0

F1(µ, g, λ)

= sup
µ,λ,g≥0

−β−1

∫
exp

(
−β
(∫

σ(〈θ, x〉) dµ(θ) + g(x)− λ
)
− 1

)
dτ(x)− 1

n

n∑

i=1

∫
σ(〈θ, xi〉) dµ(θ)− λ

= sup
µ,λ
−β−1

∫
exp

(
−β
(∫

σ(〈θ, x〉) dµ(θ)− λ
)
− 1

)
dτ(x)− 1

n

n∑

i=1

∫
σ(〈θ, xi〉) dµ(θ)− λ

= sup
µ∈M(Sd)

− 1

n

n∑

i=1

∫
σ(〈θ, xi〉) dµ(θ)−

1

β
log

(∫
exp

(
−β
∫
σ(〈θ, x〉) dµ(θ)

)
dτ(x)

)
,

(39)

and the right-hand side is precisely (32). In the second equality we used that the optimal choice for g is
g = 0. In the third equality we used that the optimal λ must satisfy the first-order optimality condition:

∫
exp

(
−β
(∫

σ(〈θ, x〉) dµ(θ)− λ
)
− 1

)
dτ(x)− 1 = 0,

=⇒ eβλ =

(∫
exp

(
−β
∫
σ(〈θ, x〉) dµ(θ)− 1

)
dτ(x)

)−1

=⇒ λ = − 1

β
log

(∫
exp

(
−β
∫
σ(〈θ, x〉) dµ(θ)− 1

)
dτ(x)

)

To prove strong duality, we need to show that

inf
ν∈M(K)

sup
µ∈M(Sd),λ∈R,g∈C(K):g≥0

L1(ν, µ, g, λ) = sup
µ∈M(Sd),λ∈R,g∈C(K):g≥0

inf
ν∈M(K)

L1(ν, µ, g, λ). (40)

If we define L̃1 : P(K)×M(Sd)→ R as L̃1(ν, µ) = L1(ν, µ, 0, 0), we have that the assumptions of Theorem 10
hold for −L̃1. Indeed, by Lemma 9 we have that −L̃1(·, µ) is a concave and upper semicontinuous function of
ν. And by Prokhorov’s theorem, P(K) is a compact subset of the locally convex topological vector space of
signed Radon measures with the topology of weak convergence (tightness follows from the fact that K is
compact). Thus,

inf
ν∈P(K)

sup
µ∈M(Sd)

L̃1(ν, µ) = sup
µ∈M(Sd)

min
ν∈P(K)

L̃1(ν, µ). (41)

On the one hand, notice that by Observation 2,

inf
ν∈M(K)

sup
µ∈M(Sd),λ∈R,g∈C(K):g≥0

L1(ν, µ, g, λ) = inf
ν∈P(K)

sup
µ∈M(Sd)

L1(ν, µ, 0, 0) = inf
ν∈P(K)

sup
µ∈M(Sd)

L̃1(ν, µ)(42)

On the other hand,

sup
µ∈M(Sd),λ∈R,g∈C(K):g≥0

inf
ν∈M(K)

L1(ν, µ, g, λ) = sup
µ∈M(Sd)

inf
ν∈M(K)

sup
λ∈R,g∈C(K):g≥0

L1(ν, µ, g, λ)

= sup
µ∈M(Sd)

min
ν∈P(K)

L1(ν, µ, 0, 0) = sup
µ∈M(Sd)

min
ν∈P(K)

L̃1(ν, µ).
(43)

where we have used Lemma 10 in the first equality, Observation 2 in the second equality and the definition of
L̃1 in the third equality. Thus, the strong duality (40) follows from plugging (42) and (43) into (41).

To show that (33) is also a dual problem of (31), we consider the Lagrangian L2 :M(K)×L2(Sd)×C(K)×R→
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R defined as

L2(ν, h, g, λ) = β−1

∫
log

(
dν

dτ
(x)

)
dν(x) +

∫ 

∫
σ(〈θ, x〉) dν(x)− 1

n

n∑

i=1

σ(〈θ, xi〉)


h(θ) dτ̃(θ)−

∫
g(x)dν(x)

+ λ

(∫
dν(x)− 1

)
− r

(∫
h2(θ) dτ̃(θ)− 1

)

The reasoning to obtain the dual problem (33) is analogous. Strong duality in this case can be stated as

inf
ν∈M(K)

sup
h∈L2(Sd),λ∈R,g∈C(K):g≥0

L2(ν, h, g, λ) = sup
h∈L2(Sd),λ∈R,g∈C(K):g≥0

inf
ν∈M(K)

L1(ν, h, g, λ).

Analogously, we define L̃2 : P(K)×L2(Sd)→ R as L̃2(ν, h) = L2(ν, h, 0, 0), and we have that the assumptions of
Theorem 10 hold for−L̃2 as well, implying that infν∈P(K) suph∈L2(Sd) L̃2(ν, h) = suph∈L2(Sd) minν∈P(K) L̃2(ν, h).
The concluding argument is also analogous.

Lemma 10. For all µ ∈M(Sd),

sup
λ∈R,g∈C(K):g≥0

inf
ν∈M(K)

L1(ν, µ, g, λ) = min
ν∈M(K)

sup
λ∈R,g∈C(K):g≥0

L1(ν, µ, g, λ).

Proof. First, notice that by (38) and (39),

sup
λ∈R,g∈C(K):g≥0

inf
ν∈M(K)

L1(ν, µ, g, λ) = sup
λ∈R,g∈C(K):g≥0

F1(µ, g, λ)

= − 1

n

n∑

i=1

∫
σ(〈θ, xi〉) dµ(θ)−

1

β
log

(∫
exp

(
−β
∫
σ(〈θ, x〉) dµ(θ)

)
dτ(x)

)
,

(44)

And by Observation 2,

min
ν∈M(K)

sup
λ∈R,g∈C(K):g≥0

L1(ν, µ, g, λ) = min
ν∈P(K)

L1(ν, µ, 0, 0) = min
ν∈P(K)

L1(ν, µ, 0, 0) (45)

If ν⋆ ∈ P(K) is a minimizer of minν∈P(K) L1(ν, µ, 0, 0), it must fulfill

∃C ∈ R : C =
dL1

dν
(ν⋆, µ, 0, 0) = β−1 log

(
dν

dτ
(x)

)
+ β−1 +

∫
σ(〈θ, x〉) dµ(θ),

=⇒ dν⋆

dτ(x)
(x) = exp

(
−β
∫
σ(〈θ, x〉) dµ(θ) + βC − 1

)
,

where −βC + 1 = log
(∫

K
exp

(
−β
∫
σ(〈θ, x〉) dµ(θ)

)
dτ(x)

)
. Hence,

L1(ν
⋆, µ, 0, 0) = β−1

∫
log

(
dν⋆

dτ(x)
(x)

)
dν⋆(x) +

∫ 

∫
σ(〈θ, x〉) dν⋆(x)− 1

n

n∑

i=1

σ(〈θ, xi〉)


 dµ(θ)

= − 1

n

n∑

i=1

∫
σ(〈θ, xi〉) dµ(θ) +

∫ (
C − β−1

)
dν⋆(x)

= − 1

n

n∑

i=1

∫
σ(〈θ, xi〉) dµ(θ)−

1

β
log

(∫

K

exp

(
−β
∫
σ(〈θ, x〉) dµ(θ)

)
dτ(x)

)

If we plug this into the right-hand side of (45), we obtain exactly the right-hand side of (44), concluding the
proof.
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Theorem 11. [Fenchel strong duality; Borwein and Zhu [2005], pp. 135-137] Let X and Y be Banach spaces,
f : X → R ∪ {+∞} and g : Y → R ∪ {+∞} be convex functions and A : X → Y be a bounded linear map.
Define the Fenchel problems:

p∗ = inf
x∈X
{f(x) + g(Ax)}

d∗ = sup
y∗∈Y ∗

{−f∗(A∗y∗)− g∗(−y∗)},

where f∗(x∗) = supx∈X{〈x, x∗〉 − f(x)}, g∗(y∗) = supy∈Y {〈y, y∗〉 − g(y)} are the convex conjugates of f, g
respectively, and A∗ : Y ∗ → X∗ is the adjoint operator. Then, p∗ ≥ d∗. Moreover if f, g, and A satisfy either

1. f and g are lower semi-continuous and 0 ∈ core(dom g −A dom f) where core is the algebraic interior
and domh, where h is some function, is the set {z : h(z) < +∞},

2. or A dom f ∩ cont g 6= ∅ where cont are is the set of points where the function is continuous.

Then strong duality holds, i.e. p∗ = d∗. If d∗ ∈ R then supremum is attained.

Theorem 8. The problem (35) is the dual of the problem (34), and strong duality holds. Moreover, the
solution ν⋆ of (35) is unique and its density satisfies

dν⋆

dτ
(x) =

1

Zβ
exp

(
−β
∫
σ(〈θ, x〉) dµ⋆(θ)

)
,

where µ⋆ is a solution of (34) and Zβ is a normalization constant.

Proof. One way to prove Theorem 8 (and Theorem 9) would be to develop an argument based on a modification
of the Lagrangian function L1 (resp. L2) that encodes the F1 restriction (resp. F2), and to reduce the
problem once again to a min-max duality result like Theorem 10. However, this method turns out to be
rather cumbersome, and we resort to an alternative approach that harnesses the power of Fenchel duality
theory and yields a much faster proof. In fact, our proof structure is similar to Theorem 12.2 of Mohri et al.
[2012], which focuses on the finite-dimensional case and deals with a slightly different problem. As shown by
Theorem 11, the Fenchel strong duality sufficient conditions are very similar in the Euclidean and in the
Banach space settings.

We will use Theorem 11 with X =M(K), i.e. the Banach space of signed Radon measures, and Y = C(Sd),
the Banach space of continuous functions on S

d. Define f :M(K)→ R ∪ {+∞} as

f(ν) =

{
β−1DKL(ν||τ) if ν ∈ P(K),

+∞ otherwise

Define g : C(Sd)→ R ∪ {+∞} as

g(ϕ) = max
θ∈Sd

∣∣∣∣ϕ(θ)−
∫

K

σ(〈θ, x〉) dνn(x)
∣∣∣∣ ,

and A :M(K)→ C(Sd) as (Aν)(θ) =
∫
K
σ(〈θ, x〉)dν(x). Remark that A is a bounded linear operator, which

implies that it has an adjoint operator. By the Riesz-Markov-Kakutani representation theorem, we have that
C(Sd)∗ =M(Sd), which means that the adjoint of A is of the form A∗ :M(Sd)→M(K)∗. By the definition
of the adjoint operator, we have that for any µ ∈M(Sd), ν ∈M(K),

〈A∗µ, ν〉M(K)∗,M(K) = 〈µ,Aν〉M(Sd),C(Sd) =

∫

Sd

∫

K

σ(〈θ, x〉) dν(x)dµ(θ) =
∫

K

∫

Sd

σ(〈θ, x〉) dµ(θ)dν(x)(46)
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Notice that C(K) ⊆M(K)∗ by the fact that a vector space has a natural embedding in its continuous bidual
(but the continuous bidual is in general larger). Through this identification, (46) implies that we can write
A∗µ(x) =

∫
Sd
σ(〈θ, x〉)dµ(θ).

Our goal now is to compute the convex conjugates f∗ and g∗. By the argument of Lemma B.37 of Mohri et al.
[2012], which works in the infinite-dimensional case as well, the convex conjugate f∗ : C(K)→ R ∪ {+∞} is
shown to be:

f∗(ψ) =
1

β
log

(∫

K

exp
(
βψ(x)

)
dτ(x)

)

Remark that f∗ has domainM(K)∗, which is larger than C(K). However, knowing the restriction of f∗ to
C(K) will suffice for our purposes.

Moreover, g∗ :M(Sd)→ R ∪ {+∞} fulfills:

g∗(µ) = sup
ϕ∈C(Sd)

{∫

Sd

ϕ dµ−max
θ∈Sd

∣∣∣∣ϕ(θ)−
∫

K

σ(〈θ, x〉) dνn(x)
∣∣∣∣

}

= sup
ϕ∈C(Sd)





∫

Sd

ϕ dµ− sup
µ′∈M(Sd),
|µ′|TV ≤1

∫

Sd

(
ϕ(θ)−

∫

K

σ(〈θ, x〉) dνn(x)
)
dµ′(θ)





= sup
ϕ∈C(Sd)

inf
µ′∈M(Sd),
|µ′|TV ≤1

{∫

Sd

ϕ(θ) d(µ− µ′)(θ) +

∫

Sd

∫

K

σ(〈θ, x〉) dνn(x)dµ′(θ)

}

= inf
µ′∈M(Sd),
|µ′|TV ≤1

sup
ϕ∈C(Sd)

{∫

Sd

ϕ(θ) d(µ− µ′)(θ) +

∫

Sd

∫

K

σ(〈θ, x〉) dνn(x)dµ′(θ)

}

=

{∫
Sd

∫
K
σ(〈θ, x〉) dνn(x)dµ(θ) if |µ|TV ≤ 1

+∞ otherwise

In the first equality we have used the definition of g, in the fourth equality we have used Theorem 10 (remark
that {µ′ ∈M(Sd) : |µ′|TV ≤ 1} is compact in the weak convergence topology), and in the fifth equality we

have used that supϕ∈C(Sd)

{∫
Sd
ϕ(θ) d(µ− µ′)(θ)

}
= +∞ unless µ = µ′.

With these definitions, notice that problem (34) can be rewritten as infν∈M(K){f(ν) + g(Aν)} and problem
(35) can be rewritten as supµ∈M(Sd){−f∗(−A∗µ) − g∗(µ)}. Thus, strong duality between (34) and (35)
follows from Fenchel strong duality, which holds by checking condition 2 of Theorem 11. We have to see that
A dom f ∩ cont g 6= ∅. Consider ϕ(·) =

∫
K
σ(〈·, x〉) dν(x) ∈ C(Sd) for some ν ∈ P(K) absolutely continuous

w.r.t. τ . Then, we have that ϕ ∈ A dom f . Moreover, since g is a continuous function (in the supremum
norm topology), cont g = C(Sd) and hence ϕ ∈ cont g as well, which means that the intersection is not empty.

Notice that in our case d∗ = supµ∈M(Sd){−f∗(−A∗µ) − g∗(µ)} ∈ R, which by Theorem 11 implies that
the supremum is attained: let µ⋆ be one maximizer. We show that p∗ = infν∈M(K){f(ν) + g(Aν)} =
infν∈P(K){f(ν)+ g(Aν)} admits a minimizer by the direct method of the calculus of variations: notice that f
and g ◦A are lower semicontinuous in the topology of weak convergence (f by Lemma 9 and g ◦A because it
is a maximum of continuous functions, and thus its sublevel sets are closed because they are the intersection
of closed sublevel sets), and P(K) is compact.

We now show that dν⋆

dτ (x) = 1
Zβ

exp
(
−β
∫
σ(〈θ, x〉) dµ⋆(θ)

)
, where ν⋆ and µ⋆ are solutions of (34) and (35),

respectively, that we know exist by the previous paragraph. Recall the argument to prove Fenchel weak
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duality:

sup
µ∈M(Sd)

{−f∗(−A∗µ)− g∗(µ)} = −f∗(−A∗µ⋆)− g∗(µ⋆)

= − sup
ν∈M(K)

{
〈−A∗µ⋆, ν〉 − f(ν)

}
− sup
ϕ∈C(Sd)

{
〈µ⋆, ϕ〉 − g(ϕ)

}

≤ − sup
ν∈M(K)

{
〈−A∗µ⋆, ν〉 − f(ν) + 〈µ⋆, Aν〉 − g(Aν)

}

= − sup
ν∈M(K)

{
〈−f(ν)− g(Aν)

}
= inf
ν∈M(K)

{f(ν) + g(Aν)} = f(ν⋆) + g(Aν⋆)

Thus, for strong duality to hold we must have that ν⋆ = argmaxν∈M(K)

{
〈−A∗µ⋆, ν〉 − f(ν)

}
, and the

corresponding Euler-Lagrange condition is dν⋆

dτ (x) = 1
Zβ

exp
(
−β
∫
σ(〈θ, x〉) dµ⋆(θ)

)
.

Theorem 9. The problem (37) is the dual of the problem (36), and strong duality holds. Moreover, the
solution ν⋆ of (37) is unique and its density satisfies

dν⋆

dτ
(x) =

1

Zβ
exp

(
−β
∫
σ(〈θ, x〉) h⋆(θ)dτ̃(θ)

)
,

where h⋆ is a solution of (36) and Zβ is a normalization constant.

Proof. The proof is largely analogous to the proof of Theorem 8. We use Theorem 11 with X =M(K) as
before, and Y = L2(Sd), the Hilbert space of square-integrable functions on S

d under the base measure τ̃ ,
which is of course self-dual. We define f as before, and g : L2(Sd)→ R ∪ {+∞} as

g(ϕ) =

(∫

Sd

(
ϕ(θ)−

∫

K

σ(〈θ, x〉) dνn(x)
)2

dτ̃(θ)

)1/2

,

and consequently, g∗ : L2(Sd)→ R ∪ {+∞} fulfills:

g∗(ψ) = sup
ϕ∈L2(Sd)





∫

Sd

ϕψ dτ̃ −
(∫

Sd

(
ϕ(θ)−

∫

K

σ(〈θ, x〉) dνn(x)
)2

dτ̃(θ)

)1/2




= sup
ϕ∈L2(Sd)





∫

Sd

ϕψ dτ̃ − sup
ψ̂∈L2(Sd),

‖ψ̂‖2≤1

∫

Sd

(
ϕ(θ)−

∫

K

σ(〈θ, x〉) dνn(x)
)
ψ̂(θ)dτ̃(θ)





= sup
ϕ∈L2(Sd)

inf
ψ̂∈L2(Sd),

‖ψ̂‖2≤1

{∫

Sd

ϕ(θ)(ψ(θ)− ψ̂(θ)) dτ̃(θ) +
∫

Sd

∫

K

σ(〈θ, x〉) dνn(x) ψ̂(θ) dτ̃(θ)
}
,

and using Theorem 10 once more, this is equal to:

inf
ψ̂∈L2(Sd),

‖ψ̂‖2≤1

sup
ϕ∈L2(Sd)

{∫

Sd

ϕ(θ)(ψ(θ)− ψ̂(θ)) dτ̃(θ) +
∫

Sd

∫

K

σ(〈θ, x〉) dνn(x) ψ̂(θ) dτ̃(θ)
}

=

{∫
Sd

∫
K
σ(〈θ, x〉) dνn(x) ψ(θ) dτ̃(θ) if ‖ψ‖2 ≤ 1,

+∞ otherwise

With these definitions, notice that problem (36) can be rewritten as infν∈M(K){f(ν) + g(Aν)} and problem
(37) can be rewritten as supψ∈L2(Sd){−f∗(−A∗ψ)− g∗(ψ)}. The rest of the proof is analogous.
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