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Abstract

Energy-based models (EBMs) are a simple yet powerful framework for generative modeling. They are
based on a trainable energy function which defines an associated Gibbs measure, and they can be trained
and sampled from via well-established statistical tools, such as MCMC. Neural networks may be used
as energy function approximators, providing both a rich class of expressive models as well as a flexible
device to incorporate data structure. In this work we focus on shallow neural networks. Building from
the incipient theory of overparametrized neural networks, we show that models trained in the so-called
“active” regime provide a statistical advantage over their associated “lazy” or kernel regime, leading to
improved adaptivity to hidden low-dimensional structure in the data distribution, as already observed in
supervised learning. Our study covers both maximum likelihood and Stein Discrepancy estimators, and
we validate our theoretical results with numerical experiments on synthetic data.

1 Introduction

A central problem in machine learning is to learn generative models of a distribution through its samples.
Such models may be needed simply as a modeling tool in order to discover properties of the data, or as a
way to generate new samples that are similar to the training samples. Generative models come in various
flavors. In some cases very few assumptions are made on the distribution and one simply tries to learn
generator models in a black-box fashion [Goodfellow et al., 2014, Kingma and Welling, 2013], while other
approaches make more precise assumptions on the form of the data distribution. In this paper, we focus on
the latter approach, by considering Gibbs measures defined through an energy function f, with a density
proportional to exp{—f(x)}. Such energy-based models (EBMs) originate in statistical physics [Ruelle, 1969],
and have become a fundamental modeling tool in statistics and machine learning [Wainwright and Jordan,
2008, Ranzato et al., 2007, LeCun et al., 2006, Du and Mordatch, 2019, Song and Kingma, 2021]. If data is
assumed to come from such a model, the learning algorithms then attempt to estimate the energy function f.
The resulting learned model can then be used to obtain new samples, typically through Markov Chain Monte
Carlo (MCMC) techniques.

In this paper, we study the statistical problem of learning such EBMs from data, in a non-parametric setting
defined by a function class F, and with possibly arbitrary target energy functions. If we only assume a simple
Lipschitz property on the energy, learning such models will generally suffer from the curse of dimensionality
[von Luxburg and Bousquet, 2004], in the sense that an exponential number of samples in the dimension is
needed to find a good model. However, one may hope to achieve better guarantees when additional structure
is present in the energy function.



An important source of structure comes from energy functions which capture local rather than global
interactions between input features, such as those in Local Markov Random Fields or Ising models. Such
energies can be expressed as linear combinations of potential functions depending only on low-dimensional
projections, and are therefore amenable to efficient approximation by considering classes F given by shallow
neural networks endowed with a sparsity-promoting norm [Bach, 2017a]. Analogously to the supervised
regime [Bach, 2017a, Chizat and Bach, 2020], learning in such variation-norm spaces F = F; admits a
convex formulation in the overparametrized limit, whose corresponding class of Gibbs measures {v(dx)
exp{—f(dx)}, f € F1} is the natural infinite-dimensional extension of exponential families [Wainwright and
Jordan, 2008]. Our main contribution is to show that such EBMs lead to a well-posed learning setup with
strong statistical guarantees, breaking the curse of dimensionality.

These statistical guarantees can be combined with qualitative optimization guarantees in this overparamerised
limit under an appropriate ‘active’ or ‘mean-field’ scaling [Mei et al., 2018, Rotskoff and Vanden-Eijnden,
2018, Chizat and Bach, 2018, Sirignano and Spiliopoulos, 2019]. As it is also the case for supervised learning,
the benefits of variation-norm spaces F; contrast with their RKHS counterparts F», which cannot efficiently
adapt to the low-dimensional structure present in such structured Gibbs models.

The standard method to train EBMs is maximum likelihood estimation. One generic approach for this is to
use gradient descent, where gradients may be approximated using MCMC samples from the current trained
model. Such sampling procedures may be difficult in general, particularly for complex energy landscapes,
thus we also consider different estimators based on un-normalized measures which avoid the need of sampling.
We focus here on approaches based on minimizing Stein discrepancies [Gorham and Mackey, 2015, Liu and
Wang, 2016], which have recently been found to be useful in deep generative models [Grathwohl et al., 2020],
though we note that alternative approaches may be used, such as score matching [Hyvirinen, 2005, Song and
Kingma, 2021, Song and Ermon, 2019, Block et al., 2020].

Our main focus is to study the resulting estimators when using gradient-based optimization over infinitely-
wide neural networks in different regimes, showing the statistical benefits of the ‘feature learning’ regime
when the target models have low-dimensional structure, thus extending the analogous results for supervised
least-squares [Bach, 2017a] and logistic [Chizat and Bach, 2020] regression. More precisely, we make the
following contributions:

o We derive generalization bounds for the learned measures in terms of the same metrics used for training
(KL divergence or Stein discrepancies). Using and extending results from the theory of overparametrized
neural networks, we show that when using energies in the class F; we can learn target measures with
certain low-dimensional structure at a rate controlled by the intrinsic dimension rather than the ambient
dimension (Corollary 1 and Corollary 2).

e We show in experiments that while /7 energies succeed in learning simple synthetic distributions with
low-dimensional structure, F» energies fail (Sec. 6).

2 Related work

A recent line of research has studied the question of how neural networks compare to kernel methods, with a
focus on supervised learning problems. Bach [2017a] studies two function classes that arise from infinite-width
neural networks with different norms penalties on its weights, leading to the two different spaces F; and Fa,
and shows the approximation benefits of the JF; space for adapting to low-dimensional structures compared
to the (kernel) space Fa, an analysis that we leverage in our work. The function space F; was also studied
by Ongie et al. [2019], Savarese et al. [2019], Williams et al. [2019] by focusing on the ReLU activation function.
More recently, this question has gained interest after several works have shown that wide neural networks
trained with gradient methods may behave like kernel methods in certain regimes [see, e.g., Jacot et al., 2018].
Examples of works that compare ‘active/feature learning’ and ‘kernel/lazy’ regimes include [Chizat and Bach,
2020, Ghorbani et al., 2019, Wei et al., 2020, Woodworth et al., 2020]. We are not aware of any works that



study questions related to this in the context of generative models in general and EBMs in particular.

Other related work includes the Stein discrepancy literature. Although Stein’s method [Stein, 1972] dates to
the 1970s, it has been popular in machine learning in recent years. Gorham and Mackey [2015] introduced
a computational approach to compute the Stein discrepancy in order to assess sample quality. Later,
Chwialkowski et al. [2016] and Liu et al. [2016] introduced the more practical kernelized Stein discrepancy
(KSD) for goodness-of-fit tests, which was also studied by Gorham and Mackey [2017]. Liu and Wang [2016]
introduced SVGD, which was the first method to use the KSD to obtain samples from a distribution, and
Barp et al. [2019] where the first to employ KSD to train parametric generative models. More recently,
Grathwohl et al. [2020] used neural networks as test functions for Stein discrepancies, which arguably yields
a stronger metric, and have shown how to leverage such metrics for training EBMs. The empirical success
of their method provides an additional motivation for our theoretical study of the F; Stein Discrepancy
(Subsec. 4.2).

Finally, another notable paper close in spirit to our goal is Block et al. [2020], which provides a detailed
theoretical analysis of a score-matching generative model using Denoising Autoencoders followed by Langevin
diffusion. While their work makes generally weaker assumptions and also includes a non-asymptotic analysis
of the sampling algorithm, the resulting rates are unsuprisingly cursed by dimension. Our focus is on the
statistical aspects which allow faster rates, leaving the quantitative computational aspects aside.

3 Setting

In this section, we present the setup of our work, recalling basic properties of EBMs, maximum likelihood
estimators, Stein discrepancies, and functional spaces arising from infinite-width shallow neural networks.

Notation. If V is a normed vector space, we use By () to denote the closed ball of V of radius 3, and
By = By (1) for the unit ball. If K denotes a subset of the Euclidean space, P(K) is the set of Borel
probability measures, M(K) is the space of signed Radon measures and M™(K) is the space of (non-
negative) Radon measures. For vy, 15 € P(K), we define the Kullback-Leibler (KL) divergence Dkr, (11 ||12) :=
Ji log(942 (z))dir (z) when v is absolutely continuous with respect to v», and +oco otherwise, and the

dl/2
cross-entropy H(v1, 1) == — [} log(%(z))dul(aj), where %(x) is the Radon-Nikodym derivative w.r.t. the
uniform probability measure 7 of K, and the differential entropy H(v1) := — [, 1og(%(w))du1(x). Ifyisa

signed measure over K, then ||y is the total variation (TV) norm of 7. S¢ is the d-dimensional hypersphere,
and for functions f : S? — R, Vf denotes the Riemannian gradient of f. We use o ({6, z)) = max{0, (6, z)}
to denote a ReLU with parameter 6.

3.1 Generative energy-based models

If F is a class of functions (or energies) mapping a measurable set K C R*! to R, for any f € F we can
define the probability measure vy as a Gibbs measure with density:

dﬂ eff(x)

I x) = 7 with Z; ::/Keff(y)dr(y),

where %(w) is the Radon-Nikodym derivative w.r.t to the uniform probability measure over K, denoted 7,

and Z¢ is the partition function.

Given samples {x;}!_; from a target measure v, training an EBM consists in selecting the best v with energy
f € F according to a given criterion. A natural estimator f for the energy is the maximum likelihood



estimator (MLE), i.e., f = argmax rerllizy ddLTf(xi), or equivalently, the one that minimizes the cross-entropy
with the samples:

f= argmin H (v, vy) = argmln—* Zl og (dyf( z))

feF feF dr

(1)

fargmmfo x;) +log Zy.
feF i—1

The estimated distribution is simply v P> and samples can be obtained by the MCMC algorithm of choice.

An alternative estimator is the one that arises from minimizing the Stein discrepancy (SD) corresponding
to a function class H. If H is a class of functions from K to R%*!, the Stein discrepancy [Gorham and Mackey,
2015, Liu et al., 2016] for H is a non-symmetric functional defined on pairs of probability measures over K as

SDH(V17V2) = }616171')1 EVI [Tr(AVzh(x))]a (2)

where A, : K — R@+TDXx(d+1) ig the Stein operator. In order to leverage approximation properties on the
sphere, we will consider functions h defined on K = S?. In this case, the Stein operator is defined by
Ayh(z) = (s,(z) —d-z)h(z)" + Vh(z) (see Lemma 5), where s,(z) = Vlog(% (z)) is named the score
function. The term d - = is important for the spherical case in order to have SDy (v, v) = 0, while it does not
appear when considering K = R%. The Stein discrepancy estimator is

f = argmin SDy, (vy,, vy). (3)
feF

IfH = Byan = = {(h)) ] e I | ZdH |hill3,, < 1} for some reproducing kernel Hilbert space (RKHS) Ho

with kernel k with continuous second order partial derivatives, there exists a closed form for the problem (2)
and the corresponding object is known as kernelized Stein discrepancy (KSD) [Liu et al., 2016, Gorham
and Mackey, 2017]. For K = S%, the KSD takes the following form (Lemma 6):

KSD(vy,15) = SD%HCL+1 (v1,12) = By gy [Uny (2, 27)], (4)
0

where u, (2, 2") = (s, (x)—d-2) " (s, (2')—d-2"Vk(z, 2" )+ (s, (v) —d-x) " Vi k(x, 2" )+ (s, (2) —d-2") TV ke (x, ")+
Tr(Vywk(z,2')), and we use 4, (z,2") to denote the sum of the first three terms (remark that the fourth
term does not depend on v). One KSD estimator that can be used is

n

A 1
f = argmin — Z Ty (24, 25). (5)

n
feF 5

The optimization problem for this estimator is convex (Sec. 5), but it is biased. On the other hand, the
estimator

f:arfgemflnnnil Zul’f T, L), (6)
i#]

is unbiased, but the optimization problem is not convex.

3.2 Neural network energy classes

We are interested in the cases in which F is one of two classes of functions related to shallow neural networks,
as studied by Bach [2017a].



Feature learning regime. F is the ball Bx, (3) of radius B > 0 of Fi, which is the Banach space of
functions f : K — R such that for all 2 € K we have f(z) = [s, 0((0,2)) dv(@) for some Radon measure

~v € M(S?). The norm of F, is defined as || f|| 7, = inf {|7|Tv | F() = Juu o dy(ﬂ)}

Kernel regime. F is the ball Bz, (8) of radius g > 0 of Fa, which is the (reproducing kernel) Hilbert
space of functions f : K — R such that for some absolutely continuous p € M(§d) with dp € £2(S?) (where

7 the uniform probability measure over S), we have that for all x € K, f = Jeao((0 IE>) dp(8). The norm
of Fy is defined as | f||f2 inf { S |R(O)[2 d7 (0 = fou o ((6,))h(0) dr(&)}. As an RKHS, the kernel
of Fy i k(z,y) = fou o((,00)0((5.6)) d7(6).

Remark that since [ |h(6)|d7(0) < ([ |h(6)[* d7(0))'/? by the Cauchy-Schwarz inequality, we have Fp C JFi

and Bz, C Br,. The TV norm in .Fl acts as a spar51ty—promoting penalty, which encourages the selection of
few well-chosen neurons and may lead to favorable adaptivity properties when the target has a low-dimensional
structure. In particular, Bach [2017a] shows that single ReLU units belong to F; but not to F,, and their L?
approximations in F» have exponentially high norm in the dimension. Ever since, several works have further
studied the gaps arising between such nonlinear and linear regimes [Wei et al., 2019, Ghorbani et al., 2020,
Malach et al., 2021]. In App. D, we present dual characterizations of the maximum likelihood F; and F;
EBMs as entropy maximizers under L> and L? moment constraints (an infinite-dimensional analogue of
Della Pietra et al. [1997]; see also Mohri et al. [2012], Theorem 12.2).

The ball radius 8 acts as an inverse temperature. The low temperature regime $ > 1 corresponds to
expressive models with lower approximation error but higher statistical error: the theorems in Sec. 4 provide
bounds on the two errors and the results of optimizing such bounds w.r.t. 3. In the following, we will assume
that the set K C R4t is compact. We note that there are two interesting choices for K: (i) for K = S%, we
obtain neural networks without bias term; and (ii) for K = Ky x {R}, where Ky C R? with norm bounded
by R, we obtain neural networks on K with a bias term.

4 Statistical guarantees for shallow neural network EBMs

In this section, we present our statistical generalization bounds for various EBM estimators based on
maximum likelihood and Stein discrepancies, highligting the adaptivity to low-dimensional structures that
can be achieved when learning with energies in F;. All the proofs are in App

4.1 Guarantees for maximum likelihood EBMs

The following theorem provides a bound of the KL divergence between the target probability measure and
the maximum likelihood estimator in terms of a statistical error and an approximation error.

Theorem 1. Assume that the class F has a (distribution free) Rademacher complezity bound R, (F) < ?—ﬁ
and L>= norm uniformly bounded by B. Given n samples {z;}_, from the target measure v, consider the
mazimum likelihood estimator (MLE) U := = v;, where f is the estzmator defined in (1). With probability at

least 1 — 0, we have

4p8C
f

dv

If F(x) = e‘g(”)/fK e 9Wdr(y) for some g: K — R, i.e. —g is the log-density of v up to a constant term,

Drr(v||P) <

L5 8logT(Ll/5)

+ int Dice (v]vp). (7)



then with probability at least 1 — ¢,

Dk (v||7) <

48C 8log(1/0) .
L+ Bt g — 0

Equation (7) follows from using a classical argument in statistical learning theory. To obtain equation (8)
we bound the last term of (7) by 2infscr [|g — f|loc using Lemma 1 in App. A. We note that other metrics
than L., may be used for the approximation error, such as the Fisher divergence, but these will likely lead to
similar guarantees under our assumptions. Making use of the bounds developed by Bach [2017a], Corollary 1
below applies (8) to the case in which F is the F; ball Bz, (8) for some § > 0 and the energy of the target
distribution is a sum of Lipschitz functions of orthogonal projection to low-dimensional subspaces.

Assumption 1. The target probability measure v is absolutely continuous w.r.t. the uniform probability mea-
sure T over K and it satisfies Vo € Ko, %(z, R) = exp(— Z'j]:l gaj(ij))/fKD exp(— Z}I=1 w; (U;y)dr(y),
where p; are (nR™Y)-Lipschitz continuous functions on the R-ball of R* such that ¢}l < 0, and U; € R**4
with orthonormal rows.

Corollary 1. Let F = Br,(8). Suppose K = Ko x {R}, where Ko C {z € RY|||z||s < R} is compact.
Assume that Assumption 1 holds. Then, we can choose 8 > 0 such that with probability at least 1 — § we have

Dicr(v]]7) < O <(1 + V/Iog(1/9)) Janie,nkig)

where the notation O indicates that we overlook logarithmic factors and constants depending only on the
dimension k.

Remarkably, Corollary 1 shows that for our class of target measures with low-dimensional structure, the KL
divergence between v and © decreases as n~ %3 . That is, the rate “breaks” the curse of dimensionality since
the exponent only depends on the dimension k of the low-dimensional spaces, not to the ambient dimension d.
This can be seen as an alternative, more structural approach to alleviate dimension-dependence compared to
other standard assumptions such smoothness classes for density estimation [e.g., Singh et al., 2018, Tsybakov,
2008]. As discussed earlier, a motivation for Assumption 1 comes from Markov Random Fields, where each
@; corresponds to a local potential defined on a neighborhood determined by U;. Note that the bound scales
linearly with respect to the number of local potentials J. As our experiments illustrate (see Scc. (), it is easy
to construct target energies that are much better approximated in F; than in F5. Indeed, we find that the
test error tends to decrease more quickly as a function of the sample size when training both layers of shallow
networks rather than just the second layer, which corresponds to controlling the F; norm.

4.2 Guarantees for Stein Discrepancy EBMs

We now consider EBM estimators obtained by minimizing Stein discrepancies, and establish bounds on
the Stein discrepancies between the target measure and the estimated one. As in Subsec. 4.1, we begin
by providing error decompositions in terms of estimation and approximation error. The following theorem
applies to the Stein discrepancy estimator when the set of test functions # is the unit ball of the space of
F4+1 in a mixed F /€y norm, with F = F; or Fy. For Fi, we will denote this particular setting as J7-Stein
discrepancy, or F1-SD. Although F7-SD has not been studied before to our knowledge, the empirical work
of Grathwohl et al. [2020] does use Stein discrepancies with neural network test functions, which provides
practical motivation for considering such a metric.

Theorem 2. Let K = S?. Assume that the class F is such that suprer{l|Viflleoll < i < d+ 1} < BC.
IfH = Byao = {h = (h)iZ) | b € Fr, o bl < 1} or Ho= Byan = {h = (h)iZ7 | hi €



Fa, Zfill [hill%, <1}, we have that for the estimator v defined in (3), with probability at least 1 — 6,
4v/d+ 1(BCy + Cov/d + 1 4 d)
Vn

(d+1) log(%)
2n

SD’H(V? ﬁ) <

+2(BC1 +d+1)

+}2§__EVH —Vf(z)—Vlog (Z(x))

J

where Cy is a universal constant and V f denotes the Riemannian gradient of f.

Notice that unlike in Theorem 1, the statistical error terms in Theorem 2 depend on the ambient dimension
d. While we do not show that this dependence is necessary, studying this question would be an interesting
future direction. Remark as well the similarity of the approximation term with the term 2inf ;e ||g — f| o
from equation (8), albeit in this case it involves the L> norm of the gradients. Furthermore, note that the
only assumption on the set F is a uniform L* bound on Fj, while Theorem 1 also requires a more restrictive
Rademacher complexity bound on F. This illustrates the fact that the Stein discrepancy is a weaker metric
than the KL divergence.

In Theorem 3 we give an analogous result for the unbiased KSD estimator (6), under the following reasonable
assumptions on the kernel k, which follow [Liu et al., 2016].

Assumption 2. The kernel k has continuous second order partial derivatives, and it satisfies that for any
non-zero function g € L*(S%), Jsa Jsa 9(@)E(z, 2")g (2" )dr(x)dr (") > 0, and that sup, ,ega k(z, ) < Cy,
SUPg 4/ esd Hvzk(zvx/)‘b < CS-

Theorem 3. Let K = S%. Assume that the class F is such that sup e 7{||V flloc} < BCi1. Let KSD be the
kernelized Stein discrepancy for a kernel that satisfies Assumption 2. If we take n samples {x;}7, of a target
measure v with almost everywhere differentiable log-density, and consider the unbiased KSD estimator (6), we
have with probability at least 1 — ¢,

KSD(v, ) < ((BCy 4 d)*Cy + 2C5(BC + d))

21
The statistical error term in Theorem 3 is obtained using the expression of the variance of the estimator (6)

[Liu et al., 2016]. Note that Assumption 2 is fulfilled, for example, for the radial basis function (RBF) kernel
k(z,2") = exp(—||z — 2'||?/(20?)) with Cy = 1, C3 = 1/02.

i

n

- [vag (%) - vie)

=

+ 02 inf
fer

Making use of Theorem 2 (for F1-SD) and Theorem 3 (for KSD), in Corollary 2 we obtain adaptivity results
for target measures with low-dimensional structures similar to Corollary 1, also for F = Bz, (8). The class of
target measures that we consider are those satisfying Assumption 3, which is similar to Assumption 1 but for
K = S?% and with an additional Lipschitz condition on the gradient of V.

Assumption 3. Let K = S?%. Suppose that the target probability measure v is absolutely continuous w.r.t. the
Hausdorff measure over S and it satisfies Vo € S, % (x) = exp(— ijl ¢;(U;x))/ fKo exp(— Z}le ;i (Ujy))dr(y),
where p; are 1-homogeneous differentiable functions on the unit ball of R* such that ||¢;|lcc < 1, SUpyesa [|[Vip;(2)]2 <
n and V; is L-Lipschitz continuous, and U; € RFEX4 with orthonormal rows.

Corollary 2. Let F = Br,(B). Let Assumption 3 hold. (i) When ¥ is the F1-SD estimator (2) and the
assumptions of Theorem 2 hold, we can choose the inverse temperature 8 > 0 such that with probability at



least 1 — 0 we have that SDBchT+1(l/, D) is upper-bounded by
1

0 ((1+ Viosl/8]) (L + )y orartsn s )

where the notation O indicates that we overlook logarithmic factors and constants depending only on the
dimension. (i) When U is the unbiased KSD estimator (6) and the assumptions of Theorem 3 hold, >0
can be chosen so that with probability at least 1 — ¢ we have that KSD(v, D) is upper-bounded by

2(k+1)

O(a#suw+m)“3mﬂﬁdeﬂ.

Noticeably, the rates in Corollary 2 are also of the form O(niﬁr?’), which means that just as in Corollary 1,
the low-dimensional structure in the target measure helps in breaking the curse of dimensionality.

Proof sketch. The main challenge in the proof of Corollary 2 is to bound the approximation terms in
Theorem 2 and Theorem 3. To do so, we rely on Lemma 7 in App. A, which shows the existence of § in a ball of
Fy such that sup,cga [[Vg(x) —Vg(z)||2 has a certain bound when g is bounded and has bounded and Lipschitz
gradient. Lemma 7 might be of independent interest: in particular, it can be used to obtain a similar adaptivity
result for score-matching EBMs, which optimize the Fisher divergence E,,[||V log(‘j—;(m)) — Vi)

5 Algorithms

This section provides a description of the optimization algorithms used for learning J; o-EBMs using the
estimators studied in Sec. 4, namely maximum likelihood, KSD, and F;-SD.

5.1 Algorithms for /; EBMs

We provide the algorithms for the three models using a common framework. We define the function
@R x R — F) as ®(w,0)(z) = wo((h,x)). Given a convex loss R : F; — R, we consider the problem

F(u),

inf
peP(Ri+2)

(9)
P o= & ([ @w.0)dn) 2 [(u + o1)dn
for some A > 0. It is known [e.g., Neyshabur et al., 2015] that, since |w|? + ||0]|3 > 2|w]||f]|2 with equality
when moduli are equal, this problem is equivalent to

inf R [ ®w,0)d +>\/ dp.
et ([ 2000 £ [ pot

And by the definition of the F; norm, this is equivalent to infscx, R (f) + A||f|| 7, , which is the penalized

form of inf ;¢ B, (8) R (f) for some § > 0. Our F; EBM algorithms solve problems of the form (9) for different

choices of R, or equivalently, minimize the functional R over an /7 ball. The functional R takes the following

forms for the three models considered:

(i) Cross-entropy: We have that R(f) = 23" | f(z;) + log (fK e’f(x)dr(z)), which is convex (and differ-
entiable) because the free energy obeys such properties [e.g., by adapting Wainwright and Jordan, 2008,
Prop 3.1 to the infinite-dimensional case].



(ii) Stein discrepancy: the estimator (5) corresponds to R(f) = supjcy Eu, [Zdﬂ —(Vjf(x) +dzj)hj(x) +
V;hj(x)], which is convex as the supremum of convex (linear) functions.
(iii) Kernelized Stein discrepancy: we have R(f) = -4 szzl @y, (74, 27), which is convex (in fact, it is quadratic
in Vf).
In order to optimize (9), we discretize measures in P(R%*2) as averages of point masses % Py JRONION:
each point mass corresponding to one neuron. Furthermore, we define the function G : (R¥2)™ — R as

G((w™, 0N ) = F 25(w<>9<)) (10)
Z@ ©,60) | + 2 3 (w2 + 692,
m =1

Then, as outlined in Algorithm 1, we use gradient descent on G to optimize the parameters of the neurons,
albeit possibly with noisy estimates of the gradients.

Algorithm 1 Generic algorithm to train 71 EBMs

input m, stepsize s
Get m i.i.d. samples (w!”,0{”) from po € P(RI+2).
fort:O,...,Tfl do
fori=1,...,m do
Compute estlmates Vol >G((wt 23 9,@):” 1) and @W)G((wt(i), 99){’;1).
wiy 0 = V0 Gl 07)m)
0y 6 — Vo G((wf”. 6,)1)
end for
end for o
output Energy =", d(ws, 0y € Fy.

Computing an estimate the gradient of G involves computing the gradient of R (m POy @(w(i),ﬂ(i))).

Denoting by z; = (w®,0%)),z = ()™, and by v, the Gibbs measure corresponding to the energy f, :=
% 2311 q)(w(i)7 9(1‘))7 we have

(i) Cross-entropy: The gradient of R(f,) with respect to z; takes the expression E,, V., ®(z;)(x)—E,, V., ®(z;)(z).
The expectation under v, is estimated using MCMC samples of the EBM. Thus, the quality of gradient
estimation depends on the performance of the MCMC method of choice, which can suffer for non-convex
energies and low temperatures.

(if) Fi Stein discrepancy: The (sub)gradient of R(f,) w.r.t. z; equals E, [— Bzdiri V2 Vi (®(2i)(2)) ()],
in which h} are respectively maximizers of —(8V; f(x) + dxj)h;(z) + V;h; ( ) over Bx,. The gradient
estimation involves d + 1 optimization procedures over balls of .7-'1 to compute R, which we solve using
Algorithm 1. Thus, the algorithm operates on two timescales.

(iii) Kernelized Stein discrepancy: Using (4), the gradient of R(f,) with respect to z; takes the expres-
sion Ey 4/, [V2, Uy, (z,2")], which can be developed into closed form. The only issue is the quadratic
dependence on the number of samples.



5.2 Algorithms for 7, EBMs

Considering convex losses R : F; — R as in Subsec. 5.1, the penalized form of the problem inffeg}_z(g) R(f)
is

Jnt R < /S olte, -))h(@)dr(&)) 2 [ 1200,

To optimize this, we discretize the problem: we take m samples (§(V)™  of the uniform measure 7 that we
keep fixed, and then solve the random features problem

AN,
inf R (6D = @2, 11
ot Zw ) 2 (11)

flwll2<1

Remark that this objective function is equivalent to the objective function G((w®,8®)™ ) in equation (10)
when (#(V), are kept fixed. Thus, we can solve (11) by running Algorithm | without performing gradient
descent updates on ()7 . That is, while for the 7; EBM training both the features and the weights are
learned via gradient descent, for F» only the weights are learned.

5.3 Qualitative convergence results

The overparametrized regime corresponds to taking a large number of neurons m. In the limit m — oo,
under appropriate assumptions the empirical measure dynamics corresponding to the gradient flow of
G((w®,00)m ) converge weakly to the mean-field dynamics Mei et al. [2018], Chizat and Bach [2018],
Rotskoff and Vanden-Eijnden [2018]. Leveraging a result from Chizat and Bach [2018] we argue informally
that in the limit m — oo, — oo, with continuous time and exact gradients, the gradient flow of G converges
to the global optimum of F over P(R%*2) (see more details in App. B).

In contrast with this positive qualitative result, we should mention a computational aspect that distinguishes
these algorithms from their supervised learning counterparts: the Gibbs sampling required to estimate the
gradient at each timestep. A notorious challenge is that for generic energies (even generic energies in Fp),
either the mixing time of MCMC algorithms is cursed by dimension Bakry et al. [2014] or the acceptance
rate is exponentially small. The analysis of the extra assumptions on the target energy and initial conditions
that would avoid such curse are beyond the scope of this work, but a framework based on thermodynamic
integration and replica exchange [Swendsen and Wang, 1986] would be a possible route forward.

6 Experiments

In this section, we present numerical experlments 111ustrat1ng our theory on simple synthetic datasets generated
by teacher models with energies f*(x) = 5 Z _wio((07,x)), with 0 € S? for all i. The code for the
experiments is in https://github.com/CDEnrlch/ebms shallow_nn.

Experimental setup. We generate data on the sphere S? from teacher models by using a simple rejection
sampling strategy, given an estimate of the minimum of f* (which provides an estimated upper bound on the
unnormalized density e~/ for rejection sampling). This minimum is estimated using gradient descent with
many random restarts from uniform points on the sphere. For different numbers of training samples, we run
our gradient-based algorithms in /7 and F» with different choices of step-sizes and regularization parameters A,
using m = 500 neurons. We report test metrics after selecting hyperparameters on a validation set of 2000
samples. For computing gradients in maximum likelihood training, we use a simple Metropolis-Hastings
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Figure 1: Test metrics obtained for MLE, KSD and F;-SD training on a one-neuron teacher with positive
output weight. (top) Test performance measured with KL divergence estimates for wi = 2. (bottom left)
MLE on a teacher network with larger weight wj = 10. (bottom center/right) Test KSD and F;-SD for
models trained with the same metric with wj = 2. For reference, the black discontinuous lines show the
teacher KSD and F3-SD of the teacher model w.r.t. 5000 and 2000 test samples, respectively. Confidence
estimates are over 10 different data samplings.
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Figure 2: Test metrics obtained for MLE, KSD and F3-SD training on a two-neuron teacher with negative

output weights. (top) Test performance measured with cross-entropy estimates with w}, wj = —5. (bottom
left) MLE on a teacher network with smaller weights wj,w) = —2.5. (bottom center/right) Test KSD and
F1-SD for models trained with the same metric, for wi, w5 = —5. For reference, the black discontinuous

lines show the teacher KSD and F;-SD of the teacher model w.r.t. 5000 and 2000 test samples, respectively.
Confidence estimates are over 10 different data samplings.
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Figure 3: Test metrics obtained for MLE, KSD and F;-SD training on a four-neuron teacher with weights
wi,ws = 7.5 and wi, wj = —7.5. (top) Test performance measured with cross-entropy estimates. (bottom)
Test KSD and F7-SD for models trained with the same metric. For reference, the black discontinuous lines
show the teacher KSD and F3;-SD of the teacher model w.r.t. 5000 and 2000 test samples, respectively.
Confidence estimates are over 10 different data samplings.

algorithm with uniform proposals on the sphere. To obtain non-negative test KL divergence estimates,
which are needed for the log-log plots, we sample large numbers of points uniformly on the hypersphere, and
compute the KL divergence of the restriction of the EBMs to these points. The sampling techniques that
we use are effective for the toy problems considered, but more refined techniques might be needed for more
complex problems in higher dimension or lower temperatures.

Learning planted neuron distributions in hyperspheres. We consider the task of learning planted
neuron distributions in d = 15 and d = 10. Remark that in this setting, when F = Bz, (8) with 3 large
enough there is no approximation error. We compare the behavior of F; and F; models with different
estimators in Figures 1, 2 and 3, corresponding to models with J = 1, 2,4 teacher neurons, respectively. The
error bars show the average and standard deviation for 10 runs. In the three figures, the top plot in the
first column represents the test KL divergence of the F; and F> EBMs trained with maximum likelihood
for an increasing number of samples, showcasing the adaptivity of F; to distributions with low-dimensional
structure versus the struggle of the F5 model. In Figures 1 and 2 the bottom plot in the first column shows
the same information for a teacher with the same structure but different values for the output weights. We
observe that the separation between the /; and the F» models increases when the teacher models have higher
weights.

In the three figures, the plots in the second column show the test KL divergence and test KSD, respectively,
for EBMs trained with KSD (with RBF kernel with o2 = 1). We observe that we are able to train EBMs
successfully by optimizing the KSD; even though maximum likelihood training is directly optimizing the KL
divergence, the test KL divergence values we obtain for the KSD-trained models are on par, or even slightly
better, comparing at equal values of n. It is also worth noticing that in Figure 1, we observe a separation
between F; and F3 in the KL divergence plot, but not in the KSD plot. It seems that in this particular
instance, although the training is successful, the KSD is too weak of a metric to tell that the 73 EBMs are
better than F5; EBMs.

In the three figures, the plots in the third column show the test KL divergences and test F1-SD for EBMs

12
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Figure 4: 3D visualization of the neuron positions, energies and densities, in d = 3. The teacher model has
two neurons with negative weights wy, wy = —2.5, whose positions are represented by black sticks in all the
images. The positions of the neurons of the trained model are represented by blue and orange sticks for
negative and positive weights, resp. The two images on the left show the energies of the teacher and trained
models, respectively. The energies look qualitatively very similar up to an offset of ~ 0.3. The two images on
the right show the Gibbs densities of the teacher and trained models, respectively.

10 ] Figure 5: Log-log plot of the KL divergence between the MLE
trained model and the teacher model (same as in Figure 4), versus
the iteration number.

KL divergence

10

10° 10 102 10° 10

Iteration

trained with F7-SD. Remark that the error bars are wider due to the two timescale algorithm used for F;-SD,
which seems to introduce more variability. While the plots only go up to n = 3000, the test cross-entropy
curves show a separation between J; and F5 very similar to maximum likelihood training when comparing at
equal values of n.

App. C contains additional experiments for the cases J = 1,wj = 10 and J = 2, w] = —2.5, training with
KSD and F;-SD.

3D visualizations and time evolution in d = 3 (7; EBM trained with MLE). Figure 4 shows a 3D
visualization of the teacher and trained models, energies and densities corresponding to two teacher neurons
with negative weights in d = 3. Since the dimension is small and the temperature is not too small, we used
train and test sizes for which the statistical error due to train and test samples is negligible. Interestingly,
while the F; model achieves a KL divergence close to zero at the end of training (Figure 5), in Figure 4 we
see that the positions of the neurons of the trained model do not match the teacher neurons. In fact, there
are some neurons with positive weights in the high energy region. This effect might be linked with the fact
that there is a constant offset of around 0.3 between the teacher energy and the trained energy. The offset is
not reflected in the Gibbs measures of the models, which are invariant to constant terms.

Figure 5 also shows that for this particular instance, the convergence is polynomial in the iteration number. We
attach a video of the training dynamics: https://github.com/CDEnrich/ebms_shallow_nn/blob/main/
KLfeatzunnorml.mp4.
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7 Conclusions and discussion

We provide statistical error bounds for EBMs trained with KL divergence or Stein discrepancies, and show
benefits of using energy models with infinite-width shallow networks in in “active” regimes in terms of
adaptivity to distributions with low-dimensional structure in the energy. We empirically verify that networks
in “kernel” regimes perform significantly worse in the presence of such structures, on simple teacher-student
experiments.

A theoretical separation result in KL divergence or SD between JF; and F> EBMs remains an important open
question: one major difficulty for providing a lower bound on the performance for F, is that L? (or L)
approximation may be not be appropriate for capturing the hardness the problem, since two log-densities
differing substantially in low energy regions can have arbitrarily small KL divergence. Another direction for
future work is to apply the theory of shallow overparametrized neural networks to other generative models
such as GANs or normalizing flows.

On the computational side, in App. B we leverage existing work to state qualitative convergence results in an
idealized setting of infinite width and exact gradients, but it would be interesting to develop convergence results
for maximum likelihood that take the MCMC sampling into account, as done for instance by Bortoli et al.
[2020] for certain exponential family models. In our setting, this would entail identifying a computationally
tractable subset of F; energies. A more ambitious and long-term goal is to instead move beyond the MCMC
paradigm, and devise efficient sampling strategies that can operate outside the class of log-concave densities,
as for instance Gabrié et al. [2021].
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A Proofs of Sec. 4

Theorem 1. Assume that the class F has a (distribution-free) Rademacher complezity bound R, (F) < %
and L™ norm uniformly bounded by B. Given n samples {x;}7_, from the target measure v, consider the

mazximum likelihood estimator (MLE) U := v, where f is the estimator defined in (1). With probability at
least 1 — 0, we have

Dgr(v||?) <

@Jrﬂ 8log(1/6)
n n

inf D ). 7
+ inf Dici(v]vy) ™

If Z—Z(x) = 679(1)/IK e~ 9Wdr(y) for some g : K — R, i.e. —g is the log-density of v up to a constant term,
then with probability at least 1 — ¢,

45C
f

Dgr(v|[v) <

s 8logT(Ll /5)

2 inf [lg = flleo. 8
+2 it flg = /| (8)

Proof. In the first place, remark that for all 11,5 € P(K) that are absolutely continuous w.r.t. p, we have
Dir(v||v2) = [ log( dul( )dvi(x) — [ log( d"2( ))dvy (z) = —H (1) + H(v1,v2), where H(v1,15) is the
cross-entropy and H(14) is the dlfferentlal entropy. Hence, for all vy, 19,5 € P(K),

Digr(vi||lv2) = Dr(vil||lvs) = H(v,v2) — H(vy,v3). (12)

Secondly, notice that for any v € P(K) and measurable f : K — R,

/ f(z) dv(z) = — / log(e ™)) dy(z) = / log (CZ’: (z )) dv(z) — log ( / ef("”)dT(x)>
— H(v,vf) — log </ef(m)dr(1:)> ,

Thus, if we apply (13) on v and its empirical version v, = + 3" | §,,, we obtain that with probability at
least 1 — 6, for all f € F:

(13)

0
|H(v,v¢) — H(vn,vy)| = f(x) /f ) dv(x Sup ||foo> 2log(1/9)
eF n
(14)
2pC 21log(1/9)
= vn +5 on

where we have used the Rademacher generalization bound (Mohri et al. [2012], Theorem 3.3) and the
Rademacher complexity bound from the assumption of the theorem.

We have
Drr(v||P) = Drr(v||P) — J}gftDKL(VHVf) + }ngDKL(VHVf)

= sup {H(V, V) — H(v, Vf)} + }Ielg:DKL(VHVf)

feFr

4p8C 8log(1/0) .
S;gg{H(vn,) H(Vnan}‘F\/ﬁ + By =, + inf D (vlvy)
4BC’ L5 8log(1/0)

+ figg.-DKL(VHVf)'

- Vn n
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This proves (7). In the second equality we have used (12). For the inequality we have used (14) twice, i.e. that
H(v,0) = H(v,v;) < H(vy,v5) + 252 4 8/ 220 and that —H (v, vy) < —H(va, vy) + 252 4 B/ 210800,
In the last equality we have used that by the deﬁmtlon of f, H(v,,v) = H(v, Z/Bf) = mlnfej-" H(v,vyp).

For the proof of (8) we apply Lemma 1 into (7). O

Lemma 1. Let g : K — R be such that %(m) = e_g(x)/fK e 9IWdr(y), i.e. —g is the log-density of v up to
a constant term. Then,

inf D < 2 inf — oo
jnf kr(v|lvy) < J}Ielng il

Proof. Notice that v = v,. Thus, for any f € F,

dug (m) %
Dgr(v|lvy) = Drr(vyllvy) = /log <d,,f > vg(z) = /10 % dvy(x)
(x) TeTWdr(y) (15)

= [0~ 501 ave) g [ eoarta)) 105 ([ = arta)

Here, we bound

/ (@) - 9(2) dvg(@) < 1 — glloer

and applying Lemma 2 to f and g, we obtain

log (/ e /W dT(y)> — log (/ e 9 dT(y)) <|f = glloo-

Plugging these two bounds into (15), we obtain Dgr (v||vy) < 2||f — glloo, Which yields the result. O
We do not claim that the upper-bound in Lemma 1 is tight; it might be possible to provide a bound involving

a weaker metric. Regardless, it suffices for our purposes.

Lemma 2. Let f: K - R, g: K — R be measurable functions. For some « € [0, 1],

log ( /K e—f(y)dT(y)> —log ( /K e_g(y)dT(y)> = /K | e(_a(;iii):l;;)(ii))d ( )(f(y)—g(y)) dr(y)
e (2

Proof. We define the function

F(a) = log </ e—(af(y)+(l—a)g(y)) dT(y)) ,
K
which has derivative

ar - =l IO () — giy) drty)
doa ™ [ o (T @HI=09) gz ()

_ /K (@) - 9))paly) dr(y),

where p,(y) is the density of the Gibbs probability measure corresponding to the energy af + (1 — a)g. We
make use of the mean value theorem:

log (/Ke_f(y)dT(y)> —log (/K e_g(y)dT(y)> =F(1) - F(0) = ZZ( )(1-0)
== [ ) = s@)paly) dr(o).
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Lemma 3 (Approximation of Lipschitz functions by JF» balls, Proposition 6 of Bach [2017a]). For & greater
than a constant depending only on d, for any function f : {v € RY|||z||s < R} — R such that for all
x,y such that ||z|l2 < R, |lyll2 < R we have |f(z)] < n and |f(z) — f(y)] < nR7 Y|z — yll2, there exists
h{z € RY|||z||2 < R} x {R} = R € Fy, such that ||h|x, <J and

5 —2/(d+1) 5
mmlM%m—f@N<CMM<R) 1%(R)
lz]l2<R n n

—2/(d+1)
Proof. From Bach [2017a]. Notice that the factor in the bound is (%) log (%5), while in the original

—2/(d+1)
paper it is (%) log (%) The R factor stems from the fact that we consider the neural network
features to lie in S¢, while Bach [2017a] considers them in the hypersphere of radius R~*. O

Lemma 4 (Rademacher complexity bound for Bz,, Section 5.1 of Bach [2017a]; Kakade et al. [2009]).
Suppose that K C {x € R™1|||z||s < R}. The Rademacher complexity of the function class B, is bounded by

Ro(Br,) < %.

Corollary 1. Let F = B, (3). Suppose K = Ko x {R}, where Ko C {z € RY|||z||» < R} is compact.
Assume that Assumption 1 holds. Then, we can choose 8 > 0 such that with probability at least 1 — § we have

DKaww>gé((y+¢5gya)ﬁﬂrxaww;)

where the notation O indicates that we overlook logarithmic factors and constants depending only on the
dimension k.

Proof. We will use (8) from Theorem 1. We have that g : Ko x {R} — R is defined as g(z,R) =
J J
>j=19i(@ R) =325 @i (U, R).

By Lemma 3, there exists ¢; : {z € R¥|||z|2 < R} x R — R such that v¢; € F» and |1, 7, < B/J, and

RB —2/(k+1) R,B

ww oyl B) - gyl < Com (1) e (1 (16)
c€R||z]a<R ! nJ nJ

Hence, if we define g; : Kox{R} — Ras g;(z, R) := ¢;(U;x, R), we have that g; belongs to F; by an argument

similar to the one of Section 4.6 of Bach [2017a]. Namely, if we write ¢;(x, R) = [y, o((0, (x, R))) d~(f) for

some signed measure 7y, we have

B R) = [ o0 W) d1(6) = [ U] brane) +00aF) d1(6) = [ o(Ohas) + 01 B) 7 (0),

where we used the change of variable 68’ = (U JT 01.4,04+1), which maps S¥ to S%. Moreover, this shows that g;
has 1 norm [|g;|| 7 < ||¢;|l7 < B/J, which means that g = ijl g; € F1 and ||g|| 7, < . Moreover,

19; — 9jllc = sup |g;j(z, R) — gj(x, R)| = sup [¢;(U;x) —¢;(Uz)] < sup  [ih;(x) — p;(z)]
€Ky €Ky z€RF:||z||2<R

R —2/(k+1) R
<oun(5r) we(ag)
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The first inequality holds because for all € K, |Uz||2 < ||z]l2 < R by the fact that U has orthonormal rows,
and the second inequality holds by (16). Thus,

J RB —2/(k+1) RB
inf — flloo < llg = Gllee < Gi — Gilloo < C(k)JIn | — 1 — 17
(B Vo= Sl <l = e < 3165 =0 won () () an
Notice that the assumptions of Theorem 1 are fulfilled: the Rademacher complexity bound for Bz, (Lemma 4)

implies that R, (Br, (8)) < 6—\/1% and it is also easy to check that sup;cp, () [[fllc < 8. Plugging (17) into
(8) we obtain

2R 2log(1/6 RE\ YD p
DKL(VHQ)SZLB\/\/;; + 3 ngl 19 | ock)m (ﬁ) log (77?)

If we minimize the right-hand side w.r.t. 8 (disregarding the log factor), we obtain that the optimal value is

2B \ "5 (A H g (A D\ (R (2ByR \ T
k+ 1 Jn 2/n L\ Ak +1) ’

k+1
+3

and the optimal f is (2By/n/(A(k +1))) ***, where

[

k+3

A =4V2R +\/2log(1/5), B =2C(k)(Jn)* 1R %1
O]

Lemma 5 (Stein operator for functions on S). For a probability measure v on the sphere S with a continuous
and almost everywhere differentiable density %, the Stein operator A, is defined as

(A h)(z) = (v log (Zi@)) - dx) h(z)" + Vh(z),

for any h : S¢ — R that is continuous and almost everywhere differentiable, where V denotes the
Riemannian gradient. That is, for any h : S* — R that is continuous and almost everywhere differentiable,
the Stein identity holds:

E,[(A,h)(x)] = 0.
Proof. Let h; : S* — R be the i-th component of h. Notice that

_E, [v (;l:(x)hi(x)) gl(x)] _ /S v (j:(x)hi(a:)> dr(z) (18)

Now, if we take the inner product of the right-hand side with the canonical basis vector e, € R4, we obtain

v %(x)hi(x) dr(z),e )= | {(I—22")V %(x)hi(az) ex V()
(L .

= /S <v (j:(x)hi(a:)) e — xkx>dr(m) = - /S %(x)hi(x)v “(ex — zpz)dr(z),

E,

¥ log (j:@)) ho(@) + Vhi(x)

where in the second equality we used that (I —zx ) the projection matrix to the tangent space of S% at z, in
the third equality we used that it is symmetric, and in the last equality we used integration by parts on S¢
(V- denotes the Riemannian divergence).
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To compute V - (e, — xpx), remark that by the invariance to change of basis it is equal to the divergence of
the function g : R¥tt — RI*! defined as © — e, — ﬁ, when restricted to S?. And we have

d+1 d+1 TR d+1 d+1 2{E IL' T
— 0.0 _ 9. o J\ =
RRPRLLL D (’“ ||x|2) an\\? Lol | T Tl

For z € S¢, the right-hand side simplifies to —(d + 1)z + 22 — 2 = —dx},, which means that the right-hand
side of (18) becomes

[ S @hi@)(~dny) dr(@) = dB, s(z)).

That means that E, {V log (%(x)) hi(x) + Vh;(x) — dh;(z)z| = 0, which concludes the proof. O

Lemma 6 (Kernelized Stein discrepancy for probability measures on §%). For K = S?, and v1,vy € P(K)

with continuous, almost everywhere differentiable log-densities, the kernelized Stein discrepancy KSD(vy, )
s equal to

sup (E,, [TT(AVQh(z))])Z = Eoarmn [(80, () — 50, (x))T(SVQ (') = s, (2))k(z,2")] = Eq o mwn [, (T, zl()ig)
heB,q

where u, (z,2") = (s, (x)—d-x) " (s, (2')—d-2"Vk(z, ")+ (s, (2)—d-2) T Vo k(z, 2")+ (5, (2")—d-2") " Vik(z, 2")+
Tr(Vaok(z,2')).

Proof. The argument for the first equality is from Theorem 3.8 of Liu et al. [2016], but we rewrite it with our
notation. Using the Stein identity, which holds by Lemma 5, we have

E,, [Tr( Ay, h(x))] = By, [Tr(Av h(z) — Ay h(@))] = Euy (505 (2) = 50, (2)) Th(@)],
dv d+1 '
sup By, [(s, () — 50, (2)) ()] = sup / —— (@) > (s (@) = 58 (2)) i () dr ()
h€B, 4 h€By g Jsd dr =1
d+1 dv d+1 Ay » » 2
_ WL D () — 5O () Vel Vd h..> _ W1 D ) — 5O (Nl
su x) (s, (x) — s (x))k(x, )dr(x), hy ) (svy () — sp) (x))k(x, )dT(x
hegig;< @66 ek i) =\ S| [ @6 - sk i)
o] dv dv
1 i i 1 i
=\ 2 / (@) () — s (@) k(, 2) (@) (50 () — b2 (@) () dr (o).
i1 Sdxsd AT T
Given the form of the Stein operator for functions on S (Lemma 5), the proof of the second equality of (19)
is a straightforward analogy of the proof of Theorem 3.6 of Liu et al. [2016], which is for the Stein operator
for functions on R<. O

Theorem 4. Let K = S%. Assume that the class F is such that sup e 7{||Viflloo|l < i < d+ 1} < BCh.
Assume that H = Brpavi, = {(h DL by € Hi, X5 | hillw, < 1}, where H; are normed spaces of
functions from S% to R. Assume that the following Rademacher complexity type bounds hold for 1 <i < d+1:
Es,s, [SuphiGBHi D Ujhi(xj)} < G Eos, [SUWPhenu, 3 2 ijz‘hi(%‘)] e, and that ||hilee <
M, ||Vihi|loo < M for all h; € H,;.

If we take n samples {x;}7_, of a target measure v with almost everywhere differentiable log-density, and
consider the Stein Discrepancy estimator (SDE) U := v, where f is the estimator defined in (3), we have
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that with probability at least 1 — 8, SDy (v, D) is upper-bounded by

4v/d + 1((BC1 + Rd)Cy + Cs)
Vo

(d+1)log((d+1)/8)
2n

+2M(BCy + 1+ Rd)\/ + Inf SDx(v, ).

Proof. Notice that by the definition of the Stein operator,

Tr(Ay, h(z)) = ((Vl og (Cfi:( )) - dx) h(z)" + Vh(x)) =Tr (—(Vf(x) +dx)h(z)" + Vh(a:))

d+1
=Y —(Vif(x) + du;)hi(z) + Vihi(x)
Thus,
sup E, [Tr(A,, h(z))] — E,, [Tr(A,, h(z))]
heH
d+1
_SEEZ z) + dx;)hi(z) + Vihi(z)] — By, [-(Vif () + dzi)hi(z) + Vihi(z)])

d+1
= sup > wiB[~(Vif (2) + dzihi(z) + Vihi()] = By, [=(Vif (@) + dai)hi(x) + Vihi(@)])

> lwiP<155
hiGB’Hi

d+1 2
\Z( sup (]Ev[i(vzf( )+dIz) z( )+Vh( )] un[f(vlf( )+d$z) z( )+Vh( )D)

i—1 h; EBH,L»

d+1

= Z ®,(S,,)?
=1

where ©;(Sn) = supy,,ep,, (By[=(Vif(2) +dzi)hi(z) + Vihi(2)] = By, [=(Vif (2) + dxi)hi(z) + Vihi(z)]). For
a fixed i, we can use a classical argument based on McDiarmid’s inequality (c.f. Mohri et al. [2012], Theorem
3.3) to obtain

— 62’fL
P (cpi(sn) ~ Eg [®:(5))] > e) < exp ( ?JZ ) ,

where Cy = M(8C +1+ Rd) is a uniform upper-bound on {|| — (V; f(x) + dx;)hi(z) + Vi hi(2)]| s | hi € Bu, }-
Thus, using a union bound, we obtain that

and through a change of variables, that means that with probability at least 1 — ¢,

log((d +1)/9)

max (@i(Sn) —Es: [‘I’z(S;L)D <Cy m

1<i<d+1

= max 9,(5,) < max IES/<I>-(S;L)+C4 w

1<i<d+1 1<i<d+1 m
d+1
d+1)log((d+1)/0
Z@ )2 <Vd+1 maczz( P, (S ”)<‘/d+11<m<2’g(+1ES;‘I)i(S,/l)+C4\/( + )ogQ(( +1)/9)
s ) n
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All that is left is to upper-bound Eg,_ ®;(S,,) for any ¢ using Rademacher complexity bounds:

Es

n

WS (Eu [—(Vif (@) + dzi)hi(z) + Vihi(z)] = Eu, [-(Vif () + dzi)hi(z) + Vz'hi(x)])]

n

< ESn,S; sup l Z ((V f( ) + dl’ )h ( ;) — (Vlf(l'j) + dCUJ’Z)hl({EJ)) + Vzhl(x;) — Vzhz((EJ)

hieBHi n j=1

n

= Eos.s, | sup 30y (~((Vaf (@) + dal i) — (Vif ;) + diydha(ay) + Viha(a) — Vb)) |

hiEBH,i n j=1

and this is upper-bounded by

2E;s, | sup ZUJ (Vif(x;) + daji)hi(z;) + Vihi(z;))
h; EBH

<2E,s, | sup ZJJ Vif(z;) +dxji)hi(z;) | +2Ess, | sup ZUJV hi(z;)
h; EB'H ] 1 1657{

By Talagrand’s Lemma (Mohri et al. [2012], Theorem 5.7) and the uniform L bound on {V, f|f € F} (notice
that y — (BV,:f(z;) + dx;,;)y has Lipschitz constant uniformly upper-bounded by |8V, f(z;) + dx; |
which means that the assumptions of Talagrand’s Lemma are fulfilled), we have

[o ok}

C1 + Rd)C
| sup ZUJ (Vif(z;) +dzj)hi(z;)| < (Cif+ Rd)Ess, | sup ZO'J (ﬁ ! )G

EU,S = ’
h; GB’H ] 1 7€BH \/ﬁ

where we used the Rademacher complexity bound of By,. Using the Rademacher complexity bound of V;h;

as well, we conclude that the right-hand side of (20) can be upper-bounded by W. Thus, with

probability at least 1 — 4, for all h € H,

2vd+ 1((8Cy + Rd)Cay + C! d—+1)log((d 0
EU[TI‘(AUfh(iC))] o E]/n [TI‘(Ath(ZL'))} < + ((5 1+ ) 2+ 3) + 04\/( + ) Og(( + )/ ){21)
vn 2n
We conclude the proof with an argument similar to the one of Theorem 1:
SD (v, v)

=SD ) — inf SD inf SD
H(V7V) ;161.7: H(I/,Vf)+;2}_ ’H(Vvyf)

= sup {sup E,[Tr(Aph(x))] — sup IEV[Tr(A,,fh(x))}} + inf SDy (v, vy)
feF | heH heH fer

4/d+1((BCy + Rd)Cs + Cs)
\/ﬁ

< sup {sup E,, [Tr(Ash(z))] — sup E,, [Tr(.A,,fh(:v))]} +

heH heH

log((d+1)/0)

+ 204 + ]}gg-‘ SDH(V, I/f)

2n
i Cy + Rd)Cy + C d+1)log((d+1)/d
_AVAT (B 1\/% )Ca + 3)+2M(501+1+Rd)\/( +1) OgQ(Tf +1)/ )+fig;sp%(y,uf).

In the second equality we use the definition of the Stein discrepancy (equation (2)). The inequality follows
from (21) applied on vy and on ¥ = v - The last equality holds because of the definition of f and the
definition of Cjy. O
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Theorem 2. Let K = S%. Assume that the class F is such that supser{l|Vifllooll < i < d+1} < BC.
IFH = Braor = {h = (b)) | b € Fi, S0 [hil%, < 1} or H = Brar = {h = (h)2] | b €

Fa, Zfill [hill%, <1}, we have that for the estimator v defined in (3), with probability at least 1 — 6,

SDy (v, ) < AV 1(PC, 4\;52\/m+ d)

+2(8C) +d +1) o

dv

+ inf B, { ‘ — Vf(z) - Viog (dT(ac))

J

where Cy is a universal constant and V f denotes the Riemannian gradient of f.

Proof. Note that Lemma 5 provides the expression for the Stein operator A, on S¢ and shows that for any
v € P(S%) with continuous and a.e. differentiable density, the class of continuous and a.e. differentiable
functions S¢ — R*! is contained in the Stein class of v (which by definition is the set of functions h such
that the Stein identity E,[A,h] = 0 holds). Using the argument of Lemma 2.3 of Liu et al. [2016], we have
that for any vy, € P(K), for any h in the Stein class of 14 we have

IE1/1 [‘Al’zh(x)] = IE1/1 [‘Alfzh(x) - AVlh(‘T)]
=By, [sv,(@)h(@) " + Vh(z) = deh(z)" — (su,(@)h(z) " + Vh(z) = deh(z) ")] = By, [(50,(2) = 50, () (@) 7],

which follows from the definition of the Stein operator and the Stein identity: E,, [A,, h(z)] = 0. Thus, for
any v € P(K),

D50 (vg) = sup By [Tr((sy, (x) su(2))h(x) )]

= dv
B hesslfl;“ ;E” (-Vif(:c) — V;log (dT(x))) hz(.’L’)]
= dv
= - |i?|)2g1, ;Eu <Vif($) —V,log <dT(:1:))> w; /Sd o ({0, z))di (0)

lvilrv<1
[ o dv
<k sy Y - Vis@) - Voo () ) [ ato.nanio)]
LS, lwil?<1, 521 T Sa
|vilrv<1
d+1

=5, s Yun( - Vi) - Vioe (@) )6,
L2 wil"<1, 5=
{0y cs?

(8 . (w-wim () o) )

(8 (- (0)) ) -

=1

_Vf(x) - Viog (ji(m))
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Moreover, by Lemma 4:

1
EU7Sn sSup 7203 ‘r] = n(B]:1) < —. (23)
hEB}‘l

3

And

Eos, | sup fZUJthJ) =E,s, | sup Za]/ Vio((0,x;))d~(0)

hEB}‘l j=1 "’YITV<1
_ L
=Es.s, sup E 0l )00 | =Ess, [sup |— E 0ilg.2;y>00i (24)
eesd|u4<1 n fesd | M 4= -

vd+1
- <C ,
byt S04

S Ea,Sn

where the last inequality follows from the Rademacher complexity bound on the hyperplane hypothesis, which
is obtained through a VC dimension argument (Bach [2017a], Section 5.1; Bartlett and Mendelson [2002],
Theorem 6). Moreover, ||hl|oc < 1 and ||V;h||s < 1 for all h € F;. The proof concludes by plugging (22),
(23), (24) into Theorem 4. Since B}—;i+1 C B}—ld+1, all the upper-bounds of the proof hold for H = B]_-;H as
well. O

Theorem 5. Let K = S*. Let KSD be the kernelized Stein discrepancy for a positive definite ker-
nel k with continuous second order partial derivatives, such that for any non-zero function g € L*(S%),
Jsa Jsa 9(@)E(z, 2")g (2" )dr(x)dr(2) > 0. If we take n samples {x;}j—, of a target measure v with almost
everywhere differentiable log-density, and consider the unbiased KSD estimator (6), we have with probability
at least 1 — 0,

1/2

KSD(v,0) < \/7 ]Sflelg( Vargey (Bgs ey [, (2, 2')]))

+ \/Ez,zrwy[k(x,x’)Q] }relft]EzN,, HVlog (ZV( )) — BV f(x)

21
Proof. For the kernelized Stein discrepancy estimator we can write

KSD(v,p)
=KSD(v,0) — inf KSD inf KSD
SD(v, 1) jnf SD(v, Vf)+;161}_ SD(v,vy)

= sup {E%I/N,j[u,; (]J7 gj/)] — E(I,‘7I/Nl/[uuf (1‘7 x/)]} + fnel‘f;: KSD(V, Vf)

N
= sup {Ezﬁmlwu[d,;(agx')] — Eg ot [t (:v,x')]} + inf KSD(v,vy)
fer fer
- 2
< sup Qo | 2 B ws) = iy (@) | o e sup(Varay (Batea [, (,2')])

i#£j i#£]

2
+ juelg__KSD(V v) = \/7Jsclelg(VarINy(Ex/N,,[ul,f(x,z’)]))l/ + flIelg__KSD(l/ vy)

The third equality holds because of the definition of %, in terms of u,. In the first inequality we have used
that for any » (different from v) with almost-everywhere differentiable log-density, ﬁ Dy U (T, )
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has expectation E; ;. [t (2, 2")] and variance Vary, (Eyy [Gs (2, 27)])/n by the theory of U-statistics (Liu
et al. [2016], Theorem 4.1; Serfling [2009], Section 5.5). Thus, by Chebyshev’s inequality, with probability at
least 1 — 4§, we have that E, ;05 (2, 2')] < #_1) Doy Ui @) + \/%(VarwN,,(Ew/Ny[ag(x,x’)]))l/Q.

Moreover, using the argument of Theorem 5.1 of Liu et al. [2016], by Lemma 6,

KSD(v,vf) = Eaanl(s0(2) = 50, (2)) T (s0(2") = 50, (2') ) k(, 2"))

< \/EzﬁmrN,,[k(x,x/)ﬂ\/]EWE,N,, {((su(m) — Sy, ()T (sp(x') — Sup (x'))>2]

< ¢Em,x/w[k<z,x'>2]\/Em,x/w [l50(2) = 50, (@) 150 (@) = 50, (@)]1?]
= B, 2] B [50(2) = 50, ()]

where E, ., |||s,(2) — 50, (:c)||2] is known as the Fisher divergence. O

Theorem 3. Let K =S%. Assume that the class F is such that supse7{|Vflleo} < BC1. Let KSD be the
kernelized Stein discrepancy for a kernel that satisfies Assumption 2. If we take n samples {z;}1—, of a target
measure v with almost everywhere differentiable log-density, and consider the unbiased KSD estimator (G), we
have with probability at least 1 — 9,

2
KSD(v,7) < —=((BCy + d)*Cy + 2C5(BCy + d
(7)< = ((BCs +d)*Cy +2C4(8C + )
it B |[Viog (@) - Vi)
2]}161.7: T~v 0og dr T z .
Proof. We apply Theorem 5. We can bound

sup (Vatgny (B [y, (2, 2)])) 2 < sup By (B [y, (2, 2)])) 2 < sup By (Barns [y, (2, 27)?])) /2
fer fer fer

<sup sup |uy,(z,2')] < ((BC1 + d)*Cs + 2C3(BC + d)),
fEF x,x' €S

and \/Eg o [k(z,27)%] < Cs. O

Lemma 7. For a function g : S* — R, we define the partial derivative 0;g : S* — R as the restriction to S¢
of the partial derivative of the polynomial power series extension of g to R™ (i.e. the extension of a spherical
harmonic to R™ is the polynomial whose restriction to S is equal to the spherical harmonic (Atkinson and Han
[2012], Definition 2.7)). We denote by 0g = (Big)fill the vector of partial derivatives of g. The Riemannian
gradient Vg : ST — R which is intrinsic (does not depend on the extension chosen), fulfills

d+1
d+1
Vg(x) = (Vig(@)i2) = | dig(x) = > 0;g(x)a;z;
=1 i=1

That is, Vg(z) is the projection of Og(x) to the tangent space of S* at x.

For & greater than a constant depending only on d, for any function g : S* — R such that for all x,y € S* we
have |g(x)| < n and |g(x) — g(y)| < nllz —yll2, and [Vg(z)|2 < n and [Vg(z) — Vg(y)ll2 < Llz —yl2, and
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g is even, there exists § € Fo such that ||§||z, < and

sup ) ~ 9(0)] < Clay (j) g (f,) , (25)
sup [Vi(e) = Va(a)lla < C)(L+1) (%) T g (2).

where C(d) are constants depending only on the dimension d.

Proof. We will use some ideas and notation of the proof of Prop. 3 of Bach [2017a]. We can decompose
g(x) = > >0 9k (), where gr(z) = N(d, k) [0 9(y)Pr((x,y))d7(y). gr is the k-th spherical harmonic of g
and Py is the k-th Legendre polynomial in dimension d + 1. Analogously, for any i between 1 and d + 1
we can decompose V;ig(z) = 3;5(Vig)k(2), where (Vig)(x) = N(d, k) Jou Vig(y) Pr({x,y))d7(y). Define

V.g: R™! 5 R to be the spherical harmonic extension of V;g.

Like Bach [2017a], we define j(z) = [e. 0

((0
€ (0,1). Equivalently, g(z) = Zk7/\k¢0r gz
and Han [2012], Definition 2.7), we have that

2))h(0)dr (), where h(z) = D kR0 A ¥ gy (z) for some
Since gy, is a homogeneous polynomial of degree k (Atkinson
) =

Dok R0 gk(rz) = g(rz).

=)
gz
With this choice of §, the first equation of (25) holds by Prop. 3 of Bach [2017a).

Using this characterization of g, by the chain rule we compute the Riemannian gradient
Vi(x) = 04(x) — (99(x), x)x = (g o (y = ry))(z) — (A(g ° (y = ry))(z),x)x = rOg(rz) — r(0g(rz), z)x

The polynomial power series extension % of Vg is by definition equal to Vg(z) = d¢g(z) — (9g(x), z)x =

> 50(09)k(x) — ((89)k (), x)x for z € S?. Since the terms of >, < (09)k(z) — ((Og9)k(x), z)x are polynomials
on x, this expression is equal to the polynomial power series of Vg by uniqueness of the polynomial power

series. Thus, for all 2 € R4+1,

Vg(z) =Y (99)k(x) = (Bg)k(x),x)x =D A(ge) (@) — (I(gx) (), )a = Dg(x) — (dg(x), x)a.  (26)

k>0 k>0

The second equality follows from Lemma 8, which states that 9(gx) = (99)x. Hence, by (26), we have
rdg(rz) — r(0g(rz),re)yre = r¥Vg(rz) = rY ,o(Ve)r(rz) = 73,507 (Vg)r(z). Thus, in analogy with
Bach [2017a], we have B B

rog(re) — r{dg(rz), ra)re = TZT (Vg)i(z) = rZrkN (d,k / Vo(y)Pp({z,y))dr(y)
k>0 k>0
1—r?
. Vyly ICZ:OT’ N(d,k)Pe((z,y)) | dr(y) =r . V(y) (1412 = 2r((z,y)))@d+D/2 dr(y).

Hence, keeping the analogy with Bach [2017a] (and Bourgain and Lindenstrauss [1988], Equation 2.13), we
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obtain that

1—r?
‘ /S V@) = VI G o @)

[Vg(x) = rdg(rz) — r(dg(ra), ra)ra||, =

1—r? ’
< [ 1960) = 19900 s =g )

1—1r2 1—r2
< [ 1960 = Vol grrr—grs ) + (=) [ 1900l g )

1 d
Scz(d)(l—T)Lip(Vg)/o (1r)dilﬂdeH(l—r)/Sd<S£l|vg(x)||2> > rEN(d, k) Pe((@,y)) | dr(y)

k>0

< Cy(d)Lip(Vg) (1 — ) log (1/(1 — 7)) + (1 —7) <sup ||Vg<x>|2> < Cu(d)(1 = r)(n + Llog(1/(1 1))

zES?

In the last equality we have used that 0;g is L-Lipschitz by assumption. And

IVg(z) = Vg(@)lls = IVg(z) — rdg(ra) — r(0g(rz), z)a|l3
< |[Vg(x) = rdg(rz) — r(dg(ra), z)x|3 + (1 — r*)r(dg(re), z)x 3 (27)
< |[Vg(a) = rdg(rz) — r(dg(rz), rayra||f < (Ca(d)(1 —r)(n + Llog(1/(1 - 1))))*.

In the second equality we have used that Vg(z) — Vg(x) is orthogonal to x (because it belongs to the
tangent space at x), and the Pythagorean theorem. As in Bach [2017a], for § > 0 large enough the argument
is concluded by taking 1 —r = (C;(d)n/6)*/@*t1) € (0,1), which means that the (square root of the)

error in the right-hand side of (27) is Cy(d)(C: (d)n/8)%/ @D (n + Llog(C, (d)n/é)—2/<d+1>) < Cs(d)(L +
m)(8/m) /) log(6/1).

Using that g is n-Lipschitz, by the argument of Bach [2017a] we have that ||il||L2(Sd) < Cy(d)n(1 —r)(=d=1D/2,
where C;(d) is a constant that depends only on d and consequently ||g|| 7, < C1(d)n(1 —7)—4=1/2 And for
our choice of r, this bound becomes ||§|| 7, < Cy1(d)n((Cy(d)n/§)?/(d+1))(=d=1)/2 = §,

O

Lemma 8. For g : S* — R with spherical harmonic decomposition g(x) = Y_,~, gx(x) and with partial
derivative with spherical harmonic decomposition 9;g(x) = > ;5 (9ig)k (), we have (8;9)r(x) = 0i(gr) ().

Proof. Remark that the spherical harmonics on S% can be characterized as the restrictions of the homogeneous
harmonic polynomials on R (Atkinson and Han [2012], Definition 2.7). k-th degree homogeneous

polynomials are of sums of monomials of the form «;, . ; i - --- -zl where > ;_, i, = k, and harmonic
d+1 9%p
i=1 69:?

to S of homogeneous harmonic polynomials of degree k.

ir

polynomials are those such that Ap =" = 0. Thus, for all £ > 0, gr can be seen as the restrictions

Notice that the i-th partial derivative of a homogeneous harmonic polynomial p of degree k is a homogeneous
harmonic polynomial of degree k — 1. That is because by commutation of partial derivatives, we have

d+1 d+1
A@ip) =) 0j;0m =) _ 0:0;;p = 0;(Ap) = 0.
j=1 j=1

Thus, 9;(gx) are homogeneous harmonic polynomials of degree k — 1, which means that their restrictions to
S? are spherical harmonics. Since 9;g9(z) = 9;(3_ ;0 9k(2)) = 3350 9i(gx)(z) and the spherical harmonic
decomposition is unique, 9;(gy) must be precisely the spherical harmonic components of 9;g. O

29



Corollary 2. Let F = Br, (). Let Assumption 3 hold. (i) When ¥ is the F1-SD estimator (2) and the
assumptions of Theorem 2 hold, we can choose the inverse temperature 8 > 0 such that with probability at
least 1 — § we have that SDB;+1(Z/, D) is upper-bounded by

1

<(1+\/W> (L +n)(nJ) =T dFsn" 43)

where the notation O indicates that we overlook logarithmic factors and constants depending only on the
dimension. (i) When U is the unbiased KSD estimator (6) and the assumptions of Theorem 3 hold, >0
can be chosen so that with probability at least 1 — 6 we have that KSD(v, D) is upper-bounded by

~ 1 2(k+1) 4 1
) <5k+3 (J(L+mn)) = (77J)k+3nk+3> .

Proof. We will use Theorem 2. Let g : ST — R be defined as g(z) = ijl gi(z) = Z‘j]:l ¢, (U;x), where

p;{z e R ||z)2 < 1} — R.

Let ¢; : S* — R be the restriction of ¢; to S*. By Lemma 7, there exists 1; : S* — R such that ¢; € 7, and
[l 7 < B/J, and

) A 5\ 2/ kD) 5
sup I6,() = by()| < O + ) (W) log (W) , (28)
A : B\ g
sup [[923(2) = V4 0)lla < CRIL +7) (W) log <W>

Moreover, if we denote by ¥; : {x € R¥1|||z|]y < 1} — R the 1-homogeneous extension of 1[1]-, we can write
the (Euclidean) gradient of ; at the point rx (with r € [0,1], z € S%) in terms of the (Riemannian) gradient
of ¢; at x:

Vi (rz) = rVi;(z) + ¥j (@)
Thus, by Equation 28, and renaming C(k),

sup [|Vip;(z) = Vb (2)]l2 < sup [[Vg;(z) — Vi (@)l2 + sup |;(z) - 5(x)]

llzll2<1 z€S zesd
g\ /D 3
< C(k)(L — 1 —
<cwiz+n (2 o8 (2
Hence, if we deﬁne g; : ST — R as gj(z) = ( x), we check that §; belongs to Fp: if '(/AJj is such that
Vr € Sd bi(x) = [ o ({0, 2))dy(0), then ¥;(x) = fsk a((0,z))dv(0) when |z|]2 <1, and

i) = 0 Us2) = [ o0.02)0n0) = [ (U7 0.aNar ) = [ o))y @)

This also shows that g; has F; norm ||g;||, < ||1/A1j|\]:2 < /J, which would mean that § = Z;’:l g; € F1
and ||g]|7 < B. Moreover,

sup [[Vg;(x) — Vg;(x)ll2 = sup [[V(4h; 0 Uj)(x) = V(p; o Uj) ()]l

zeSd reSd
< sup, U (Vip; (Ujz) = Ve (Ujz))||2 = sup, [V, (Ujz) = Ve, (Usz)|l2
xe xre
PR AGEY 5
< swp V() - Vel < cE ) (2] og ()
[lyll2<1 n nJ
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The first inequality holds because the Riemannian gradient is the orthogonal projection of the Euclidean
gradient of the extension, and orthogonal projections are 1-Lipschitz. The following equality holds because
U; has orthonormal rows. The second inequality holds because for all z € S, |U;z||2 < ||z||2 = 1 by the fact
that U; has orthonormal rows, and the third inequality holds by (28).

Thus, for part (i), we have

dv dv
— — R < — —_—
fénil E, [ BV f(xz) — Vlog (d (m)) j < fénil ng% BV f(z) — Vlog (dT (x)) )
5\ /D 5
< sup |Vg(z < sup |[Vg; — Vg2 < C(k)J(L + <> lo ()
sup, IVg(z) = Vg(x)]2 ngxep IV3; = Vil < CURILAm) | 5 e\ 57

Plugging this into Theorem 2 and using that supep, {[[0if[loc|l <@ < d+1} <1, we obtain

(AL
Dra ) < WITIESCTIILD g5 g4y [ (LHD 0B
5\ /D) 5
+ O I(L+7) <77J) log (T]J) _

If we optimize this bound with respect to 8 as in the proof of Corollary 1, we obtain

k41

4(02\/?+d) Ld 1) log(2:g1) . (kgfl)m (\;%)kiS

k41
L i (A(k+1)>ki3bg 1( 2B/ )“3

NG nd \ Ak +1)

Ktl
and the optimal 3 is (2B/n/(A(k + 1))) ***, where

A=4Vd+1+/2(d+ 1)log((d+1)/5), B=C(k)J(L+n)(nJ)w.

For part (ii), we plug

2

2
inf B ] - 59 1@) - Viog (@) j < inf s |59 5) - Viox (F(2)) 2
) ? BN g
< sup [V3la) = V(o) < ]21535 Va, - Vsl | < <0<k>J<L e () e <w)>
into Theorem 3, and we obtain (using the notation of Theorem 3) that with probability at least 1 — 8,
) 9 g\ "2/t 3\\’
KSD(v,v) < \/T((ﬁcl +d)2Cy 4 2C5(BC, + d) + Cy) + Cs (C( )J(L+n) <77,]> log (W))
< i ((ﬁc& +d+ C5)Ce + ’203(d —Cy)+Cy — 0—3%02 >2
Von P

~2/(k+1) 2 2 2
+ Co (C(k)J(L +n) <n@> log (fj)) = (AﬁjﬁB) + D24/ (k+ D g (ni) ,
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where A, B, D are defined appropriately. If we set 8 to minimize Afjf + DB~2/(k+1)  we obtain 8 =

kel
(%) HS, and the right-hand side becomes

2
kt1 2 4 kil

2 (2D \*® __1 B Ak+1)\F® . 1 [ 204D \*7
Ak23 2(k+3) _ D2 i S %3 | ==/ =
< > " toaa) Tt < 2D ) norrios (A(k 1)

B Qualitative convergence results

B.1 7, EBMs dynamics

For a (Fréchet-) differentiable functional F : P(R%*2) — R, the Wasserstein gradient flow (i;);>0 of F is
the generalization of gradient flows to the metric space P(R%t2) endowed with the Wasserstein distance
W3 (g1, p2) := Infreri(uy ) Jpave wgase 12 — yll3 dm(z,y) [Ambrosio et al., 2008]. One characterization of
Wasserstein gradient flows is as the pushforward p; = (®4)xuo of the initial measure po by the evolution
operator ®; which maps initial conditions (wg, ) to the solution at time ¢ of the ODE:

W _ g ((;;F(m)) (,0),

where %F () : R4*+2 — R is the Fréchet differential or first variation of F' at pu.

m

For any m > 0, we define the m-particle gradient flow ¢t — u,,(t) = ((wgi), Ht(i)))izl as the solution of the
ODE

d(w?,0{) 5 @) 40
-, = — —F(pim s s
dt v 5# (:LL 7t) (wt ot )

where fip, = = > 5(w§i),0£7‘,)). For the functional F' defined in (9), we have that V (%F(um,t» (wt(i)ygt(i))

is equal to (dR(X > q)(w,gj), 9,@)), V@(wii), 9,@)) + )\(wgi), 9,@), which is equal to m times the gradient of
the function G((w®,0M)™ ) = F(L >t O (w7, 00))) with respect to (w®,0®). Thus, u,,(t) is simply
the gradient flow of G (up to a time reparametrization).

Theorem 6. [Chizat and Bach [2018], Thm. 8.5; informal] Let R be a convex differentiable loss defined on
a Hilbert space with differential dR Lipschitz on bounded sets and bounded on sublevel sets which satisfies
a technical Sard-type regularity assumption. Let (j14),~, be a Wasserstein gradient flow corresponding to
F in (9), such that the support of ug is contained in B(0,73,) and separates the spheres 1,8t and ryS4+t
for some 0 < vy < 1. If (), converges to p in Wa, then s is a global minimizer of F. Moreover,
if (fbm.t)e>0 is the empirical measure of (um(t))i>0 and pmo — po weakly, we have imy oo F(ftm,t) =
1irnrn,if~>c>o F(Nm,t) = F(,Ufoo)

Theorem 6 states that when the number m of particles (read neurons) goes to infinity, the function value of
the gradient flow of the function G((w®, )7 ) converges to a global optimum of F over P(R%2). Remark
that Algorithm 1 corresponds to the gradient descent algorithm on G((w®,#®)™ ) with noisy gradient
estimates. Thus, in the small stepsize and exact gradient limits, the iterates of Algorithm | approximate the
gradient flow of G((w®, @)™ ). This reasoning provides an informal justification that Algorithm | should
have a sensible behavior in the appropriate limits.
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Observation 1. While Theorem 6 assumes that R is defined on a Hilbert space, this assumption is not
convenient in our case because R(f) = L 3" | f(x;) + log (fK e_f(l)dac) is not well defined on L?(R%), as
it involves pointwise evaluations. However, following the argument of Chizat and Bach [2018], up to the

technical Sard- type regularity assumption, it suffices to show that F(u) is a convex differentiable loss with a
first variation 3 O F(u) such that

e The restriction of %F(u) to (w,0) € S fulfills < L|ha(p) —

SF@) = HFGO0)
C1(Sd+1)

hao(1) || L, where hy : M(RTT?) — M(S*) is defined as deJrl p(x) dho(p)(z) = fRd+2 lylPe(y/1y]) duly)
and || - || B, is the bounded Lipschitz norm.

o The restriction of %F(u) to (w,0) € ST is bounded on sublevel sets of F(u) in L™ norm.

To apply Theorem 6, we must check that the two statements in Observation 1 hold. Since for the maximum
likelihood loss we have:

5 1 i 2. 0)(@) exp (= foare B )@l 0)) dr(@)
(TF EZ + A(w” +[16]12),
" = Jie 0 (= frass @, 0)(@)dpu(w’,0)) ()

we obtain that for all (w,6) € R¥?2 and p, u’ € P(RI+2),

5 5o,
@F(u)(wﬂ) - @F(u )(w, 0)

Sy ®(w,0) () exD (= fya @', 8)(@)du(w', ) dr(z)
) &mﬂ.@ﬂ (' 0)(w)dp (', 8)) dr ()

| el 0)(@) exp (= s @', 0) @)yt (w',0')) dr(x)

M“ﬂ S @, 0)(@)dpt (w',0)) dr(2)
i B 0)@) exp (&Méwwwmmwwﬂ(m“mwww@awmwwﬂﬂdmw
Jicexp (= fuara @(w >md@wm)mm

Sy ®(w,0) () exD (= fyase D', 0)(@)dpus(w' e’) dr(x
Lo (= fpe @ ) @), ) dr(z)

Jic Jiaen @, 07 (@) = p) (", 0") exp (= fyasn ®(w',0') (@)dpus(',6)) dr(x)
| Jic 5D (= Jrsso (!, 0) (@) (w',07)) dr()

where j1; = tu+(1—t)p/. For (w,6) € S and for all z € K, we have |®(w, 0)(z)| = |wo ({0, x))| < diam(K)/2
and ||V 9)‘13(10 0)()ll2 = l(a((0,2)), w ({0, 93)))||2 < /diam(K)? + 1, which means that [|[®(-)(z)]c, <

/diam (K . Moreover, for z € K, [pars ®(w”,0")(x)d(n — ') (w”,0") = [gars ®(w”,0")(x)d(ha(p) —
ha(p ))(w” 9")§dlam( )l () — ho(p )||BL/2 Hence,

0 0

5P 00— 2P

< 2max [0(-) ()| ¢, 1) / (w0 (@)t — 1) 6
C1(sd+1) reK Rd+2

< /diam(K)2 + 1diam(K)||ha () — ha(1) || 5L
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This shows the first point in Observation 1. For the second point, we have the following bound:

)
HF(u)W)H <2 swp [(w,0)(@)] + A
op 0 (w,0)€Sd+1

B.2 F, EBMs dynamics

Fy is an RKHS with kernel k(z,y) = [s. 0((x,0))0({y,0))dp(f) and for the ReLU unit this kernel has a
closed-form expression [Cho and Saul, 2009]. Thus, one approach to optimize EBMs with energies over
Fo-balls is to apply the representer theorem and to write an optimizer f € F» as f(-) = Y., a;k(z;, ) for
some o € R", as well as || f||%, = D1y asok(xs, ;). Then, f becomes a finite-dimensional linear function
of a, and thus any loss F' that is convex in f is also convex on . However, this approach scales quadratically
with the number of samples and in practical terms, it is quite far from the way neural networks are typically

trained.

The approach that we use to optimize EBMs over Fy-balls is to sample random features (6;)™, on S¢ from a

probability measure with density ¢(-) and consider an approximate kernel ky, (z,y) = = > %i)or(@7 0:))o({y,0:))

i=1 ¢(
[Rahimi and Recht, 2008, Bach, 2017b]. The functions in the finite dimensional RKHS H,,, with kernel k,, are

of the form h(z) = 31" v;(q(6;)m) =20 ({z,0;)) with norm ||h||3,, = ||v||2, or through a change of variables,

h(x) = 5 Xy wio((x,0;)) with norm [[hll5,, = [|(wiy/q(0:)iLy |2/ v/m.

Thus, learning a distribution with log-densities restricted in a ball of H,, reduces to learning the outer layer
weights (w;)"_ ;. Namely, for R as in Subsec. 5.1, we optimize the loss

Gl ) = R =S wio((0i)) | + 2 D w?a(0)

which is convex. The gradient flow for G (with scaled gradient mV;G((w;)7,)) is

du}i

it :<dR %ijo—(wj,-» 7o<<ei7->>>+2xwiq<9i>, (29)
j=1

and we can approximate it by gradient descent, which converges to the optimum (w}), if the gradients are
exact and the stepsize is well chosen.

The connection between learning in #,, balls and learning in F> balls is not straightforward. Applying
Proposition 2 of Bach [2017b] and making use of the eigenvalue decay of the F» kernel on S? [Bach, 2017a],
for an appropriate choice of ¢ we have that for all f € By,, there exists f € H,, with || f]l3,, < 2 such that
If - f||L2(p) <0 ((m/ log(m))—(d+3)/2). This L? error bound is sufficient to produce a quantitative result

for least squares regression. However, for the three losses considered in this paper we would need bounds
for |f — flleo and |V f — V f||co, which do not seem to be available (Bach [2017b] does provide a bound on

|l = flloo, but under the assumption that kernel eigenfunctions have a common L* norm bound, which does
not hold for spherical harmonics in S%).

Nonetheless, a mean-field qualitative approach analogous to the F; case is still possible (see Proposition 2.6
of Chizat and Bach [2018]). The learning objective in F» can be written as

F(h):=R (/Sd a((@,x))h(@)d%(@)) + A/Sd h%(0)d7(9),
and the mean-field dynamics is

dhy(6)
dt

-- <dR ([ ot@ pha@rar@) ot ->>> ~20h(6) (30)
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If we choose ¢(-) = 1, we have that (29) is the m-particle approximation of (30). Let h* be the global

minimizer of F', which is reached at a linear rate by (30) because F' is strongly convex. Skipping through the

details, the argument of Lemma C.15 of Chizat and Bach [2018] could be adapted to yield:
lim_G((w)2y) =l Gl(w)iy) = lim G((wi)iy) = F(h).

t,m—o0 m,t—00

C Additional experiments

In this section, we show plots corresponding to additional experiments. Figure 6 shows results for KSD and
F1-SD training in the case J = 1,w] = 10. Compared to the plots for J = 1, w} = 2 shown in Figure 1, the
separation between the F; and F» EBMs becomes much more apparent. Figure 7 shows results for KSD and
F1-SD training in the case J = 2,wj = —2.5. The separation between the F; and F» EBMs is smaller than
in the case J = 2, wj = —5 shown in Figure 2.

D Duality theory for F; and 7, MLE EBMs

In this section we present the dual problems of mingc 7 H(vy,v¢) (i.e. problem (1)) for the cases F = Fi, Fa
(Subsec. D.1), F = Br, (8) (Subsec. D.2) and F = Bz, (8) (Subsec. D.3). The dual problems take the form
of entropy maximization under hard constraints, L> and L? moment penalizations, respectively. The tools
used involve a generalized minimax theorem and Fenchel duality, which was also used for results of the same
flavor in finite dimensions (c.f. Mohri et al. [2012]). The proofs are in App. E.
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D.1 Duality for the unconstrained problem

Consider the following entropy maximization problem under generalized moment constraints:

. -1p
,uin B~ Drr(v||T)

1 n
d 1
s.t. VGES,/ ((0,x)) nlgzla ((0,x;))

recalling that 7 is the uniform probability measure over K and letting 5 > 0 be arbitrary. The constraints
in this problem can be interpreted either (i) as an equality constraint in C(S%), i.e., the set of continuous
functions on S%, or (ii) as an equality constraint in L?(S%), i.e., the set of square-integrable functions on S¢.
Each interpretation yields a different dual problem.

(31)

By the Riesz-Markov-Kakutani representation theorem, the set of signed Radon measures M (S%) can be seen
as the continuous dual of C(S?). Hence, in the case ( ), the Lagranglan for problem (31)is Ly : M(K)xM(S%)x

C(K)XR—> R defined as Ll(y,u,g, = flog( ) )+ ([o((0,2)) dv(z) — L0 o((0,2:))) du(6)—
Jg(x) )+ A ([ dv(z) —1), and the dual problem is

s - iz [ o020 du(o) - 508 ( [ew (—6 [ot.0) du<e>) dT<x>> (32)

which is equivalent to the MLE problem (1) when F = Fj.

Let 7 to denote the uniform probability measure over S¢. In the case (ii), the Lagrangian for prob-

lem (31) is Ly : M(K) x L*(S?%) x C(K ) x R — R defined as Ls(v, h, g, = [log (%(x)) dv(x) +

[ (fo(8,2)) dv(z) — 230 o((0,2:))) W — [9(@)dv(z)+ X ([ dv(z ), and the dual problem is
1< _ 1 -

e, T ;/U(<97xi>)h(9) d7(6) — 7 1o (/ exp (-5/U(<97$>)h(9) d7(9)> dT(ﬂ) (33)

which is equivalent to the MLE problem (1) when F = Fo.

The following theorem shows that problems (31)-(32)-(33) have the same optimal value.
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Theorem 7. Strong duality holds between the entropy maximization problem (31) and each of the two dual
problems (32)-(33).

D.2 Duality for the F;-ball constrained problem

Using v, = % >, 65, to denote the empirical measure, consider the following problem, which can be seen
as an L>-penalized version of (31):

min 87Dk (v||7) +I;éa§)d{ (34)

veP(K)

/ o((6,2)) d(v — va) ()

As shown in Theorem 8, the dual of this problem is a modified version of (32) in which p is constrained to
have TV norm bounded by 1:

max, ~ ig [ o) duto) - 1o ( e (—ﬁ [ o, du(Q)) m)) (35)

peM(s?
|nlrv<1

Remark that by the definition of Fj, the problem (35) is equivalent to MLE problem (1) in the case
F =Bx (8).

Theorem 8. The problem (35) is the dual of the problem (34), and strong duality holds. Moreover, the
solution v* of (35) is unique and its density satisfies

)= e (—5 [otte.) du*(@)) ,

where p* is a solution of (31) and Zg is a normalization constant.

D.3 Duality for the F;-ball constrained problem

The following problem can be seen as an L?-penalized version of (31):

min 7' Dyep,(v||7) + </S (/J((G,x}) d(v — Vn)(:v)>2d%(9)> - (36)

vEP(K)

And as shown in Theorem 9, the dual of this problem is a modified version of (33) in which h is constrained
to have L? norm bounded by 1:

1« 1

max —— 0,x;))h(0) d7(0) — = lo /e (—/ 0,x))h(0 d~9)d T

max, n;/”“ Dh(6) d7(6) - 5 g< s (=8 [ o(0.2)h(60) 47(0) ) ar@) | (57
Al L2 <1 B

Remark that by the definition of F5, the problem (35) is equivalent to MLE problem (1) in the case

F = B]"’z(ﬁ)

Theorem 9. The problem (37) is the dual of the problem (306), and strong duality holds. Moreover, the
solution v* of (37) is unique and its density satisfies

)= o (5 [ o) h*(f))d%(&)) ,

where h* is a solution of (30) and Zg is a normalization constant.
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E Proofs of App. D

Theorem 10. [Kneser [1952]] Let X be a non-empty compact convex subset of a locally convez topological
vector space space E and'Y a non-empty convex subset of a locally convex topological vector space space F'.
Let the function f: X XY — R be such that:

(i) For each y €Y, the function x — f(x,y) is upper semicontinuous and concave,

(i) For each x € X, the function y — f(x,y) is convex.

Then we have

sup inf ,y) = inf ma ,Y)-
;lelgylgyf(x Y) ylgyglegf(ar Y)

Lemma 9. The KL divergence Dk, (v||T) = [log (%) dv is convex and lower semicontinuous in v.

Proof. See Theorem 1 of Posner [1975]. O

Observation 2. Notice that for any functional f : M(K) — R, we have

min f(v) = min f(v)-— /g(x)du(x) + A (/ dv(z) — 1)

veP(K) veP(K)

= min sup flv) — /g(x)du(m) +A (/ dv(z) — 1) :

veM(K) \eR,geC(K):g>0

Theorem 7. Strong duality holds between the entropy mazimization problem (31) and each of the two dual
problems (32)-(33).

Proof. We start with (32). First, we prove that it is indeed the dual problem of (31). As stated in the main
text, the problem (31) admits a Lagrangian Ly : M(K) x M(S?) x C(K) x R — R defined as

Li(vipng.N) = 57 [ log (jjm) aviz)+ [ | [ot6.2) avta) - - S o((0,0) | du(e) - [ staravta)

+>\(/dz/(:1:)1>

i=1
The Lagrange dual function is
Fi(u,9,\) = inf Li(v,p,9,\) = =31 /eXp ([3 (/ o({0,x)) du(0) + g(z) — )\> - 1) dr(z)

veM(K)
_ %Z / o ((6,2)) dyu(6) — A,

where we have used that at the optimal v, the first variation of L; w.r.t. v must be zero:

(38)

0= %Ll(VaM797A) =" log (Z(x)) +/7 4 /U((Q,x)) dp(0) — g(z) + A,
= %(9@) = exp <—f3 (/ o((0,x)) du(0) + g(z) — /\> - 1) .
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The Lagrange dual problem is

sup Fl(,LL7g7A)

,A,g>0
:u,i?qgo_ﬁ_l/e}{p (‘5 (/UW’@) du(9>+g(w)—A> —1> dr(x 7112::/ ((6,25)) du(6) — X
=sup—5~" [ exp (—/3 (o0 duto) - ) —1) irte) = 23 [ (0.0 ) )

= s -2 g [ o@.2) duto) - 5108 ( e (—B [otte.) du(G)) dr(m) 7

and the right-hand side is precisely (32). In the second equality we used that the optimal choice for g is
g = 0. In the third equality we used that the optimal A must satisfy the first-order optimality condition:

/exp (-/3 (/U((G,x)) du(8) — /\) _ 1) dr(z) —1=0,
— P = </exp (5/0((0,39)) du(0) — 1> dT(x)>_
- f% log (/ exp (ﬂ/a((@,x}) () — 1> dﬂ@)

To prove strong duality, we need to show that

inf sup Li(v,p,g, ) = sup inf  Li(v,p,g,N). (40)
veM(K) e M(S4),AeR,geC(K):g>0 HEM(SE),AER,geC(K):g>0 VEM(K)

If we define Ly : P(K) x M(S%) — R as Ly (v, ) = Ly (v, 1,0,0), we have that the assumptions of Theorem 10
hold for —L;. Indeed, by Lemma 9 we have that —Ll( () is a concave and upper semicontinuous function of
v. And by Prokhorov’s theorem, P(K) is a compact subset of the locally convex topological vector space of
signed Radon measures with the topology of weak convergence (tightness follows from the fact that K is
compact). Thus,

inf sup L (v, sup min L (v, 41
VEP(K)MGM(Sd) 1( ,LL) uEM(Sd)VEP(K) 1( IUJ) ( )

On the one hand, notice that by Observation 2,

inf sup Li(v,p,9,\) = inf sup Li(v,p,0,0) = inf sup Ly (v, u)(42)
VEM(K) e M(8),AER,gEC(K):g>0 vEP(K) pem(s?) VEP(K) pem(s?)

On the other hand,

sup inf Lqi(v,p,g,A) = sup inf sup Ly(v,p, g, \)
REM(SY),AER,gEC(K):g>0 VEM(K) ’ peM(st) vEME) XeR geC(K):9>0 7 (43)
= sup min Ly(v,p,0,0 sup min L, v, 1
pEM(SH) veP(K) ( Hy ) LEM(SH) veP(K) ( )
where we have used Lemma 10 in the first equality, Observation 2 in the second equality and the definition of

Ly in the third equality. Thus, the strong duality (10) follows from plugging (12) and (43) into (11).

To show that (33) is also a dual problem of (31), we consider the Lagrangian Ly : M(K)x L?(S?) xC(K) xR —
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R defined as

+)\</dy(:c)1) —r (/h2(0) d%(&)l)

The reasoning to obtain the dual problem (33) is analogous. Strong duality in this case can be stated as

inf sup Lo(v,h,g,\) = sup inf  Li(v,h,g,\).
veM(K) peL2(S4),A€R,geC(K):g>0 REL2(S?),\ER,geC(K):g>0 VEM(K)

Analogously, we define L2 P(K)x L2(S%) — R as Ly (v, h) = La(v, h,0,0), and we have that the assumptions of
Theorem 10 hold for — Ly as well, implying that inf, ep(r) SUPpeL2(se) Lg(u h) = supj, e p2(se) Min,ep (k) Lo(v, h).
The concluding argument is also analogous. O

Lemma 10. For all u € M(S%),

sup inf Li(v,p,9,A) = min sup Ly(v, pu, g, \).
AER,geC(K):g>0 VEM(K) vEM(K) \eR,geC(K):g>0

Proof. First, notice that by (38) and (39),

sup inf  Li(v,p,g,N\) = sup Fi(p, g,
AER,gEC(K):g20 VEM(K) AER,g€C(K):9>0
[ 1 (44)
= _EZ/U(@,%)) du(0) — Blog /exp (—B/U((O,x>) d,u(@)) dr(z) |,
i=1
And by Observation 2,
min su Li(v,u,g,\) = min Li(v,14,0,0) = min Li(v,4,0,0
uGM(K)AGRgec(p)QZO 19, vEP(K) 1(v,1,0,0) VEP(K) 1(v,1,0,0) (45)

If v* € P(K) is a minimizer of min, ¢pxy L1 (v, 1, 0,0), it must fulfill

ICeR: C= %(uﬁu,0,0) =B"log (ji(m)) +B87 1+ /U((H,x>) du(9),

d‘i’z;)(x) = exp (—5/0((&@) du(9) + BC — 1) ,

where —3C + 1 = log (fK exp (=8 [o((8,2)) du(8)) dT(fE)). Hence,
Ly (v 1.0,0) :g—l/log (diz; (x)) dy*(z)+/ (/a(<9,x>) v ( %ia 0. : )) du(0)
= —l Y (o2 Z; -pt Vi (z
ng/ (6.2 au(®) + [ (¢~ 571) dv*(a)
=y [ o.2) duto) - 1o ( [ e (ﬂ [t dme)) dm))

If we plug this into the right-hand side of (45), we obtain exactly the right-hand side of (44), concluding the
proof. O
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Theorem 11. [Fenchel strong duality; Borwein and Zhu [2005], pp. 185-137] Let X and Y be Banach spaces,
f: X >RU{+o0} and g: Y = RU {400} be conver functions and A: X — Y be a bounded linear map.
Define the Fenchel problems:

P = wig;{f (z) +g(Ax)}

d* = sup {—f"(A"y") —g"(—=y")},
y*EY*

where f*(z*) = sup,cx {(z,2") — f(2)}, 9°(y") = sup,ey{(y,y") — 9(y)} are the convex conjugates of f,g

respectively, and A* : Y* — X* is the adjoint operator. Then, p* > d*. Moreover if f,g, and A satisfy either

1. f and g are lower semi-continuous and 0 € core(dom g — Adom f) where core is the algebraic interior
and dom h, where h is some function, is the set {z : h(z) < 400},

2. or Adom f Ncont g # () where cont are is the set of points where the function is continuous.

Then strong duality holds, i.e. p* = d*. If d* € R then supremum is attained.

Theorem 8. The problem (35) is the dual of the problem (34), and strong duality holds. Moreover, the
solution v* of (35) is unique and its density satisfies

where p* is a solution of (31) and Zg is a normalization constant.

Proof. One way to prove Theorem 8 (and Theorem 9) would be to develop an argument based on a modification
of the Lagrangian function Ly (resp. Lz) that encodes the Fj restriction (resp. Fz), and to reduce the
problem once again to a min-max duality result like Theorem 10. However, this method turns out to be
rather cumbersome, and we resort to an alternative approach that harnesses the power of Fenchel duality
theory and yields a much faster proof. In fact, our proof structure is similar to Theorem 12.2 of Mohri et al.
[2012], which focuses on the finite-dimensional case and deals with a slightly different problem. As shown by
Theorem 11, the Fenchel strong duality sufficient conditions are very similar in the Euclidean and in the
Banach space settings.

We will use Theorem 11 with X = M(K), i.e. the Banach space of signed Radon measures, and Y = C(S%),
the Banach space of continuous functions on S?. Define f : M(K) — R U {+o0} as

400 otherwise

) = {5—1DKL(V||T) if v € P(K),

Define g : C(S?) — RU {+oo} as

= ma.
9(¢) = max

o(6) - /K o ({8, 2)) din(z)

i

and A : M(K) — C(S%) as (Av)(0) = [, o( dv(z). Remark that A is a bounded linear operator, which
implies that it has an adjoint operator By the Rlesz Markov-Kakutani representation theorem, we have that
C(S%)* = M(S?), which means that the adjoint of A is of the form A* : M(S?) — M(K)*. By the definition
of the adjoint operator, we have that for any u € M(S%),v € M(K),

(A1) ey satie) = (s AV sy = [ [ o000 avia)du®) = [ [ a((0.2)) du(oiviatio)
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Notice that C(K) C M(K)* by the fact that a vector space has a natural embedding in its continuous bidual
(but the continuous bidual is in general larger). Through this identification, (16) implies that we can write

A () = [0 o((8,2))dpa(6).

Our goal now is to compute the convex conjugates f* and ¢g*. By the argument of Lemma B.37 of Mohri et al.
[2012], which works in the infinite-dimensional case as well, the convex conjugate f*:C(K) — RU {+oo} is
shown to be:

£1(0) = 5 log ( /K exp (B(2)) dr(x))

Remark that f* has domain M(K)*, which is larger than C(K). However, knowing the restriction of f* to
C(K) will suffice for our purposes.

Moreover, g* : M(S%) — R U {+oo} fulfills:

50 = sw & [ o du—max|o(0) ~ [ o((6.0)) dv,(a)

pEC(SD) fesd K

= sw & pdu sw [ (o0~ [ o0 an)) e
peC(sd) | Jsd wem(s?), /s K

[Ty <1

= sw it {0 a0+ [ [ o0 w@ae)

peC(S4) B eM(SY), st JK
ln'|rv <1

it sw { Lo du=styo)+ [ [ oo anioine)]
w'eM(s?), pec(st) (Jsd sd JK
|7y <1

_  Jsa S o (0, 2)) dvn(@)dp(0) if [plry <1

+00 otherwise
In the first equality we have used the definition of g, in the fourth equality we have used Theorem 10 (remark

that {¢/ € M(S?) : |/|7v < 1} is compact in the weak convergence topology), and in the fifth equality we
have used that sup,ec(sa) {fsd w(0) d(p — ;L’)(Q)} = 400 unless p = p'.

With these definitions, notice that problem (34) can be rewritten as inf,c rq(x){f(v) + g(Av)} and problem
(35) can be rewritten as sup,epqsa){—f*(=A*1) — g*(p)}. Thus, strong duality between (34) and (35)
follows from Fenchel strong duality, which holds by checking condition 2 of Theorem 11. We have to see that
Adom f Ncont g # (. Consider ¢(-) = [ o( dv(z) € C(S?) for some v € P(K) absolutely continuous
w.r.t. 7. Then, we have that ¢ e Adom f. Moreover, since g is a continuous function (in the supremum
norm topology), cont g = C(S?) and hence ¢ € cont g as well, which means that the intersection is not empty.

Notice that in our case d* = sup,crqsa){—f"(=A"1) — g* (1)} € R, which by Theorem 11 implies that
the supremum is attained: let p* be one maximizer. We show that p* = inf,c i) {f(v) + g(Av)} =
inf,cp){f(v) +g(Av)} admits a minimizer by the direct method of the calculus of variations: notice that f
and g o A are lower semicontinuous in the topology of weak convergence (f by Lemma 9 and g o A because it
is a maximum of continuous functions, and thus its sublevel sets are closed because they are the intersection
of closed sublevel sets), and P(K) is compact.

We now show that %(m) Z; eXp (=B [a( dp*(9)), where v* and p* are solutions of (31) and (35),
respectively, that we know ex1st by the prev1ous paragraph. Recall the argument to prove Fenchel weak

42



duality:
sup {—f" (=A%) —g* (W)} = —f(=A"p*) —g"(p")

HEM(S)
=— sup {(-A"p"v)—f)}— sup {(u*0) —gle)}
vEM(K) pec(sd)
<— sup {(=A'pv) — f(v)+ (u*, Av) — g(Av)}
veM(K)
=S {{(=f(v) —g(Av)} = VeiMan){f(V) +9(Av)} = f(v*) + g(Av™)

Thus, for strong duality to hold we must have that v* = argmax, (k) {(=A*p*,v) — f(v)}, and the
corresponding Euler-Lagrange condition is %(x) = Z%g exp (=8 [o((6,2)) du*(6)). O

Theorem 9. The problem (37) is the dual of the problem (36), and strong duality holds. Moreover, the
solution v* of (37) is unique and its density satisfies
dv* 1

i 0= o (=0 ot 10)70)).

where h* is a solution of (36) and Zg is a normalization constant.

Proof. The proof is largely analogous to the proof of Theorem 8. We use Theorem 11 with X = M(K) as
before, and Y = L?(S%), the Hilbert space of square-integrable functions on S? under the base measure 7,
which is of course self-dual. We define f as before, and g : L?(S?) — RU {+o0} as

1/2

ols) = ( (e~ [ atte.0n dun@))Qd%(e)) ,

and consequently, g* : L?(S?) — R U {+o0} fulfills:
9 1/2
Fw= s { | e - ( [ (0~ [ at.0)) au o) dﬂe)) }

- dr — 0) — 0,z)) dv, b(0)d7 (0
o /S puir= /S (gz»() /K o((6, 2)) <x>) (0)d7(0)
H'ﬁ“zﬁl

= s, i { |00 =00y aro)+ [ [ a(0.2)) dv (@) 016) d%(@} ,
[lsbll2<1

and using Theorem 10 once more, this is equal to:

wt, sw { [ @) - io) @)+ [ [ oto.0) a ) bio) o}

PeL?(8%), peL?(s4) K

lll2<1

_ oo i o0.2)) dv@) w(6) d7(0) i 0]l <1,
+00 otherwise

With these definitions, notice that problem (36) can be rewritten as inf,c rq(x){f(v) + g(Av)} and problem
(37) can be rewritten as supe p2(sa){—f*(=A4*1) — g*(v)}. The rest of the proof is analogous. O
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