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Abstract—The dynamic non-linear state-space model of a
power-system consisting of synchronous generators, buses, and
static loads has been linearized and a linear measurement func-
tion has been considered. A distributed dynamic framework for
estimating the state vector of the power system has been designed
here. This framework employs a type of distributed Kalman
filter (DKF) known as a Kalman consensus filter (KCF) which
is located at distributed control centers (DCCs) that fuse locally
available noise ridden measurements, state vector estimates of
neighboring control centers, and a prediction obtained by the
linearized model to obtain a filtered state vector estimate. Further,
the local residual at each control center is checked by a median
x? detector designed here for bad data/Gaussian attack detection.
Simulation results show the working of the KCF for an 8 bus 5
generator system, and the efficacy of the median x> detector in
detecting the DCC affected by Gaussian attacks.

Index Terms—Distributed estimation, security, attack mitiga-
tion

I. INTRODUCTION

In static state estimation framework the number of mea-
surements needed to estimate the state needs to be greater
than the number of states in the system so as to have enough
redundancy. For the case of a power system the states are
the bus voltage magnitude and the bus voltage angles. The
measurements could be of the active/reactive power flows,
branch currents, active/reactive power injections, bus voltage
magnitudes/angles, etc. For a dynamic state estimator (DSE)
however the number of measurements can be less than the
number of states provided the measurements are available
at a higher frequency. With the increasing use of Phasor
Measurement Units (PMUs), high-frequency synchrophasor
measurement can be obtained in power systems. This allows
utilizing dynamic state estimators rather that the traditional
static state estimator (SSE) [1-3]. Increasing efforts are being
put towards utilizing DSEs for power system [4]. With increase
in distributed energy resources (DERs) and dynamic loads
in the distribution system, the accuracy of the SSE becomes
questionable and the time required in computing the state
estimates becomes critical and hence the increased drive
towards utilizing DSEs. DSEs can incorporate a physics-based
dynamical model of the system under consideration to get an
estimate of the system state when only a subset of the states are
measurable by the use of a Luenberger observer [5] and even
when the measurements are noise ridden by using a Kalman
filter (KF) [6].
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A DSE also has the advantage of making use of infor-
mation from previous time steps and predicting future state
estimates. Compared to SSE estimates this makes the DSE
estimates more robust to noise/bad data that are not temporally
coherent.

Utilizing DCCs rather than a centralized control center
is beneficial. The time taken in gathering measurements is
reduced and so is the time taken for computing local state
estimates as the DCC only needs to gather local measurements
and information from neighboring control centers [8, 9]. Even
though the DCC has many advantages, it can still be prone to
cyber attacks. These cyber attacks could occur at the sensor
level or when the measurements are in transit to the DCC
via the communication network. It could also be possible for
an adversary to modify the information being communicated
between DCCs by injecting false information which will
further affect the estimates computed by the neighboring DCCs
(See Fig. 1).

This work utilizes a KF at each DCC. These KFs share
information with KFs at neighboring DCCs and form a DKF
network. The advantage of using KCF as the DKF algorithm
is that though it is suboptimal, it is scalable. Further, a y?2
detector is designed at each DCC by using the local residual
and the local infinite horizon error covariance matrix. A
median filter enhances the performance of the x? detector
against false alarms. To the best of the author’s knowledge, an
attack detection scheme for the KCF framework has not been
applied towards power systems.

The outline of the paper is as follows. Section II-A de-
scribes the nonlinear dynamic model of power systems in the
form of differential and algebraic equations (DAE). In Section
II-B this model is linearized, discretized, and written in the
standard state-space form. Section III discusses the traditional



centralized KF and the KCF framework. In Section IV the
effect of sensor attacks on the KCF is considered under a
Gaussian attack assumption, and the x? detection scheme is
extended for the KCF framework. Section V discusses the
estimation results for an 8-bus, 5-generator power system
model with and without attack which show the efficacy of
our approach. Finally, Section VI discusses the conclusions
and possible future work.

II. PROBLEM FORMULATION
A. Power system nonlinear dynamic model

The nonlinear state-space model of the i generator can
be given as

5 (t) = wi(t) (1)

YA D' Wh _ pi

i 1 i i i X; - Xy i

Ey(t) = —ﬁEq(t) + bpzi (t) + 01 25(¢) + i a(t)
(3)

() = 25() )

5(t) = —ciz(t) — cpzi () +u’ (5)

where §%(t) is the generator rotor angle, w'(t) is the rotor
angular velocity, H® is the inertia, D’ is the damping factor,
Pi(t) is the active power delivered at the terminal, E(t) is
the quadrature axis transient voltage, P, is the mechanical
power delivered to the generator, I’(t) is the direct axis
current, 2 (t) and 2% (t) are the internal states of the automatic
voltage regulator (AVR) and u' is the system input. Detailed
explanation for the model can be found in [10] [11].

The algebraic equations showing the the KCL and power

flow in the power system network are given next
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The algebraic equations (6) and (7) can be eliminated by
substituting them in the generator dynamic equations (3) and
(2) respectively. The algebraic equations interconnects the
nonlinear dynamics of the generators across the network.
Furthermore, these equations are nonlinear in the states Et,
Eg , and contain sinusoidal terms of J; and ;. To simplify
the analysis it is beneficial to consider a linearized model of
the power system. In the next subsection the linearized model
development procedure is explained.

B. Linearized power system model

The nonlinear interconnected power system model is lin-
earized around an operating point. This operating point is
found by solving the power flow equations. The linearization

process can be found in [10]. After linearization, the power
system model for N generators is given in standard form as

X=AX+BU+W ; Y=CX+V, (8)

T
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where, X = [7( N Y o } € R5N %

is  the linearized power system  state  vector,
it = [A, Aw', AEL, Az}, Azs]" € R s the state vector
of the i generator, U = [Aul, Au?, .. .,AUN}T € R>*1 is
the input vector, W € R®V*1 is a vector that accounts for
the process noise, Y € RP*! is the output or measurement
vector with p being the number of measurements available,
V € RP*! is the measurement noise vector,
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is the system matrix of the linearized power system with
block matrix AY € R5*® showing the effect of generator
i’s dynamics on generator j, B = diag(B',B?,...,BY) ¢
R5NX5 g the input matrix with block matrix B* € R>*!
showing the effect of generator ’s input on the system, and
C = diag (C',C?,...,CN) € RP**N s the output matrix
with C* € RP' ¥ being the output matrix of the i generator.
By using Euler’s approximation, one can convert the
continuous-time model in (8) to can obtain a discrete-time
model given as
X = AaXp-1+BaUp1+Wi—1
where the subscript k indicates the time index, A4 €
and By € R®V*5 are the system matrix and the input matrix
after discretization. Process noise and measurement noise are
considered by Wj, and V}, respectively.

Y =CXp+ Vi, 9)
RONX5N

III. DISTRIBUTED DYNAMIC STATE ESTIMATION

A. Centralized Kalman Filter

Before moving to the DKF a brief explanation of the KF
is given. The purpose of a KF is to get the state estimate
given noise-ridden measurements and a noise-ridden process.
The KF is also used to estimate the unmeasureable states by
using information from measured quantities and knowledge
of system dynamics and noise properties. The KF works best
when the measurement noise, process noise and the initial
states of the system are mutually independent at each and every
time step. This is assumed to hold true here. Additionally,
it is also assumed that Wy ~ N(0,Q) and Vi, ~ N (0, R)
where @ is the process noise covariance matrix and R is
the measurement noise covariance matrix. The KF used for
estimating the states of the power system can be given as

Vi1 =CXi 4
X =AgXp_1 4 BaUp_1 + Kj_1 (qu - ffkq) (10
where X . 1s the state estimate at time instant k, Yk is the

measurement estimate, Kj_; is the Kalman gain, and P,
is the estimate uncertainty matrix.



B. Kalman Consensus Filter (DKF)

In this work, DKF previously utilized in wireless sensor
networks (WSNs) [8] and perfected in [9] has been applied
to power systems. The idea is that DCCs gather locally
available measurements, exchange state estimates with neigh-
boring DCCs and come up with a robust state estimate. By
exchanging information in a synchronized manner, the DCCs
are able to observe the entire system. The KF at the /™ DCC
has the structure

Y]§71 :Clelcfl + Vklfla kafl = Clelcfl?
Xllc =AgX}| 4+ BaUp—1+ K}_, (Yqu - kafl)

+ L, Z (X;cnfl - Xllcq) )
meN

where X ! | is the I DCC state estimate at time k — 1, C!
is the output matrix, Ykl is the vector of locally available
measurements, f/kf is the estimate of Ykl, Vkl ~ N (O,Rl)
is the measurement noise having zero mean and covariance
R, K,lc_1 is the Kalman gain of the ™ DCC, N is the set
of neighbors communicating their state estimates with the [
DCC and Lig_1 is the communication gain (see Algorithm 1 in
[9]). The A4 and B, matrices were previously found in Section
II-B by linearization. The stability and optimality properties
of the DKF can be found in [9].

(1)

IV. ATTACK DETECTION

A 2 detector is generally used to detect bad measurements
on the basis of the residual e,_1 = (Yr_1 — Y/k_1>. The x2

detector checks if the weighted squared residual lies within a
desired threshold

Qr—1=et_Wer_1 < Qru, (12)
where ej,_, = (Yk,l - Yk,l), W = (CPxCT + R)_1 and

matrix P, is the infinite-horizon estimate uncertainty matrix.
The x? detector gives an alarm if

Qr-1 2> QrH- (13)
Apart from detecting bad measurements, the y? detector can
also be used to detect Gaussian attacks. Compared to works
that filter out Gaussian attacks by updating the measurement
noise covariance matrix R by the use of Bayesian learning
[12][7], the focus here is to detect such attacks first before
mitigating them. As Gaussian attacks add to the noise of
the measurements, they can be easily detected using the x?
detector. If the attacks were smart such as false data injection
attack (FDIA) [13] or replay attack [14] then the x? detector
would be of no use.

A. Attack Detection in a DKF framework
A x? detector is designed at each DCC. In the onset of
attack, the measurements at the /™ DCC are modified
Vit =C'Xp 4+ Vi +ap (14)
where al, ~ N (p!®, R'*) is the attack vector. The goal of

this attack is to bias the measurements and add noise to it so
that the state estimates become less reliable. The attack-free
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Fig. 2: 8-bus, 5-generator system [7][10].
residual at the I™ DCC is defined as e}, |, = (Y} | — Ykl_l)

and the x? detector checks if the x? quantity Q) _, stays under
a threshold value Q4.5 as

T
Qi1 =¢p 1 Wei 1 <Qhy, (15)
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Wt = (C’lPéoCl +Rl) and matrix P’ is the infinite-

horizon estimate uncertainty matrix. The attack vector and

noise vector add up and give a Gaussian distribution
Vi+al, ~ N (4, R' + R!"). The attack modifies the residual

to efca_l = (Ykla_l — )A/kl_l> which changes the X2 quantity to

Load 3

W= eéca—lTWleff_l > Q- (16)
The higher the mean or covariance of the attack signal the
more corrupted the measurements, and the higher the chance
of Q@ , violating the 2 threshold and the attack being
detected by the x? detector. It was noticed during simulation
runs that using the x? detector by itself gave false alarms. A
median filter was therefore applied to the x? values in a time
window of fixed size to obtain a median y? value which will
be denoted in this text as Med (Q_;). A detector was then
designed to compare Med (Qﬁwl) against the x? threshold.
If the median x? value exceeds the 2 threshold, an alarm is
triggered (8 = 1), else the alarm is not triggered (3 = 0) This
mechanism is shown as

B(z) =

1 if z> 2z
Lo (17)
0 if z < zry

V. RESULTS AND DISCUSSION

The 8-bus, 5-generator system shown in Fig. 2 is used to
test the working of the KCF. The three loads are considered
to be static and so will not show up in the linearized dynamic
model. Four DCCs are considered. They are shown as nodes
in Fig. 3. The arrows to and from a node show the direction
of communication. The arrow from the block named “Power
System” to the DCC node indicate the power system mea-
surements available at the DCC. It has been shown that the
measurements available at DCC 2 have been appropriated by
an attacker. The generator parameters along with the power
flow solution used to linearize the non-linear dynamic power
system model are given in TABLE I and the line parameters
are as shown in TABLE II

The discretization time step is taken as 1.5 ms and A4 and
By matrices are obtained from A and B matrices. The process
noise W,i_l ~ N(O, 1072 x 125). The simulation is run for
0.9 s. Next, a table mentioning the type of measurements
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available at each DCC is presented with noise covariance and
x? threshold values. Note that some of the states are measured
by multiple sensors and this also accounts for measurement
redundancy, which is common in power system. The y?
threshold values are calculated by considering the degree of
freedom as the number of states measured, and a confidence
level of 95%.

TABLE I: Generator parameters and operating conditions

Parameters Gy Go Gs Gy Gs
D; 3.04 3.67 3.35 3.98 3.4
H; 4.5 4.65 4.43 3.94 49
X/ 0.0329 | 0.0329 | 0.3290 | 0.0239 | 0.2390
Xai 0.1016 | 0.1016 1.016 0.1016 1.016
T 5.57 5.57 5.57 5.57 5.57
boi 656 656 656 656 656
b1 1232 1232 1232 1232 1232
Coi 3.23 3.23 3.23 3.23 3.23
c14 323 323 323 323 323
14 1.03 1.03 1.023 1.03 1.023
S 0 0.1041 0.0933 | 0.0351 0.0607
Q 29141 1.3821 0.4187 2.1802 0.3469
P 3.1521 | 4.1016 | 0.4608 | 4.0578 | 0.1547

TABLE II: Line Parameters

Node 7 Node j R” X,jj Bij
1 7 0.00335 | 0.01057 | 0.01436
2 6 0.00313 | 0.00368 | 0.00304
3 6 0.03004 | 0.05242 | 0.06305
4 8 0.00514 | 0.01074 | 0.01654
5 6 0.00701 | 0.02231 | 0.02632
6 7 0.04022 | 0.12685 | 0.15848
7 8 0.01714 | 0.04143 | 0.05013
TABLE III: Measurements available at DCCs along with

associated noise covariance properties and x? thresholds

Measurements

1 Ada, Awa, Ads, Dws
2 A(Sg, AUJg, A54, AUJ4
3 A51, Awl, A(sg, AUJg
4 Ad1, Awi, Ada, Awsy

DCC Noise Covariance Qb
R =2x10771, 13.3
RZ=2x10"%I, 133
R>=2x10"%I, 133
R*=2x10"%I, 13.3

A. Healthy Case

In this subsection, the performance of the DKF and
the X2 detector are studied in the absence of attacks.
Figure 4a compares the change in angles of the 5 gen-
erators Ad = [Ady, Ady, Ads, Ady, Ads]T with the esti-
mates of change in angles of the 5 generators AS =
[Ad1, Ay, Ads, Ady, Abs]T. In Figure 4b the change in
frequencies Aw = [Aw;, Aws, Aws, Aws, Aws]? are com-
pared with the change in frequency estimates Aw =
[Ady, Ads, Adg, Ay, Aws]T. Tt can be seen that the trajecto-
ries of Ad and A& effectively track the trajectories of A¢d and
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Fig. 4: Estimation and detection under healthy condition (a)
Angles and their estimates (b) Frequencies and their estimates
(c) Median x? detector at DCC 1 (d) Median x? detector
at DCC 2 (e) Median 2 detector at DCC 3 (f) Median x>
detector at DCC 4

Aw. Figures 4c-4f show the median y? detector at work. Here
a time window of 5 samples is considered and Med (QY,) is
computed. It was found that the linearized model gives reliable
state estimates as long as the process noise covariance is under
N (O, 2x 1072 x 125). A larger process noise covariance will
trigger the median x? detector. This is because the P, value
used in the y? detector was constructed assuming a lower
process noise. Regardless, the state estimate trajectories follow
a similar trend as the actual states.

B. Attacked Case

The attack  vector constructed as ay ~
N (u*=0.1,R"*=0.1x1;) was injected to the
measurements received by DCC 2 at ¢ = 0.15s. Figures 5a
shows the estimates Agg and A<§4 affected by the Gaussian
attack and are much noisier compared to the remaining
estimates. Similarly in Figure 5b Ad3 and Ady cannot track
the true state value as in the healthy case. All the 4 estimates
mentioned are estimates of measurements at DCC 2 that were
attacked.

By checking the median x? value in a time window of 5
samples against the x? threshold at each DCC (see column 4
of TABLE III), Figures 5c-5f were plotted. In Figure 5d the
Gaussian attack is shown to be detected around ¢ = 0.15s. As
mentioned earlier, once the attack is detected, techniques such
as Bayesian learning can be utilized to mitigate this attack.
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VI. CONCLUSION AND FUTURE WORK

In this paper, the sub-optimal KCF framework previously
utilized for WSNs was extended to power system network.
A dynamic linearized model of the nonlinear power system
was obtained around an operating point and was utilized by
the KCF to obtain the estimates of unmeasurable and noise
corrupted states. A median y? detector was utilized at each
DCC to detect bad measurements as well as to detect Gaussian
attacks. The KCF gives a very good estimate of the states in the
absence of attack; even when the process noise is large enough.
Even in the onset of attacks, the estimates of the unattacked
measurements are very reliable. Here the linearized power
system model was considered by the KCF for predicting future
state estimates. In the future, a nonlinear model of the power
system could be considered for prediction by a distributed
unscented KCF framework. Another approach could be to
linearize the nonlinear model at every operating-point change
and thus extend the results of the current work. An SSE
can be used to find the current operating-point by utilizing
PMU and SCADA (supervisory control and data acquisition)
measurements. The prime focus of the current work was on
estimation as it is derived from work on WSNs. A distributed
control law needs to be designed next that utilizes the state
estimates for feedback.

ACKNOWLEDGEMENT

This work was supported by the National Science Foun-
dation under GNT 1837472.

REFERENCES

[1] A. Abur and A. G. Exposito, Power system state estima-
tion: theory and implementation. CRC press, 2004.

[2] M. L. Crow, Computational methods for electric power
systems. Crc Press, second ed., 2015.

[3] F. C. Schweppe and J. Wildes, “Power system static-state
estimation, Part I: Exact model,” IEEE Transactions on
Power Apparatus and Systems, no. 1, pp. 120-125, 1970.

[4] J. Zhao, A. Gomez-Exposito, M. Netto, L. Mili, A. Abur,
V. Terzija, I. Kamwa, B. C. Pal, A. K. Singh, J. Qi,
et al., “Power system dynamic state estimation: motiva-
tions, definitions, methodologies and future work,” IEEE
Transactions on Power Systems, 2019.

[5] D. G. Luenberger, “Observing the state of a linear sys-
tem,” IEEE Transactions on Military Electronics, vol. 8,
no. 2, pp. 74-80, 1964.

[6] R. E. Kalman, “A new approach to linear filtering and
prediction problems,” 1960.

[7] M. M. Rana, R. Bo, and A. Abdelhadi, “Distributed grid
state estimation under cyber attacks using optimal filter
and Bayesian approach,” IEEE Systems Journal, pp. 1-9,
2020.

[8] R. Olfati-Saber, “Distributed Kalman filtering for sensor
networks,” in 2007 46th IEEE Conference on Decision
and Control, pp. 5492-5498, 1EEE, 2007.

[9] R. Olfati-Saber, “Kalman-consensus filter: Optimality,

stability, and performance,” in Proceedings of the 48h

IEEE Conference on Decision and Control (CDC) held

jointly with 2009 28th Chinese Control Conference,

pp- 7036-7042, IEEE, 2009.

J. Liu, A. Gusrialdi, S. Hirche, and A. Monti, “Joint

controller-communication topology design for distributed

wide-area damping control of power systems,” IFAC

Proceedings Volumes, vol. 44, no. 1, pp. 519-525, 2011.

J. Machowski, Z. Lubosny, J. W. Bialek, and J. R.

Bumby, Power system dynamics: stability and control.

John Wiley & Sons, 2020.

S. Zheng, T. Jiang, and J. S. Baras, “Robust state esti-

mation under false data injection in distributed sensor

networks,” in 2010 IEEE Global Telecommunications

Conference GLOBECOM 2010, pp. 1-5, IEEE, 2010.

Y. Mo and B. Sinopoli, “False data injection attacks in

control systems,” in Preprints of the Ist workshop on

Secure Control Systems, pp. 1-6, 2010.

Y. Mo and B. Sinopoli, “Secure control against re-

play attacks,” in 2009 47th Annual Allerton Conference

on Communication, Control, and Computing (Allerton),

pp- 911-918, IEEE, 2009.



