
Offline RL Without Off-Policy Evaluation

David Brandfonbrener William F. Whitney Rajesh Ranganath Joan Bruna
Department of Computer Science, Center for Data Science

New York University
david.brandfonbrener@nyu.edu

Abstract

Most prior approaches to offline reinforcement learning (RL) have taken an iterative
actor-critic approach involving off-policy evaluation. In this paper we show that
simply doing one step of constrained/regularized policy improvement using an
on-policy Q estimate of the behavior policy performs surprisingly well. This
one-step algorithm beats the previously reported results of iterative algorithms on
a large portion of the D4RL benchmark. The simple one-step baseline achieves
this strong performance without many of the tricks used by previously proposed
iterative algorithms and is more robust to hyperparameters. We argue that the
relatively poor performance of iterative approaches is a result of the high variance
inherent in doing off-policy evaluation and magnified by the repeated optimization
of policies against those high-variance estimates. In addition, we hypothesize
that the strong performance of the one-step algorithm is due to a combination of
favorable structure in the environment and behavior policy.

1 Introduction

An important step towards effective real-world RL is to improve sample efficiency. One avenue
towards this goal is offline RL (also known as batch RL) where we attempt to learn a new policy from
data collected by some other behavior policy without interacting with the environment. Recent work
in offline RL is well summarized by Levine et al. [2020].

In this paper, we challenge the dominant paradigm in the deep offline RL literature that primarily
relies on actor-critic style algorithms that alternate between policy evaluation and policy improvement
[Fujimoto et al., 2018a, 2019, Peng et al., 2019, Kumar et al., 2019, 2020, Wang et al., 2020b, Wu
et al., 2019, Kostrikov et al., 2021, Jaques et al., 2019, Siegel et al., 2020, Nachum et al., 2019].
All these algorithms rely heavily on off-policy evaluation to learn the critic. Instead, we find that a
simple baseline which only performs one step of policy improvement using the behavior Q function
often outperforms the more complicated iterative algorithms. Explicitly, we find that our one-step
algorithm beats prior results of iterative algorithms on most of the gym-mujoco [Brockman et al.,
2016] and Adroit [Rajeswaran et al., 2017] tasks in the the D4RL benchmark suite [Fu et al., 2020].

We then dive deeper to understand why such a simple baseline is effective. First, we examine what
goes wrong for the iterative algorithms. When these algorithms struggle, it is often due to poor
off-policy evaluation leading to inaccurate Q values. We attribute this to two causes: (1) distribution
shift between the behavior policy and the policy to be evaluated, and (2) iterative error exploitation
whereby policy optimization introduces bias and dynamic programming propagates this bias across
the state space. We show that empirically both issues exist in the benchmark tasks and that one way
to avoid these issues is to simply avoid off-policy evaluation entirely.

Finally, we recognize that while the the one-step algorithm is a strong baseline, it is not always
the best choice. In the final section we provide some guidance about when iterative algorithms can
perform better than the simple one-step baseline. Namely, when the dataset is large and behavior
policy has good coverage of the state-action space, then off-policy evaluation can succeed and iterative
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algorithms can be effective. In contrast, if the behavior policy is already fairly good, but as a result
does not have full coverage, then one-step algorithms are often preferable.

Figure 1: A cartoon illustration of the difference between
one-step and multi-step methods. All algorithms constrain
themselves to a neighborhood of “safe” policies around β. A

one-step approach (left) only uses the on-policy Q̂β , while a

multi-step approach (right) repeatedly uses off-policy Q̂πi .

Our main contributions are:

• A demonstration that a simple
baseline of one step of policy im-
provement outperforms more com-
plicated iterative algorithms on a
broad set of offline RL problems.

• An examination of failure modes
of off-policy evaluation in iterative
offline RL algorithms.

• A description of when one-step al-
gorithms are likely to outperform
iterative approaches.

2 Setting and notation

We will consider an offline RL setup as follows. Let M = {S,A, ρ, P,R, γ} be a discounted infinite-
horizon MDP. In this work we focus on applications in continuous control, so we will generally assume
that both S and A are continuous and bounded. We consider the offline setting where rather than inter-
acting with M, we only have access to a dataset DN of N tuples of (si, ai, ri) collected by some be-
havior policy β with initial state distribution ρ. Let r(s, a) = Er|s,a[r] be the expected reward. Define

the state-action value function for any policy π by Qπ(s, a) := EP,π|s0=s, a0=a[
∑∞

t=0
γtr(st, at)].

The objective is to maximize the expected return J of the learned policy:

J(π) := E
ρ,P,π

[
∞∑

t=0

γtr(st, at)

]
= E

s∼ρ
a∼π|s

[Qπ(s, a)]. (1)

Following Fu et al. [2020] and others in this line of work, we allow access to the environment to tune
a small (< 10) set of hyperparameters. See Paine et al. [2020] for a discussion of the active area of
research on hyperparameter tuning for offline RL. We also discuss this further in Appendix C.

3 Related work

Iterative algorithms. Most prior work on deep offline RL consists of iterative actor-critic algo-
rithms. The primary innovation of each paper is to propose a different mechanism to ensure that
he learned policy does not stray too far from the data generated by the behavior policy. Broadly,
we group these methods into three camps: policy constraints/regularization, modified of imitation
learning, and Q regularization:

1. The majority of prior work acts directly on the policy. Some authors have proposed explicit
constraints on the learned policy to only select actions where (s, a) has sufficient support under
the data generating distribution [Fujimoto et al., 2018a, 2019, Laroche et al., 2019]. Another
proposal is to regularize the learned policy towards the behavior policy Wu et al. [2019] usually
either with a KL divergence [Jaques et al., 2019] or MMD [Kumar et al., 2019]. This is a very
straighforward way to stay close to the behavior with a hyperparameter that determines just how
close. All of these algorithms are iterative and rely on off-policy evaluation.

2. Siegel et al. [2020], Wang et al. [2020b], Chen et al. [2020] all use algorithms that filter out
datapoints with low Q values and then perform imitation learning. Wang et al. [2018], Peng
et al. [2019] use a weighted imitation learning algorithm where the weights are determined by
exponentiated Q values. These algorithms are iterative.

3. Another way to prevent the learned policy from choosing unknown actions is to incorporate some
form of regularization to encourage staying near the behavior and being pessimistic about unknown
state, action pairs [Wu et al., 2019, Nachum et al., 2019, Kumar et al., 2020, Kostrikov et al., 2021,
Gulcehre et al., 2021]. However, properly being able to quantify uncertainty about unknown states
is notoriously difficult when dealing with neural network value functions [Buckman et al., 2020].
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One-step algorithms. Some recent work has also noted that optimizing policies based on the
behavior value function can perform surprisingly well. As we do, Goo and Niekum [2020] studies
the continuous control tasks from the D4RL benchmark, but they examine a complicated algorithm
involving ensembles, distributional Q functions, and a novel regularization technique. In contrast, we
analyze a substantially simpler algorithm that performs better in our experiments and focus more of
our contribution on explaining this result. Gulcehre et al. [2021] studies the discrete action setting and
finds that a one-step algorithm (which they call “behavior value estimation”) outperforms prior work
on Atari games and other discrete action tasks from the RL Unplugged benchmark [Gulcehre et al.,
2020]. They also introduce a novel regularizer for the evaluation step. In contrast, we consider the
continuous control setting. This is a substantial difference in setting since continuous control requires
actor-critic algorithms with parametric policies while in the discrete setting the policy improvement
step can be computed exactly from the Q function. Moreover, while Gulcehre et al. [2021] attribute
the poor performance of iterative algorithms to “overestimation”, we define and separate the issues of
distribution shift and iterative error exploitation which can combine to cause overestimation. This
separation helps to expose the difference between the fundamental limits of off-policy evaluation
from the specific problems induced by iterative algorithms, and will hopefully be a useful distinction
to inspire future work.

There are also important connections between the one-step algorithm and the literature on conservative
policy improvement [Kakade and Langford, 2002, Schulman et al., 2015, Achiam et al., 2017], which
we discuss in more detail in Appendix B.

4 Defining the algorithms

In this section we provide a unified algorithmic template for offline RL algorithms as offline approxi-
mate modified policy iteration. We show how this template captures our one-step algorithm as well
as a multi-step policy iteration algorithm and an iterative actor-critic algorithm. Then any choice
of policy evaluation and policy improvement operators defines one-step, multi-step, and iterative
algorithms.

4.1 Algorithmic template

We consider a generic offline approximate modified policy iteration (OAMPI) scheme, shown in
Algorithm 1. Essentially the algorithm alternates between two steps. First, there is a policy evaluation

step where we estimate the Q function of the current policy πk−1 by Q̂πk−1 using only the dataset

DN . Implementations also often use the prior Q estimate Q̂πk−2 to warm-start the approximation
process. Second, there is a policy improvement step. This step takes in the estimated Q function

Q̂πk−1 , the estimated behavior β̂, and the dataset DN and produces a new policy πk. Again an
algorithm may use πk−1 to warm-start the optimization. Moreover, we expect this improvement
step to be regularized or constrained to ensure that πk remains in the support of β and DN . Choices
for this regularization/constraint are discussed below. Now we discuss a few ways to instantiate the
template.

Algorithm 1: OAMPI

input :K, dataset DN , estimated behavior β̂

1 Set π0 = β̂. Initialize Q̂π−1 randomly.
2 for k = 1, . . . , K do

3 Policy evaluation: Q̂πk−1 = Q(πk−1, DN , Q̂πk−2)

4 Policy improvement: πk = I(Q̂πk−1 , β̂, DN , πk−1)
5 end

One-step. The simplest algorithm
sets the number of iterations K = 1.
We train the policy evaluation to esti-
mate Qβ , and then use one of the pol-
icy improvement operators discussed
below to find the resulting π1.

Multi-step. The multi-step algo-
rithm now sets K > 1. The evalua-
tion operator must evaluate off-policy

since DN is collected by β, but evaluation steps for K ≥ 2 require evaluating policies πk−1 6= β.
Each iteration is trained to convergence in both the estimation and improvement steps.

Iterative actor-critic. An actor critic approach looks somewhat like multistep policy iteration, but
does not attempt to train to convergence at each iteration. Instead, each iteration consists of one
gradient step to update the Q estimate and one gradient step to improve the policy. Since all of the
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evaluation and improvement operators that we consider are gradient-based, this algorithm can adapt
the same evaluation and improvement operators used by the multi-step algorithm. Most algorithms
from the literature fall into this category [Fujimoto et al., 2018a, Kumar et al., 2019, 2020, Wu et al.,
2019, Wang et al., 2020b, Siegel et al., 2020].

4.2 Policy evaluation operators

Following prior work on continuous state and action problems, we always evaluate by simple fitted
Q evaluation [Fujimoto et al., 2018a, Kumar et al., 2019, Siegel et al., 2020, Wang et al., 2020b,
Paine et al., 2020, Wang et al., 2021]. Explicitly the evaluation step for the one-step or multi-step
algorithms looks like

Q(πk−1, DN , Q̂πk−2) = argmin
Q

N∑

i=1

(r(si, ai) + γ E
a′∼πk−1|s′i

Q(s′i, a
′)−Q(si, ai))

2, (2)

where the right hand side may depend on Q̂πk−2 to warm-start optimization. In practice this is
optimized by stochastic gradient descent with the use of a target network [Mnih et al., 2015]. For
the iterative algorithm the argmin is replaced by a single stochastic gradient step. We estimate
the expectation over next state by a single sample from πk−1 (or from the dataset in the case when

πk−1 = β̂). See Voloshin et al. [2019], Wang et al. [2021] for more comprehensive examinations of
this evaluation step.

4.3 Policy improvement operators

To instantiate the template, we also need to choose a specific policy improvement operator I. We
consider the following improvement operators selected from those discussed in the related work
section. Each operator has a hyperparameter controlling deviation from the behavior policy.

Behavior cloning. The simplest baseline worth including is to just return β̂ as the new policy π.
Any policy improvement operator ought to perform at least as well as this baseline.

Constrained policy updates. Algorithms like BCQ [Fujimoto et al., 2018a] and SPIBB [Laroche
et al., 2019] constrain the policy updates to be within the support of the data/behavior. In favor
of simplicity, we implement a simplified version of the BCQ algorithm that removes the policy
correction network which we call Easy BCQ. We define a new policy π̂M

k by drawing M samples

from β̂ and then executing the one with the highest value according to Q̂β . Explicitly:

π̂M
k (a|s) = ✶[a = argmax

aj

{Q̂πk−1(s, aj) : aj ∼ πk−1(·|s), 1 ≤ j ≤ M}]. (3)

Regularized policy updates. Another common idea proposed in the literature is to regularize
towards the behavior policy [Wu et al., 2019, Jaques et al., 2019, Kumar et al., 2019, Ma et al., 2019].
For a general divergence D we can define an algorithm that maximizes a regularized objective:

π̂α
k = argmax

π

∑

i

E
a∼π|s

[Q̂πk−1(si, a)]− αD(β̂(·|si), π(·|si)) (4)

A comprehensive review of different variants of this method can be found in Wu et al. [2019] which
does not find dramatic differences across regularization techniques. In practice, we will use reverse

KL divergence, i.e. KL(π(·|si)‖β̂(·|si)). To compute the reverse KL, we draw samples from π(·|si)

and use the density estimate β̂ to compute the divergence. Intuitively, this regularization forces π to
remain within the support of β rather than incentivizing π to cover beta.

Variants of imitation learning. Another idea, proposed by [Wang et al., 2018, Siegel et al., 2020,
Wang et al., 2020b, Chen et al., 2020] is to modify an imitation learning algorithm either by filtering
or weighting the observed actions so as to get a policy improvement. The weighted version that we
implement uses exponentiated advantage estimates to weight the observed actions:

π̂τ
k = argmax

π

∑

i

exp(τ(Q̂πk−1(si, ai)− V̂ (si))) log π(ai|si). (5)
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5 Benchmark Results

Our main empirical finding is that one step of policy improvement is sufficient to beat state of the
art results on much of the D4RL benchmark suite Fu et al. [2020]. This is striking since prior work
focuses on iteratively estimating the Q function of the current policy iterate, but we only use one-step

derived from Q̂β . Results are shown in Table 1. Full experimental details are in Appendix C.

Table 1: Results of one-step algorithms on the D4RL benchmark. The first column gives the best
results across several iterative algorithms considered in Fu et al. [2020]. We run 3 seeds and each
algorithm is tuned over 6 values of their respective hyperparameter. We report the mean and standard
deviation over seeds on 100 evaluation episodes per seed. We bold the best result on each dataset
and blue any result where a one-step algorithm beat the best reported iterative result from Fu et al.
[2020]. We use m for medium, m-e for medium-expert, m-re for medium-replay, r for random, and c
for cloned.

Iterative One-step

Fu et al. [2020] BC Easy BCQ Rev. KL Reg Exp. Weight

halfcheetah-m 46.3 41.9 ± 0.1 52.6 ± 0.2 55.2 ± 0.4 48.4 ± 0.1
walker2d-m 81.1 68.6 ± 6.3 87.2 ± 1.3 85.9 ± 1.4 81.8 ± 2.2
hopper-m 58.8 49.9 ± 3.1 74.5 ± 6.2 83.7 ± 4.5 59.6 ± 2.5

halfcheetah-m-e 64.7 61.1 ± 2.7 78.2 ± 1.6 93.8 ± 0.5 93.4 ± 1.6
walker2d-m-e 111.0 78.5 ± 22.4 112.2 ± 0.3 111.2 ± 0.2 113.0 ± 0.4
hopper-m-e 111.9 49.1 ± 4.3 85.1 ± 2.2 98.7 ± 7.5 103.3 ± 9.1

halfcheetah-m-re 47.7 34.6 ± 0.9 38.3 ± 0.3 41.9 ± 0.5 38.1 ± 1.3
walker2d-m-re 26.7 26.6 ± 3.4 69.1 ± 4.2 74.9 ± 6.6 49.5 ± 12.0
hopper-m-re 48.6 23.1 ± 2.7 78.4 ± 7.2 92.3 ± 1.1 97.5 ± 0.7

halfcheetah-r 35.4 2.2 ± 0.0 5.4 ± 0.3 8.8 ± 3.8 3.2 ± 0.1
walker2d-r 7.3 0.9 ± 0.1 3.7 ± 0.1 6.2 ± 0.7 5.6 ± 0.8
hopper-r 12.2 2.0 ± 0.1 6.6 ± 0.1 7.9 ± 0.7 7.5 ± 0.4

pen-c 56.9 46.9 ± 11.0 65.9 ± 3.6 57.4 ± 3.5 60.0 ± 4.1
hammer-c 2.1 0.4 ± 0.1 2.9 ± 0.5 0.2 ± 0.1 2.1 ± 0.7
relocate-c -0.1 -0.1 ± 0.0 0.3 ± 0.2 0.2 ± 0.1 0.2 ± 0.1
door-c 0.4 0.0 ± 0.1 0.6 ± 0.6 0.2 ± 0.7 0.2 ± 0.3

As we can see in the table, all of the one-step algorithms usually outperform the best iterative
algorithms tested by Fu et al. [2020]. The one notable exception is the case of random data (especially
on halfcheetah), where iterative algorithms have a clear advantage. We will discuss potential causes
of this further in Section 7.

To give a more direct comparison that controls for any potential implementation details, we use our
implementation of reverse KL regularization to create multi-step and iterative algorithms. We are
not using algorithmic modifications like Q ensembles, regularized Q values, or early stopping that
have been used in prior work. But, our iterative algorithm recovers similar performance to prior
regularized actor-critic approaches. These results are shown in Table 2.

Put together, these results immediately suggest some guidance to the practitioner: it is worthwhile
to run the one-step algorithm as a baseline before trying something more elaborate. The one-step
algorithm is substantially simpler than prior work, but usually achieves better performance.

6 What goes wrong for iterative algorithms?

The benchmark experiments show that one step of policy improvement often beats iterative and
multi-step algorithms. In this section we dive deeper to understand why this happens. First, by
examining the learning curves of each of the algorithms we note that iterative algorithms require
stronger regularization to avoid instability. Then we identify two causes of this instability: distribution
shift and iterative error exploitation.

Distribution shift causes evaluation error by reducing the effective sample size in the fixed dataset for
evaluating the current policy and has been extensively considered in prior work as discussed below.
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Table 2: Results of reverse KL regularization on the D4RL benchmark across one-step, multi-step,
and iterative algorithms. Again we run 3 seeds and 6 hyperparameters and report the mean and
standard deviation across seeds using 100 evaluation episodes.

One-step Multi-step Iterative

halfcheetah-m 55.2 ± 0.4 59.3 ± 0.7 51.2 ± 0.2
walker2d-m 85.9 ± 1.4 74.5 ± 2.8 74.8 ± 0.7
hopper-m 83.7 ± 4.5 54.8 ± 4.3 54.7 ± 1.9

halfcheetah-m-e 93.8 ± 0.5 94.2 ± 0.5 93.7 ± 0.6
walker2d-m-e 111.2 ± 0.2 109.8 ± 0.3 108.7 ± 0.6
hopper-m-e 98.7 ± 7.5 90.6 ± 18.8 94.5 ± 11.9

halfcheetah-r 8.8 ± 3.8 18.3 ± 6.5 21.2 ± 5.2
walker2d-r 6.2 ± 0.7 5.4 ± 0.2 5.4 ± 0.4
hopper-r 7.9 ± 0.7 21.9 ± 8.9 9.7 ± 0.4

Iterative error exploitation occurs when we repeatedly optimize policies against our Q estimates and
exploit their errors. This introduces a bias towards overestimation at each step (much like the training
error in supervised learning is biased to be lower than the test error). Moreover, by iteratively re-using
the data and using prior Q estimates to warmstart training at each step, the errors from one step are
amplified at the next. This type of error is particular to multi-step and iterative algorithms.

6.1 Learning curves and hyperparameter sensitivity

To begin to understand why iterative and multi-step algorithms can fail it is instructive to look at the
learning curves. As shown in Figure 2, we often observe that the iterative algorithm will begin to
learn and then crash. Regularization can help to prevent this crash since strong enough regularization
towards the behavior policy ensures that the evaluation is nearly on-policy.

Figure 2: Learning curves and final performance on halfcheetah-medium across different algorithms
and regularization hyperparameters. Error bars show min and max over 3 seeds. Similar figures for
other datasets from D4RL can be found in Appendix D.

In contrast, the one-step algorithm is more robust to the regularization hyperparameter. The rightmost
panel of the figure shows this clearly. While iterative and multi-step algorithms can have their
performance degrade very rapidly with the wrong setting of the hyperparameter, the one-step approach
is more stable. Moreover, we usually find that the optimal setting of the regularization hyperparameter
is lower for the one-step algorithm than the iterative or multi-step approaches.

6.2 Distribution shift

Any algorithm that relies on off-policy evaluation will struggle with distribution shift in the evaluation
step. Trying to evaluate a policy that is substantially different from the behavior reduces the effective
sample size and increases the variance of the estimates. Explicitly, by distribution shift we mean the
shift between the behavior distribution (the distribution over state-action pairs in the dataset) and the
evaluation distribution (the distribution that would be induced by the policy π we want to evaluate).

Prior work. There is a substantial body of prior theoretical work that suggests that off-policy
evaluation can be difficult and this difficulty scales with some measure of distribution shift. Wang
et al. [2020a], Amortila et al. [2020], Zanette [2021] give exponential (in horizon) lower bounds on
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sample complexity in the linear setting even with good feature representations that can represent the
desired Q function and assuming good data coverage. Upper bounds generally require very strong
assumptions on both the representation and limits on the distribution shift [Wang et al., 2021, Duan
et al., 2020, Chen and Jiang, 2019]. Moreover, the assumed bounds on distribution shift can be
exponential in horizon in the worst case. On the empirical side, Wang et al. [2021] demonstrates
issues with distribution shift when learning from pre-trained features and provides a nice discussion
of why distribution shift causes error amplification. Fujimoto et al. [2018a] raises a similar issue
under the name “extrapolation error”. Regularization and constraints are meant to reduce issues
stemming from distribution shift, but also reduce the potential for improvement over the behavior.

Empirical evidence. Both the multi-step and iterative algorithms in our experiments rely on off-
policy evaluation as a key subroutine. We examine how easy it is to evaluate the policies encountered
along the learning trajectory. To control for issues of iterative error exploitation (discussed in the next
subsection), we train Q estimators from scratch on a heldout evaluation dataset sampled from the
behavior policy. We then evaluate these trained Q function on rollouts from 1000 datapoints sampled
from the replay buffer. Results are shown in Figure 3.

The results show a correlation betweed KL and MSE. Moreover, we see that the MSE generally
increases over training. One way to mitigate this, as seen in the figure, is to use a large value of α.
We just cannot take a very large step before running into problems with distribution shift. But, when

we take such a small step, the information from the on-policy Q̂β is about as useful as the newly

estimated Q̂π. This is seen, for example, in Figure 2 where we get very similar performance across
algorithms at high levels of regularization.

Figure 3: Results of running the iterative algorithm on halfcheetah-medium. Each checkpointed policy

is evaluated by a Q function trained from scratch on heldout data. MSE refers to Es,a∼β [Q̂
πi(s, a)−

Qπi(s, a)] and KL refers to Es∼β [KL(π(·|s)‖β(·|s)]. Left: 90 policies taken from various points in
training with various hyperaparmeters and random seeds. Center: MSE learning curves. Right: KL
learning curves. Error bars show min and max over 3 random seeds.

6.3 Iterative error exploitation

The previous subsection identifies how any algorithm that uses off-policy evaluation is fundamentally
limited by distribution shift, even if we were given fresh data and trained Q functions from scratch at
every iteration. But, in practice, iterative algorithms repeatedly iterate between optimizing policies
against estimated Q functions and re-estimating the Q functions using the same data and using the Q
function from the previous step to warm-start the re-estimation. This induces dependence between
steps that causes a problem that we call iterative error exploitation.

Intuition about the problem. In short, iterative error exploitation happens because πi tends to
choose overestimated actions in the policy improvement step, and then this overestimation propagates
via dynamic programming in the policy evaluation step. To illustrate this issue more formally,
consider the following: at each s, a we suffer some Bellman error επβ(s, a) based on our fixed dataset

collected by β. Formally,

Q̂π(s, a) = r(s, a) + γ E
s′|s,a

a′∼π|s′

[Q̂π(s′, a′)] + επβ(s, a). (6)
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Intuitively, επβ will be larger at state-actions with less coverage in the dataset collected by β. Note

that επβ can absorb all noise due to our finite dataset as well as function approximation error.

All that is needed to cause iterative error exploitation is that the ǫπβ are highly correlated across

different π, but for simplicity, we will assume that επβ is the same for all policies π estimated from

our fixed offline dataset and instead write εβ . Now that the errors do not depend on the policy we can
treat the errors as auxiliary rewards that obscure the true rewards and see that

Q̂π(s, a) = Qπ(s, a) + Q̃π
β(s, a), Q̃π

β(s, a) := E
π|s0,a0=s,a

[
∞∑

t=0

γtεβ(st, at)

]
. (7)

This assumption is somewhat reasonable since we expect the error to primarily depend on the data.
And, when the prior Q function is used to warm-start the current one (as is generally the case in
practice), the approximation errors are automatically passed between steps.

Now we can explain the problem. Recall that under our assumption the εβ are fixed once we have a
dataset and likely to have larger magnitude the further we go from the support of the dataset. So, with
each step πi is able to better maximize εβ , thus moving further from β and increasing the magnitude

of Q̃πi

β relative to Qπi . Even though Qπi may provide better signal than Qβ , it can easily be drowned

out by Q̃πi

β . In contrast, Q̃
β
β has small magnitude, so the one-step algorithm is robust to errors1.

An example. Now we consider a simple gridworld example to illustrate iterative error exploitation.
This example fits exactly into the setup outlined above since all errors are due to reward estimation so
the εβ is indeed constant over all π. The gridworld we consider has one deterministic good state with
reward 1 and many stochastic bad states that have rewards distributed as N (−0.5, 1). We collect a
dataset of 100 trajectories, each of length 100. One run of the multi-step offline regularized policy
iteration algorithm is illustrated in Figure 4.

Figure 4: An illustration of multi-step offline regularized policy iteration. The leftmost panel in each
row shows the true reward (top) or error εβ (bottom). Then each subsequent panel plots πi (with

arrow size proportional to πi(a|s)) over either Qπi (top) or Q̃π
β (bottom), averaged over actions at

each state. The one-step policy (π1) has the highest value. The behavior policy here is a mixture of
optimal π∗ and uniform u with coefficient 0.2 so that β = 0.2 · π∗ + 0.8 · u. We set α = 0.1 as the
regularization parameter for reverse KL regularization.

In the example, like in the D4RL benchmark, we see that one step outperforms multiple steps of
improvement. Intuitively, when there are so many noisy states, it is likely that a few of them will be
overestimated. Since the data is re-used for each step, these overestimations persist and propagate

1We should note that iterative error exploitation is similar to the overestimation addressed by double Q
learning [Van Hasselt et al., 2016, Fujimoto et al., 2018b], but distinct. Since we are in the offline setting, the
errors due to our finite dataset can be iteratively exploited more and more, while in the online setting considered
by double Q learning, fresh data prevents this issue. We are also considering an algorithm based on policy
iteration rather than value iteration.
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across the state space due to iterative error exploitation. This property of having many bad, but
poorly estimated states likely also exists in the high-dimensional control problems encountered in the
benchmark where there are many ways for the robots to fall down that are not observed in the data
for non-random behavior. Moreover, both settings have larger errors in areas where we have less data.
So even though the errors in the gridworld are caused by noise in the rewards, while errors in D4RL
are caused by function approximation, we think this is a useful mental model of the problem.

Figure 5: Histograms of overestimation error (Q̂πi(s, a)−Qπi(s, a)) on halfcheetah-medium with
the iterative algorithm. Left: errors from the training Q function. Right: errors from an independently
trained Q function.

Empirical evidence. In practice we cannot easily visualize the progression of errors. However,
the dependence between steps still arises as overestimation of the Q values. We can track the
overestimation of the Q values over training as a way to measure how much bias is being induced by
optimizing against our dependent Q estimators. As a control we can also train Q estimators from
scratch on independently sampled evaluation data. These independently trained Q functions do not
have the same overestimation bias even though the squared error does tend to increase as the policy
moves further from the behavior (as seen in Figure 3). Explicitly, we track 1000 state, action pairs
from the replay buffer over training. For each checkpointed policy we perform 3 rollouts at each state
to get an estimate of the true Q value and compare this to the estimated Q value. Results are shown in
Figure 5.

7 When are multiple steps useful?

So far we have focused on why the one-step algorithm often works better than the multi-step and
iterative algorithms. However, we do not want to give the impression that one-step is always better.
Indeed, our own experiments in Section 5 show a clear advantage for the multi-step and iterative
approaches when we have randomly collected data. While we cannot offer a precise delineation of
when one-step will outperform multi-step, in this section we offer some intuition as to when we can
expect to see benefits from multiple steps of policy improvement.

As seen in Section 6, multi-step and iterative algorithms have problems when they propagate estima-
tion errors. This is especially problematic in noisy and/or high dimensional environments. While
the multi-step algorithms propagate this noise more widely than the one-step algorithm, they also
propagate the signal. So, when we have sufficient coverage to reduce the magnitude of the noise, this
increased propagation of signal can be beneficial. The D4RL experiments suggest that we are usually
on the side of the tradeoff where the errors are large enough to make one-step preferable.

In Appendix A we illustrate a simple gridworld example where a slight modification of the behavior
policy from Figure 4 makes multi-step dramatically outperform one-step. This modified behavior
policy (1) has better coverage of the noisy states (which reduces error, helping multi-step), and (2)
does a worse job propagating the reward from the good state (hurting one-step).

We can also test empirically how the behavior policy effects the tradeoff between error and signal
propagation. To do this we construct a simple experiment where we mix data from the random
behavior policy with data from the medium behavior policy. Explicitly we construct a dataset D out
of the datasets Dr for random and Dm for medium such that each trajectory in D comes from the
medium dataset with probability pm. So for pm = 0 we have the random dataset and pm = 1 we
have the medium dataset, and in between we have various mixtures. Results are shown in Figure
6. It takes surprisingly little data from the medium policy for one-step to outperform the iterative
algorithm.
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Figure 6: Performance of all three algorithms with reverse KL regularization across mixtures between
halfcheetah-random and halfcheetah-medium. Error bars indicate min and max over 3 seeds.

8 Discussion, limitations, and future work

This paper presents the surprising effectiveness of a simple one-step baseline for offline RL. We
examine the failure modes of iterative algorithms and the conditions where we might expect them
to outperform the simple one-step baseline. This provides guidance to a practitioner that the simple
one-step baseline is a good place to start when approaching an offline RL problem.

But, we leave many questions unanswered. One main limitation is that we lack a clear theoretical
characterization of which environments and behaviors can guarantee that one-step outperforms
multi-step or visa versa. Such results will likely require strong assumptions, but could provide useful
insight. We don’t expect this to be easy as it requires understanding policy iteration which has
been notoriously difficult to analyze, often converging much faster than the theory would suggest
[Sutton and Barto, 2018, Agarwal et al., 2019]. Another limitation is that while only using one step
is perhaps the simplest way to avoid the problems of off-policy evaluation, there are possibly other
more elaborate algorithmic solutions that we did not consider here. However, our strong empirical
results suggest that the one-step algorithm is at least a strong baseline.
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A Gridworld example where multi-step outperforms one-step

As explained in the main text, this section presents an example that is only a slight modification of
the one in Figure 4, but where a multi-step approach is clearly preferred over just one step. The
data-generating and learning processes are exactly the same (100 trajectories of length 100, discount
0.9, α = 0.1 for reverse KL regularization). The only difference is that rather than using a behavior
that is a mixture of optimal and uniform, we use a behavior that is a mixture of maximally suboptimal
and uniform. If we call the suboptimal policy π− (which always goes down and left in our gridworld),
then the behavior for the modified example is β = 0.2 · π− + 0.8 · u, where u is uniform. Results are
shown in Figure 7.

Figure 7: A gridworld example with modified behavior where multi-step is much better than one-step.

By being more likely to go to the noisy states, this behavior policy allows us to get lower variance
estimates of the rewards. Essentially, the coverage of the behavior policy in this example reduces
the magnitude of the evaluation errors. This allows for more aggressive planning using multi-step
methods. Moreover, since the behavior is less likely to go to the good state, the behavior Q function
does not propagate the signal from the rewarding state as far, harming the one-step method.

B Connection to policy improvement guarantees

The regularized or constrained one-step algorithm performs an update that directly inherits guarantees
from the literature on conservative policy improvement [Kakade and Langford, 2002, Schulman et al.,
2015, Achiam et al., 2017]. These original papers consider an online setting where more data is
collected at each step, but the guarantee at each step applies to our one-step offline algorithm.

The key idea of this line of work begins with the performance difference lemma of Kakade and
Langford [2002], and then lower bounds the amount of improvement over the behavior policy. Define
the discounted state visitation distribution for a policy π by dπ(s) := (1−γ)

∑∞
t=0

γt
Pρ,P,π(st = s).

We will also use the shorthand Q(s, π) to denote Ea∼π|s[Q(s, a)]. Then we have the performance
difference lemma as follows.

Lemma 1 (Performance difference, Kakade and Langford [2002]). For any two policies π and β,

J(π)− J(β) =
1

1− γ
E

s∼dπ
[Qβ(s, π)−Qβ(s, β)]. (8)

Then, Corollary 1 from Achiam et al. [2017] (reproduced below) gives a guarantee for the one-step
algorithm. The key idea is that when π is sufficiently close to β, we can use Qβ as an approximation
to Qπ .

Lemma 2 (Conservative Policy Improvement, Achiam et al. [2017]). For any two policies π and β,
let ‖Aβ

π‖∞ = sups |Q
β(s, π)−Qβ(s, β)|. Then,

J(π)− J(β) ≥
1

1− γ
E

s∼dβ

[(
Qβ(s, π)−Qβ(s, β)

)
−

2γ‖Aβ
π‖∞

1− γ
DTV (π(·|s)‖β(·|s))

]
(9)

where DTV denotes the total variation distance.
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Replacing Qβ with Q̂β and the TV distance by the KL, we get precisely the objective that we optimize
in the one-step algorithm. This shows that the one-step algorithm indeed optimizes a lower bound on
the performance difference. Of course, in practice we replace the potentially large multiplier on the
divergence term by a hyperparameter, but this theory at least motivates the soundness of the approach.

We are not familiar with similar guarantees for the iterative or multi-step approaches that rely on
off-policy evaluation.

C Experimental setup

C.1 Benchmark experiments (Tables 1 and 2, Figure 2)

Data. We use the datasets from the D4RL benchmark [Fu et al., 2020]. We use the latest versions,
which are v2 for the mujoco datasets and v1 for the adroit datasets.

Table 3: Hyperparameter sweeps for each algorithm.

Algorithm Hyperparameter set

Reverse KL (α) {0.03, 0.1, 0.3, 1.0, 3.0, 10.0}
Easy BCQ (M ) {2, 5, 10, 20, 50, 100}
Exponentially weighted (τ ) {0.1, 0.3, 1.0, 3.0, 10.0, 30.0}

Hyperparameter tuning. We fol-
low the practice of Fu et al. [2020]
and tune a small set of hyperparam-
eters by interacting with the simula-
tor to estimate the value of the poli-
cies learned under each hyperparam-
eter setting. The hyperparameter sets
for each algorithm can be seen in Ta-
ble 3.

This may initially seem like “cheating”, but can be a reasonable setup if we are considering applica-
tions like robotics where we can feasibly test a small number of trained policies on the real system.
Also, since prior work has used this setup, it makes it easiest to compare our results if we use it too.
While beyond the scope of this work, we do think that better offline model selection procedures will
be crucial to make offline RL more broadly applicable. A good primer on this topic can be found in
Paine et al. [2020].

Models. All of our Q functions and policies are simple MLPs with ReLU activations and 2 hidden
layers of width 1024. Our policies output a truncated normal distribution with diagonal covariance
where we can get reparameterized samples by sampling from a uniform distribution and computing
the differentiable inverse CDF [Burkhardt, 2014]. We found this to be more stable than the tanh of
normal used by e.g. Fu et al. [2020], but to achieve similar performance when both are stable. We
use these same models across all experiments.

One-step training procedure. For all of our one-step algorithms, we train our β̂ behavior estimate
by imitation learning for 500k gradient steps using Adam [Kingma and Ba, 2014] with learning rate

1e-4 and batch size 512. We train our Q̂β estimator by fitted Q evaluation with a target network for 2
million gradient steps using Adam with learning rate 1e-4 and batch size 512. The target is updated
softly at every step with parameter τ = 0.005. All policies are trained for 100k steps again with
Adam using learning rate 1e-4 and batch size 512.

Easy BCQ does not require training a policy network and just uses β̂ and Q̂β to define it’s policy. For
the exponentially weighted algorithm, we clip the weights at 100 to prevent numerical instability. To
estimate reverse KL at some state we use 10 samples from the current policy and the density defined

by our estimated β̂.

Each random seed retrains all three models (behavior, Q, policy) from different initializations. We
use three random seeds.

Multi-step training procedure. For multi-step algorithms we use all the same hyperparameters as

one-step. We initialize our policy and Q function from the same pre-trained β̂ and Q̂β as we use for
the one-step algorithm trained for 500k and 2 million steps respectively. Then we consider 5 policy
steps. To ensure that we use the same number of gradient updates on the policy, each step consists of
20k gradient steps on the policy followed by 200k gradient steps on the Q function. Thus, we take
the same 100k gradient steps on the policy network. Now the Q updates are off-policy so the next
action a′ is sampled from the current policy πi rather than from the dataset.
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Iterative training procedure. For iterative algorithms we again use all the same hyperparameters

and initialize from the same β̂ and Q̂β . We again take the same 100k gradient steps on the policy
network. For each step on the policy network we take 2 off-policy gradient steps on the Q network.

Evaluation procedure. To evaluate each policy we run 100 trajectories in the environment and
compute the mean. We then report the mean and standard deviation over three training seeds.

C.2 MSE experiment (Figure 3)

Data. To get an independently sampled dataset of the same size as the training set, we use the

behavior cloned policy β̂ to sample 1000 trajectories. The checkpointed policies are taken at intervals
of 5000 gradient steps from each of the three training seeds.

Training procedure. The Q̂πi training procedure is the same as before so we use Adam with step
size 1e-4 and batch size 512 and a target network with soft updates with parameter 0.005. We train
for 1 million steps.

Evaluation procedure. To evaluate MSE, we sample 1000 state, action pairs from the original
training set and from each state, action pair we run 3 rollouts. We take the mean over the rollouts and
then compute squared error at each state, action pair and finally get MSE by taking the mean over
state, action pairs. The reported reverse KL is evaluated by samples during training. At each state in
a batch we take 10 samples to estimate the KL at that state and then take the mean over the batch.

C.3 Gridworld experiment (Figure 4)

Environment. The environment is a 15 x 15 gridworld with deterministic transitions. The rewards
are deterministically 1 for all actions taken from the state in the top right corner and stochastic with
distribution N (−0.5, 1) for all actions taken from states on the left or bottom walls. The initial state
is uniformly random. The discount is 0.9.

Data. We collect data from a behavior policy that is a mixture of the uniform policy (with probability
0.8) and an optimal policy (with probability 0.2). We collect 100 trajectories of length 100.

Training procedure. We give the agent access to the deterministic transitions. The only thing for
the agent to do is estimate the rewards from the data and then learn in the empirical MDP. We perform
tabular Q evaluation by dynamic programming. We initialize with the empirical rewards and do 100
steps of dynamic programming with discount 0.9. Regularized policy updates are solved for exactly

by setting πi(a|s) ∝ β(a|s) exp( 1

α
Q̂πi−1(s, a)).

C.4 Overestimation experiment (Figure 5)

This experiment uses the same setup as the MSE experiment. The main difference is we also consider
the Q functions learned during training and demonstrate the overestimation relative to the Q functions
trained on the evaluation dataset as in the MSE experiment.

C.5 Mixed data experiment (Figure 6)

We construct datasets with pm = {0.0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0} by mixing the random and medium
datasets from D4RL and then run the same training procedure as we did for the benchmark experi-
ments. Each dataset has the same size, but a different proportion of trajectories from the medium
policy.
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D Learning curves

In this section we reproduce the learning curves and hyperparameter plots across the one-step,
multi-step, and iterative algorithms with reverse KL regularization, as in Figure 2.

Figure 8: Learning curves on the medium datasets.

Figure 9: Learning curves on the medium-expert datasets.
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Figure 10: Learning curves on the random datasets.
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