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Collaborative robots are becoming more usable, versatile, and even becoming operable in close proximity
with humans in a variety of industrial settings. However, the mental workload and motor-skill learning asso-
ciated with operating these devices needs to be understood. We are presenting our work in progress whose
aim is to investigate the sensitivity of eye-tracking as a potential measure of workload over the course of
learning to use a physically-coupled robot for an object-manipulation task. Our hypothesis is that pupil di-
ameter and blink rate will be elevated, and eye-hand span and target-locking score will be reduced, during
initial practice of difficult task conditions. This work is also expected to help identify which eye-tracking
measures can best characterize individual rates of adaptation to novel motor tasks. In the long-term, this work
can facilitate the development of adaptive learning algorithms that modulate task difficulty to maintain a
learner in an optimal state of workload and motor-learning.

INTRODUCTION

Recent developments in robotic control algorithms and
material design have ushered in a particularly exciting era for
collaborative robots (cobots), which have grown much more us-
able, versatile, and safer to operate in close proximity with hu-
mans compared to older industrial robots (Haddadin & Croft,
2016). In fact, robotic exoskeletons, prosthetics, and some types
of cobots remain in complete physical contact with the human
operator, mimicking the operator’s movements, often cooperat-
ing in the performance of a task, or augmenting strength, endur-
ance and precision (Chen & Kemp, 2010; Zhu et al., 2020). In
this context, it is important to understand the cognitive chal-
lenges involved in controlling these complex devices, and the
learning/training needs for diverse operators to effectively uti-
lize them. Recent research suggests that although cobots have
achieved higher standards of safety and compliance, they can
still impose a significant workload on the user’s attentional and
cognitive-motor resources (Chadwell et al., 2016; Stirling et al.,
2020; Wu et al., 2019) and may require time and effort to learn
(Cornwall, 2015; Parr et al., 2019). Thus, it is critical to develop
metrics to quantify a user’s mental workload for the safe and
effective implementation of cobots, especially in environments
that are inherently hazardous and safety-critical. This study
aims to determine the sensitivity of eye-tracking measures to
the changing motor-control demands associated with learning
to use a physically-coupled robot, and to explore the extent to
which eye-tracking can quantify motor learning rates during use
of the cobot.

Background and Related Work

Understanding the dynamics of mental workload over the
course of motor learning and continuous measurement of these
constructs can help in designing learning/training protocols,
and help minimize workload for users of cobots. Specifically,
continuous measures of operator state can help design algo-
rithms that adapt the behavior of cobots to best suit the opera-
tor’s mental workload and level of skill at any given point
(Brown et al., 2016; Koenig et al., 2011).

Learning a new skill, especially a ‘motor’ skill, requires a
process called “Internal Model Formation” (Wolpert et al.,
2011), in which the learner, with practice, gradually develops
the ability to predict the sensory consequences or results of the
physical actions associated with a skill. An enhanced ability to
predict the results of one’s own actions is a critical aspect of
what formulates expertise in the task. Learning to use novel or
complex tools is also characterized by the formation of new in-
ternal models for tool behaviors, as well as updating of the in-
ternal models for the limb controlling the tool (Wolpert et al.,
2011).

Past research has shown that wearable robots such as my-
oelectric prostheses and powered exoskeletons tend to be diffi-
cult to use because the user cannot easily predict the devices’
control dynamics (Chadwell et al., 2016; Cornwall, 2015; Kao,
2009). Similar difficulty in predicting robot behavior and an in-
creased reliance on vision have been observed with other types
of cobots, e.g. joystick-operated robotic arms (Aronson et al.,
2018) and surgical robots (Law et al., 2004; Wu et al., 2019).
Thus, we expect a high mental workload to be present during
initial stages of learning as the user attempts to build an internal
model of the device and movement (Sailer, 2005) and over the
course of practice, mental workload is expected to attenuate due
to refinement of neural processes and increasing automaticity
in the task (Sailer, 2005; White & French, 2017).

Eye-tracking is a promising technique for measuring men-
tal workload since it can provide both physiological measures,
(e.g. pupil dilation, saccade velocity, workload indices) which
correlate with the involuntary neural response to mental work-
load (Just et al., 2003), as well as eye-movement measures such
as eye-hand span and fixation- and saccade metrics, which re-
flect voluntary gaze behavior and strategies based on motor task
demands (Land, 2009; Srinivasan & Martin, 2010). Since men-
tal workload is a multidimensional construct which is intri-
cately related with attention, task performance, and strategies
(Tsang & Vidulich, 2006), the ability of eye tracking to provide
different types of information related to mental workload is ad-
vantageous. Importantly, eye-tracking measures have also been
shown to track changes over the course of cognitive- and motor-
skill learning (Sailer, 2005; Tinga et al., 2020; White & French,



2017). The versatility of eye-tracking, coupled with its increas-
ing wearability and ubiquity (Cognolato et al., 2018) make eye-
tracking a viable technology to implement in dynamic, real-
world environments.

Although eye-tracking has been previously used to meas-
ure mental workload and visuomotor performance while using
robotic devices, these studies have mainly focused on single-
arm tasks, and specifically in the domain of prosthetics or lap-
aroscopic surgery. Our goal here is on quantifying the sensitiv-
ity of eye-tracking measures to mental workload in a bi-manual
task performed co-operatively using an industrial robot. Sec-
ondly, past studies on prosthetics and surgical robots have also
only compared eye-gaze behavior between separate practice
sessions e.g. (Sobuh et al., 2014) or between experts and nov-
ices e.g. (Law et al., 2004). Thus, there is a need for more fine-
grained, trial-to-trial quantification of the changes in eye-gaze
behavior, in pursuit of a continuous measure of mental work-
load.

Given this background, we propose a study with the fol-
lowing aims and hypotheses — Aim 1: To quantify the sensitiv-
ity of eye-tracking measures to performing a bimanual task at
different levels of motor-task difficulty using a physically-cou-
pled industrial robot. Hypothesis 1: Higher task difficulties will
be associated with significant increase in pupil diameter and
blink rate, and decrease in eye-hand span and target locking
score (TLS). Aim 2: To explore and quantify the changes that
occur in eye-tracking indices of workload and visuomotor be-
haviors over the course of learning to perform the same task
mentioned in Aim 1. While error-rates in such tasks have been
shown to follow exponential decay, we will estimate best-fit
functions for specific eye-tracking indices.

This work will help understand which measures, among
the many possible measures that can be extracted from eye
tracking, can be used in future studies to track the rate at which
an individual is learning and adapting to novel tasks. Since in-
dividuals have fundamentally different rates at which they
learn, our long-term goal is to develop “personalized” indica-
tors of learning adaptations from eye-gaze behaviors, that can
then be used in future intelligent adaptive learning frameworks.

METHODS
Study Task

The inspiration for our task environment is a scenario in
which a nurse uses a cobot to help with patient lifting (Chen &
Kemp, 2010). The nurse may possibly have to re-orient the
cobot arms in different ways to best assist the patient, and also
maintain precision under dynamically varying forces caused by
the moving patient’s weight and the cobot’s inherent control
dynamics. We attempt to replicate these demands of dynamic
weight and multi-joint coordination by varying the arm imped-
ances of a bimanual Baxter robot in our study, and asking par-
ticipants to balance a ball on a plate while avoiding collisions
with other objects. Due to the impedance mismatch, the arms
move in slightly different ways from each other, requiring par-
ticipants to learn how to monitor and reposition the arms such
that the ball remains balanced and collisions with other objects
are minimized. Specific degrees of freedom are also locked in

one of the two arms of the robot, thereby requiring users to find
a viable path to complete the transfer task.

This task has been designed in virtual reality (VR), since
VR affords high freedom over experimental manipulations, par-
ticularly in tasks involving physical-object interaction. VR also
enables flexible measurement of motor performance and eye-
movement behavior, since the position and orientation of all VR
objects relative to the user is precisely known (Clay et al.,
2019). Moreover, there is great potential for VR to be used in
conjunction with cobots, to train operators in a variety of simu-
lated conditions (Matsas & Vosniakos, 2017) or to provide aug-
mented feedback during teleoperation (Zhou et al., 2020). This
work will thus also contribute to the growing body of evidence
on the potential efficacy of using VR to study and train human
motor behaviors.

A schematic of the setup and is shown in Figure 1. Partic-
ipants perform the task using the Rethink Robotics Baxter Ro-
bot, which has two 7-DOF arms that can be manipulated freely
by grasping their wrists. The Baxter SDK enables us to adjust
impedances on each individual joint. Additionally, we visualize
a virtual model of Baxter inside a Unity VR environment by
sending Baxter’s real-time joint positions to Unity at 140 Hz
using the ROS# package (Zhou et al., 2020) We use the HTC
Vive Pro Eye VR headset in this study, along with the embed-
ded Tobii eye-tracker which records gaze data at 120 Hz.
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Figure 1. Schematic of communication between Baxter and VR

As shown in Figure 1, participants stand facing the Baxter
robot while wearing the VR headset, in a position that allows
them to grasp and manipulate the robot’s arms. Figure 3 shows
the VR environment - a virtual plate along with three target lo-
cations in the form of solid blocks are situated on a table be-
tween the participant and the virtual Baxter. The plate also con-
tains a virtual ball with simulated physical properties of an ac-
tual ball, i.e. it rolls around inside the plate, and if the plate is
tilted, the ball will fall out. Participants are asked to pick up the
plate from the starting location and transfer it consecutively to
three different locations, as fast as possible, while ensuring the
plate and the ball do not fall, and that the robot does not collide
with any target locations or the table.




Figure 2. Participant wearing the headset and operating the robot

(A) B)
Figure 3. (A) Participant’s view in VR, with robot, plate, and target locations.
(B) Ball rolling off due to excessive tilt of the plate

Participants

We are recruiting a gender-balanced sample of 36 partici-
pants from the university student pool, by distributing flyers
around the university campus. Participants are screened to ex-
clude those with musculoskeletal disorders or injuries. We only
recruit participants who are able to read at arm’s length without
the use of corrective lenses, since lenses or glasses may inter-
fere with the eye-tracking measurement. We also request par-
ticipants to limit their consumption of caffeine, nicotine, alco-
hol or sedative drugs prior to the experiment to control for in-
fluences on physiology. We exclude individuals with a history
of migraine, vertigo and epilepsy, since these conditions can
make them susceptible to VR sickness.

Independent Variables

Since internal model formation is a function of both task
and tool-manipulation difficulty, two independent variables
were chosen for this study: Task difficulty and Robot manipu-
lation difficulty. Task difficulty was set at 3 levels (low, me-
dium, high) by changing the coefficient of friction of the virtual
ball. Robot manipulation difficulty was set at 2 levels, matched
(easy) and mis-matched (difficult), where the degree of “match”
between the two arms of the robot was manipulated. The degree
of (mis)match between the two arms of the robot were con-
trolled through varying the joint impedances of the two arms.
In the matched (easy) condition, both arms of the robot exhib-
ited identical joint impedances, whereas in the mismatched con-
dition, a subset of joints in one of the arms were set at a higher
impedance, and some degrees of freedom were locked. The
mismatched condition was expected to increase motor-coordi-
nation demands, and consequently, increase the difficulty of
balancing the ball on the virtual plate.

Experiment Design and Protocol

The experiment is completed in a single session, and em-
ploys a 3 (high, medium, low friction) x 2 (presence/absence of
mismatch) repeated measures design. After participants sign
their consent, we administer a short test of working memory
capacity, record their age, and also their past experience with
VR. The experiment begins with a 1-minute familiarization ses-
sion with Baxter, in which participants are allowed to grasp and

move the arms freely while receiving visual feedback in VR.
Familiarization is followed by eye-tracker calibration.

Participants begin with a baseline block using only their
hands (no robot) and the medium friction condition, followed
by 6 learning blocks using the robot to achieve the same task
condition. There are 24 consecutive movements (object trans-
fers) in each block. A one-minute break is provided between
blocks to minimize physical fatigue, during which participants
also provide self-report measures (described later). Addition-
ally, to minimize the transfer of learning between blocks, 12
‘wash out” movements are performed after each block, that are
identical to the baseline movements (no robot). We progress
from the easiest condition (high-friction, matched arms) to the
most difficult condition (low-friction, unmatched arms) to pro-
vide graded exposure to the task and avoid learning/negative
motivational effects of experiencing too high a difficulty early
on.

N/A
Independent = . .
Variables Medium Medium Medium
Friction Friction Friction

Blocks Baseline | Block1l | Block2 | Block3 | Block4 | Block5 | Block6

Figure 4. Task description with blocks. Each block except baseline is followed
by a I-minute break and 12 ‘wash-out’ movements

Outcome Measures

Our primary eye-tracking measures are selected based on
their ability to provide different types of information about
mental workload and visuomotor performance. We will also use
NASA-TLX ratings (Hart & Staveland, 1988) as ground truth
for mental workload, the Self-Assessment Manikin (SAM)
(Bradley & Lang, 1994) as a measure of emotional valence, the
Rating of Perceived Exertion (RPE) (Scherr et al., 2013) as a
measure of physical workload, and a digit-span test of working
memory capacity (WMC) (Woods et al., 2011).

Primary eye-tracking measures: Pupil diameter (PD). PD
increases with higher task difficulty and mental workload, and
this effect is called the task-evoked pupillary response (TEPR)
(Just et al., 2003). Blink rate. Blink rate has been shown to in-
crease for high cognitive- and motor-control demands (Mar-
quart et al., 2015; Novak et al., 2015). We expect blink rate to
be higher in the initial trials and difficult task conditions. Eye-
hand span. The eye-hand span is the duration from the start of
a fixation on an item until the hand (or another effector) per-
forms the action associated with that item (Land, 2009). In dif-
ficult motor tasks or during initial practice of novel tasks, eye-
hand span tends to be short, or even negative (i.e. the eyes fol-
low the hands), but can increase with learning (Sailer, 2005).
We define the eye-hand span at two different points (Lavoie et
al., 2018) — a) Eye-hand span (EHspan) at pick-up, which is the
time difference between the moment the plate is lifted and the
first fixation on the plate. A positive value of EHspan at pick-
up indicates that the eyes reached the plate before it was picked
up. b) EHspan at drop-off, which is the time difference between
the moment of plate-release and the first fixation on the drop-
off location. A positive value of EHspan at drop-off indicates
that the eyes reached the target location before the plate was
released. Target-locking-score (TLS). While eye-hand span is a
temporal measure of eye-hand coordination, TLS is a spatial



measure that describes relative attentional focus (Wilson et al.,
2010). In our study, TLS is defined as the percentage of eye-
fixations on the plate or drop-off location, subtracted by the per-
centage of eye-fixations on the end-effectors. A positive TLS
indicates greater focus on the upcoming targets (higher exper-
tise), whereas a negative TLS indicates greater focus on the
end-effector while performing the movement (lower expertise).
In this study, the plate itself will be the “target” prior to being
picked up, and the drop-off location will be the “target” prior to
plate-release. Additionally, we will define a second measure,
TLSwan, that considers fixations on the ball instead of the end-
effectors. This is because the movement of the ball is a function
of the end-effector positions while holding the plate, and par-
ticipants may adopt a ball-monitoring strategy rather than a
hand-monitoring one, or an external focus of attention as op-
posed to an internal one (Wulf, 2013).

Exploratory  eye-tracking measures: In  addition,
measures such as Index of Pupillary Activity (IPA), peak veloc-
ity of saccades, and gaze entropy will be computed as explora-
tory measures. A few recent studies have shown the IPA to be
sensitive and positively correlated to workload since it was first
introduced in 2018, albeit in artificial lab-based cognitive tasks,
e.g. (Duchowski et al., 2020). Peak saccadic velocity (PV) has
been found to be negatively correlated with arousal and cogni-
tive workload (Di Stasi et al., 2010; Marchitto et al., 2016). To
our knowledge, neither IPA nor PV have been explored in stud-
ies involving motor control demands. Gaze Entropy quantifies
whether an observer’s scanning of visual information from the
environment is widely dispersed and erratic (high entropy) or
confined and ordered (low entropy) (Shiferaw et al., 2019). A
study that investigated reaching and grasping tasks using a pros-
thesis found that the number of gaze transitions between differ-
ent task-related areas reduced with practice (Sobuh et al., 2014).
We expect to observe a similar reduction in gaze transitions
over the course of learning, which may also be reflected in a
decrease in entropy.

Motor- and task-performance measures: Jerk Index (JI).
JI quantifies movement smoothness and will be used as a
proxy for movement control. We will calculate JI using the
following equation (Hogan & Sternad, 2009):
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where T is the movement time (seconds) for each movement
cycle, D is the movement distance (meters), and J is the linear
jerk (m/s®). Movement Time (MT). MT will be calculated as the
duration between when the arms start moving, and the plate is
released at the target location. Accuracy of transfer will be com-
puted after each plate-release, as the final distance between the
center of the plate and that of the target location (Dacc), as well
as the final angular difference (8acc) between the horizontal ro-
tation of the plate and the target location. The number of times
the participant drops the plate or the ball will be computed as
dropsplate and dropsvan respectively

Statistical Analysis and Expected Results

Aim [: A repeated measures ANOVA will be used to test
the effect of our independent variables on eye-tracking

measures, NASA-TLX, kinematic measures and task perfor-
mance measures. Data for the ANOVA models will be chosen
from the middle 8 movements in each block to avoid the poten-
tial influence of motor exploration earlier in the block, and po-
tential attenuation due to learning effects later in the block. We
will include WMC, SAM, and RPE as covariates in our model
to account for individual differences and influence of emo-
tional- and physical-load on mental workload. Post hoc pair-
wise comparisons will be performed using Tukey’s HSD test to
test differences between individual conditions. The significance
level will be set to o = 0.05, and all statistical analyses will be
performed in JMP (SAS Institute Inc., USA). We expect to
identify the metrics of eye-tracking that are most sensitive to
manipulations in task difficulty, with the expectation that in aim
2, these would be the most promising metrics to explore, in
terms of how they characterize individual learning rates.

Aim 2: While the change in motor and task performance
measures informs the learning rate, to explore how eye-tracking
metrics change over the course of learning, we will estimate
best-fit regression functions for the primary dependent
measures from eye-tracking, in each task condition. In the event
of large inter-individual differences in sensitivity to workload
or learning, each individual’s data will be normalized to their
own respective baselines. By comparing the group regression
results with individual functions, these models will help under-
stand whether all individuals respond in a similar way to learn-
ing. If significantly different individual patterns are discovered,
individuals will be classified into groups, and any systematic
effects of subjective and individual characteristics on the group
classification will be explored.

DISCUSSION

We have presented our research work in progress that in-
vestigates the sensitivity of eye-tracking metrics to motor task
difficulty. Additionally, we have also proposed to quantify rates
of learning, and explore the mathematical functions that can
best represent the changes occurring in visuomotor perfor-
mance over the course of learning. A novel aspect of our re-
search is that it can provide much needed initial evidence on the
sensitivity of VR-based eye-tracking to measure mental work-
load and motor learning rates. Additionally, our work can also
provide knowledge on individual-specific visuomotor strate-
gies that operators may employ over the course of learning. We
will complete our data analysis and present these results at the
conference.
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