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ABSTRACT

There has been recent interest in the design of collaborative learn-
ing activities that are distributed across multiple technology devices
for students to engage in scientific inquiry. Emerging research has
begun to investigate students’ collaborative behaviors across differ-
ent device types and students’ shared attention by tracking eye gaze,
body posture, and their interactions with the digital environment.
Using a 3D astronomy simulation that leverages a VR headset and
tablet computers, this paper builds on the ideas described in eye-
gaze studies by developing and implementing a metric of shared
viewing across multiple devices. Preliminary findings suggest that a
higher level of shared view could be related to increased conceptual
discussion, as well as point to an early-stage pattern of behavior of
decreased SV to prompt facilitator intervention to refocus collab-
orative efforts. We hope this metric will be a promising first step
in further understanding and assessing the quality of collabora-
tion across multiple device platforms in a single shared space. This
paper provides an in depth look at a highly exploratory stage of
a broader research trajectory to establish a robust, effective way
to track screen views, including providing resources to teachers
when students engage in similar learning environments, and pro-
viding insight from log data to understand how students effectively
collaborate.
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1 INTRODUCTION

Collaborative activities have been established as a strong method
for supporting learning [10]. As more advanced technologies de-
veloped, there has been more integration of emerging technologies
such as immersive virtual reality (VR) (e.g., [9, 28]) and augmented
reality (AR) (e.g., [12, 16] for collaborative learning. However, un-
derstanding how students use the technologies is challenging as it
often requires expensive and elaborate configurations of software
and monitoring devices including eye trackers, motion trackers
(e.g., Microsoft Kinect), multi-directional microphones, video cam-
eras, and more. These additions can constrain learning inside a
traditional learning environment such as a classroom, limiting the
number of people who can participate in collaborative learning
activities. Even more, emerging technology such as AR and VR
headsets can be very expensive, and many educational settings will
not be able to afford these devices for every single student.

Multi-player, cross-device learning platforms are gaining in pop-
ularity within education and for entertainment. However, to effec-
tively study and understand these environments, it is critical that
we develop novel and less intrusive approaches to tracing students’
collaborative actions, such as a shared view metric. Providing col-
laborative spaces is important as it helps students engage in the
learning process during inquiry activities; and effective simulations
can be supportive for collaborative inquiry learning activities [29].
In many cases of collaboration in technology-enhanced learning
environments, tasks often have a single collaborative space (e.g., a
large multi-touch display surface, see [17]), or multiple personal
devices that provide ways to share with the group [30]. Carefully
curated collaborative spaces and tools may help generate the shared
space to effectively work together to complete educational tasks. To
understand how to facilitate students in developing shared knowl-
edge, research has tracked students’ collaboration in multiple ways.
Some innovative methods include body posture or gesture tracking
[15, 20], and eye gaze tracking [11, 23]. However, there has been
little research in investigating students’ collaborative behaviors
across different device types (e.g., [21]).

As technology becomes increasingly relied upon in educational
settings at different scales, exploring novel ways to analyze col-
laboration in a cross-technology context such as between a tablet
and VR headset becomes critical. By establishing a method to track
collaborative learning without any additional equipment, it will be
possible to offer more effective classroom management resources,


https://doi.org/10.1145/3448139.3448156
https://doi.org/10.1145/3448139.3448156

LAK21, April 12-16, 2021, Irvine, CA, USA

just-in-time instruction within the digital learning environment to
encourage additional collaboration, and assistance to researchers.

2 RELEVANT WORK

2.1 Importance of Facilitating Knowledge
Sharing in CSCL (Computer Supported
Collaborative Learning)

Research has shown that the quality of interaction between learn-
ers affects learning outcomes in computer supported collaborative
learning (CSCL) environments [1, 26]. However, in most cases, col-
laborative learners do not spontaneously engage in such productive
interaction activities; CSCL environments should help learners en-
gage in more productive interactions [14]. Productive collaborative
learning requires a process where group members establish shared
knowledge [5, 13]. Being aware of each other’s knowledge or status
among group members in the CSCL environment facilitates col-
laborative learning and enhances their communication [7]. Shared
annotations also improve students’ knowledge sharing and collab-
orative learning [31]. As such, some studies have investigated how
shared knowledge can best be facilitated in CSCL environments
[6, 8, 19]. However, most of the studies have been done in environ-
ments with a single device or platform; there is a lack of research
on how students with different perspective from multiple devices
can be supported in achieving shared knowledge.

2.2 Joint Visual Attention in Collaborative
Learning

A hallmark of collaborative learning is the ability to negotiate
shared knowledge related to the tasks at hand [24]. Barron [1]
found that successful collaborations on educational tasks engaged
in discussion about a proposed idea. This study highlighted that
students who work in parallel on tasks, meaning they are in a team
but are working to solve the problem on their own, were found to
have lower performance on mathematics assessments compared
to groups who sustained joint attention and where students were
listening and interacting with one another. One such effort for
developing shared knowledge is the research around joint visual
attention (JVA). JVA was first introduced in early childhood de-
velopment research [3]. Tomasello and Akhtar [27] operationalize
joint attention as the focus on a common reference to build under-
standing. There are several methods for assessing JVA in digital
learning environments. With the development of multimodal data
collection techniques, researchers can leverage a variety of tools,
such as body posture [20], eye-tracking or gaze tracking [11, 22, 23],
and application log data [2, 4]. Specifically, Jermann et al. [11] found
that when leveraging eye gaze tracking in collaborative tasks, a
dyad that has high quality interactions (based on collaboration flow,
sustaining mutual understanding, technical coordination, participa-
tion symmetry, and task division) also demonstrated a higher eye
gaze recurrence rate than pairs who had lower quality interactions.
This finding is also supported by Schneider and Pea [23], where
some participants were able to see their team member’s eye gaze
on a shared screen; results indicated that collaborators who could
see their fellow participants’ eye gaze in real-time achieved higher
quality collaboration and learning gains.
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This body of literature, therefore, suggests that collaborative
tools that provide ways for individuals to negotiate and identify
where fellow collaborators are looking or moving suggests an in-
crease in collaboration, but also potentially learning gains. When
developing different collaborative tools and environments within
an educational setting, there are many considerations. Collabora-
tive tools should be designed to support effective problem solving
with a clear group goal, where group members can exchange ideas,
share information, negotiate agreements, and manage relationships
[18]. Traditional eye gaze tracking is difficult for calibration, which
requires extensive computations to align data, especially when
students are free to look around 360 degrees around a room [21].
Typically, research focuses on one device type or another. There
is little research in the field investigating how to make sense of
collaborative interaction data across different devices with different
perspectives.

With the increased use of digital platforms as a means of collab-
orative learning and emerging technologies integrated into digital
learning environments, this study strives to understand how stu-
dents build “common ground” through viewing the same model
from different perspectives using different devices. As a prelimi-
nary study, we develop a shared view metric that can represent
how students in a group shared a view in solving collaborative
tasks across different devices and further help us understand how
students engaged in building shared knowledge. Future multimodal
analysis ultimately will aim to understand how students build un-
derstanding, leverage previous knowledge, and create a common
representation to solve astronomy tasks. The purpose of this pre-
liminary study is to explore the following questions:

e How can a shared view metric be developed to capture stu-
dents’ collaborative learning across devices?

e What are the relationships between the shared view metric
and students’ use of simulation tools explicitly developed to
aid collaboration?

We hope the results can inform how the metric can be improved
to better represent students’ collaborative learning and how tools
can be better designed to support collaborative learning in future
implementations. In the following sections, we will describe a data
transformation and metric development for a digital shared view
within an educational context to track potential collaboration across
multiple devices.

3 METHODS

3.1 Simulation description

To facilitate collaborative learning of the night sky exploration, a
prototype cross-technology simulation platform for VR (Oculus
Quest headsets) and tablet (Microsoft Surfaces) was developed us-
ing the Unity game engine. Three views are provided within the
simulation: horizon view, Earth view, and star view. Horizon view,
which is the main view, allows for the observation and annotation
of the night sky from a specific location, date, and time.

Each user can control their view to explore the night sky with
their own device, but if necessary, students in a group can coor-
dinate their view to share the view. Users can draw annotations
in the night sky, and the drawings are shared instantly across the
devices so they can be used as a reference for each other. Earth view
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Table 1: Group Information: Crash Sites and Devices

Lab Session Crash Site Device Type Number of Students
8 am Alpha 2 Surface, 1 Quest 3
Beta 2 Surface, 1 Quest 3
Gamma 2 Surface, 1 Quest 4
10 am Alpha 2 Surface, 1 Quest 4
Beta 2 Surface, 1 Quest 4
Gamma 2 Surface, 1 Quest 4
Noon Alpha 2 Surface, 1 Quest 3
Beta 2 Surface, 1 Quest 4
Delta 2 Surface, 1 Quest 4

allows both VR and tablet users to observe the Earth from above
while dropping pins to change their location and obtain latitude
and longitude coordinates. Star view, accessible only to the tablet
users, provides an explorable view of the full celestial sphere and
catalogued western constellations.

To test the use of the simulation in an applied setting, a multi-
step problem-solving task was created in collaboration with the
introductory astronomy instructors. The task “Lost at Sea” has
students using their observations of the night sky to determine the
location of a crewed space capsule that has splashed down at night
somewhere on the planet. Groups of students must first identify
features of the night sky to determine which hemisphere the capsule
is located in (task 1), then identify familiar constellations to use
as reference points (task 2), then refine their crash site location
estimation through the calculation of both latitude (task 3-1) and
longitude (task 3-2) using the night sky.

3.2 Participants

Ultimately, three groups from three different lab sessions data were
collected, for a total of nine groups (see Table 1). Within the simu-
lation, there are four preset crash sites (i.e., referred as alpha, beta,
gamma, and delta). Groups were randomly assigned a single crash
site in the northern hemisphere to follow the tasks. This is to en-
sure that all groups could solve tasks through a similar process and
difficulty level as the process of calculating the crash site’s latitude
and longitude varies depending on which hemisphere the capsule
would be located in.

3.3 Procedure

Each group was provided two Microsoft Surface Tablets, and one
Oculus Quest. In addition, each group was provided a worksheet
with the three tasks (see 1.1), space for handwritten answers, and
an informational packet that contained relevant information to the
task at hand, such as calculating latitude and longitude. Prior to the
simulation, students were given a brief walkthrough explaining the
simulation controls, information about the Quest, and responded to
a pre-test asking questions about interest in the subject and general
science, science related activities, and beliefs about themselves
in relation to science (e.g” During science activities, I prefer to
ask other people for the answer rather than think for myself”).
Following the simulation, each participant completed a post-test,
which asked general questions on device usage during the session,
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thoughts about the simulation, task difficulty, and how they felt
their team collaborated.

3.4 Data source

This study used data collected from videos recorded during the
group work, screen recordings from the devices, and simulation (or
‘log’) data. Table 1 provides the group and participant structure, in-
cluding assigned crash site. Log data was generated each time a new
‘event’ occurred, meaning that each time a participant moved to a
different location, leveraged a provided simulation tool, or changed
the direction their screen faced, a new event was triggered. The
number of events generated changed depending on the participant
as well as the device used. For instance, the Quest generated much
more data as each time a user shifted their head, the simulation
registered it as a digital move, whereas a tablet user had to use
on screen buttons to shift their view. For each event triggered, the
latitude, longitude, UTC date and time, simulation time (as students
could manipulate the time around the time of the crash site), head-
ing vector, event name, selected object, and selected star, as well
as which view users were on were all collected. During the pilot
study, 78,656 rows of data were generated.

3.4.1 Data Cleaning. To answer our research questions, we first
considered how the data was initially recorded. As a new row
of data was generated based on an event, this led to “time gaps”
where students may have been discussing tasks with their peers,
referencing help sheets, or otherwise considered idle. More time
gaps were found in tablet logs than the VR logs, as each time the VR
user shifted their head generated new data, whereas tablet users had
to actively manipulate the screen to shift location or view despite
looking at the screen. The initial transformation considered the
time gaps; for example, if a VR user moved from London to Los
Angeles, and the other team member did not trigger an event in that
second, then the data from their previous event was carried down.
This allowed the research team to compare the devices at a second
granularity when each second at least one device triggered a new
event, which we predetermined to be relevant to answering when
students were “looking” at the same thing within the simulation.
Future work will generate all seconds between first and last event
per group.

To make these comparisons across devices (note we only com-
pared devices, rather than participants as participants were free to
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Table 2: Data Dictionary: Features and Descriptions

Variable Description

Example

Session-group
evaluated.
Device pairing

alphabetical order.
Task Indicates which task the event occurred in.

Scene indicator

Descriptor variable indicating which session and which crash site the group
Indicates which two devices are being compared. This is not the username assigned

to the device, rather, the Quest device was always assigned “VR” and then the other
two devices were assigned Tablet 1 or Tablet 2 arbitrarily based on descending

If students were both in the same “scene” (earth view, star view, horizon view)

10am-alpha

{VR-Tablet 1, VR-
Tablet 2, Tablet 1 -
Tablet 2}

{Task 1, Task 2, Task 3}
{01}

available in the simulation. This feature was assigned a 1 if they were in the same

scene, 0 if not.
Same location

If the latitude and longitude distance equal 0, then it was said to have the pair

0.1

co-located (a value of 1, 0 for non-colocation). This was found to be appropriate as
students typically used the drop-down menu to explore other locales or dropped a
pin from Earth View to make dramatic changes in location.

Simulation time

Participants are able to adjust the time within the simulation to any given time or

800 minutes

(drawmode started,

difference date to observe how the stars move. The absolute value of the difference in the
simulation time between two devices is given in minutes for this feature.

Events Given as an ordered pair of (Device 1, Device 2), events occurred provides insight

Occurred on event types that occurred at this moment in time.

annotation added)

rotate devices and many groups did not have a 1:1 device participant
ratio), and different simulation usage patterns in collaboration, com-
parison at the pair level (between different devices) was thought to
provide more insight onto collaboration. Data was excluded prior
to all three group devices initiating the “connected” event, indi-
cating that they had full access to the simulation. This allowed
for intragroup and intergroup comparisons. Further, internal time
(UTC with datetime) the simulation recorded was joined with video
time stamps. This helped interpretability of findings when students
moved on in their tasks as determined by watching the videos and
marking when students transitioned to the next or previous task
and to leverage qualitative analysis of collaboration from the videos.
Relevant features are discussed in Table 2

3.4.2  Shared View Metric. Shared view (SV) metric was developed
to track when two device’s screens overlapped. SV metric allowed
us to set parameters for overlap, based on simulation data. As the
first exploratory stage, we limited some conditions to generate SV
metric. That is, to determine if there was a screen overlap, device
users had to be at the same location, at the same simulation time,
and had the same scene loaded. If this logic was not met, then we
considered students were not looking at the same view, equaling an
overlap of 0. If the logic was met, then we took the heading of each
device, provided as (up/down degrees, left/right degrees). Through
investigation with the simulation, it was found that the view screen
was approximately 60 x 60 degrees for the VR user, which was the
smallest field of vision within the simulation. The top left corner
coordinates were calculated by adjusting up and left 30 degrees
respectfully. As the simulation is a sphere, the distance between a
heading of 1 and 3 is the same as 358 and 1. This was considered in
the upper left coordinate calculation. By calculating the upper-left
coordinate, we were then able to calculate the overlap of the two
squares using trigonometric principles. The overlap ranges from 0 to
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3600, the total squared area possible. Finally, to calculate SV metric,
we took this overlap and divided by 3600. SV therefore ranges from
0 to 1, where 1 is a perfect shared screen, and .5 represents that
two screens share about fifty percent of the same content. To check
our metric, we observed several 20 second clips from the videos
with the associated screen captures and found that the metric was
accurate in the context.

This calculation method also affords future devices to be incor-
porated, and the ability to change the potential overlap based on
device screen ratios. However, this preliminary study only con-
sidered the narrowest screen range. In addition, we will consider
time differences at the same location to identify if two devices are
viewing the same celestial objects in the night sky in our follow-up
study.

3.5 Analysis

As a preliminary study, we employed an exploratory approach to
develop a metric to be used in future work. By calculating the
overlap, as described in the above section, we were then able to
develop a more foundational understanding about the relationship
between the shared view, tool use, and the potential relationship
with a quality of collaboration. Figures 1a and 1b demonstrate what
a low SV metric may look like during the lab session (Figure 1a)
and a highly considered SV metric (Figure 1b).

First, descriptive analysis was completed on the developed metric
(see Table 3). Given the small sample size of the current study, key
visualizations were developed as the primary vehicle to drive un-
derstanding. Finally, we focused on the groups in 10 am session to
better understand the relationship between SV metric and quality
collaboration. This is our preliminary efforts in identifying associa-
tion between SV and quality collaboration. Only three groups had
a maximum of 1, and standard deviations range from 0.05 and 0.21.
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b}

Figure 1: (a) SV of 0. Different scenes and looking different directions result in students not looking at the same thing. (b) High
SV and overlap across all three devices.

Table 3: SV Descriptive Statistics for the Simulation

Group Count? SV_MinP SV_Avg® SV_Maxd SV_Std®
8am-alpha 7293 0 0.1082 1 0.2082
8am-beta 5244 0 0.0077 0.9009 0.0537
8am-gamma 6603 0 0.0178 0.9867 0.1003
10am-alpha 10317 0 0.0634 0.985 0.1786
10am-beta 9876 0 0.0308 0.9086 0.1291
10am-gamma 7728 0 0.0645 1 0.2056
Noon-alpha 7467 0 0.0111 0.9884 0.0846
Noon-beta 8610 0 0.0496 1 0.1681
Noon-delta 6555 0 0.0243 0.9967 0.1326

2 The number of instances that occurred in the log data, b Minimum of SV, € Average of SV, d Maximum of SV, € Standard Deviation of SV
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Session

Crash.. 8am 10am Noon

1.0
alpha & 0.5 I |“‘ Ih M. 'l

0.0 1 Il |‘ I

1.0
beta a 0.5

00 1 ‘L‘l_l I W‘.“MLJ“_

1.0
gamma
(8&
10), & 05
delta
(Noon) | ||I |||| \

0.0

0:11:00 0:26:00 0:41:00 0:56:00 0:11:00 0:26:00 0:41:00 0:56:00 0:11:00 0:26:00 0:41:00 0:56:00
Time (H:MM:SS) Time (H:MM:SS) Time (H:MM:SS)

Figure 2: Group average shared view (SV; y-axis) metric across time (x-axis) partitioned by crash site (y-partition) and lab
session (x-partition)

Pairing Task
Tablet 1- 10 B Task 1
Tablet 2 Task 2
Task 3
% 05
0.0
1.0
VR -
Tablet 1
& 05
0.0
1.0
VR -
Tablet2
% 05
0.0
0:01:00 0:11:00 0:21:00 0:31:00 0:41:00 0:51:00 1:01:00 1:11:00

Time (H:MM:SS)

Figure 3: Shared View of 10 am gamma group on the dyad level. Note: Ovals highlight consistent, high levels of SV, whereas
the rectangles highlight more sporadic SV. Color and opacity indicate which task the group is working on.

Count is the number of instances that occurred in the data. Recall the result is approximately 40.5 minutes’ worth of data. Minimum,
that the data is for each second an event was triggered for at least maximum average, and standard deviation are also provided.

one device in the group, with three dyad combinations per group

(i.e. VR - Tablet 1, VR - Tablet 2, Tablet 1 - Tablet 2). If you take 8

am alpha’s count at 7293, divide by 3 dyads, and then divide by 60,
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DrawmodeDuration 10 AM alpha - 10am-alpha

Pairing

Tablet1

Tablet 2

SV

VR

Tablet 1

SV

VR

Tablet 2

sV

0:05:00 0:15:00

N i

1 YT

0:25:00

LR 7Y T

0:35:00 0:45:00 0:55:00 1:05:00

Time (H:MM:SS)

Figure 4: Draw mode activations and SV metric trend: 10 am alpha. Notes. Boxes within device bands indicate draw mode
activation for each device, with the SV between the two devices as a line in the SV band for each device pairing

4 FINDINGS AND DISCUSSION

The SV metric was developed as a way to capture students’ view
sharing across devices in response to our first research question.
We first examined the evolution of SV across time (see Figure 2).
Time in this case, along the x-axis, is represented by a standardized
time, where 0 minutes, 0 seconds was determined for each group
at the first data point present in the cleaned dataset. As noted in
Participants, three lab sessions occurred at 8 am, 10 am, and noon.
Recall that SV is calculated on a dyad level to understand how
different groups leveraged different platforms. In addition, SV was
generated at a device dyad level to provide further exploration
of device use to be capitalized in the next stages of the study. To
review a group’s SV patterns, an average between the three dyads’
SV values was calculated. Table 3 shows the overall SV pattern of
each group accordingly. Consider that the overall average overlap
between all devices across sessions is 0.04 ( 0 = .115); 8am alpha
group shows the highest average (0.11) then, 10am gamma (0.06)
and alpha (0.06), and then 12pm beta (0.05). However, visualizing
the SV trends observed over time further provides additional detail.
As such, Figure 2 demonstrates the variation in group averages
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across SV at a given moment in their lab session. There does not
appear to be any relationship between session and crash site on the
overlap of the digital shared view. This is expected as each group
dynamic should not be influenced by the crash site and lab session.
Examination at the dyad level was also conducted to see if any
combination of devices might show different patterns. Figure 3
shows differences within dyads of a selected group, 10 am gamma,
as an example. Two patterns of high SV were identified visually.
First, devices show high (above .5), prolonged SV, where there is
little to no change in screen view overlap (see the middle of Figure 3
between VR — Tablet 1 as highlighted by the oval). Additionally, as
seen in VR - Tablet 2 there is a case without a constant SV, but rather
has a variable high SV. This appears to be an intentional shared
view, with one of the devices looking around a similar vicinity,
perhaps searching for an object before returning to the groups
view. If SV does drop below .5, then it is only for a few seconds
before returning to the similar vicinity. In contrast, sudden spikes
of SV with return to little or no SV soon after suggests that the
SV may be unintentional as it occurs briefly with no reoccurrence.
Sustained SV shows more potential for meaningful collaboration
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DrawmodeDuration 10 AM alpha - 10am-beta

Pairing

Tablet1

Tablet 2

sV

VR

Tablet 1

SV

AL

VR

Tablet 2

sV

0:06:00 0:16:00

T T T

0:26:

00

0:36:00 0:46:00 0:56:00 1:06:00

Time (H:MM:SS)

Figure 5: Draw mode activations and SV metric trend: 10 am beta group. Notes: Boxes within device bands indicate draw mode
activation for each device, with the SV between the two devices as a line in the SV band for each device pairing

whereas times or dyads that have more sporadic SV could be more
accidental or not meaningful [21].

Second, we examined the relationship between shared view and
students’ use of simulation tools explicitly developed to aid col-
laboration. One of the simulation tools allows students to “draw”
or “annotate” certain celestial objects or area of night sky in the
horizon scene (see the examples of annotation in Figure 1a). Draw
mode is highlighted as this is a tool that is ripe for collaboration.
When students activate draw mode and make subsequent anno-
tations (i.e., “drawing” connections between two or more stars or
constellations), this information is then shared simultaneously with
the group. It is expected that students draw to encourage other
team members to also look at similar items to generate a shared
understanding during solving the tasks. To leverage the annota-
tion tool, students must start and end ‘draw mode’. To explore the
potential relationship between SV and the use of this built-in tool,
we provide two examples. Figure 4 shows the trends of the group
10am alpha. When draw mode is activated, there is more sustained
SV overall, but especially within one device having activated draw
mode between VR and Tablet 2 (bottom row) and initially after
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draw mode is activated between Tablet 1 and Tablet 2. This may be
an indicator of intentional use of technical coordination (see [11]).
In contrast, 10 am beta group (see Figure 5) shows heavy activation
of draw mode, see Tablet 1 and VR users activation patterns, but
does not have any change of behavior. There are no sudden peaks,
no change in SV sustainment, and little to no SV pattern change
within active draw mode. Where this is a tool provided to com-
municate ideas, draw attention to, and “sketch” out findings, we
would expect its intentional use to be associated with higher levels
of joint attention, which is a future application of SV in our study.
However, we find that draw mode does not appear to be associated
with increased or change in SV behavior of 10 am beta group at
the present time. Potentially, more explanation or explicit scaffold-
ing on the different tools is needed in future studies to encourage
students to use the tool.

Last, we investigated how the metric can be improved to better
represent students’ collaborative learning and how tools can be
better designed to support collaborative learning in future imple-
mentations. To do so, we specifically selected 10 am session (alpha,
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Figure 6: 10 am conceptual discussion (blue background) and group averaged SV overlayed (line graph, right y-axis)

beta, and gamma groups) to further investigate the students’ collab-
orative behaviors. We developed the coding scheme to observe the
groups’ collaborative behaviors defined in Sheb and Mercier [25]
in which different forms of collaboration in problem solving are
identified. We focused on two types of behaviors to review with SV,
including (1) conceptual discussion and (2) facilitator intervention.
Conceptual discussion does not focus on whether the conversa-
tion or information presented between group members was correct.
Rather it highlights moments where group members are introduc-
ing, identifying, clarifying, and negotiating information relative to
the tasks. Facilitator intervention documents when group members
sought outside help, whether it was technical assistance, clarifica-
tion on task, or had questions surrounding knowledge required for
the task. The research team watched the group work videos of 10
am session to mark when each type of collaborative behaviors was
observed, and the Cohen’s k between two researchers was 0.817
which indicates almost perfect agreement.

To understand the relationship between the types of collaborative
behaviors and SV metric trends, we overlayed the group SV average
with the occurrences of conceptual discussion (Figure 6) and facili-
tator intervention (Figure 7). Figure 6 shows that the 10 am alpha
group had many more instances of conceptual discussion (166 in-
stances), compared to beta (6 instances) and gamma (36 instances)
groups. When looking at dyad SV, as seen in Figure 3, we note
there are prolonged instances of high SV, and other instances of
spontaneous, yet very brief, high SV. Jermann et al., [11] found that
dyads who had higher levels of gaze reoccurrence, which would be
comparable to SV in our study, was correlated with higher, quality
interactions. Schneider et al. [21] identified higher learning perfor-
mance as students increased in joint visual attention on a tangible
surface. As noted in Table 3 and Figure 6, 10 am alpha group had
much higher SV not only on average, but over time. In line with the
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literature, this is therefore a promising first step at establishing SV
as a metric that can be used to identify signals of quality collabora-
tion. It is worth noting that this study is still descriptive by nature
and needs more consideration and analysis to validate the claim.
Next, we evaluated the role of the facilitators on SV. As shown in
Figure 7, 10 am beta (middle) required much more facilitator interac-
tion from teachers or researchers (green shaded background) than
other groups. Figure 7 interestingly shows a lower or decreasing SV
prior to many of the interventions, which then sees some increase
after the interaction across the three groups (i.e. see around minute
11 in 10 am beta (middle), and minute 15 in 10 am alpha (top)). After
further investigation, it was found that the gamma group retired
one of their devices after 21 minutes. While their facilitator inter-
vention occurs less frequently than beta’s, the gamma group shows
longer durations requiring help up until they reduce the amount of
time spent with the VR, at which time they have the same number
of instances (facilitator intervention) as the alpha group. Therefore,
difficulty using the devices could be a factor impacting collabora-
tion and potentially learning. If similar patterns are found in future
work with students who struggle with the VR or simulation, this
information can be helpful in providing in simulation cues to reduce
technology frustration and enable students to focus on the task at
hand.

5 CONCLUSION AND FUTURE WORK

Literature points to increased eye-gaze reoccurrence as having a
positive impact on quality collaboration and learning gains. Contin-
uing to learn and develop methods to assess such behaviors while
also providing educators and learners the affordance of using read-
ily available technology as well as emerging technology may prove
beneficial in additional contexts. Effective collaboration is key in
scientific inquiry; by providing the scaffolding through learning
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Figure 7: 10 am facilitator interventions (green bands) and group averaged SV (black line graph) overlayed.

activities, students can learn from each other and build a shared
knowledge to solve tasks. This paper provided a methodology for
tracing shared view across different device types when using the
astronomy simulation in 3D, multiplayer, cross device simulations.

Future work will focus on including a larger sample to validate
the metric. Currently, such a small sample is a significant limitation
on the generalizability of this work. With an increased sample size
and additional data collection including demographics, information
on group work, and increased participation across institutions will
allow for a more fruitful conversation around data bias and im-
pact on generalizability. This will include the incorporation of the
quality of collaboration derived from additional qualitative analysis
and provide further insight into the relationships between the SV
metric, built-in tool use, and quality of collaboration, as well as
validating the metric on a larger scale. Such validation can provide
the foundations of just-in-time instruction embedded within simu-
lations or to notify an educator when students may need help with
the technology or seek additional instruction to solve the tasks. As
students “look” around the simulation, either in a VR environment
or navigate via keys on a tablet, the log data was able to be leveraged
to create a metric that distinguishes when and how much students
are viewing the same scene. We offer this method as an applicable
alternative to eye-gaze tracking in a similar context, particularly
3D simulations across multiple devices and device types.
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