Exploiting Nil-Externality for Fast Replicated Storage

Aishwarya Ganesan
VMware Research

Andrea C. Arpaci-Dusseau
University of Wisconsin — Madison

Abstract

Do some storage interfaces enable higher performance than
others? Can one identify and exploit such interfaces to re-
alize high performance in storage systems? This paper an-
swers these questions in the affirmative by identifying nil-
externality, a property of storage interfaces. A nil-externalizing
(nilext) interface may modify state within a storage system
but does not externalize its effects or system state immedi-
ately to the outside world. As a result, a storage system can
apply nilext operations lazily, improving performance.

In this paper, we take advantage of nilext interfaces to
build high-performance replicated storage. We implement
SKYROS, a nilext-aware replication protocol that offers high
performance by deferring ordering and executing operations
until their effects are externalized. We show that exploit-
ing nil-externality offers significant benefit: for many work-
loads, SKYROS provides higher performance than standard
consensus-based replication. For example, SKYROS offers
3% lower latency while providing the same high throughput
offered by throughput-optimized Paxos.

1 Introduction

Defining the right interfaces is perhaps the most important
aspect of system design [46], as well-designed interfaces of-
ten lead to desirable properties. For example, idempotent in-
terfaces make failure recovery simpler [13, 70]; commutative
interfaces enable scalable software implementations [14].
In a similar spirit, this paper asks: Do some types of in-
terfaces enable higher performance than others in storage
systems? Our exercise in answering this question has led us
to identify an important storage-interface property which
we call nil-externality. A nil-externalizing (nilext) interface

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP °21, October 26-29, 2021, Virtual Event, Germany

© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-8709-5/21/10...$15.00
https://doi.org/10.1145/3477132.3483543

Ramnatthan Alagappan
VMware Research

Remzi H. Arpaci-Dusseau
University of Wisconsin — Madison

may modify state within a storage system but does not exter-
nalize its effects or system state immediately to the outside
world (apart from the acknowledgment itself). As a result,
a storage system can apply a nilext operation in a deferred
manner after acknowledgment, improving performance.

In this paper, we exploit nil-externality to design high-
performance replicated storage that offers strong consis-
tency (i.e., linearizability [36]). A standard approach today
to building such a system is to use a consensus protocol like
Paxos [44], Viewstamped Replication (VR) [52], or Raft [62].
For example, Facebook’s ZippyDB uses Paxos to replicate
RocksDB [73]; Harp builds a replicated file system using
VR [53]; other examples exist as well [7, 17, 18, 22].

A storage system built using this standard approach per-
forms several actions before it returns a response to a request.
Roughly, the system makes the request durable (if it is an
update), orders the request with respect to other requests,
and finally executes the request. Usually, a leader replica
orchestrates these actions [52, 62]. Upon receiving requests,
the leader decides the order and then replicates the requests
(in order) to a set of followers; once enough followers re-
spond, the leader applies the requests to the system state and
returns responses. Unfortunately, this process is expensive:
updates incur two round trips (RTTs) to complete.

The system can defer some or all of these actions to im-
prove performance. Deferring durability, however, is unsafe:
if an acknowledged write is lost, the system would violate
linearizability [31, 48]. Fortunately, durability can be ensured
without coordination: clients can directly store updates in
a single RTT on the replicas [64, 80]. However, ordering
(and subsequent execution) requires coordination among the
replicas and thus is expensive. Can a system hide this cost
by deferring ordering and execution?

At first glance, it may seem like all operations must be
synchronously ordered and executed before returning a re-
sponse. However, we observe that if the operation is nilext,
then it can be ordered and executed lazily because nilext
operations do not externalize state or effects immediately.

Nilext interfaces have performance advantages, but are
they practical? Perhaps surprisingly, we find that nilext inter-
faces are not just practical but prevalent in storage systems
(§2). As a simple example, consider the put interface in the
key-value API Put is nilext because it does not externalize

https://doi.org/10.1145/3477132.3483543

SOSP 21, October 26-29, 2021, Virtual Event, Germany

the state of the key-value store: it does not return an execu-
tion result or an execution error (for instance, by checking
if the key already exists). In fact, popular key-value stores
such as RocksDB [29], LevelDB [33], and others built atop
write-optimized structures (like LSMs [63] and B€-trees [8])
transform all updates into nilext writes by design; querying
a write-optimized structure before every update can be very
expensive [6]. Thus, in these systems, even updates that read
prior state and modify data are nilext (in addition to blind
writes that simply overwrite data).

Nilext-aware replication is a new approach to replication
that takes advantage of nil-externality of storage interfaces
(§3). The key idea behind this approach is to defer ordering
and executing operations until their effects are externalized.
Because nilext updates do not externalize state, they are made
durable immediately, but expensive ordering and execution
are deferred, improving performance. The effects of nilext
operations, however, can be externalized by later non-nilext
operations (e.g., a read to a piece of state modified by a
nilext update). Thus, nilext operations must still be applied
in the same (real-time) order across replicas for consistency.
This required ordering is established in the background and
enforced before the modified state is externalized. While
nilext interfaces lead to high performance, it is, of course,
impractical to make all interfaces nilext: applications do need
state-externalizing updates (e.g., increment and return the
latest value, or return an error if key is not present). Such
non-nilext updates are immediately ordered and executed
for correctness.

Nilext-aware replication delivers high performance in
practice. First, while applications do require non-nilext up-
dates, such updates are less frequent than nilext updates.
For instance, nilext set is the most popular kind of update
in Memcached [1]. Similarly, put, delete, and merge (read-
modify-writes that do not return results), which are all nilext,
are the dominant type of updates in ZippyDB [11]. We find
similar evidence in production traces from IBM [24] and
Twitter [79]. Further, while reads do externalize state, not
every read triggers synchronous ordering. In many work-
loads, updates to an object can be ordered and executed in
the background before applications read the object. Our anal-
yses of production traces from IBM COS [24] reveal that this
is indeed the case (§3.3).

Nilext-aware replication draws inspiration from the gen-
eral idea of deferring work until needed similar to lazy eval-
uation in functional languages [37], externally synchronous
file I/O [60], and previous work in databases [30, 68]. Here,
we apply this general idea to hide the cost of ordering and
execution in replicated storage. Prior approaches like specu-
lative execution [41, 42, 67] reduce ordering cost by eagerly
executing and then verifying that the order matches before
notifying end applications. Nilext-aware replication, in con-
trast, realizes that some operations can be lazily ordered and
executed after notifying end applications of completion.

A. Ganesan, R. Alagappan, A. Arpaci-Dusseau, R. Arpaci-Dusseau

We build SKYROS, a new protocol that adapts state ma-
chine replication [71] to take advantage of nilext interfaces
(§4). The main challenge in our design is to ensure lineariz-
ability (especially during view changes) while maintain-
ing high performance. To this end, SKYROS applies many
techniques. SKYROS first uses supermajority quorums and
a new durability-log design to complete nilext writes in
one RTT. Second, SKYROS implements an ordering-and-
execution check to serve reads in one RTT. Finally, SKYROS
employs a DAG-based order-resolution technique to recon-
struct the linearizable order during view changes.

While SKYROS defers ordering, Generalized Paxos [45],
Curp [64], and other protocols [58, 65] realize that ordering
is in fact not needed when operations commute. However,
these protocols incur overhead when writes conflict and
when interface operations do not commute. For instance,
when multiple writers append records to a file (a popular
workload in GFS [32]), these protocols incur high overhead (2
or 3 RTTs in Curp). In contrast, SKYROS can defer ordering
such operations because they are nilext. More importantly,
nil-externality is compatible with commutativity: a nilext-
aware protocol can also exploit commutativity to quickly
commit non-nilext updates. We build SKYROS-COMM, a vari-
ant of SKYROS to demonstrate this compatibility.

Our experiments (§5) show that SKYROS offers 3x higher
throughput than Paxos (without batching) for a nilext-only
workload. While batching improves Paxos’ throughput, at
peak throughput, SKYROS offers 3.1x lower latency. We run
extensive microbenchmarks, varying request ratios, distribu-
tions, and read-latest fractions. SKYROS outperforms Paxos
(with batching) in most cases; even when pushed to extremes
(e.g., all non-nilext writes), SKYROS performs as well as
Paxos. Under write-heavy YCSB workloads, SKYROS is 1.4X
to 2.3x faster. For read-heavy workloads, while through-
put gains are marginal, SKYROS reduces p99 latency by
70%. We also use SKYROS to replicate RocksDB with high
performance. Finally, we compare SKYROS to Curp [64],
a recent commutative protocol. Curp performs well (like
SKYROS) when operations commute. However, when opera-
tions do not commute but are nilext, SKYROS offers advan-
tages: SKYROS provides 2X better throughput for file record
appends and 2.7x lower p99 latency in a key-value store.
SKYROS-COMM combines the best of both worlds: it quickly
completes nilext operations and exploits commutativity to
speedup non-nilext operations.

This paper makes four contributions.

o We first identify nil-externality, a property of storage in-
terfaces, and show its prevalence.

o We show how one can exploit this property to improve
the performance of strongly consistent storage systems.

o Third, we present the design and implementation of SKYROS,

a nilext-aware replication protocol.

o Finally, we demonstrate the performance benefits of SKYROS
through rigorous experiments.

Exploiting Nil-Externality for Fast Replicated Storage

2 Nil-Externalizing Interfaces

We first define nil-externality and describe its attributes. We
next analyze which interfaces are nilext in three example
storage systems; then, we discuss opportunities to improve
performance by exploiting nilext interfaces in general.

2.1 Nil-externality
We define an interface to be nil-externalizing if it does not
externalize storage-system state: it does not return an execu-
tion result or an execution error, although it might return an
acknowledgment. A nilext interface can modify state in any
way (blindly set, or read and modify). The state modified by
a nilext operation can be externalized at a later point by an-
other non-nilext operation (e.g., a read). Note that although
nilext operations do not return an execution error, they may
return a validation error. Validation errors (e.g., a malformed
request) do not externalize state and can be detected without
executing the operation. Thus, an operation that returns only
validation errors (but not execution errors) is nilext.
Determining whether or not an operation is nilext is sim-
ple in most cases. Nil-externality is an interface-level prop-
erty: it suffices to look at the interface (specifically, the return
value and the possible execution errors) to say if an operation
is nilext. Nil-externality is a static property: it is independent
of the system state or the arguments of an operation; one can
therefore determine if an operation is nilext without having
to reason about all possible system states and arguments.

2.2 Nil-externality in Storage Systems

We now analyze which interfaces are nilext in three storage
systems that expose a key-value API (see Table 1). We pick
these systems as candidates given their widespread use [11,
27, 55, 61]; exploiting nilext interfaces in these systems to
improve performance can benefit many deployments.

RocksDB and LevelDB are LSM-based [63] key-value stores.

Put in these systems is a nilext interface: it does not return
an execution result or an error by checking record-existence.
Similarly, write (multi-put) is also nilext. Delete is nilext be-
cause it does not return an error if the key is not present; it
simply inserts a tombstone for the key. Surprisingly, even
read-modify-writes (RMW) are nilext. RocksDB supports
RMW via the merge operator [28], which is implemented
as an upsert [6]. An upsert encodes a modification by spec-
ifying a key k and a function F that transforms the value
of k. In RocksDB and other stores [15, 33] built upon write-
optimized structures (LSMs and B¢-trees), reading the value
of a key before updating it is expensive [6, 11, 28]. Thus,
an upsert is not immediately applied, but the function and
the key are simply recorded. Since an upsert is not applied
immediately, it does not return an execution result or an
execution error and thus merge is nilext. In fact, all modifi-
cations in write-optimized stores are a form of upserts that
avoid querying before updates [6], and thus are all nilext; for
instance, the tombstone inserted upon a delete is an upsert.
Finally, get externalizes system state and so is not nilext.

SOSP 21, October 26-29, 2021, Virtual Event, Germany

Update
System Nilext Non-nilext Read
put,write, .
RocksDB deletemerge get,multiget
t,writ
LevelDB pl(ligg; & get,multiget
e e r (s
Memcached set add ,3elete r,§as ,rrep lace e| getgets
append®,decr” incr” prepend'

Table 1. Nil-externality in Storage Systems. The table shows
which operations are nilext in popular key-value systems. 1€ denotes that
update interface I is non-nilext because it returns an execution error (e.g., key
not found); I" denotes a non-nilext update that returns an execution result.

In Memcached, set is nilext because it does not return
an execution result or an error; all other update interfaces
are non-nilext. However, as we soon show (§3.3), these non-
nilext updates are used only rarely compared to nilext set.

Nilext updates can be completed faster than non-nilext
ones because their ordering and execution can be deferred.
Thus, operations such as put and set in the above systems
can be completed quickly, improving performance. What
such opportunities exist across storage systems in general?
A typical storage system supports three kinds of operations:
reads, writes, and RMWs [10, 76]. While reads are non-nilext,
writes and RMWs can be further classified based on whether
or not they externalize state. Thus, some writes are nilext
(e.g., RocksDB put), while others are not (e.g., Memcached
add); similarly, some RMWs are nilext (e.g., RocksDB merge),
while some are not (e.g., Memcached incr). A system can
lazily apply all such nilext updates to improve performance.

Note that while nilext operations do not return errors as
part of their contract, a system that lazily applies nilext writes
may encounter errors (e.g., due to insufficient disk space or
a bad block) at a later point. A storage system that eagerly
applies updates can detect such errors early on. Fortunately,
this difference is not an obstacle to realizing the benefits of
nilext interfaces in practice as we discuss later (§4.8).

Given the benefits of nilext interfaces, it is worthwhile
to make small changes to a non-nilext interface’s semantics
to make it nilext when possible. For instance, a Btree-based
store may return an error upon an update to a nonexistent
key; changing the semantics to not return such an error can
enable a system to replicate updates quickly. Such semantic
changes have been practical and useful in the past: MySQL-
TokuDB supports SQL updates that do not return the number
of records affected to exploit TokuDB’s fast upserts [66].

3 Nilext-aware Replication

We now describe how a replicated storage system can exploit
nil-externality to improve performance. To do so, we first
give background on consensus, a standard substrate upon
which strongly consistent storage is built. We then describe
the nilext-aware replication approach and show that its high-
performance cases are common in practice. We finally discuss
how this new approach compares to existing approaches.

SOSP 21, October 26-29, 2021, Virtual Event, Germany

Figure 1. Request Processing in Consensus. The figure shows
how writes and reads are processed in systems built atop consensus protocols.

3.1 Consensus-based Replication Background
Consensus protocols (e.g., Paxos, VR) ensure that replicas
execute operations in the same order. Clients submit opera-
tions to the leader which then ensures that replicas agree on
a consistent ordering of operations before executing them.
Figure 1 shows how requests are processed in the failure-
free case. Upon an update, the leader assigns an index, adds
the request to its log, and sends a prepare to the followers.
The followers add the request to their logs and respond with a
prepare-ok. Once the leader receives prepare-ok from enough
followers, it applies the update and returns the result to the
client. Reads are usually served by the leader locally; the
leader is guaranteed to have seen all updates and so can
serve the latest data, preserving linearizability. Stale reads
on a deposed leader can be prevented using leases [52].
Latency is determined by the message delays in the proto-
col: updates take two RTTs and reads one RTT. Throughput
is determined by the number of messages processed by the
leader [21]. Practical systems [3] batch requests to reduce the
load on the leader. While batching improves throughput, it
increases latency, a critical concern for applications [67, 69].

3.2 Exploiting Nil-externality for Fast Replication
Using an off-the-shelf consensus protocol to build replicated
storage leads to inefficiencies because this approach is obliv-
ious to the properties of the storage interface. In particular,
it is oblivious to nil-externality: all updates are immediately
ordered and executed. Our hypothesis is that a replication
protocol can deliver higher performance if it is cognizant of
the underlying storage interface. Specifically, if a protocol is
aware of nil-externality, it can delay ordering and execution,
improving performance. We now provide an overview of
such a protocol. We describe the detailed design soon (§4).

A nilext-aware protocol defers ordering and execution of
operations until their effects are externalized. Figure 2 shows
how such a protocol handles different operations. First, nilext
writes are made durable immediately, but their ordering and
execution are deferred. Clients send nilext writes to all repli-
cas. Clients wait for enough replies including one from the
leader before they consider the request to be completed.
Nilext writes thus complete in one RTT. At this point, the op-
eration is durable and considered complete; clients can make
progress without waiting for the operation to be ordered and
executed. We say that an operation is finalized when it is
assigned an index and applied to the storage system.

State modified by nilext updates can be externalized later
by other non-nilext operations (e.g., reads). Therefore, the

A. Ganesan, R. Alagappan, A. Arpaci-Dusseau, R. Arpaci-Dusseau

|/ vAm—
\/ Vi

Figure 2. Nilext-aware Replication. The figure shows how a nilext-
aware replication protocol handles different operations.

protocol must ensure that replicas apply the updates in the
same order and it has to do so before the modifications are
externalized. Thus, upon receiving a read, the leader checks
if there are any unfinalized updates that this read depends
upon. If no, it quickly serves the read. Conversely, if there are
unfinalized updates, the leader synchronously establishes
the order and waits for enough followers to accept the order;
the leader then applies the pending updates and serves the
read. In practice, most reads can be served without trigger-
ing synchronous ordering and execution because the leader
keeps finalizing updates in the background; thus, in most
cases, updates are finalized already by the time a read arrives.

Finally, the protocol does not defer ordering and executing
non-nilext updates. Clients submit non-nilext requests to the
leader which finalizes the request by synchronously ordering
and executing it (and the previously completed requests).

A nilext-aware protocol can complete nilext updates in one
RTT; non-nilext updates take two RTTs. A read can be served
in one RTT if prior nilext updates that the read depends
upon are applied before the read arrives. Thus, exploiting nil-
externality offers benefit if a significant fraction of updates
is nilext and reads do not immediately follow them. We next
show that these conditions are prevalent in practice.

3.3 Fast Case is the Common Case

We first analyze the prevalence of nilext updates. First, we
note that in some systems, almost all updates are nilext (e.g.,
write-optimized key-value stores as shown in Table 1). Some
systems like Memcached have many non-nilext interfaces.
However, how frequently do applications use them? To an-
swer this question, we examine production traces [75, 79]
from Twemcache, a Memcached clone at Twitter [74]. The
traces contain ~200 billion requests across 54 clusters. Twem-
cache supports 9 types of updates (similar to Memcached as
shown in Table 1). Except for set, others are non-nilext.

We consider 29 clusters that have at least 10% updates.
Figure 3(a) shows the distribution of nilext percentages. In
Twemcache, in 80% of the clusters, more than 90% of updates
are nilext (set). This aligns with Memcached’s expected us-
age [1] that most updates are sets and others are only spar-
ingly used. Also, among the eight non-nilext updates, appli-
cations used only five: add, cas, delete, incr, and prepend.
Among these, only incr and cas return an execution result,
while others return execution errors; perhaps changing the

Exploiting Nil-Externality for Fast Replicated Storage

100+ M Twemcache
W IBM COS

0-10 10-30 30-50 50-70 70-90 90-100
% of nilext updates

(a) Nilext Percentage
751 H1s EM50ms

% of clusters
NI
oo,

0-5 5-10 10-20 20-30 30-50 50-70 70-100
% of reads within T

(b) Synchronous Reads

% of clusters
n
[6)]

Figure 3. Fast Case is Common. (a) shows the distribution of nilext
percentages; a bar for a range x%-y% shows the percentage of clusters where
x%-y% of updates are nilext. (b) shows the distribution of percentage of reads
within Tg; a bar for x%-y% shows the percentage of clusters where x%-y% of
reads access objects updated within Tf. We consider Tf=ls, 50ms.

interface (to not return errors) can enable a replication pro-
tocol to realize higher performance.

We performed a similar analysis on the IBM-COS traces
across 35 storage clusters with at least 10% writes (out of
98 in total) [24]. COS supports three kinds of updates: put,
copy, and delete. While put and copy are nilext, delete is
not; it returns an error if the object does not exist. In about
65% clusters, more than half of the updates are nilext; these
operations can be completed quickly. Again, if the semantics
of delete can be modified, all updates can be made faster.

We next analyze how often reads may incur overhead. A
read will incur overhead if there are unfinalized updates to
the object being read. Let Ty be the time taken to finalize
updates. We thus measure the time interval between a read to
an object and the prior write to the same object, and calculate
the percentage of reads for which this interval is less than
Tr. We use the IBM-COS traces for this analysis because the
Twemcache traces do not have millisecond-level timestamps.

Figure 3(b) shows the distribution of percentage of reads
that access items updated within Ty. We first consider Tf to
be 1s. Even with such an unrealistically high T¢, in 66% of
clusters, only less than 5% of reads access objects modified
within 1s. We next consider a more realistic T¢ of 50ms.
Tr=50ms is realistic (but still conservative) because these
traces are from a setting where replicas are in different zones
of the same geographical region, and inter-zone latencies are
~2 ms [38]. With Ty=50 ms, in 85% of clusters, less than 5%
of reads access objects modified within 50 ms; thus, only a
small fraction of reads in a nilext-aware protocol may incur
overhead in practice. Further, not all such reads will incur
overhead due to prior reads to unfinalized updates and non-
nilext updates that would force synchronous ordering.

3.4 Comparison to Other Approaches

While nilext-aware replication defers ordering, prior work
has built solutions to efficient ordering. The nilext-aware
approach offers advantages over such prior solutions. While
we focus on consensus-based approaches here, other ways
to construct replicated storage systems exist; we discuss how
exploiting nil-externality applies to them as well.

SOSP 21, October 26-29, 2021, Virtual Event, Germany

3.4.1 Efficient Ordering in Consensus. Prior approaches
to efficient ordering broadly fall into three categories.
Network Ordering. This approach enforces ordering in the
network [21, 50]: the network consistently orders requests
across replicas in one RTT, improving performance. In con-
trast, a nilext-aware protocol does not require a specialized
network and thus applies to geo-replication as well.
Speculative Execution. This approach employs speculative
execution to reduce ordering cost [42, 67]. Replicas specula-
tively execute requests before agreeing on the order. Clients
then compare responses from different replicas to detect
inconsistencies and replicas rollback their state upon diver-
gence. Replicas can thus be in an inconsistent state before the
end application is acknowledged. However, when end appli-
cation is notified, the system ensures that the requests have
been executed in the correct order. In contrast, the nature
of nilext interfaces allows one to defer ordering and execu-
tion even after the application is notified of completion; only
durability must be ensured before notifying. Ordering and
execution are performed only when the effects are external-
ized by later operations. Also, a nilext-aware protocol does
not require replicas to do rollbacks, reducing complexity.
Exploiting Commutativity. This approach (used in Gen-
eralized Paxos [45], EPaxos [58]) realizes that ordering is
not needed when updates commute. Both commutative and
nilext-aware protocols incur overhead when reads access
unfinalized updates. However, as we show (§5.7), commuta-
tive protocols can be expensive when updates conflict and
when operations do not commute. Nilext-aware replication,
in contrast, always completes nilext updates in one RTT.
Finally, nil-externality and commutativity are not at odds: a
nilext-aware protocol can exploit commutativity to commit
non-nilext writes faster (§5.7).

3.4.2 Other Approaches to Replicated Storage. Shared
registers [4], primary-backup [9], and chain replication [76]
offer other ways to building replicated storage. Storage sys-
tems that support only reads and writes can be built us-
ing registers which are not subject to FLP impossibility [4].
However, shared registers cannot readily enable RMWs [2,
10], a common requirement in modern storage APIs. Start-
ing with state machines as the base offers more flexibility
and exploiting nil-externality when possible leads to high
performance. Gryff [10] combines registers (for reads and
writes) and consensus (for RMWs); however, Gryff’s writes
take 2 RTTs. Primary-backup, chain replication, and other
approaches [19] support a richer API. However, primary-
backup also incurs 2 RTTs for updates [51, 64]; similarly,
updates in chain replication also incur many message delays.
The idea of exploiting nil-externality can be used to hide
the ordering cost in these approaches as well; we leave this
extension as an avenue for future work.

Summary. Unlike existing approaches, nilext-aware replica-
tion takes advantage of nil-externality of storage interfaces.

SOSP 21, October 26-29, 2021, Virtual Event, Germany

Figure 4. Client Interface and Upcalls. The figure shows the client
interface and the upcalls the replication layer makes into the storage system.

It should perform well in practice: nilext updates contribute
to a large fraction of writes and reads do not often access
recent updates. This approach offers advantages over exist-
ing efficient ordering mechanisms: it requires no network
support; it can defer execution beyond request completion
and does not require rollbacks; it offers advantages over and
combines well with exploiting commutativity.

4 SKYROS Design and Implementation

We now describe the design of SKYROS. We first provide an
overview (§4.1), describe normal operation (§4.2 — §4.5), and
explain recovery and view change (§4.6). We then show the
correctness of SKYROS (§4.7). We finally discuss practical
issues we addressed in SKYROS (§4.8).

4.1 Overview

We use VR (or multi-paxos) as our baseline to highlight the
differences in SKYROS. VR tolerates up to f failures in a
system with 2f + 1 replicas. It is leader-based and makes
progress in a sequence of views; in each view, a single replica
serves as the leader. VR implementations offer linearizabil-
ity [36]: operations are executed in real-time order, and each
operation sees the effect of ones that completed before it.
SKYROS preserves all these properties: it provides the same
availability, is leader-based, and offers linearizability.

In VR, the leader establishes an order by sending a prepare
and waiting for prepare-ok from f followers. The leader then
does an Apply upcall into the storage system to execute
the operation. SKYROS changes this step in an important
way: while SKYROS makes updates immediately durable, it
defers ordering and executing them until their effects are
externalized. To enable this, SKYROS augments the interface
between the storage system and the replication layer with
additional upcalls (as shown in Figure 4). During normal
operation, SKYROS processes different requests as follows:
o Clients submit nilext updates to all replicas using Invoke-

Nilext. Since nil-externality is a static property (it does not

depend upon the system state), clients can decide which

requests are nilext and invoke the appropriate call. Upon
receiving a nilext update, replicas invoke the MakeDurable
upcall to make the operation durable (§4.2).

e Although nilext updates are not immediately finalized,
they must be executed in the same real-time order across
replicas. The leader gets the replicas to agree upon an order

A. Ganesan, R. Alagappan, A. Arpaci-Dusseau, R. Arpaci-Dusseau

and the replicas apply the updates in the background (§4.3).

e Clients send read requests to the leader via InvokeRead.
When a read arrives, the leader does a Read upcall. If all
updates that the read depends upon are already applied,
the read is served quickly; otherwise, the leader orders
and executes updates before serving the read (§4.4).

e Clients send non-nilext updates to the leader via Invo-
keNonNilext; such updates are immediately finalized (§4.5).

4.2 Nilext Updates
Clients send nilext updates directly to all replicas including
the leader to complete them in one RTT. Each request is
uniquely identified by a sequence number, a combination of
client-id and request number. Similar to VR, only replicas in
the normal state reply to requests and duplicate requests are
filtered. A replica stores the update by invoking MakeDurable.
SKYROS replicas store these durable (but not yet ordered
or applied) updates in a separate durability log; each replica
thus has two logs: the usual consensus log and the durability
log. Once a replica stores the update in the durability log, it
responds directly to the client; the replica adds its current
view number in the response. For a nilext update, clients
wait for a supermajority of f + [/2] + 1 acknowledgments
in the same view including one from the leader of the view.
Figure 5(a)(i) shows how a nilext update a is completed.
Note that an update need not be added in the same posi-
tion in the durability logs across replicas. For example, in
Figure 5(b)(i), b is considered completed although its posi-
tion is different across durability logs. Then, why do SKYROS
replicas use a durability log instead of a set? Using an un-
ordered set precludes the system from reconstructing the
required ordering between updates upon failures. For exam-
ple, in Figure 5(b)(i) and (b)(ii), b follows a in real time (i.e.,
a completed before b started) and thus must be applied to
the storage system only after a. A log captures the order in
which the replicas receive the requests; SKYROS uses these
logs to determine the ordering of requests upon failures.
Why is a simple majority (f + 1) insufficient? Consider
an update b that follows another update a in real-time. Let’s
suppose for a moment that we use a simple majority. A possi-
ble state thenis < Dy : ab, D, : ab, D3 : ab,Dy : ba, D5 : ba >,
where D; is the durability log of replica S;. This state is possi-
ble because a client could consider a to be completed once it
receives acknowledgment from Sy, S,, and Ss. Then, b starts
and is stored on all durability logs and so is considered com-
pleted. a now arrives late at S; and Ss. Assume the current
leader (S;) crashes. Now, we have four replicas whose logs are
< D; :ab,Ds3 : ab,Dy : ba, Ds : ba >. With these logs, one
cannot determine the correct order. A supermajority quorum
avoids this situation. Writing to a supermajority ensures that
a majority within any available majority is guaranteed to
have the requests in the correct order in their durability logs.
We later show how by writing to a supermajority, SKYROS
recovers the correct ordering upon failures (§4.6, §4.7).

Exploiting Nil-Externality for Fast Replicated Storage

Figure 5. SKYROS Writes and Reads, and Durability Log
States. (a) shows how Skyros processes nilext writes and reads; d-log: dura-
bility, c-log: consensus log, L: leader; f=2 and supermajority=4. (b) shows the
possible durability logs for two completed nilext operations a and b. In (i) and
(ii), b follows a in real time, whereas in (iii) and (iv), they are concurrent.

During normal operation, the leader’s durability log is
guaranteed to have the updates in the correct order. This is
because a response from the leader is necessary for a request
to complete. Thus, if an update b follows another update a
in real-time, then the leader’s durability log is guaranteed to
have a before b (while some replicas may contain them in a
different order as in Figure 5(b)(ii)). This guarantee ensures
that when clients read from the leader, they see the writes
in the correct order. The leader uses this property to ensure
that operations are finalized to the consensus log in the
correct order. If a and b are concurrent, they can appear in
the leader’s log in any order as in Figure 5(b)(iii) and (b)(iv).

4.3 Background Ordering and Execution

While nilext updates not are immediately ordered, they must
be ultimately executed in the same real-time order across
replicas. The leader is guaranteed to have all completed up-
dates in its durability log in real-time order. Periodically,
the leader takes an update from its durability log (via the
GetDurabilityLogEntries upcall), adds it to the consensus log,
and initiates the usual ordering protocol. Once f followers
respond after adding the request to their consensus logs, the
leader applies the update and removes it from its durability
log. At this point, the request is finalized. As in VR, the leader
sends a commit for the finalized request; the followers apply
the update and then remove it from their durability logs.
Note that this step is the same as in VR; once f + 1 nodes
agree on the order, at least one node in any majority will
have requests in the correct order in its consensus log.

The leader employs batching for the background work;
it adds many requests to its consensus log and sends one
prepare for the batch. Once f followers respond, it applies
batch and removes it from the durability log.

4.4 Reads

Clients read only at the leader in SKYROS (like in many
linearizable systems). When a read arrives, the leader does a
Read upcall. The storage system then performs an ordering
and execution check: it consults the durability log to check if
there are any pending updates that this read depends upon.
For example, a key-value store would check if there is a
pending put or merge to the key being read. Note that this

SOSP 21, October 26-29, 2021, Virtual Event, Germany

check is system-specific, which led to our design rationale
of maintaining the durability log within the storage system,
giving it visibility in to the pending updates to perform the
check. The storage system maintains an efficient index (such
as a hash table) to quickly lookup the log.

If there are no pending updates, the storage system popu-
lates the response by reading the state, sets the need_sync bit
to 0, and returns the read value to the replication layer. The
leader then returns the response to the client, completing
the read in one RTT (e.g., read-a in Figure 5(a)(ii)).

Conversely, if there are pending updates, the storage sys-
tem sets the need_syncbit. In that case, the leader synchronously
adds all requests from the durability log to the consensus
log to order and execute them (e.g., read-c in Figure 5(a)(iii)).
Once f followers respond, the leader applies all the updates
and then serves the read. Fortunately, the periodic back-
ground finalization reduces the number of requests that must
be synchronously ordered and executed during such reads.

4.5 Non-nilext Updates

If an update externalizes state, then it must be immediately
ordered and executed. Clients send such non-nilext updates
only to the leader. The leader first adds all prior requests in
the durability log to the consensus log; it then adds the non-
nilext update to the end of the consensus log and then sends a
prepare for all the added requests. Once f followers respond,
the leader applies the non-nilext update (after applying all
prior requests) and returns the result to the client.

4.6 Replica Recovery and View Changes

So far, we have described only the failure-free operation. We
now discuss how SKYROS handles failures.

Replica Recovery. Similar to VR, SKYROS does not write
log entries synchronously to disk (although it maintains
view information on disk). Thus, when a replica recovers
from a crash, it needs to recover its log. In VR, the replica
marks its status as recovering, sends a RECOVERY message,
and waits for a REcoverYREespoNsE from at least f +1 replicas,
including one from the leader of the latest view it sees in
these responses [52]. Then, it sets its log as the one in the
leader’s response. The replica then sets its status to normal.
Recovery in SKYROS is very similar with one change: the
replicas also send their durability logs in RECOVERYRESPONSE
and a replica sets its durability log as the one sent by the
leader. This step is safe because the leader’s durability log
contains all completed nilext updates in the correct order.
View Changes. In VR, when the leader of the current view
fails, the replicas change their status from normal to view-
change and run a view-change protocol. The new leader must
recover all the committed operations in the consensus log
before the system can accept requests. The new leader does
this by waiting for f other replicas to send a DoVIEwWCHANGE
message [52]. In this message, a replica includes its view
number, its log, and the last view number in which its status
was normal. The leader then recovers the log by taking the

SOSP 21, October 26-29, 2021, Virtual Event, Germany

1: procedure RECOVERDURABILITYLOG
2 D « durability logs in the highest normal view
3 E « entries that appear in at least [f/2] + 1 logs in D
4: for v € E do
5: add v as a vertex in graph G
6 for every pair (a, b) in E do
7 n; <« number of logs in D where a appears before b
8 ny < number of logs in D where a is present but not b
9: if ny+ny > [f/2]+1 then
10: add an edge from ato b in G
11: NLD « ToroLOGICALSORT(G)
> NLD is the new leader’s durability log

Figure 6. RecoverDurabilityLog. The figure shows the procedure to
recover the durability log at the leader during a view change.

most up-to-date” one among the f+1logs (including its own).
The leader then sends a STARTVIEW message to the replicas in
which it includes its log; the leader sets its status as normal.
The replicas set their consensus log as the one sent by the
leader after which they set their status as normal. SKYROS
uses exactly the same procedure to recover operations that
have been finalized (i.e., operations in the consensus log).
Thus, finalized operations are safely recovered as in VR.

In SKYROS, the leader must additionally recover the dura-
bility log. The previous leader’s durability log would have
contained all completed operations. Further, the previous
leader’s durability log would have contained the completed
operations in the correct real-time order, i.e., if an operation
a had completed before b, then a would have appeared be-
fore b. These same guarantees must be preserved in the new
leader’s durability log during a view change.

SKYROS replicas send their durability logs as well in the
DoViewCHANGE message. However, it is unsafe for the new
leader to take one log in the responses as its durability log;
a single log may not contain all completed operations. Con-
sider three completed updates a, b, and c, and let the dura-
bility logs be < Dy : abe, D, : ac, D3 : abc, Dy : ab, Ds : be >.
If S;, S, and Ss participate in a view change, no single log
would contain all completed operations. Even if a single dura-
bility log has all completed operations, it may not contain
them in the correct real-time order. Consider a completes
before b starts, and c is incomplete and let the durability logs
be < Dy : ab,D; : ab,Ds : bac,Dy : ab,Ds : ab >.If S5, Ss,
and S, participate in a view change, although D5 contains
all completed operations, taking D5 as the leader’s log will
violate linearizability because b appears before a in Ds.

To correctly recover the durability log, a SKYROS leader
uses the RecoverDurabilityLog procedure (Figure 6). We use
Figure 7 to illustrate how this procedure works. In this exam-
ple, f=2; operations a, b, and ¢ completed, while d did not. a
and b were concurrent with each other, and ¢ started after
a and b completed. Thus, the new leader must recover a, b,

Ti.e., the log from a replica with the largest normal view; if many replicas
have the same normal view, the largest log among them is chosen.

A. Ganesan, R. Alagappan, A. Arpaci-Dusseau, R. Arpaci-Dusseau

Figure 7. RecoverDurabilityLog Example. The figure shows how
RecoverDurabilityLog works. Sy, the leader of the previous view view-1, has
failed; this is a view-change for view-2 for which S, is the leader.

and c; also, ¢ must appear after a and b in the recovered log.

The system must make progress with f failures; thus, the
procedure must correctly recover the durability log with
f + 1 replicas participating in a view change. As in VR, upon
receiving f+1 DoViEwCHANGE messages, the leader first finds
the highest normal view from the responses and considers
all durability logs in that view; we denote this set of logs as D
(line 2). For example, in Figure 7(i), Sz, S3, and Sy participate
in the view change and the last normal view of all replicas is 1.
Therefore, D,, D3, and D are part of D. To recover completed
operations, the leader then checks which operations appear
in at least [f/2] + 1 logs in D. Such operations are the ones
that the leader will recover as part of the new durability log;
we denote this set as E (line 3). For example, in Figure 7(i),
a, b, ¢, and d are part of E (as they all appear in > 2 logs);
similarly, in Figure 7(ii), a, b, and c are part of E.

The above steps give the operations that form the dura-
bility log, but not the real-time order among them. To deter-
mine the order, the leader considers every pair of operations
< x,y > in E, and counts the number of logs where x appears
before y or x appears but y does not. If this count is at least
[f/2] + 1, then the leader determines that y follows x in real
time. In Figure 7(ii), a appears before ¢ on > 2 logs and so
the leader determines that ¢ follows a. In contrast, a does
not appear before b (or vice versa) in > 2 logs and thus are
concurrent. Thus, this step gives only a partial order.

The leader constructs the total order as follows. It first
adds all operations in E as vertices in a graph, G (lines 4-5).
Then, for every pair of vertices < a,b > in G, an edge is added
between a and b if on at least [/2] + 1 logs, either a appears
before b, or a is present but not b (lines 6-10). G is a DAG
whose edges capture the real-time order between operations.
To arrive at the total order, the leader topologically sorts G
(line 11) and uses the result as its durability log (NLD). In
Figure 7(ii), both bac and abc are valid total orders.

The leader then appends the operations from the durabil-
ity log to the consensus log; duplicate operations are filtered
using sequence numbers. Then, the leader sets its status
as normal. The leader then sends the consensus log in the
STARTVIEW message to the replicas (similar to VR). The fol-
lowers, on receiving STARTVIEW, replace their consensus logs
with the one sent by the leader and set their status to normal.
The system is now available to accept new requests.

Exploiting Nil-Externality for Fast Replicated Storage

4.7 Correctness

We now show that SKYROS is correct. Two correctness condi-
tions must be met. C1: all completed and finalized operations
remain durable, C2: all operations are applied in the lineariz-
able order and an operation finalized to a position survives
in the same position. The proof sketch is as follows.

C1. Ensuring durability when the leader is alive is straight-
forward; a failed replica can recover its state from the leader.
Durability must also be ensured during view changes; the
new leader must recover all finalized and completed opera-
tions. Finalized operations are part of at least f +1 consensus
logs. Thus, at least one among the f + 1 replicas participat-
ing in the view change is guaranteed to have the finalized
operations and thus will be recovered (this is similar to VR).

Next we show that completed operations that have not
been finalized are recovered. Let v be the view for which a
view change is happening and the highest normal view be
v’. We first establish that any operation that completed in v’
will be recovered in v. Operations are written to f+[f/2]+1
durability logs before they are considered completed and
are not removed from the durability logs before they are
finalized. Therefore, among the f + 1 replicas participating
in the view change for v, a completed operation in v’ will
be present in at least [f/2] + 1 durability logs. Because the
new leader checks which operations are present in at least
[f/2] + 1 logs (line 2 in Figure 6), operations completed in
v’ that are not finalized will be recovered as part of the new
leader’s durability log.

We next show that operations that were completed in

an earlier view v’ will also survive into v. During the view
change for v’, the leader of v’ would have recovered the op-
erations completed in 0"’ as part of its durability log (by the
same argument above). Before the view change for v’ com-
pleted, the leader of v” would have added these operations
from its durability log to the consensus log. Any node in
the normal status in view 0’ would thus have these opera-
tions in its consensus log. Consensus-log recovery would
ensure these operations remain durable in successive views
including o.
C2. During normal operation, the leader’s durability log
reflects the real-time order. The leader adds operations to its
consensus log only in order from its durability log. Before
an (non-nilext) operation is directly added to the consensus
log, all prior operations in the durability log are appended
to the consensus log as well. Thus, all operations in the
consensus log reflect the linearizable order. Reads are served
by the leader which is guaranteed to have all acknowledged
operations; thus, any read to an object will include the effect
of all previous operations. This is because the leader ensures
that any pending updates that the read depends upon are
applied in a linearizable order before the read is served.

The correct order must also be maintained during view
changes. Similar to VR, the order established among the

SOSP 21, October 26-29, 2021, Virtual Event, Germany

finalized operations (in the consensus log) survives across
views; any operation committed to the consensus log will
survive in the same position.

Next, we show that the linearizable order of completed-

but-not-finalized operations is preserved. As before, we need
to consider only operations that were completed but not yet
finalized in v’; remaining operations will be recovered as part
of the consensus log. We now show that for any two com-
pleted operations x and y, if y follows x in real time, then x
will appear before y in the new leader’s recovered durability
log. Let G be a graph containing all completed operations as
its vertices. Assume that for any pair of operations < x,y >,
a directed edge from x to y is correctly added to G if y fol-
lows x in real time (AI). Next assume that G is acyclic (A2).
If A1and A2 hold, then a topological sort of G ensures that
x appears before y in the result of the topological sort. We
show that A1 and A2 are ensured by SKYROS.
A1: Consider two completed operations a and b and that
b follows a in real time. Since a completed before b, when
b starts, a must have already been present on at least f +
[f/2] + 1 durability logs; let this set of logs be DL. Now, for
each log dl in DL, if b is written to dI, then b would appear
after a in dl. If b is not written to dl, then a would appear
in dl but not b. Thus, a appears before b or a is present but
not b on at least f + [f/2] + 1 durability logs. Consequently,
among the f + 1 replicas participating in view change, on at
least [f/2] + 1 logs, a appears before b or a is present but
not b. Because the leader adds an edge from a to b when
this condition is true (lines 7-9 in Figure 6) and because it
considers all pairs, A1 is ensured. A2: Since [f/2] + 1is a
majority of f + 1, an opposite edge from b to a would not be
added to G. Since all pairs are considered, G is acyclic.

A completed operation is assigned a position only when
it is finalized. Since SKYROS adds an operation from the
durability log to the consensus only if it is already not present
in the consensus log, a completed operation is finalized only
once, after which it survives in the finalized position.
Model Checking. We have modeled the request-processing
and view-change protocols in SKYROS, and model checked
them. We explored over 2M states, in which the above correct-
ness conditions were met. Upon modifying the specification
in subtle but wrong ways, our model checker finds safety
violations. For example, in the RecoverDurabilityLog proce-
dure, an edge is added from a to b when a appears before b in
[f/2] + 1 logs; if this threshold is increased, then a required
edge will not be added, leading to a linearizability violation
that the checker correctly flags; decreasing the threshold
makes G cyclic, triggering a violation. Similarly, the checker
finds a safety violation if durability-log entries are not added
to consensus log before sending STARTVIEW.

4.8 Practical Issues and Solutions
We now describe a few practical problems we handled in
SKYROS. We also discuss possible optimizations.

SOSP 21, October 26-29, 2021, Virtual Event, Germany

Space and Catastrophic Errors. Because nilext updates
are not immediately executed, certain errors cannot be de-
tected. For instance, an operation can complete but may fail
later when applied to the storage system due to insufficient
space. A protocol that immediately executes operations, in
theory, could propagate such errors to clients. However, such
space errors can be avoided in practice by using space wa-
termarks that the replication layer has visibility into; once
a threshold is hit, the replication layer can throttle updates
while the storage system reclaims space. One cannot, how-
ever, anticipate catastrophic memory or disk failures. For-
tunately, this is not a major concern in practice. Given the
inherent redundancy, a SKYROS replica transforms such er-
rors into a crash failure; it is unlikely that all replicas will
encounter the same error. Note that these are errors that are
not part of the nilext interface contract. SKYROS checks for
all validation errors in the MakeDurable upcall.
Determining Nil-externality. While it is straightforward
in many cases to determine whether or not an interface is
nilext, occasionally it is not. For instance, a database update
may invoke a trigger which can externalize state. However,
when unsure, clients can safely choose to say that an inter-
face is non-nilext, forgoing some performance for safety.
Replica-group Configuration and Slow Path. In our im-
plementation, clients know the addresses of replicas from
a configuration value. During normal operation, SKYROS
clients contact all replicas in the group and wait for a super-
majority responses to complete nilext writes. If the system is
operating with a bare majority, then writes cannot succeed,
affecting availability. SKYROS handles this situation using a
slow path: after a handful of retries, clients mark requests
to be non-nilext and send it to the leader. These requests
are acknowledged after they are committed to a majority
consensus logs, allowing clients to make progress.
Possible Optimizations. In SKYROS, requests are initially
stored in the durability log. The leader later adds the requests
to its consensus log and replicates the consensus log. Our
current implementation sends the requests in their entirety
during background replication. This is unnecessary in most
cases because the replicas already contain the request in
their durability logs. A more efficient way would be to send
only the ordering information (i.e., the sequence numbers).
Second, locally, a copy between the durability log and the
consensus log can be avoided if the entries are stored in a
separate location and the log slots point to the entries. Finally,
SKYROS allows reads only at the leader; the burden on the
leader can be alleviated by using techniques such as quorum
reads [12] without impacting linearizability. We leave these
optimizations as an avenue for future work.

5 Evaluation

To evaluate SKYROS, we ask the following questions:
e How does SKYROS perform compared to standard replica-
tion protocols on nilext-only workloads? (§5.1)

A. Ganesan, R. Alagappan, A. Arpaci-Dusseau, R. Arpaci-Dusseau

e How does SKYROS perform on mixed workloads? (§5.2)
e How do read-latest percentages affect performance? (§5.3)
e Does the supermajority requirement in SKYROS impact
performance with many replicas? (§5.4)
e How does SKYROS perform on YCSB workloads? (§5.5)
e Does replicated RocksDB benefit from SKYROS? (§5.6)
e Does SKYROS offer benefit over commutative protocols?
Is nil-externality compatible with commutativity? (§5.7)
Setup. We run our experiments on five replicas; thus, f=2
and supermajority=4. Each replica runs on a m5zn bare-metal
instance [5] in AWS (US-East). Numbers reported are the
average over three runs. Our baseline is VR/multi-paxos
which implements batching to improve throughput (denoted
as Paxos). SKYROS also uses batching for background work.
Most of our experiments use a hash-table-based key-value
store; however, we also show cases with RocksDB.

5.1 Microbenchmark: Nilext-only Workload
We first compare the performance for a nilext-only workload.
Figure 8(a) plots the average latency against the throughput
when varying the number of clients. We also compare to
a no-batch Paxos variant in this experiment. In all further
experiments, we compare only against Paxos with batching.
We make three observations from the figure. First, SKYROS
and Paxos offer ~3x higher throughput than the Paxos no-
batch variant. Second, with a small number of clients, SKYROS
offers ~2x better latency and throughput than Paxos with
batching. Batching across many clients improves the through-
put of Paxos. However, this affects latency: at about 100
KOps/s, SKYROS offers 3.1x lower latency than Paxos.

5.2 Microbenchmark: Mixed Workloads

We next consider mixed workloads. We use 10 clients.
Nilext and non-nilext writes. Figure 8(b)(i) shows the re-
sult for a workload with a mix of nilext and non-nilext
writes. With low non-nilext fractions, SKYROS offers 2x
higher throughput because most writes complete in 1 RTT.
As the non-nilext fraction increases, the benefits of SKYROS
reduces. However, even in the worst case where all writes
are non-nilext, SKYROS does not perform worse than Paxos.
As noted earlier, in many deployments, the fraction of non-
nilext writes is low and thus SKYROS would offer benefit; for
example, with 10% non-nilext writes, SKYROS offers ~78%
higher throughput.

Nilext and reads. We next consider a workload with nilext
writes and reads. In SKYROS, if a read accesses a key for
which there are unfinalized updates, the read will incur 2
RTTs. We thus consider two request distributions: uniform
and zipfian. We vary the percentage of writes (W) and show
the mean and p99 latency in Figure 8(b)(ii). In the uniform
case, operations do not often access the same keys and thus
reads rarely incur 2 RTTs. With a low W, SKYROS offers only
little benefit with mean latency (e.g., 10% lower mean latency
with 10% writes). However, SKYROS reduces p99 latency by
80% because writes are faster and reads rarely incur 2 RTTs.

Exploiting Nil-Externality for Fast Replicated Storage

SOSP 21, October 26-29, 2021, Virtual Event, Germany

Paxos (no-batch) - » 2100 F T Paxos (mean) --=- Skyros (mean) —+ - 2 20 [04 | ' '
Paxos - - Skyros —+ - § 20 <S1f5\1.851,7g 1000 Paxos (p99) --4- Skyros (p99) — - é — 12 152 160
~ 800 | vt M —+ 156 = uniform zipfian ¥ 90 .1
4 ! N = 60 ¢ 123 g 750 1 AT A1z LR
2600 x L= -1z - A8 6ol a..
5\ x - _&40 f--8----m--W--E--8-Thg g 500 A'__.A A.-'A‘ E. -
< g m = + {5 Tos — - | 2 = FRY TER). Sl = yros -
5 200 9(.4_,(— £ o Yl 0 —= + + £
0 - : 1 10 100 10 30 50 70 90 10 30 50 70 90 10 30 50 70 90
0 50 100 Non-nilext write % Write percentage (%) Write percentage (%) Write percentage (%)
Throughput (Kops/s)

(i) nilext+nonnilext
(a) Nilext-only

(ii) nilext+reads (iil) mixed all

(b) Mixed

Figure 8. Microbenchmark: Different Workload Mixes. (a) compares the performance of Skyros to Paxos for a nilext-only workload. (b) shows
the performance under three different mixed workloads (nilext+nonnilext, nilext+reads, and nilext+nonnilext+reads).

200 1 . me--E - g.-E---m-w | 300 [l Paxos & Skyros
—~ (1]
2150 | P-X .
i = af» 2 200
5100 g— m— o= W9=F —* T | 3
& Skyros (010 — = ~| | & 100
TOS - us| —& — -—
= 50 | Skiros [0-200us] —e —| | 8
kyros [0-1ms] —+ — 0
0 5 7 9

1 10
% reads to window

100 No. of replicas

Figure 10. Latency with
Figure 9. Read-latest. The fig- Many Replicas. The figure
ure shows the performance of Skyros | compares the average latency of
with varying read-latest percentages. | Skyros for different cluster sizes.

With a high W (90%), SKYROS offers significant benefit: it
reduces mean latency by 2.2x and p99 latency by 4.1x.

In the zipfian case, some keys are more popular than others.
Therefore, reads may often access keys recently modified by
writes. Thus, as shown, p99 latency in SKYROS for zipfian
increases compared to the uniform case. However, not all
reads incur 2 RTTs because of background finalization and
prior reads that force synchronous ordering. Thus, although
the improvements decrease compared to the uniform case,
SKYROS still offers significant benefit over Paxos (e.g., at W
= 90%, mean and p99 latencies in SKYROS are 2X lower).
Writes and reads. We next run a mixed workload with all
three kinds of operations. We vary the write percentage (W)
and fix the non-nilext fraction to be 10% of W. As shown
in Figure 8(b)(iii), with a small fraction of writes, SKYROS
offers little benefit over Paxos because reads take 1 RTT in
both systems. With a higher W, SKYROS offers higher perfor-
mance; for example, with W=90% (9% non-nilext), SKYROS
offers 1.72x higher throughput.

5.3 Microbenchmark: Read Latest
If many reads access recently modified items, then SKYROS
would incur overhead on reads. To show this, we run a work-
load with 50% nilext writes and 50% reads with 10 clients. We
vary the amount of reads that access items that were updated
within three different windows [0-100] us (roughly 1 RTT
on our testbed), [0-200] us (roughly 2 RTTs), and [0-1] ms (a
large window), and measure the average request latency.
Figure 9 shows the result. Intuitively, if no or few reads ac-
cess recently modified items, then performance of SKYROS
would not be affected by reads taking 2 RTTs (leftmost point

of the graph). SKYROS offers ~70% lower latency than Paxos.
As we increase percentage of reads accessing items updated
in the window, more reads incur 2 RTTs and thus the av-
erage latency increases. Moreover, latency increases more
steeply for smaller windows; for example, when all reads go
to items updated in the last 100 us, many reads (~68%) incur
2 RTTs. Again, not all reads incur 2 RTTs because of back-
ground finalization and prior reads to the items that force
synchronous ordering. In common workloads, where reads
do not often access recently written items, SKYROS offers
advantages. For example, with 10% reads accessing items
updated in last 100 us, SKYROS offers 70% lower latency.

5.4 Microbenchmark: Latency with Many Replicas
In prior experiments, we use five replicas and thus clients
wait for four responses. With larger clusters, SKYROS clients
must wait for many responses (e.g., seven responses with
nine replicas), potentially increasing latency. To examine
this, we conduct an experiment with seven and nine replicas
and measure the latencies for a nilext-only workload with 10
clients. As shown in Figure 10, the additional responses do
not add much to the latencies; latencies in the seven and nine-
node configurations are similar to that of the five-replica case
(about 110us) and is about 2x lower than Paxos.
Microbenchmark Summary. SKYROS offers benefit under
many workloads with different request ratios and distribu-
tions. Even when pushed to extreme cases (e.g., all non-nilext
or all reads access recent writes), SKYROS does not perform
worse than Paxos. Under realistic workloads, SKYROS offers
higher throughput, and lower mean and tail latencies.

5.5 YCSB Macrobenchmark
We next analyze performance under six ycsb [16] workloads:
Load (write-only), A (50% w, 50% r), B (5% w, 95% r), C (read-
only), D (5% w, 95% r), and F (50% rmw, 50% r). Figure 11(a)
shows the result for 10 clients. For write-heavy workloads
(load, A, and F), SKYROS improves throughput by 1.43x to
2.29%. SKYROS offers similar performance for the read-only
workload. For read-heavy workloads (B and D), SKYROS
offers little benefit; only 5% of operations can be made faster.
To understand the effect of reads that trigger synchro-
nous ordering, we examine the read-latency distributions
(Figure 11(b) and (d)). In both ycsb-a and ycsb-b, most reads

SOSP 21, October 26-29, 2021, Virtual Event, Germany

A. Ganesan, R. Alagappan, A. Arpaci-Dusseau, R. Arpaci-Dusseau

. o 100 [Tdosewp T [(T closewp = ioseup
R axos ¥4 Skyros 80 F2x 99 T 99.91 " 3073% 99 T

2 0.98 T orl [99.5{'1(O 0 96{ [’ A7x

s 95— e 99.1 ’ 93L&

4

= 0 300 600 0 300 600 0 300 600 0 100 200

3 Paxos ---- Paxos ---- Paxos ---- ,Paxos----

-§, Skyros — - Skyros — - JSkyros — - JSkyros — -

£ 300 600 900 O 300 600 900 O 150 300 450 600 0 150 300 450 600
'_

Latency (us)

(a) Throughput (b) ycsb-a read

Latency (us)
(c) ycsb-a overall

Latency (us)
(d) yesb-b read

Latency (us)
(e) ycsb-b overall

Figure 11. YCSB Performance. (a) show the throughput for all ycsb workloads; (b) and (d) show the read-latency distribution for ycsb-a and ycsb-b,
respectively; (c) and (e) show the operation-latency distribution for the same workloads.

W Paxos 74 Skyros
2.14

M Paxos ¥4 Skyros

Latency (us)

A B D F
@120 @155 @158 @128
Kops/s Kops/s Kops/s Kops/s

Throughput (Kops/sec)

Figure 12. SKYROS Latency Bene-
fits. The figure compares the average latency
at maximum throughput for mixed YCSB|Figure 13. RocksDB.
workloads. The number below each bar shows | The figure shows performance
the throughput for the workload. in RocksDB.

LOAD A

complete in 1 RTT, while some incur overhead. However, this
fraction is very small (e.g., 4% in ycsb-a and 0.3% in ycsb-b;
we see similar fractions for other workloads too). However,
the slow reads do not affect the overall p99 latency. In fact,
examining the distribution of operation (both read and write)
latencies shows that SKYROS reduces the overall p99 latency.
This reduction arises because the tail in the overall workload
includes expensive writes in Paxos, which SKYROS makes
faster. As a result, SKYROS reduces overall p99 latency by
1.7X in ycsb-a and ycsb-b as shown in Figure 11(c) and (e).
Latency Benefits. For a fixed number of clients as in the
previous experiment, SKYROS offers higher throughput than
Paxos. This is because, in baseline Paxos, the leader waits for
requests to be ordered in 2-RTTs. While SKYROS defers this
ordering work, it does not avoid it. However, by moving the
ordering-wait in Paxos to the background, SKYROS is able to
use the otherwise idle CPU cycles to accept more requests;
this enables SKYROS to achieve higher throughput.

Paxos, with batching across many clients, can achieve
high throughput levels (similar to SKYROS). However, at
such high throughput, SKYROS offers significant latency
benefits. To illustrate this, we measure the average latency at
the maximum throughput obtained by Paxos for write-heavy
(ycsb-a,f) and read-heavy (ycsb-b,d) workloads. As shown in
Figure 12, SKYROS offers 1.32Xx—-2.14X lower latencies than
Paxos for the same throughput.

5.6 Replicated RocksDB: Paxos vs. SKYROS
We have also integrated RocksDB with SKYROS. We built a
wrapper around RocksDB in which we implemented the up-
calls. Figure 13 compares the performance under two work-
loads when using SKYROS and Paxos to replicate RocksDB.
As before, SKYROS offers notable improvements.

5.7 Comparison to Commutative Protocols

We now compare SKYROS to commutative protocols. We
compare against Curp [64], a recent protocol that improves
over prior commutative protocols. Curp targets primary-
backup, but sketches the protocol for consensus [64, §Appendix-
B.2]. In this protocol, a client sends an update u to all replicas;
each replica adds u to a witness component if commutes
with prior operations in the witness. The leader adds u to the
log, executes u speculatively, and returns a response. Clients
wait for a supermajority responses (including the leader’s
result). If the leader detects a conflict, it initiates a sync, finish-
ing the operation in 2 RTT. If a conflict arises at the followers,
the client detects that and informs the leader to initiate a
sync; such requests take 3 RTTs. Reads are sent only to the
leader and thus would incur only 2 RTT upon conflicts. We
implement this protocol and call our implementation Curp-c.

5.7.1 Benefits over Commutative Protocols. We first
compare SKYROS and Curp-c under a write-only key-value
workload (only set). Figure 14(a) shows the result. In the no-
conflict case (no two writes access the same key), Curp-c and
SKYROS perform similarly and are 2x faster than Paxos. In
Curp-c, all requests take 1 RTT because no request conflicts
with another. In SKYROS, all operations are nilext and so
complete in 1 RTT. However, for a zipfian workload (6 = 0.99,
the default in YCSB), Curp-c’s performance drops due to
conflicts, while SKYROS maintains the high performance. In
this case, SKYROS offers 2.7x lower p99 latency than Curp-c.

We next run ycsb-a (50%w, 50%r). As shown in Figure 14(b),
Paxos reads take 1 RTT. In SKYROS, a small fraction of reads
take 2 RTTs. A similar fraction of reads in Curp-c also con-
flict with prior writes and thus incur 2 RTTs. As shown in
Figure 14(c), nilext writes in SKYROS can always complete in
1 RTT. In contrast, in Curp-c, writes conflict with prior writes
and thus sometimes incur 2 or 3 RTTs. As a result, SKYROS
offers 34% lower p99 latency. We observe that write-write
conflicts in Curp-c lead to 50% more slow-path operations
than read-write conflicts in SKYROS and Curp-c. A write-
write conflict can arise due to unsynced operations on any
replica, whereas a read-write conflict can occur only at the
leader. Further, the followers’ knowledge of synced opera-
tions is behind the leader by a message delay, increasing the
conflict window at the followers.

Exploiting Nil-Externality for Fast Replicated Storage

SOSP 21, October 26-29, 2021, Virtual Event, Germany

~ W Paxos M Curpc ¥ Skyros i [/ _ __ W Paxos M Curp-c 7 Skyros [X] Skyros-comm
8 i | g 50 21 3

2 100 [3 40 E] i 2.09
5 .- : - 3 g RS
g 80 Sllzaxos [Paxos g 50 8 :::::: ;:::::
< 60 yros — - Skyros — = 1.0 = 0% 0%
3] C I C 3 20 0.8 5 o 5
2 40 urp-c¢ urp-c¢ a 2 00! oo
5 | | 5 5]]
S 20 : L ‘ ‘ 210 2 oo Y
° ° ° XX 2030
E 0 0 300 600 900 O 300 600 900 E 0 E Retel d

no-conflict zipfian

Latency (us)

(a) Key-value write-only (b) ycsb-a read

Latency (us)

(c) ycsb-a write

Paxos Curp-c Skyros

no-conflict zipfian

(d) Record append (e) SKYROS-COMM Benefits

Figure 14. Comparison to Commutativity. (a) shows the write throughput in kv-store. (b) and (c) show the latencies for ycsb-a. (d) compares
record-append throughput. (e) shows the kv-store throughput for a nilext + non-nilext workload.

Exploiting nil-externality offers benefit over commutativ-
ity when operations do not commute. To show this, we built
a file store that supports GFS-style record appends [32]. The
record-append interface is not commutative: records must
be appended in the same order across replicas. However, it is
nilext: it just returns a success. Figure 14(d) shows the result
when four clients append records to a file. Because every
operation conflicts, Curp-c’s performance drops; it is lower
than Paxos because some requests take 3 RTTs. SKYROS
offers 2x higher throughput than Paxos and Curp-c.

5.7.2 Augmenting with Commutativity. While SKYROS
offers performance advantages over Curp-c in many cases,
non-nilext updates can reduce the performance of SKYROS.
Curp-c can complete such operations in 1 RTT (when they do
not conflict). Figure 14(e)-no-conflict case shows this: with
10% non-nilext writes, Curp-c performs better than SKYROS.
Fortunately, however, nil-externality is compatible with
commutativity. We build SKYROS-COMM, a variant of SKYROS
that exploits commutativity to speed up non-nilext opera-
tions. SKYROS-COMM handles nilext writes and reads in the
same way as SKYROS. However, non-nilext writes are han-
dled similar to Curp-c. Upon a non-nilext write, a replica
checks for conflicts with the pending nilext and non-nilext
writes. If there are none, similar to curp-c, the replicas add
this operation to their durability logs. Since non-nilext oper-
ations expose state, the leader also executes the operation
and returns the result. Clients wait for supermajority re-
sponses including the execution result from the leader and
acknowledgments from other replicas. Similar to SKYROS,
these responses must be from the same view.
SKYROS-COMM handles non-nilext-write conflicts in 2 or
3 RTTs. A conflicting non-nilext write at the leader is treated
similar to a read that accesses a pending update, finishing
the operation in 2 RTTs. If the conflict does not arise at the
leader but at the followers, the client detects the conflict and
resends the request to the leader. The leader then enforces
order by committing the request (and prior ones) to other
replicas, finishing the operation in a total of 3 RTTs. Note
that SKYROS-COMM does not check for conflicts for nilext
writes because they are ordered and executed only lazily.
The last bar in Figure 14(e)-no-conflict case shows that
SKYROS-COMM matches Curp-c’s performance because it

commits non-nilext writes faster than SKYROS. Figure 14(e)-
zipfian case shows that Curp-c’s performance reduces due to
conflicts. SKYROS performs similar to Curp-c because of the
10% non-nilext writes. SKYROS-COMM, however, improves
performance over SKYROS and Curp-c by combining the
advantages of nil-externality and commutativity.

6 Discussion

In this paper, we exploit nilext interfaces in the context of
leader-based replication for key-value stores. Further, our
evaluation focused on single-datacenter settings. However,
the general idea of exploiting nil-externality can be applied in
other contexts as well. We discuss such possible extensions.
Beyond Key-value Stores. Key-value stores (especially ones
built atop write-optimized structures) have many nilext in-
terfaces, enabling fast replication. Nil-externality can be ex-
ploited to perform fast replication for other systems such as
databases and file systems as well. As an example, consider
the POSIX file APL Writes in POSIX (i.e., the write system
call, and variants like pwrite and O_APPEND writes) are
nilext because they do not externalize state, barring cata-
strophic I/O errors (e.g., due to a bad disk). Writes can thus
be replicated performantly. Further, some file systems have
been built upon write-optimized structures [26, 39], making
most file-system operations nilext by design. A nilext-aware
protocol can enable fast replication for such file systems.
Leaderless Protocols. SKYROS is a leader-based protocol.
The leader can become a performance bottleneck in such
leader-based protocols. Also, clients cannot make progress
when the leader fails (before a new leader is chosen). Lead-
erless protocols [54, 58] allow any replica to accept requests,
leading to better performance and availability. The idea of
exploiting nil-externality can be applied to such leaderless
protocols as well. Leaderless protocols such as EPaxos [58]
exploit commutativity to commit requests in one WAN RTT
in geo-replicated settings. However, conflicting writes incur
additional roundtrips. Such a protocol can be augmented to
exploit nil-externality to avoid resolving conflicts on nilext
writes and do so only on non-nilext writes or reads.

Multi Datacenter Settings. Unlike protocols designed for
the data center [50, 67], SKYROS is applicable to geo-replicated
settings as well. By avoiding one WAN RTT, SKYROS can re-
duce latency for nilext operations significantly. However, in

SOSP 21, October 26-29, 2021, Virtual Event, Germany

some scenarios, SKYROS may lead to higher latencies than a
traditional 2-RTT protocol. In particular, when a majority of
the replicas (but not a supermajority) are in the same region
as the client, committing to a majority in two RTTs might
be cheaper than committing to a supermajority in one RTT.
While such a deployment is not commonly used (for fault tol-
erance reasons), when it is, SKYROS could be modified to fall
back to the “slow” 2-RTT protocol based on measurements
(similar to recent systems [78]).

7 Related Work

Commit Before Externalize. Our idea of deferring work
until externalization bears similarity to prior systems. Xsyncfs
defers disk I/O until output is externalized [60], essentially
moving the output commit [25, 72] to clients. SpecPaxos [67],
Zyzzyva [42], and SpecBFT [77] do the same for replication.
As discussed in §3.4.1, these protocols execute requests in
the correct order before notifying the end application. Our
approach, in contrast, defers ordering or executing nilext
operations beyond notifying the end application.

State modified by nilext updates can be externalized by
later non-nilext operations upon which SKYROS enforces the
required ordering and execution. Occult [56] and CAD [31]
use a similar idea at a high-level. Occult defers enforcing
causal consistency upon writes and does so only when clients
read data. Similarly, CAD does not guarantee durability when
writes complete; writes are made durable only upon sub-
sequent reads [31]. However, these systems do not offer
linearizability unlike SKYROS. Further, these systems defer
work on all updates unlike our work which defers work
based on whether or not the write is nilext. Prior work in
unreplicated databases [30] realizes that some transactions
only return an abort or commit and thus can be evaluated
lazily, improving performance. Our work focuses on repli-
cated storage and identifies a general interface-level property
that allows deferring ordering and execution.

Exploiting Semantics. Inconsistent replication (IR) [80] re-
alizes that inconsistent operations only require durability,
and thus can be completed in 1 RTT. Nilext operations, in
contrast, require durability and ordering. Further, IR cannot
support general state machines. Prior replication [45, 58, 64]
and transaction protocols [59] use commutativity to improve
performance. Nil-externality has advantages over and com-
bines well with commutativity (§5.7). SKYROS’s use of DAG
to resolve real-time order has a similar flavor to commutative
protocols [58, 59]). However, these protocols resolve order
in the common-case before execution; SKYROS needs such a
step only during view changes. Gemini [49] and Pileus [43]
realize that some operations need only weak consistency
and perform these operations faster; we focus on realizing
strong consistency with high performance.

SMR Optimizations. Apart from the approaches in §3.4.1,
prior systems have pushed consensus into the network [20,
21]. Domino uses a predictive approach to reduce latency

A. Ganesan, R. Alagappan, A. Arpaci-Dusseau, R. Arpaci-Dusseau

in WAN [78] and allows clients to choose between Multi-
Paxos and Fast-Paxos schemes. As discussed in §6, ideas
from Domino can be utilized in SKYROS to fall back to a
2-RTT path in geo-replicated scenarios where a single RTT
to a supermajority is more expensive than two RTTs to a
majority. Prior work has also proposed other techniques to
realize high performance in multi-core servers [34, 40], by
enabling quorum reads [12], and by partitioning state [47].
Such optimizations could also benefit SKYROS.

Local Storage Techniques. Techniques in SKYROS bear
similarities to database write-ahead logging (WAL) [57] and
file-system journaling [35]. However, our techniques differ
in important aspects. While WAL and journaling do enable
delaying writes to final on-disk pages, the writes are still
applied to in-memory pages before responding to clients.
Further, background disk writes are not triggered by external-
izing operations but rather occur asynchronously; externaliz-
ing operations can proceed by accessing the in-memory state.
In contrast, SKYROS defers applying updates altogether until
externalization. While both WAL and the durability log in
SKYROS ensure durability, WAL also imposes an order of
transactions. Group commit [23, 35] batches several updates
to amortize disk-access costs; Multi-Paxos and SKYROS sim-
ilarly use batching at the leader to amortize cost.

8 Conclusion

In this paper, we identify nil-externality, a storage-interface
property, and show that this property is prevalent in storage
systems. We design nilext-aware replication, a new approach
to replication that takes advantage of nilext interfaces to im-
prove performance by lazily ordering and executing updates.
We experimentally demonstrate that nilext-aware replication
improves performance over existing approaches for a range
of workloads. More broadly, our work shows that exposing
and exploiting properties across layers of a storage system
can bring significant performance benefit. Storage systems,
today, layer existing replication protocols upon local storage
systems (such as key-value stores). Such black-box layer-
ing masks vital information across these layers, resulting in
missed performance opportunities. This paper shows that by
making the replication layer aware of the underlying storage-
interface properties, higher performance can be realized.
The source code of SKYROS and our experimental artifacts
are available at https://bitbucket.org/aganesan4/skyros/.

Acknowledgments. We thank Bernard Wong (our shep-
herd) and the anonymous SOSP 21 reviewers for their in-
sightful comments. We thank the following VMware Re-
search Group members for their invaluable discussions: Jon
Howell, Lalith Suresh, Marcos Aguilera, Mihai Budiu, Naama
Ben-David, Rob Johnson, and Sujata Banerjee. Finally, the
first two authors would like to extend special thanks to grand-
mother Jayanthy Alagappan for taking care of their toddler
daughter while they were working on this paper.

https://bitbucket.org/aganesan4/skyros/

Exploiting Nil-Externality for Fast Replicated Storage

References

(1]
(2]

—r—
[N)
e

[12

—

(13]

[14

=

[15]

[16]

(17]

2021. Memcached Commands. https://github.com/
memcached/memcached/wiki/Commands#set.

Hussam Abu-Libdeh, Robbert Van Renesse, and Ymir Vigfusson. 2013.
Leveraging Sharding in the Design of Scalable Replication Protocols.
In Proceedings of the ACM Symposium on Cloud Computing (SOCC ’13).
Santa Clara, CA.

Apache. 2021. ZooKeeper. https://zookeeper.apache.org/
Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. 1995. Sharing Memory
Robustly in Message-passing Systems. Journal of the ACM (JACM) 42,
1(1995), 124-142.

AWS News Blog. 2020. New EC2 Mb5zn Instances — Fastest Intel
Xeon Scalable CPU in the Cloud. https://aws.amazon.com/
blogs/aws/new-ec2-m5zn-instances-fastest-intel-
xeon-scalable-cpu-in-the-cloud/.

Michael A Bender, Martin Farach-Colton, William Jannen, Rob John-
son, Bradley C Kuszmaul, Donald E Porter, Jun Yuan, and Yang Zhan.
2015. An Introduction to Be-trees and Write-optimization. USENIX
Aogin: 40, 5 (2015), 22-28.

William J. Bolosky, Dexter Bradshaw, Randolph B. Haagens, Norbert P.
Kusters, and Peng Li. 2011. Paxos Replicated State Machines As the
Basis of a High-performance Data Store. In Proceedings of the 8th
Symposium on Networked Systems Design and Implementation (NSDI
’11). Boston, MA.

Gerth Stelting Brodal and Rolf Fagerberg. 2003. Lower Bounds for
External Memory Dictionaries.. In SODA, Vol. 3.

Navin Budhiraja, Keith Marzullo, Fred B Schneider, and Sam Toueg.
1993. The Primary-backup Approach. Distributed systems 2 (1993).
Matthew Burke, Audrey Cheng, and Wyatt Lloyd. 2020. Gryff: Unifying
Consensus and Shared Registers. In Proceedings of the 17th Symposium
on Networked Systems Design and Implementation (NSDI °20). Santa
Clara, CA.

Zhichao Cao, Siying Dong, Sagar Vemuri, and David H.C. Du. 2020.
Characterizing, Modeling, and Benchmarking RocksDB Key-Value
Workloads at Facebook. In Proceedings of the 18th USENLX Conference
on File and Storage Technologies (FAST °20). Santa Clara, CA.

Aleksey Charapko, Ailidani Ailijiang, and Murat Demirbas. 2019. Lin-
earizable Quorum Reads in Paxos. In 11th USENLX Workshop on Hot
Topics in Storage and File Systems (HotStorage ’19). Renton, WA.
David R Cheriton. 1987. UIO: A Uniform I/O System Interface for
Distributed Systems. ACM Transactions on Computer Systems (TOCS)
5,1 (1987).

Austin T Clements, M Frans Kaashoek, Nickolai Zeldovich, Robert T
Morris, and Eddie Kohler. 2013. The Scalable Commutativity Rule:
Designing Scalable Software for Multicore Processors. In Proceedings
of the 24th ACM Symposium on Operating Systems Principles (SOSP ’13).
Farmington, Pennsylvania.

Alexander Conway, Abhishek Gupta, Vijay Chidambaram, Martin
Farach-Colton, Richard Spillane, Amy Tai, and Rob Johnson. 2020.
SplinterDB: Closing the Bandwidth Gap for NVMe Key-Value Stores.
In 2020 USENIX Annual Technical Conference (USENIX ATC 20). Online.
Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking Cloud Serving Systems with
YCSB. In Proceedings of the ACM Symposium on Cloud Computing
(SOCC ’10). Indianapolis, IA.

James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-
pher Frost, Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev,
Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kan-
thak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David
Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Ya-
sushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and
Dale Woodford. 2012. Spanner: Google’s Globally Distributed Data-
base. In Proceedings of the 10th Symposium on Operating Systems Design
and Implementation (OSDI ’12). Hollywood, CA.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

SOSP 21, October 26-29, 2021, Virtual Event, Germany

James Cowling and Barbara Liskov. 2012. Granola: Low-overhead Dis-
tributed Transaction Coordination. In 2012 USENIX Annual Technical
Conference (USENIX ATC 12). Boston, MA.

James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and
Liuba Shrira. 2006. HQ Replication: A Hybrid Quorum Protocol for
Byzantine Fault Tolerance. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation (OSDI ’06). Seattle, WA.
Huynh Tu Dang, Pietro Bressana, Han Wang, Ki Suh Lee, Noa Zil-
berman, Hakim Weatherspoon, Marco Canini, Fernando Pedone, and
Robert Soulé. 2020. P4xos: Consensus as a Network Service. [EEE/ACM
Transactions on Networking 28, 4 (2020).

Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone,
and Robert Soulé. 2015. NetPaxos: Consensus at Network Speed. In
Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined
Networking Research (SOSR °15). Santa Clara, CA.

Denis Serenyi. [n.d.]. Cluster-Level Storage @ Google.
http://www.pdsw.org/pdsw-discs17/slides/PDSW-
DISCS-Google-Keynote.pdf.

David J DeWitt, Randy H Katz, Frank Olken, Leonard D Shapiro,
Michael R Stonebraker, and David A. Wood. 1984. Implementation
Techniques for Main Memory Database Systems. In Proceedings of the
1984 ACM SIGMOD Conference on the Management of Data (SIGMOD
’84). Boston, MA.

Effi Ofer, Danny Harnik, and Ronen Kat. 2021. Object Storage
Traces: A Treasure Trove of Information for Optimizing Cloud
Workloads. https://www.ibm.com/cloud/blog/object-
storage-traces.

Elmootazbellah Nabil Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and
David B Johnson. 2002. A survey of rollback-recovery protocols in
message-passing systems. ACM Computing Surveys (CSUR) 34, 3 (2002),
375-408.

John Esmet, Michael A. Bender, Martin Farach-Colton, and Bradley C.
Kuszmaul. 2012. The TokuFS Streaming File System. In 4th Workshop
on Hot Topics in Storage and File Systems (HotStorage ’12). Boston,
Massachussetts.

Facebook. 2016. MyRocks: A space- and write-optimized MySQL
database. https://engineering.fb.com/2016/08/31/core-
data/myrocks-a-space-and-write-optimized-mysql-
database/.

Facebook. 2021. Merge Operator. https://github.com/
facebook/rocksdb/wiki/Merge-Operator.

Facebook. 2021. RocksDB. http://rocksdb.org/.

Jose M Faleiro, Alexander Thomson, and Daniel] Abadi. 2014. Lazy
Evaluation of Transactions in Database Systems. In Proceedings of the
2014 ACM SIGMOD International Conference on Management of Data
(SIGMOD ’14). Snowbird, UT.

Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. 2020. Strong and Efficient
Consistency with Consistency-aware Durability. In Proceedings of the
18th USENIX Conference on File and Storage Technologies (FAST °20).
Santa Clara, CA.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The
Google File System. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP °03). Bolton Landing, New York.
Sanjay Ghemawhat, Jeff Dean, Chris Mumford, David Grogan, and
Victor Costan. 2011. LevelDB. https://github.com/google/leveldb.
Zhenyu Guo, Chuntao Hong, Mao Yang, Dong Zhou, Lidong Zhou,
and Li Zhuang. 2014. Rex: Replication at the Speed of Multi-core. In
Proceedings of the EuroSys Conference (EuroSys ’14). Amsterdam, The
Netherlands.

Robert Hagmann. 1987. Reimplementing the Cedar File System using
Logging and Group Commit. In Proceedings of the 11th ACM Symposium
on Operating Systems Principles (SOSP ’87). Austin, Texas.

https://github.com/memcached/memcached/wiki/Commands#set
https://github.com/memcached/memcached/wiki/Commands#set
https://zookeeper.apache.org/
https://aws.amazon.com/blogs/aws/new-ec2-m5zn-instances-fastest-intel-xeon-scalable-cpu-in-the-cloud/
https://aws.amazon.com/blogs/aws/new-ec2-m5zn-instances-fastest-intel-xeon-scalable-cpu-in-the-cloud/
https://aws.amazon.com/blogs/aws/new-ec2-m5zn-instances-fastest-intel-xeon-scalable-cpu-in-the-cloud/
http://www.pdsw.org/pdsw-discs17/slides/PDSW-DISCS-Google-Keynote.pdf
http://www.pdsw.org/pdsw-discs17/slides/PDSW-DISCS-Google-Keynote.pdf
https://www.ibm.com/cloud/blog/object-storage-traces
https://www.ibm.com/cloud/blog/object-storage-traces
https://engineering.fb.com/2016/08/31/core-data/myrocks-a-space-and-write-optimized-mysql-database/
https://engineering.fb.com/2016/08/31/core-data/myrocks-a-space-and-write-optimized-mysql-database/
https://engineering.fb.com/2016/08/31/core-data/myrocks-a-space-and-write-optimized-mysql-database/
https://github.com/facebook/rocksdb/wiki/Merge-Operator
https://github.com/facebook/rocksdb/wiki/Merge-Operator
http://rocksdb.org/

SOSP 21, October 26-29, 2021, Virtual Event, Germany

[36] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A
Correctness Condition for Concurrent Objects. ACM Trans. Program.
Lang. Syst. 12, 3 (July 1990).

[37] Paul Hudak. 1989. Conception, Evolution, and Application of Func-
tional Programming Languages. ACM Computing Survey 21, 3 (1989).

[38] IBM. 2021. Locations for Resource Deployment: Multizone Re-
gions. https://cloud.ibm.com/docs/overview?topic=
overview-locations#mzr-table.

[39] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala, John Esmet,
Yizheng Jiao, Ankur Mittal, Prashant Pandey, Phaneendra Reddy, Leif
Walsh, Michael Bender, Martin Farach-Colton, Rob Johnson, Bradley
C. Kuszmaul, and Donald E. Porter. 2015. BetrFS: A Right-optimized
Write-optimized File System. In Proceedings of the 14th USENIX Sym-
posium on File and Storage Technologies (FAST °15). Santa Clara, CA.

[40] Manos Kapritsos, Yang Wang, Vivien Quema, Allen Clement, Lorenzo
Alvisi, and Mike Dahlin. 2012. All About Eve: Execute-verify Replica-
tion for Multi-core Servers. In Proceedings of the 10th Symposium on
Operating Systems Design and Implementation (OSDI ’12). Hollywood,
CA.

[41] Bettina Kemme, Fernando Pedone, Gustavo Alonso, and André Schiper.
1999. Processing transactions over optimistic atomic broadcast proto-
cols. In International Symposium on Distributed Computing (DISC 99).
Bratislava, Slovak Republic.

[42] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and
Edmund Wong. 2007. Zyzzyva: Speculative Byzantine Fault Tolerance.
In ACM SIGOPS Operating Systems Review, Vol. 41. ACM, 45-58.

[43] Ramakrishna Kotla, Mahesh Balakrishnan, Marcos K. Aguilera, and
Doug Terry. 2013. Consistency-based Service Level Agreements for
Cloud Storage. In Proceedings of the 24th ACM Symposium on Operating
Systems Principles (SOSP °13). Farmington, Pennsylvania.

[44] Leslie Lamport. 2001. Paxos Made Simple. ACM Sigact News 32, 4
(2001), 18-25.

[45] Leslie Lamport. 2005. Generalized Consensus and Paxos. (2005).

[46] Butler W Lampson. 1983. Hints for Computer System Design. In
Proceedings of the 9th ACM Symposium on Operating System Principles
(SOSP °83). Bretton Woods, New Hampshire.

[47] Long Hoang Le, Enrique Fynn, Mojtaba Eslahi-Kelorazi, Robert Soulé,

and Fernando Pedone. 2019. Dynastar: Optimized Dynamic Partition-

ing for Scalable State Machine Replication. In 2019 IEEE 39th Interna-
tional Conference on Distributed Computing Systems (ICDCS ’19). Dallas,

TX.

Collin Lee, Seo Jin Park, Ankita Kejriwal, Satoshi Matsushita, and John

Ousterhout. 2015. Implementing Linearizability at Large Scale and

Low Latency. In Proceedings of the 25th ACM Symposium on Operating

Systems Principles (SOSP °15). Monterey, California.

[49] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno
Preguica, and Rodrigo Rodrigues. 2012. Making Geo-Replicated Sys-
tems Fast as Possible, Consistent when Necessary. In Proceedings of
the 10th Symposium on Operating Systems Design and Implementation
(OSDI °12). Hollywood, CA.

[50] Jialin Li, Ellis Michael, Naveen Kr Sharma, Adriana Szekeres, and
Dan RK Ports. 2016. Just Say No to Paxos Overhead: Replacing Con-
sensus with Network Ordering. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation (OSDI ’16).
Savannah, GA.

[51] Wei Lin, Mao Yang, Lintao Zhang, and Lidong Zhou. 2008. PacificA:

Replication in Log-based Distributed Storage Systems. Technical Report

MSR-TR-2008-25.

Barbara Liskov and James Cowling. 2012. Viewstamped Replication

Revisited. (2012).

Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul Johnson, Liuba

Shrira, and Michael Williams. 1991. Replication in the Harp file sys-

tem. In Proceedings of the 13th ACM Symposium on Operating Systems

Principles (SOSP *91). Pacific Grove, CA.

—

(48

—

[52

—

[53

—

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

A. Ganesan, R. Alagappan, A. Arpaci-Dusseau, R. Arpaci-Dusseau

Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. 2008. Mencius:
Building Efficient Replicated State Machines for WANSs. In Proceedings
of the 8th Symposium on Operating Systems Design and Implementation
(OSDI °08). San Diego, CA.

Yoshinori Matsunobu, Siying Dong, and Herman Lee. 2020. MyRocks:
LSM-tree Database Storage Engine Serving Facebook’s Social Graph.
Proceedings of the VLDB Endowment 13, 12 (2020).

Syed Akbar Mehdi, Cody Littley, Natacha Crooks, Lorenzo Alvisi,
Nathan Bronson, and Wyatt Lloyd. 2017. I Can’t Believe It’s Not
Causal! Scalable Causal Consistency with No Slowdown Cascades. In
Proceedings of the 14th Symposium on Networked Systems Design and
Implementation (NSDI ’17). Boston, MA.

Chandrasekaran Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh,
and Peter Schwarz. 1992. ARIES: A Transaction Recovery Method Sup-
porting Fine-Granularity Locking and Partial Rollbacks using Write-
Ahead Logging. ACM Transactions on Database Systems (TODS) 17, 1
(1992), 94-162.

Tulian Moraru, David G Andersen, and Michael Kaminsky. 2013. There
is More Consensus in Egalitarian Parliaments. In Proceedings of the
24th ACM Symposium on Operating Systems Principles (SOSP ’13). Farm-
ington, Pennsylvania.

Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li. 2016. Con-
solidating Concurrency Control and Consensus for Commits under
Conflicts. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation (OSDI °16). Savannah, GA.
Edmund B Nightingale, Kaushik Veeraraghavan, Peter M Chen, and
Jason Flinn. 2006. Rethink the sync. In Proceedings of the 7th Symposium
on Operating Systems Design and Implementation (OSDI 06). Seattle,
WA.

Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Her-
man Lee, Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul
Saab, et al. 2013. Scaling Memcache at Facebook. In Proceedings of
the 10th Symposium on Networked Systems Design and Implementation
(NSDI ’13). Lombard, IL.

Diego Ongaro and John Ousterhout. 2014. In Search of an Under-
standable Consensus Algorithm. In 2014 USENIX Annual Technical
Conference (USENIX ATC 14). Philadelphia, PA.

Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil.
1996. The Log-Structured Merge-Tree (LSM-Tree). Acta Informatica
33, 4 (1996).

Seo Jin Park and John Ousterhout. 2019. Exploiting Commutativity
For Practical Fast Replication. In Proceedings of the 16th Symposium
on Networked Systems Design and Implementation (NSDI ’19). Boston,
MA.

Fernando Pedone and André Schiper. 2002. Handling Message Se-
mantics with Generic Broadcast Protocols. Distributed Computing
(2002).

Percona. 2013. Fast Updates with TokuDB. https://www.percona.
com/blog/2013/02/12/fast-updates-with-tokudb/.

Dan RK Ports, Jialin Li, Vincent Liu, Naveen Kr Sharma, and Arvind
Krishnamurthy. 2015. Designing Distributed Systems Using Approxi-
mate Synchrony in Data Center Networks. In Proceedings of the 12th
Symposium on Networked Systems Design and Implementation (NSDI
’15). Oakland, CA.

Sudip Roy, Lucja Kot, and Christoph Koch. 2013. Quantum databases.
In Proceedings of the 6th Biennial Conference on Innovative Data Systems
Research (CIDR 2013). Asilomar, CA.

Stephen M Rumble, Diego Ongaro, Ryan Stutsman, Mendel Rosenblum,
and John K Ousterhout. 2011. It’s Time for Low Latency.. In The
Thirteenth Workshop on Hot Topics in Operating Systems (HotOS XIII).
Napa, CA.

Russel Sandberg. 1986. The Sun Network File System: Design, Im-
plementation and Experience. In Proceedings of the USENIX Summer
Technical Conference (USENLIX Summer °86). Atlanta, GA.

https://cloud.ibm.com/docs/overview?topic=overview-locations#mzr-table
https://cloud.ibm.com/docs/overview?topic=overview-locations#mzr-table
https://www.percona.com/blog/2013/02/12/fast-updates-with-tokudb/
https://www.percona.com/blog/2013/02/12/fast-updates-with-tokudb/

Exploiting Nil-Externality for Fast Replicated Storage

(71]

(72]

(73]

(74]

(75]

(76]

Fred B. Schneider. 1990. Implementing Fault-tolerant Services Using
the State Machine Approach: A Tutorial. ACM Comput. Surv. 22, 4
(December 1990), 299-319. https://doi.org/10.1145/98163.
98167

Rob Strom and Shaula Yemini. 1985. Optimistic recovery in distributed
systems. ACM Transactions on Computer Systems (TOCS) 3, 3 (1985),
204-226.

Amy Tai, Andrew Kryczka, Shobhit O. Kanaujia, Kyle Jamieson,
Michael J. Freedman, and Asaf Cidon. 2019. Who's Afraid of Uncor-
rectable Bit Errors? Online Recovery of Flash Errors with Distributed
Redundancy. In Proceedings of the USENIX Annual Technical Conference
(USENIX ATC 19). Renton, WA.

Twitter. 2012. Caching with Twemcache. https://blog.
twitter.com/engineering/en_us/a/2@12/caching-with-
twemcache . html.

Twitter. 2020. Twitter Cache Trace.
twitter/cache-trace.

Robbert Van Renesse and Fred B Schneider. 2004. Chain Replication
for Supporting High Throughput and Availability. In Proceedings of
the 6th Symposium on Operating Systems Design and Implementation
(OSDI ’04). San Francisco, CA.

https://github.com/

[77]

(78]

SOSP 21, October 26-29, 2021, Virtual Event, Germany

Benjamin Wester, James A Cowling, Edmund B Nightingale, Peter M
Chen, Jason Flinn, and Barbara Liskov. 2009. Tolerating Latency in
Replicated State Machines Through Client Speculation.. In Proceedings
of the 6th Symposium on Networked Systems Design and Implementation
(NSDI "09). Boston, MA.

Xinan Yan, Linguan Yang, and Bernard Wong. 2020. Domino: Using
Network Measurements to Reduce State Machine Replication Latency
in WANS. In Proceedings of the 16th International Conference on emerg-
ing Networking EXperiments and Technologies.

[79] Juncheng Yang, Yao Yue, and K. V. Rashmi. 2020. A Large Scale Analy-

[80]

sis of Hundreds of In-memory Cache Clusters at Twitter. In Proceedings
of the 14th USENIX Conference on Operating Systems Design and Imple-
mentation (OSDI ’20). Banff, Canada.

Irene Zhang, Naveen Kr Sharma, Adriana Szekeres, Arvind Krishna-
murthy, and Dan RK Ports. 2015. Building consistent transactions with
inconsistent replication. In Proceedings of the 25th ACM Symposium on
Operating Systems Principles (SOSP ’15). Monterey, California.

https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/98163.98167
https://blog.twitter.com/engineering/en_us/a/2012/caching-with-twemcache.html
https://blog.twitter.com/engineering/en_us/a/2012/caching-with-twemcache.html
https://blog.twitter.com/engineering/en_us/a/2012/caching-with-twemcache.html
https://github.com/twitter/cache-trace
https://github.com/twitter/cache-trace

	Abstract
	1 Introduction
	2 Nil-Externalizing Interfaces
	2.1 Nil-externality
	2.2 Nil-externality in Storage Systems

	3 Nilext-aware Replication
	3.1 Consensus-based Replication Background
	3.2 Exploiting Nil-externality for Fast Replication
	3.3 Fast Case is the Common Case
	3.4 Comparison to Other Approaches

	4 Skyros Design and Implementation
	4.1 Overview
	4.2 Nilext Updates
	4.3 Background Ordering and Execution
	4.4 Reads
	4.5 Non-nilext Updates
	4.6 Replica Recovery and View Changes
	4.7 Correctness
	4.8 Practical Issues and Solutions

	5 Evaluation
	5.1 Microbenchmark: Nilext-only Workload
	5.2 Microbenchmark: Mixed Workloads
	5.3 Microbenchmark: Read Latest
	5.4 Microbenchmark: Latency with Many Replicas
	5.5 YCSB Macrobenchmark
	5.6 Replicated RocksDB: Paxos vs. Skyros
	5.7 Comparison to Commutative Protocols

	6 Discussion
	7 Related Work
	8 Conclusion
	References

