
1

Can Applications Recover from fsync Failures?

ANTHONY REBELLO, University of Wisconsin–Madison, USA
YUVRAJ PATEL, University of Wisconsin–Madison, USA
RAMNATTHAN ALAGAPPAN∗, VMware Research Group, USA
ANDREA C. ARPACI-DUSSEAU, University of Wisconsin–Madison, USA
REMZI H. ARPACI-DUSSEAU, University of Wisconsin–Madison, USA

We analyze how file systems and modern data-intensive applications react to fsync failures. First, we charac-
terize how three Linux file systems (ext4, XFS, Btrfs) behave in the presence of failures. We find commonalities
across file systems (pages are always marked clean, certain block writes always lead to unavailability), as well
as differences (page content and failure reporting is varied). Next, we study how five widely used applica-
tions (PostgreSQL, LMDB, LevelDB, SQLite, Redis) handle fsync failures. Our findings show that although
applications use many failure-handling strategies, none are sufficient: fsync failures can cause catastrophic
outcomes such as data loss and corruption. Our findings have strong implications for the design of file systems
and applications that intend to provide strong durability guarantees.
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1 INTRODUCTION
Applications that care about data must care about how data is written to stable storage. Issuing a
series of write system calls is insufficient. A write call only transfers data from applicationmemory
into the operating system; the OS usually writes this data to disk lazily, improving performance via
batching, scheduling, and other techniques [28, 48, 57, 58].
To update persistent data correctly in the presence of failures, the order and timing of flushes

to stable storage must be controlled by the application. Such control is usually made available
to applications in the form of calls to fsync [9, 51], which forces unwritten (“dirty”) data to disk
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before returning control to the application. Most update protocols, such as write-ahead logging or
copy-on-write, rely on forcing data to disk in particular orders for correctness [33, 34, 38, 41, 50, 61].
Unfortunately, recent work has shown that the behavior of fsync during failure events is ill-

defined [60] and error prone. Some systems, for example, mark the relevant pages clean upon fsync
failure, even though the dirty pages have not yet been written properly to disk. Simple application
responses, such as retrying the failed fsync, will not work as expected, leading to potential data
corruption or loss.

In this paper, we ask and answer two questions related to this critical problem. The first question
(§3) relates to the file system itself: why does fsync sometimes fail, and what is the effect on
file-system state after the failure event?

To answer this first question, we run carefully-crafted micro-workloads on important and popular
Linux file systems (ext4 [47], XFS [59], Btrfs [55]) and inject targeted block failures in the I/O stream
using dm-loki - our custom built device-mapper target for deterministic fault injection. We then
use blockviz - a block trace visualization tool that enriches block access patterns with file-system
specific information to examine the results. We provide the traces generated by blockviz to serve
as reference for current file system error-handling behavior. Our findings show commonalities
across file systems as well as differences. For example, all three file systems mark pages clean after
fsync fails, rendering techniques such as application-level retry ineffective. However, the content
in said clean pages varies depending on the file system; ext4 and XFS contain the latest copy in
memory while Btrfs reverts to the previous consistent state. Failure reporting is varied across
file systems; for example, ext4 data mode does not report an fsync failure immediately in some
cases, instead (oddly) failing the subsequent call. Failed updates to some structures (e.g., journal
blocks) during fsync reliably lead to file-system unavailability. And finally, other potentially useful
behaviors are missing; for example, none of the file systems alert the user to run a file-system
checker after the failure.

The second question we ask is (§4): how do important data-intensive applications react to fsync
failures? To answer this question, we build CuttleFS, a FUSE file system that can emulate different
file system fsync failures. CuttleFS maintains its own page cache in user-space memory, separate
from the kernel page cache, allowing application developers to perform durability tests against
characteristics of different file systems, without interference from the underlying file system and
kernel.
With this test infrastructure, we examine the behavior of five widely-used data-management

applications: Redis [21], LMDB [18], LevelDB [13], SQLite [23] (in both RollBack [1] and WAL
modes [24]), and PostgreSQL [18] (in default and DirectIO modes). Our findings, once again, contain
both specifics per system, as well as general results true across some or all. Some applications
(Redis) are surprisingly careless with fsync, not even checking its return code before returning
success to the application-level update; the result is a database with old, corrupt, or missing keys.
Other applications (LMDB) exhibit false-failure reporting, returning an error to users even though
on-disk state is correct. Many applications (Redis, LMDB, LevelDB, SQLite) exhibit data corruptions;
for example, SQLite fails to write data to its rollback journal and corrupts in-memory state by
reading from said journal when a transaction needs to be rolled back. While corruptions can cause
some applications to reject newly inserted records (Redis, LevelDB, SQLite), both new and old data
can be lost on updates (PostgreSQL). Finally, applications (LevelDB, SQLite, PostgreSQL) sometimes
seemingly work correctly as long as the relevant data remains in the file-system cache; when said
data is purged from the cache (due to cache pressure or OS restart), however, the application then
returns stale data (as retrieved from disk).
We also draw high-level conclusions that take both file-system and application behavior into

account. We find that applications expect file systems on an OS platform (e.g., Linux) to behave
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similarly, and yet file systems exhibit nuanced and important differences. We also find that appli-
cations employ numerous different techniques for handling fsync failures, and yet none are (as
of today) sufficient; even after the PostgreSQL fsync problem was reported [60], no application
yet handles its failure perfectly. We also determine that application recovery techniques often rely
upon the file-system page cache, which does not reflect the persistent state of the system and can
lead to data loss or corruption; applications should ensure recovery protocols only use existing
persistent (on-disk) state to recover. Finally, in comparing ext4 and XFS (journaling file systems)
with Btrfs (copy-on-write file system), we find that the copy-on-write strategy seems to be more
robust against corruptions, reverting to older states when needed.

The rest of this paper is organized as follows. First, we motivate why this study is necessary (§2),
followed by a file-system study (§3). Next, we study how applications react to fsync failures (§4).
We then discuss the implications of our findings (§5), discuss related work (§6), and conclude (§7).

2 MOTIVATION
Applications that manage data must ensure that they can handle and recover from any fault
that occurs in the storage stack. Recently, a PostgreSQL user encountered data corruption after a
storage error and PostgreSQL played a part in that corruption [20]. Because of the importance and
complexity of this error, we describe the situation in detail.

PostgreSQL is an RDBMS that stores tables in separate files and uses a write-ahead log (wal) to
ensure data integrity [19]. On a transaction commit, the entry is written to the log and the user is
notified of the success. To ensure that the log does not grow too large (as it increases startup time
to replay all entries in the log), PostgreSQL periodically runs a checkpoint operation to flush all
changes from the log to the different files on disk. After an fsync is called on each of the files, and
PostgreSQL is notified that everything was persisted successfully, the log is truncated.

Of course, operations on persistent storage do not always complete successfully. Storage devices
can exhibit many different types of partial and transient failures, such as latent sector errors [30,
44, 56], corruptions [29], and misdirected writes [46]. These device faults are propagated through
the file system to applications in a variety of ways [43, 53], often causing system calls such as read,
write, and fsync to fail with a simple return code.

When PostgreSQL was notified that fsync failed, it retried the failed fsync. Unfortunately, the
semantics for what should happen when a failed fsync is retried are not well defined. While POSIX
aims to standardize behavior, it only states that outstanding IO operations are not guaranteed to
have been completed in the event of failures during fsync [17]. As we shall see, on many Linux file
systems, data pages that fail to be written, are simply marked clean in the page cache when fsync
is called and fails. As a result, when PostgreSQL retried the fsync a second time, there were no
dirty pages for the file system to write, resulting in the second fsync succeeding without actually
writing data to disk. PostgreSQL assumed that the second fsync persisted data and continued to
truncate the write-ahead log, thereby losing data. PostgreSQL had been using fsync incorrectly
for 20 years [60].
After identifying this intricate problem, developers changed PostgreSQL to respond to the

fsync error by crashing and restarting without retrying the fsync. Thus, on restart, PostgreSQL
rebuilds state by reading from the wal and retrying the entire checkpoint process. The hope and
intention is that this crash and restart approach will not lose data. Many other applications like
WiredTiger/MongoDB [27] and MySQL [3] followed suit in fixing their fsync retry logic.

This experience leads us to ask a number of questions. As application developers are not certain
about the underlying file-system state on fsync failure, the first part of our study answers what
happens when fsync fails. How do file systems behave after they report that an fsync has failed?
Do different Linux file systems behave in the same way? What can application developers assume
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about the state of their data after an fsync fails? Thus, we perform an in-depth study into the
fsync operation for multiple file systems.
The second part of our study looks at how data-intensive applications react to fsync failures.

Does the PostgreSQL solution indeed work under all circumstances and on all file systems? How
do other data-intensive applications react to fsync failures? For example, do they retry a failed
fsync, avoid relying on the page cache, crash and restart, or employ a different failure-handling
technique? Overall, how well do applications handle fsync failures across diverse file systems?

3 FILE SYSTEM STUDY
Our first study explores how file systems behave after reporting that an fsync call has failed. After
giving a brief background of caching in file systems, we describe our methodology and our findings
for the three Linux file systems.

3.1 Background
File systems provide applications with open, read, and write system calls to interact with the
underlying storage media. Since block devices such as hard disks and solid state drives are much
slower than main memory [63], the operating system maintains a page cache of frequently used
pages of files in kernel space in main memory.

When an application calls read, the kernel first checks if the data is in the page cache. If not, the
file system retrieves the data from the underlying storage device and stores it in the page cache.
When an application calls write, the kernel only dirties the page in memory while notifying the
application that the write succeeded; there is now a mismatch between the data in memory and on
the device and data can potentially be lost. For durability, the file system periodically synchronizes
content between memory and disk by flushing dirty pages and marking them clean. Applications
that require stronger durability guarantees can force the dirty pages to disk using the fsync system
call.
Applications can choose to bypass the page cache altogether by opening files with 𝑂_𝐷𝐼𝑅𝐸𝐶𝑇

(DirectIO). For caching, applications must perform their own in user space. Calls to fsync are still
required since data may be cached within the underlying storage media; an fsync issues a FLUSH
command to the underlying device so it pushes data all the way to stable storage.

3.2 Methodology
To understand how file systems should behave after reporting an fsync failure, we begin with the
available documentation. The fsync man pages [9] report that fsync may fail for many reasons:
the underlying storage medium has insufficient space (ENOSPC or EDQUOT ), the file descriptor is
not valid (EBADF ), or the file descriptor is bound to a file that does not support synchronization
(EINVAL). Since these errors can be discovered by validating input and metadata before initiating
write operations, we do not investigate them further.

We focus on errors that are encountered only after the file system starts synchronizing dirty
pages to disk; in this case, fsync signals an EIO error. EIO errors are difficult to handle because the
file system may have already begun an operation (or changed state) that it may or may not be able
to revert.

To trigger EIO errors, we consider single, transient, write faults in line with the fail-partial failure
model [52, 53]. When the file system sends a write request to the storage device, we inject a fault
for a single sector or block within the request. Specifically, we build a kernel module device-mapper
target called dm-loki that intercepts block-device requests from the file system and fails a particular
write request to a particular sector or block while letting all other requests succeed; this allows us
to observe the impact on an unmodified file system.
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3.2.1 Workloads. To exercise the fsync path, we create three simple workloads that are represen-
tative of common write patterns seen in data-intensive applications.

Single Block Update (w𝑠𝑢 ): open an existing file containing three pages (12KB) and modify the
middle page. This workload resembles many applications that modify the contents of existing files:
LMDB always modifies the first two metadata pages of its database file; PostgreSQL stores tables
as files on disk and modifies them in-place. Specifically, w𝑠𝑢 issues system calls in the following
sequence: open, lseek(4K), write(4K), fsync, fsync, sleep(40), close. The first fsync forces
the dirty page to disk. While one fsync is sufficient in the absence of failures, we are interested in
the impact of fsync retries after a failure; therefore, w𝑠𝑢 includes a second fsync. Finally, since
ext4, XFS, and Btrfs write out metadata and checkpoint the journal periodically, w𝑠𝑢 includes a
sleep for 40 seconds.

Multi Block Append (w𝑚𝑎): open a file in append mode and write a page followed by an fsync;
writing and fsyncing is repeated after sleeping. This workload resembles many applications that
periodically write to a log file: Redis writes every operation that modifies its in-memory data
structures to an append only file; LevelDB, PostgreSQL, and SQLite write to a write-ahead-log and
fsync the file after the write. w𝑚𝑎 repeats these operations after a delay to allow checkpointing to
occur; this is realistic as clients do not always write continuously and checkpointing may occur in
those gaps. Specifically, w𝑚𝑎 issues system calls in the following sequence: open (in append mode),
write(4K), fsync, sleep(40), write(4K), fsync, sleep(40), close.

Multi File Create (w𝑑𝑖𝑟 ): create a new file within a directory and then fsync both the file
and the directory. This workload resembles file creation in many applications that care about
durability. The ALICE framework [51] analyzes multiple applications and lists vulnerabilities
that arise from not issuing an fsync on the parent directory after creating and calling fsync
on a file. w𝑑𝑖𝑟 repeats these operations after a delay to allow checkpointing to occur; a realis-
tic scenario as applications often create files periodically. Specifically, w𝑑𝑖𝑟 issues system calls
in the following sequence: open(dir), creat(file1), fsync(file1), fsync(dir), sleep(40),
creat(file2), fsync(file2), fsync(dir), sleep(40), close(file1,file2,dir)1.

3.2.2 dm-loki. To study file system behavior on fsync failure, we require a tool that injects
failures deterministically. For example, always failing the ith write to a particular sector or block.
Additionally, as file systems may overwrite a block multiple times, capturing disk state before and
after an experiment is insufficient. We require the content of each read or write request. We built
dm-loki [4], a loadable kernel module device-mapper target to satisfy both requirements.
Contrast with current fault injection device-mapper targets like dm-error and dm-flakey [5],

dm-loki can change its fault injection configuration dynamically via messages through the dmsetup
message [15] interface. A user may start dm-loki without any failure points and then send a
message to the target to start failing certain sectors or blocks. Fault injection for a particular block
is expressed as character sequences where the index in the sequence is incremented every time
the block is written to. dm-loki decides to fail a particular access if the character at the current
index indicates failure. For example, the sequence string wwxxw describes a pattern where the first
two writes succeed, the third and fourth fail, and all writes after succeed. For a specific block or
sector failure sequence, the lowercase letters w and x at an index i decide whether the ith request is
sent to the underlying device or failed. For accesses greater than the string length, we refer the last
character to decide.

A user may also enable or disable request logging using the dmsetup message interface. dm-loki
logs all read and write requests with associated data and flags to a file. Additionally, a user may
inject “tags” via messages which are also logged. Injecting tags with a system call name and
1We use the notation creat for conciseness but we actually use the open system call with flags O_WRONLY | O_CREAT.
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arguments right before its invocation allows us to identify the origin of each request. For example,
all requests immediately preceded by a thirty second sleep tag implied that the requests were
generated periodically for checkpointing.

3.2.3 blockviz. File systems need not treat all block write failures equally. Data block write failures
may not be treated the same way as metadata block write failures. Additionally, file systems may
treat different types of metadata differently. While dm-loki provides the functionality to inject a
failure and log all BIO requests, it has no file-system level context about the specific sector or block.
We build blockviz, an interactive jupyter notebook [45] widget in python that takes BIO requests
logged by dm-loki as input and enriches them with file-system specific information. We describe
blockviz’s main features that help us in characterizing file-system behavior.

dm-loki’s ability to inject “tags” into the logs make it easier to visualize requests with blockviz.
In our workloads, before issuing a system call, we inject a “tag” to dm-loki, specifying the system
call and its arguments. blockviz visualizes the traces with tags, making it easier to identify the
origin of every BIO request. Furthermore, as an interactive widget, clicking a particular request
provides more file system specific information. Using a combination of existing tools such as
debugfs and xfs_db, and custom code to parse metadata blocks (such as XFS headers and Btrfs
tree nodes), blockviz provides more information about every block in the trace.

As a particular block may be read from or written to multiple times, blockviz allows a user to
compare different blocks in the trace. Since dm-loki logs all data read or written, blockviz creates
checksums of the data for fast searches; a useful feature when trying to match content written in a
journal block to content written to a metadata block during checkpointing. blockviz also allows
metadata specific comparisons such as highlighting differences between two inode table entries in
ext4 or identifying bitmap differences.

Figure 1 shows two sample traces from blockviz for ext4 ordered mode running w𝑠𝑢 . We provide
interpretations for these traces as they are used frequently in our findings (§3.3).

Figure 1 (a) can be read as follows:
1 open(/f1) triggers a read request for the root directory data block.
2 There are no BIO requests during write.
3 On fsync, the data block for /f1 is written to disk and the inode table is journaled.
4 There are no BIO requests during the second fsync.
5 During sleep, the journaled inode table is written to its actual location.
6 There are no BIO requests during close.

Figure 1 (b) can be read as follows:
1-2 Same as Figure 1 (a).
3 On fsync, the data block write for /f1 fails and nothing is journaled. The user is notified of
the failure through a syslog entry and fsync returns -1 with errno set to EIO.

4 The second fsync writes the inode table to the journal.
5-6 Same as Figure 1 (a).
BIO request traces from blockviz contain too much low-level information. For instance, journal-

ing in ext4 ordered mode involves writing a journal descriptor block that describes the following
blocks, the actual block data to be journaled, a BIO flush request, and finally, a journal commit
block with the Force Unit Access (FUA) flag set. For simplicity and conciseness, our traces in this
paper do not include the flush requests and BIO flags. For ext4 specifically, we also omit the journal
descriptor and commit blocks from the traces.

3.2.4 Experiment Overview. We run the workloads on three different file systems: ext4, XFS, and
Btrfs, with default mkfs and mount options. We evaluate both ext4 with metadata ordered journaling

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Anthony

Anthony



Handling fsync Failures 1:7

O/f1 Dir/ W F D/f1 JIT F S IT C

a)

O/f1 Dir/ W F D/f1
EIO

SYS

F JIT S ...

b)

Fig. 1. Sample blockviz traces and how to interpret them:
The figure shows two sample traces from blockviz for w𝑠𝑢 on ext4 ordered mode. The first (a) represents a
normal run without any failures while the second (b) contains a grey shaded block indicating a write failure.
System calls are represented by their first letter (in boldfaced font): Open,Write, Fsync, Sleep, Close.
In some cases, a system call contains the file or directory path. As w𝑠𝑢 opens file /f1, the first symbol is O/f1.
BIO read requests are depicted using circles and write requests with squares . The letters within a BIO
request are file-system dependent and are explained when first used. In this blockviz ext4 trace:

Dir/ is the directory data block for the root(/) directory.
D/f1 is the data block for file /f1.
IT is a block that contains the inode table entry for /f1.
JIT is a journal block containing the inode table entry.

In workloads that have multiple data block writes such as w𝑚𝑎 , we use D’ for the data corresponding to the
second write system call.
Trace (b) contains a grey shaded block indicating that the write to data block D/f1 failed.
It is followed by two bells that symbolize notifications:

GEIO: The immediate left system call (the fsync) is failed and errno is set to EIO.
GSYS: The error is written to syslog.

As seen at the end of trace (b), if the rest of the trace is similar to the trace without failures, we use a set of
dots indicating an ellipsis.
For better readability, a dotted line (as seen below) separates this caption from the main text.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(data=ordered) and full data journaling (data=journal). We use an Ubuntu OS with Linux kernel
version 5.2.11.

We run mkfs on loop devices. Since our workloads are small, the loop devices are backed by
files of size 1GB (images). The images are created using the dd if=/dev/zero command to ensure
a clean initial zero state. The 1GB size ensures that the block size of the file systems is 4KB by
default2. Since workloads w𝑠𝑢 and w𝑚𝑎 require an existing file to operate on, we mount the file
system, create an existing file of required size, and unmount. The images are now considered ready
for the workloads.

For each file system and workload, we conduct experiments as follows:
We create a loop device (say loop0) from the prepared image using the losetup [16] command.

Then, using the dmsetup command, we setup a device-mapper device /dev/dm/lokidev that
forwards all requests to the dm-loki target. We then run the workload with no fault points
configured.

For each file system and workload, we first trace the block write access pattern. We then repeat
the workload multiple times, each time configuring the fault injector to fail the i𝑡ℎ write access
to a given sector or block. We only fail a single block or sector within the block in each iteration.
We use blockviz to analyze the traces and SystemTap [25] to examine the state of relevant buffer
heads and pages associated with data or metadata in the file system.

3.2.5 Behavior Inference. We answer the following questions for each file system:
Basics of fsync Failures:

Q1 Which block (data, metadata, journal) failures lead to fsync failures?
2A smaller file size can change the block size to 1KB on ext4.
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

ext4
ordered data, jrnl yes A clean B no B immediate yes jrnl remount-ro NOB, anywhere A no

data data, jrnl yes A clean B no B next C yes jrnl remount-ro NOB, anywhere A no

XFS data, jrnl yes A meta clean B no B immediate yes jrnl, meta shutdown NOB, within A no

Btrfs data, jrnl no clean yes immediate yes jrnl, meta remount-ro HOLE, within D yes

A Non-overwritten blocks (Q10) occur because metadata
is persisted despite data-block failure (Q2).

B Marking a dirty page clean (Q4) even though the content does not match the disk (Q5) is
problematic.

C Delayed reporting (Q6) of fsync failures may confuse
application error-handling logic.

D Continuing to write to a file after an fsync failure is similar to writing to an offset greater
than file size, causing a hole in the skipped portion (Q10).

Table 1. Behavior of Various File Systems when fsync Fails. The table summarizes the behavior of the three file
systems: ext4, XFS, and Btrfs according to the questions posed in Section 3.2.5. The questions are divided into
four categories mentioned at the top. For questions that require identifying a block type, we use the following
abbreviations: Data Block (data), Journal Block (jrnl), Metadata Block (meta). In Q9, Remount-ro denotes
remounting in read-only mode. In Q10, “anywhere” and “within” describe the locations of the holes or non-
overwritten blocks (NOB); “within” does not include the end of the file. Entries with a superscript denote a problem.

Q2 Is metadata persisted if a data block fails?
Q3 Does the file system retry failed block writes?
Q4 Are failed data blocks marked clean or dirty in memory?
Q5 Does in-memory page content match what is on disk?

Failure Reporting:

Q6 Which future fsync will report a write failure?
Q7 Is a write failure logged in the syslog?

After Effects of fsync Failure:

Q8 Which block failures lead to file-system unavailability?
Q9 How does unavailability manifest? Does the file system shutdown, crash, or remount in

read-only mode?
Q10 Does the file suffer from holes or block overwrite failures? If so, in which parts of a file can

they occur?3

Recovery:

Q11 If there is any inconsistency introduced due to fsync failure, can fsck detect and fix it?

3.3 Findings
We now describe our findings for the three file systems we have characterized: ext4, XFS, and Btrfs.
Our answers to our posed questions are summarized in Table 1.

3.3.1 Ext4. The ext4 file system is a commonly-used journaling file system on Linux. The two
most common options when mounting this file system are data=ordered and data=journal which
enable ext4 ordered mode and ext4 data mode, respectively. Ext4 ordered mode writes metadata to
the journal whereas ext4 data mode writes both data and metadata to the journal.
3In file-system terminology, a hole is a region in a file for which there is no block allocated. If a block is allocated but not
overwritten with the new data, we consider the file to have a non-overwritten block and suffer from block overwrite failure.
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1 2 3 4 5

O/f1 Dir/ W F D/f1 JIT F S IT Ca)

Dir/O/f1 W F D/f1
EIO

SYS

F JIT S IT Cb)
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EIO

SYS
ReadOnly
Journalc)

Fig. 2. Blockviz traces for w𝑠𝑢 on ext4 ordered mode:
The figure shows three traces corresponding to different fault injection configurations of dm-loki.

a) when no faults are injected: open(/f1) triggers a read request for the directory data block /. On
fsync, the data block for /f1 is written to disk and the Inode Table (IT) is written to the Journal (JIT).
During sleep, the Inode Table is checkpointed.

b) dm-loki configured to fail the data block write: On data block write failure, the error is logged to syslog
(GSYS) and fsync fails with errno=EIO (GEIO).

c) dm-loki configured to fail the journal block write: On journal block write failure, in addition to the
syslog and EIO notifications, ext4 aborts the journal (nJournal) and remounts in read-only mode
(¸ReadOnly).

The figure is also annotated with steps (the first horizontal row with lines and numbers) that are referred to
in the main text.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ext4 ordered mode: We give an overview of ext4 ordered mode by describing how it behaves for
our three representative workloads when no failures occur.
Single Block Update (w𝑠𝑢). When no fault is injected and fsync is successful, ext4 ordered

mode behaves as follows. During the write (Step 1), ext4 updates the page in the page cache with
the new contents and marks the page dirty. On fsync, the page is written to a data block; after
the data-block write completes successfully, the metadata (i.e., the inode with a new modification
time) is written to the journal, and fsync returns 0 indicating success (Step 2). After the fsync, the
dirty page is marked clean and contains the newly written data. On the second fsync, as there are
no dirty pages, no block writes occur, and as there are no errors, fsync returns 0 (Step 3). During
sleep, the metadata in the journal is checkpointed to its final in-place block location (Step 4). No
writes or changes in page state occur during the close (Step 5). The trace for this experiment can
be seen in Figure 2a.
If fsync fails (i.e., returns -1 with errno set to EIO), a variety of write problems could have

occurred. For example, the data-block write could have failed (trace in Figure 2b); if this happens,
ext4 does not write the metadata to the journal. However, the updated page is still marked clean
and contains the newly written data from Step 1, causing a discrepancy with the contents on disk.
Furthermore, even though the inode table was not written to the journal at the time of the data fault,
the inode table containing the updated modification time is written to the journal on the second
fsync in Step 3. Steps 4 and 5 are the same as above, and thus the inode table is checkpointed.
Thus, applications that read this data block while the page remains in the page cache (i.e., the

page has not been evicted and the OS has not been rebooted) will see the new contents of the data;
however, when the page is no longer in memory and must be read from disk, applications will see
the old contents.
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Fig. 3. Blockviz traces for w𝑚𝑎 on ext4 ordered mode:
The figure shows four traces corresponding to different fault injection configurations of dm-loki.

a) when no faults are injected: Since w𝑚𝑎 involves appends, ext4 must allocate new blocks to the inode.
Allocation is done on fsync as ext4 ordered mode uses delayed allocation by default. To allocate a
block, the data block bitmap (BB) is read from disk if not already cached. While similar to w𝑠𝑢 , an
fsync in w𝑚𝑎 involves writing both the inode table (IT) and the block bitmap (BB) to the journal and
later to their actual locations during checkpointing.

b) dm-loki configured to fail the data block write: While the data block bitmap (BB) and inode table
(IT) are not journaled after data block failure, they are still journaled and written to disk during
checkpointing.

c) dm-loki configured to fail the data block bitmap (BB) write: Failures during checkpointing are only
logged to syslog while checkpointing continues. A stale block bitmap is re-read from disk after bitmap
block failure.

d) dm-loki configured to fail the inode table (IT) write: Unlike c), inode tables are never read again from
disk despite failure.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Alternatively, if fsync failed, it could be because a write to one of the journal blocks failed
(trace in Figure 2c). In this case, ext4 aborts the journal transaction and remounts the file system in
read-only mode, causing all future writes to fail.

Multi Block Append (w𝑚𝑎). This next workload exercises additional cases in the fsync error
path. If there are no errors and all fsyncs are successful (trace in Figure 3a), the multi-block append
workload on ext4 behaves as follows. First, during write, ext4 creates a new page with the new
contents and marks it dirty (Step 1). On fsync, the page is written to a newly allocated on-disk
data block; after the data-block write completes successfully, the relevant metadata (i.e., both the
inode table and the block bitmap) are written to the journal, and fsync returns success (Step 2). As
in w𝑠𝑢 , the page is marked clean and contains the newly written data. During sleep, the metadata
is checkpointed to disk (Step 3); specifically, the inode contains the new modification time and
a link to the newly allocated block, and the block bitmap now indicates that the newly allocated
block is in use. The pattern is repeated for the second write (Step 4), fsync (Step 5), and sleep
(Step 6). As in w𝑠𝑢 , there are no write requests or changes in page state during close (Step 7).

An fsync failure could again indicate numerous problems. First, a write to a data block could
have failed in Step 2 (trace in Figure 3b). If this is the case, the fsync fails and the page is marked
clean; as in w𝑠𝑢 , the page cache contains the newly written data, differing from the on-disk block
that contains the original block contents. The inode table and block bitmap are first journaled and
then written to disk in Step 3; thus, even though the data itself has not been written, the inode is
modified to reference this block and the corresponding bit is set in the block bitmap. When the
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workload writes another 4KB of data in Step 4, this write continues oblivious of the previous fault
and Steps 5, 6, and 7 proceed as usual.
Thus, with a data-block failure, the on-disk file contains a non-overwritten block where it was

supposed to contain the data from Step 1. A similar possibility is that the write to a data block in
Step 5 fails; in this case, the file has a non-overwritten block at the end instead of somewhere in
the middle. Again, an application that reads any of these failed data blocks while they remain in
the page cache will see the newly appended contents; however, when any of those pages are no
longer in memory and must be read from disk, applications will read the original block contents.
An fsync failure could also indicate that a write to a journal-block failed. In this case, as in

w𝑠𝑢 , the fsync returns an error and the following write fails since ext4 has been remounted in
read-only mode.
Because this workload contains an fsync after the metadata has been checkpointed in Step 3,

it also illustrates the impact of faults when checkpointing the inode table and block bitmap. We
find that ext4 reacts differently to block bitmap and inode table write failures (traces in Figure 3 c
and d). In both cases, the failure is only logged to syslog, checkpointing proceeds to write other
metadata, and the following fsync does not return an error. However, when ext4 fails to write the
block bitmap, it marks the associated buffer head !uptodate, indicating that a future read must
first retrieve the on-disk contents. On fsync in Step 5 (or write in Step 4 if there is no delayed
allocation), ext4 must query the block bitmap to allocate a new block, reloading the stale on-disk
block bitmap. With no more write failures, the fsync in Step 5 succeeds and checkpointing proceeds
to write the new block bitmap - a version where only the bit for the second block in the file is set.
The filesystem is now in an inconsistent state, with an inode pointing to a block whose bit is not
set in the bitmap. While fsck can fix this inconsistency, it has to run in force mode (fsck -f) as
ext4 incorrectly marks the filesystem clean on unmount.
We do not observe such inconsistencies with inode table write failures as ext4 ignores the

!uptodate flag on inode table buffer heads. Despite being !uptodate, ext4 continues to read and
write to the latest in-memory inode table. Future successful writes to the on-disk inode table are
guaranteed to have all the changes.

We note that for none of these fsync and metadata checkpoint failures does ext4 ordered mode
recommend running the file system checker; furthermore, running the checker does not identify
or repair any of the preceding problems. Finally, future calls to fsync never retry previous data
writes that may have failed; neither are failed metadata writes during checkpointing. These results
for ext4 ordered mode are all summarized in Table 1.

The ext4 file system also offers functionality to abort the journal if an error occurs in a file data
buffer (mount option data_err=abort) and remount the file system in read-only mode on an error
(mount option errors=remount-ro). However, we observe that the results are identical with and
without the mount options. 4

Multi File Create (w𝑑𝑖𝑟 ).While w𝑠𝑢 and w𝑚𝑎 address data-block, inode-table, and data-block-
bitmap failures, w𝑑𝑖𝑟 exercises failures related to directory data blocks and inode bitmap blocks
(trace in Figure 4a). If there are no errors and all fsyncs are successful, the multi-file create workload
on ext4 behaves as follows. First, during open(dir), the directory data block is read from disk
if not already cached (Step 1). Next, on creat(file1), to allocate a new inode, ext4 reads the
corresponding inode bitmap block from disk if not already cached (Step 2). Ext4 proceeds to modify
the following data structures and marks them dirty: inode bitmap for file1’s inode, inode table
entry for file1 and dir, dir’s directory data block that contains file1’s name-to-inode mapping. On
fsync(file1), the dirtied metadata is written to the journal and fsync(file1) returns success

4We verified our observations by reproducing them using standard Linux tools and have filed a bug report for the same [2].
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Fig. 4. Blockviz traces for w𝑑𝑖𝑟 on ext4 ordered mode:
The figure shows three traces corresponding to different fault injection configurations of dm-loki.

a) when no faults are injected: Since w𝑑𝑖𝑟 creates new inodes, when the first file is created (O/f1) the
inode bitmap (IB) is read from disk if not already in cache. We use C* to denote closing all open file
descriptors (/, /f1, and /f2).

b) dm-loki configured to fail the directory data block write: A stale version of the directory data block is
read from disk (as seen after O/f2) if ext4 encounters a write failure during checkpointing for the same
block.

c) dm-loki configured to fail the inode bitmap block (IB) write: A stale version of the inode bitmap is read
from disk, but ext4 fails the inode creation (O/f2), logging the error to syslog and setting errno to EIO.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Step 3). Ext4 treats directory data blocks as metadata, so unlike w𝑠𝑢 and w𝑚𝑎 , this workload
does not write data blocks to disk during an fsync. On fsync(dir), we observe no read or write
requests as dir is already synced during fsync(file1) (Step 4). During sleep, the metadata is
checkpointed to disk (Step 5); specifically, the inode bitmap has a previously cleared bit set, the
inode table entry for the directory has a new modification time and updated size, the inode table
entry for the file is initialized, and the directory data block has a new name-to-inode mapping. The
pattern is repeated for creat(file2) (Step 6), fsync(file2) (Step 7), fsync(dir), and sleep. As
in the previous two workloads, we observe no bio requests during close.

As fsync in Step 3 and Step 7 only involve journal-block writes, similar to w𝑠𝑢 and w𝑚𝑎 , a block
write failure during fsync in w𝑑𝑖𝑟 will always return an error and trigger a remount in read-only
mode.
Because this workload contains a sleep in Step 5, it also illustrates the impact of faults when

checkpointing the inode table, inode bitmap, and directory data block. Inode table failures behave
exactly as described for w𝑚𝑎 . Similar to block bitmap write failures, inode bitmap and directory
data block write failures both mark the associated buffer heads !uptodate and trigger a read of
the stale on-disk version during creat(file2) in Step 6. However, directory data block failures
are problematic while inode bitmap failures are benign.
We find that files may disappear from directories even while the file system is running. After

a directory data block write failure during checkpointing (trace in Figure 4b), because of the
!uptodate flag, ext4 reads and modifies a stale version during create(file2); the in-memory
name-to-inode mapping for file1 is lost and the inode for file1 is an orphaned inode5. Future calls to
readdir(dir) either directly or through the ls command will not contain file1. Although ext4
does not prompt us to run a checker, running fsck -f can detect orphaned inodes and place them

5Orphaned inodes are inodes that can never be accessed as no directory points to them.
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O/f1 Dir/ W BB F JD/f1 JBB JIT S D/f1 SYS BB IT W F JD'/f1 JBB JIT EIO
...

Fig. 5. Blockviz trace for w𝑚𝑎 on ext4 data mode, data block failures:
Unlike ext4 ordered mode, data blocks are written to the journal during fsync (JD/f1 ) and the data block
bitmap is read on write instead of fsync as delayed allocation is disabled. On data block write failure during
checkpointing, the error is logged to syslog. The second fsync writes the data and metadata from the second
write to the journal but fails the fsync call with errno set to EIO.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

in the lost+found directory. However, applications that encode information in the filename still
suffer data loss.
Since ext4 must refer to both the inode bitmap and inode table when allocating a new inode, it

detects the inconsistency and fails the system call. Additionally, to prevent further errors on creat,
ext4 locks the entire group described by the inode bitmap and recommends running fsck to set
the bit and unlock the group. This trace can be found in Figure 4c.
Ext4 Data Mode: Ext4 data mode differs from ordered mode in that data blocks are first written to
the journal and then later checkpointed to their final in-place block locations.

As shown in Table 1, the behavior of fsync in ext4 data mode is similar to that in ext4 ordered
mode for most cases: for example, on a write error, pages may be marked clean even if they were not
written out to disk, the file system is remounted in read-only mode on journal failures, meta-data
failures are not reported by fsync, and files can end up with non-overwritten blocks in the middle
or end.

However, the behavior of ext4 data mode differs in one important scenario. Because data blocks
are first written to the journal and later to their actual block locations during checkpointing, the
first fsync after a write may succeed even if a data block will not be successfully written to its
permanent in-place location. As a result, a data-block fault causes the second fsync to fail instead
of the first; in other words, the error reporting by fsync is delayed due to a failed intention [39].
This trace can be seen in Figure 5.

3.3.2 XFS. XFS is a journaling file system that uses B-trees. Instead of performing physical jour-
naling like ext4, XFS journals logical entries for changes in metadata.
Figure 6a shows a trace of XFS without any failures for w𝑠𝑢 . As shown in Table 1, from the

perspective of error reporting and fsync behavior, XFS is similar to that of ext4 ordered mode.
Specifically, failing to write data blocks (trace in Figure 6b) leads to fsync failure and the faulty
data pages are marked clean even though they contain new data that has not been propagated to
disk; as a result, applications that read this faulty data will see the new data only until the page
has been evicted from the page cache. Similarly, failing to write a journal block will cause fsync
failure (trace in Figure 6c), while failing to write a metadata block will not. XFS remains available
for reads and writes after data-block faults.
XFS handles fsync failures in a few ways that are different than ext4 ordered mode. First, on a

journal-block fault, XFS shuts down the file system entirely (Figure6c) instead of merely remounting
in read-only mode; thus, all subsequent read and write operations fail. Second, XFS retries metadata
writes when it encounters a fault during checkpointing; the retry limit is determined by a value in
/sys/fs/xfs/*/error/metadata/*/max_retries, but is infinite by default. If the retry limit is
exceeded, XFS again shuts down the file system. We provide traces for w𝑚𝑎 in Figure 7 to highlight
the retries.

The multi-block append workload illustrates how XFS handles metadata when writes to related
data blocks fail. If the write to the first data block fails, XFS writes no metadata to the journal
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Fig. 6. Blockviz traces for w𝑠𝑢 on XFS:
The figure shows three traces corresponding to different fault injection configurations of dm-loki.

a) when no faults are injected: On open, XFS reads inode information from disk if not already cached
(IN); it includes directory entries. On fsync, like ext4, XFS writes the data block and then journals
metadata related to the changes. During a checkpoint, the inode information (IN) with updated mtime
is written to disk.

b) dm-loki configured to fail the data block write: XFS immediately fails the fsync after a data block
failure. However, the updated mtime is journaled in the second fsync and checkpointed during the
sleep.

c) dm-loki configured to fail the journal block write: On journal block failure, XFS fails the fsync and
shuts down the file system (�XFS).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and fails the fsync immediately. When later data blocks are successfully appended to this file,
the metadata is updated which creates a non-overwritten block in the file corresponding to the
first write. However, if no new data blocks are successfully appended, the on-disk metadata is not
updated to reflect any of these last writes (i.e., the size of the file is not increased). 6 Thus, while in
ext4 a failed write always causes a non-overwritten block, in XFS, non-overwritten blocks cannot
exist at the end of a file. However, for either file system, if the failed blocks remain in the page
cache, applications can read those blocks regardless of whether they are in the middle or the end of
a file.
During checkpointing, since XFS either shuts down or retries writes on metadata failures, we

do not observe the same inconsistencies as described for ext4 when running the multi-file create
workload w𝑑𝑖𝑟 .

3.3.3 Btrfs. Btrfs is a copy-on-write file system that avoids writing to the same block twice except
for the superblock which contains root-node information. Figure 8a provides a trace of w𝑠𝑢 without
any failures along with a description of Btrfs’s data structures. At a high level, some of the actions
in Btrfs are similar to those in a journaling file system: instead of writing to a journal, Btrfs writes
to a log tree to record changes when an fsync is performed; instead of checkpointing to fixed
in-place locations, Btrfs writes to new locations and updates the roots in its superblock. However,
since Btrfs is based on copy-on-write, it has a number of interesting differences in how it handles
fsync failures compared to ext4 and XFS, as shown in Table 1.

Like ext4 ordered mode and XFS, Btrfs fails fsync when it encounters data-block faults (trace in
Figure 8b). However, unlike ext4 and XFS, Btrfs effectively reverts the contents of the data block
(and any related metadata) back to its old state (and marks the page clean). Thus, if an application
reads the data after this failure, it will never see the failed operation as a temporary state. As in the
other file systems, Btrfs remains available after this data-block fault.

6To be precise, the mtime and ctime of the file are updated, but not the size of the file. Additional experiments removed for
space confirm this behavior.

ACM Trans. Storage, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Anthony



Handling fsync Failures 1:15
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Fig. 7. Blockviz traces for w𝑚𝑎 on XFS:
The figure shows two traces corresponding to different fault injection configurations of dm-loki.

a) when no faults are injected: Like ext4 ordered mode, XFS uses delayed allocation and must allo-
cate new blocks to the inode since w𝑚𝑎 is appending to the file. Unlike ext4’s free space block
bitmap, XFS tracks free space for every allocation group (AG - groups of inodes) using two B+trees
which need to be read from disk if not cached. First, it reads the allocation group free space
block (AGF) which contains information about the B+trees. Next, it reads the allocation group
free list block (AGFL) which contains pointers to free space for growing the B+trees. It then
reads the two B+trees, the first is sorted by block number (B3B) to quickly find space closer to
a given block. The second tracks space by size (B3C) to quickly find free space of a given size.
On fsync, the data block is written and the free space changes are journaled along with the in-
ode changes. During checkpointing, these changes are written to their actual disk locations. Since the
B+trees did not need to grow, there are no modifications to AGFL. With no failures, the pattern repeats
for the next write, fsync, and sleep.

b) dm-loki configured to fail a metadata block during checkpointing: During checkpointing, XFS retries
the failed write to the allocation group free space block (AGF). The retry limit is configurable and set to
infinity by default. However, if the limit is reached, XFS shuts down the file system and recommends
running fsck. While this trace shows faults for AGF, we observe similar behavior for failures on B3B,
B3C, and IN.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Similar to faults to the journal in the other file systems, faults to Btrfs’s log tree can result in a
failed fsync and a remount in read-only mode. However, as seen in Figure 8c, Btrfs can recover
from log-tree failures by attempting a full-tree commit immediately after the failure (as opposed
to periodically during checkpointing). If the full-tree commit succeeds, Btrfs ignores the log-tree
failure and returns success for fsync. However, if there were another failure during the full-tree
commit, Btrfs would fail the fsync and remount in read-only mode. As Btrfs also performs a full-
tree commit periodically during checkpointing, unlike ext4 and XFS, faults during checkpointing
(trace in Figure 8d) result in a remount in read-only mode.

The multi-block append workload illustrates interesting behavior in Btrfs block allocation. If
the first append fails, the state of the file system, including the B-tree that tracks all free blocks,
is reverted. However, the next append will continue to write at the (incorrectly) updated offset
stored in the file descriptor, creating a hole in the file. Since the state of the B-tree was reverted,
the deterministic block allocator will choose to allocate the same block again for the next append
operation. Thus, if the fault to that particular block was transient, the next write and fsync will
succeed and there will simply be a one block hole in the file. If the fault to that particular block
occurs multiple times, future writes will continue to fail; as a result, Btrfs may cause more holes
within a file than ext4 and XFS. However, unlike ext4 and XFS, the file does not have block overwrite
failures.
During checkpointing, since Btrfs remounts in read-only mode on metadata write failures, we

do not observe the same inconsistencies as described for ext4 when running the multi-file create
workload w𝑑𝑖𝑟 .
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Fig. 8. Blockviz traces for w𝑠𝑢 on btrfs:
The figure shows four traces corresponding to different fault injection configurations of dm-loki.

a) when no faults are injected: In a copy-on-write file system like btrfs, any modification to data or
metadata involves creating a copy of the modified nodes in the tree. To avoid too much redundant
I/O by forcing repeated copy-on-write for modified parts of the trees, Btrfs journals fsync-triggered
copy-on-writes to a log tree (LT). The super block (SB) is also updated as it contains a reference to the
updated log tree root. During sleep, btrfs checkpoints state by performing a full tree commit (FTC)
which involves writing all modified trees and deleting items from the log tree, followed by a write to
the superblock which contains references to all the tree roots.

b) dm-loki configured to fail the data block write: On data block failure, btrfs fails the fsync and reverts
state. Unlike ext4 and XFS, we observe no write requests during the second fsync. However, the
modification and reversal trigger an unnecessary full tree commit during sleep.

c) dm-loki configured to fail a block write in the log tree: When btrfs encounters a log tree write failure,
it logs the error to syslog and starts a full tree commit. Since we only fail one particular block, the full
tree commit succeeds and fsync does not fail. As there are no changes after the last full tree commit,
there are no write requests during sleep.

d) dm-loki configured to fail a block write during a full tree commit: If btrfs encounters a write failure
during a full tree commit, it logs the error to syslog and remounts in read-only mode (¸ReadOnly). We
observe this behavior for any full tree commit, both periodically (in w𝑠𝑢 , w𝑚𝑎 , w𝑑𝑖𝑟 during sleep) and
triggered on log tree failures as seen in subfigure c. When triggered due to log tree failures, the fsync
fails with errno set to EIO.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3.4 File System Summary. We now present a set of observations for the file systems based on the
questions from Section §3.2.5.

File System Behavior to fsync Failures. On all the three file systems, only data and journal-
block failures lead to fsync failures (Q1). Metadata-block failures do not result in fsync failures
as metadata blocks are written to the journal during an fsync. However, during a checkpoint,
any metadata failure on XFS and Btrfs lead to unavailability (Q8) while ext4 logs the error and
continues.7
On both modes of ext4 and XFS, metadata is persisted even after the file system encounters a

data-block failure (Q2); timestamps are always updated in both file systems. Additionally, ext4
appends a new block to the file and updates the file size while XFS does so only when followed
by a future successful fsync. As a result, we find non-overwritten blocks in both the middle and
end of files for ext4, but in only the middle for XFS (Q10). Btrfs does not persist metadata after
a data-block failure. However, because the process file-descriptor offset is incremented, future
writes and fsyncs cause a hole in the middle of the file (Q10).

7Ext4’s error handling behavior for metadata has unintended side-effects but we omit the results as the rest of the paper
focuses on data-block failures.
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A=KeepGoing A=Restart
BC=Keep
BC=Evict

ext4o,xfs =
{ clean

differs
immediate

ext4d =

{ clean
differs
next fsync

btrfs =
{ clean

matches
immediate

Applications OV FF KC VC KNF OV FF KC VC KNF OV FF KC VC KNF

Redis
LMDB
LevelDB

SQLite Rollback
WAL

PostgreSQL Default
Direct I/O

Table 2. Findings for Applications on fsync Failure. The table lists the different types of errors that manifest
for applications when fsync fails due to a data-block write fault. The errors (OV, FF, KC, VC, KNF) are described
in §4.2. We group columns depending on how a file system reacts to an fsync failure according to our findings in
§3.3 for Q4, Q5, and Q6. For example, both ext4 ordered and XFS (ext4o,xfs) mark a page clean, the page differs
in in-memory and on-disk content, and the fsync failure is reported immediately. For each application, we
describe when the error manifests, in terms of combinations of the four different execution environment factors
(§4.2) whose symbols are provided at the top left corner. For example, OldValue manifests in Redis in the first
group (ext4-ordered, XFS) only on (A)App=Restart,(BC)BufferCache=Evict. However, in the last group (Btrfs), the
error manifests both on App=Restart,BufferCache=Evict as well as App=Restart,BufferCache=Keep, depicted as a
combination of the two symbols.

Among the three, XFS is the only file system that retries metadata-block writes. However, none
of them retry data or journal-block writes (Q3).
All the file systems mark the page clean even after fsync fails (Q4). In both modes of ext4 and

XFS, the page contains the latest write while Btrfs reverts the in-memory state to be consistent
with what is on disk (Q5).

We note that even though all the file systems mark the page clean, this is not due to any
behavior inherited from the VFS layer. Each file system registers its own handlers to write pages to
disk (ext4_writepages, xfs_vm_writepages, and btrfs_writepages). However, each of these
handlers call clear_page_dirty_for_io before submitting the bio request and do not set the dirty
bit in case of failure in order to avoid memory leaks8, replicating the problem independently.
Failure Reporting. While all file systems report data-block failures by failing fsync, ext4

ordered mode, XFS, and Btrfs fail the immediate fsync. As ext4 data mode puts data in the journal,
the first fsync succeeds and the next fsync fails. (Q6). All block write failures, irrespective of block
type are logged in the syslog (Q7).
After Effects. Journal block failures always lead to file-system unavailability. On XFS and

Btrfs, metadata-block failures do so as well (Q8). While ext4 and Btrfs remount in read-only mode,
XFS shuts down the file system (Q9). Holes and non-overwritten blocks (Q10) have been covered
previously as part of Q2.

Recovery. None of the file systems alert the user to run a file-system checker. However, as Btrfs
records intentionally created holes as zero-byte extents, holes created through fsync failures (as
seen in w𝑚𝑎) can be detected by btrfsck due to missing zero-byte extent information (Q11).

4 APPLICATION STUDY
We now focus on how applications are affected by fsync failures. In this section, we first describe
our fault model with CuttleFS, followed by a description of the workloads, execution environment,

8Ext4 focuses on the common case of users removing USB sticks while still in use. Dirty pages that can never be written to
the removed USB stick have to be marked clean to unmount the file system and reclaim memory [26].
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and the errors we look for. Then, we present our findings for five widely used applications: Redis
(v5.0.7), LMDB (v0.9.24), LevelDB (v1.22), SQLite (v3.30.1), and PostgreSQL (v12.0).

4.1 CuttleFS
We limit our study to how applications are affected by data-block failures as journal-block failures
lead to unavailability and metadata-block failures do not result in fsync failures (§3.3). Our fault
model is simple: when an application writes data, we inject a single fault to a data block or a sector
within it.

We build CuttleFS9 [10] - a FUSE [42] file system to emulate the different file-system reactions
to failures defined by our fault model. Instead of using the kernel’s page cache, CuttleFS maintains
its own page cache in user-space memory. Write operations modify user-space pages and mark
them dirty while read operations serve data from these pages. When an application issues an fsync
system call, CuttleFS synchronizes data with the underlying file system.

CuttleFS has two modes of operation: trace mode and fault mode. In trace mode, CuttleFS tracks
writes and identifies which blocks are eventually written to disk. This is different from just tracing
a write system call as an application may write to a specific portion of a file multiple times before
it is actually flushed to disk.

In fail mode, CuttleFS can be configured to fail the i𝑡ℎ write to a sector or block associated with
a particular file. On fsync failure, as CuttleFS uses in-memory buffers, it can be directed to mark a
page clean or dirty, keep the latest content, or revert the file to the previous state. Error reporting
behavior can be configured to report failures immediately or on the next fsync call. In short,
CuttleFS can react to fsync failures in any of the ways mentioned in Table 1 (Q4,5,6). Additionally,
CuttleFS accepts commands to evict all or specific clean pages.

We configure CuttleFS to emulate the failure reactions of the file systems studied in Section 3.3.
For example, in order to emulate ext4 ordered mode and XFS (as they both have similar failure
reactions), we configure CuttleFS to mark the page clean, keep the latest content, and report
the error immediately. Henceforth, when presenting our findings and referring to characteristics
emulated by CuttleFS, we use CuttleFSext4o,xfs for the above configuration. When the page is marked
clean, has the latest content, but the error is reported on the next fsync, we use CuttleFSext4d.
When the page is marked clean, the content matches what is on disk, and the error is reported
immediately, we refer to it as CuttleFSbtrfs.

4.2 Workloads and Execution Environment
We run CuttleFS in trace mode and identify which blocks are written to by an application. For
each application, we choose a simple workload that inserts a single key-value pair, a commonly
used operation in many applications. We perform experiments both with an existing key (update)
as well as a new key (insert). The keys can be of size 2B or 1KB.10 The values can be of size 2B
or 12KB. We run experiments for all four combinations. The large keys allow for the possibility
of failing a single sector within the key and large values for pages within a value. Since SQLite
and PostgreSQL are relational database management systems, we create a single table with two
columns: keys and values.
Using the trace, we generate multiple failure sequences for each of the identified blocks and

sectors within them. We then repeat the experiment multiple times with CuttleFS in fault mode,

9Cuttlefish are sometimes referred to as the “chameleons of the sea” because of their ability to rapidly alter their skin color
within a second. CuttleFS can change characteristics much faster.
10As LMDB limits key sizes to 511B, we use key sizes of 2B and 511B for LMDB experiments.
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each time with a different failure sequence and file-system reaction. In order to observe the effects
after a fault, we dump all key-value pairs before and after the workload.

We look for the following types of errors when performing the experiments:
• OldValue (OV): The system returns the new value for a while but then reverts to an old value,
or the system conveys a successful response but returns the old value later on.

• FalseFailure (FF): The system informs the user that the operation failed but returns the new
value in the future.

• KeyCorruptions (KC) and ValueCorruptions (VC): Corrupted keys or values are obliviously
returned.

• KeyNotFound (KNF): The system informs the user that it has successfully inserted a key but it
cannot be found later on, or the system fails to update a key to a new value but the old key-value
pair disappears as well.
We also identify the factors within the execution environment that cause all these errors to be

manifested. If an application maintains its own in-memory data structures, some errors may occur
only when an application restarts and rebuilds in-memory state from the file system. Alternatively,
the manifestation of these errors may depend on state changes external to the application, such as
a single page eviction or a full page cache flush. We encode these different scenarios as:
• App=KeepGoing: The application continues without restarting.
• App=Restart: The application restarts either after a crash or a graceful shutdown. This forces
the application to rebuild in-memory state from disk.

• BufferCache=Keep: No evictions take place.
• BufferCache=Evict: One or more clean pages are evicted.
Note that BufferCache=Evict can manifest by clearing the entire page cache, restarting the file

system, or just evicting clean pages due to memory pressure. A full system restart would be the
combination of App=Restart and BufferCache=Evict, which causes a loss of both clean and dirty
pages in memory while also forcing the application to restart and rebuild state from disk.

Configuring CuttleFS to fail a certain block and react according to one of the file-system reactions
while the application runs only addresses App=KeepGoing and BufferCache=Keep. The remaining
three scenarios are addressed as follows. To simulate App=Restart and BufferCache=Keep, we restart
the application and dump all key-value pairs, ensuring that no page in CuttleFS is evicted. To address
the remaining two scenarios, we instruct CuttleFS to evict clean pages for both App=KeepGoing
and App=Restart.

4.3 Findings
We configured all five applications to run in the form that offers most durability and discuss what
they are in their respective sections. Table 2 summarizes the per-application results across different
failure characteristics.
Note that these results are only for the simple workload that inserts a single key-value pair. A

complex workload may exhibit more errors or mask the ones we observe.

Redis: Redis is an in-memory data-structure store, used as a database, cache, and message
broker. By default, it periodically snapshots in-memory state to disk. However, for better durability
guarantees, it provides options for writing every operation that modifies the store to an append-only
file (aof) [22] and how often to fsync the aof. In the event of a crash or restart, Redis rebuilds
in-memory state by reading the contents of the aof.
We configure Redis to fsync the file for every operation, providing strong durability. Thus,

whenever Redis receives a request like an insert operation that modifies state, it writes the request
to the aof and calls fsync. However, Redis trusts the file system to successfully persist the data
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and does not check the fsync return code. Regardless of whether fsync fails or not, Redis returns
a successful response to the client.
As Redis returns a successful response to the client irrespective of fsync failure, FalseFailures

do not occur. Since Redis reads from disk only when rebuilding in-memory state, errors may occur
only during App=Restart.

On CuttleFSext4o,xfs and CuttleFSext4d, Redis exhibits OldValue, KeyCorruption, ValueCorruption,
and KeyNotFound errors. However, as seen in Table 2, these errors occur only on BufferCache=Evict
and App=Restart. On BufferCache=Keep, the page contains the latest write which allows Redis to
rebuild the latest state. However, when the page is evicted, future reads will force a read from disk,
causing Redis to read whatever is on that block. OldValue and KeyNotFound errors manifest when
a fault corrupts the aof format. When Redis restarts, it either ignores these entries when scanning
the aof, or recommends running the aof checker which truncates the file to the last non-corrupted
entry. A KeyCorruption and ValueCorruption manifest when the fault is within the key or value
portion of the entry.
On CuttleFSbtrfs, Redis exhibits OldValue and KeyNotFound errors. These errors occur on

App=Restart, regardless of buffer-cache state. When Redis restarts, the entries are missing from the
aof as the file was reverted, and thus, the insert or update operation is not applied.

LMDB:. Lightning Memory-Mapped Database (LMDB) is an embedded key-value store which
uses B+Tree data structures whose nodes reside in a single file. The first two pages of the file are
metadata pages, each of which contain a transaction ID and the location of the root node. Readers
always use the metadata page with the latest transaction ID while writers make changes and update
the older metadata page.

LMDB uses a copy-on-write bottom-up strategy [14] for committing write transactions. All new
nodes from leaf to root are written to unused or new pages in the file, followed by an fsync. An
fsync failure terminates the operation without updating the metadata page and notifies the user. If
fsync succeeds, LMDB proceeds to update the old metadata page with the new root location and
transaction ID, followed by another fsync.11 If fsync fails, LMDB writes an old transaction ID to
the metadata page in memory, preventing future readers from reading it.

On CuttleFSext4o,xfs, LMDB exhibits FalseFailures. When LMDB writes the metadata page, it only
cares about the transaction ID and new root location, both of which are contained in a single sector.
Thus, even though the sector is persisted to disk, failures in the seven other sectors of the metadata
page can cause an fsync failure.12 Asmentioned earlier, LMDBwrites an old transaction ID (say ID1)
to the metadata page in memory and reports a failure to the user. However, on BufferCache=Evict
and App=Restart (such as a machine crash and restart), ID1 is lost as it was only written to memory
and not persisted. Thus, readers read from the latest transaction ID which is the previously failed
transaction.

LMDB does not exhibit FalseFailures in CuttleFSext4d as the immediate successful fsync results in
a success to the client. Instead, ValueCorruptions and OldValue errors occur on BufferCache=Evict,
regardless of whether the application restarts or not. ValueCorruptions occur when a block con-
taining a part of the value experiences a fault. As LMDB𝑚𝑚𝑎𝑝𝑠 () the file and reads directly from
the page cache, BufferCache=Evict such as a page eviction leads to reading the value of the faulted
block from disk. OldVersion errors occur when the metadata page experiences a fault. The file

11To be precise, LMDB does not do a write followed by an fsync for metadata page updates. Instead, it uses a file descriptor
that is opened in O_SYNC mode. On a write, only the metadata page is flushed to disk. On failure, it uses a normal file
descriptor.
12CuttleFS can fail the i𝑡ℎ write to a sector or block(§4.1). We observed FalseFailures in LMDB when CuttleFS was configured
to fail writes to sectors in the metadata pages.
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system responds with a successful fsync initially (as data is successfully stored in the ext4 journal).
For a short time, the metadata page has the latest transaction ID. However, when the page is evicted,
the metadata page reverts to the old transaction ID on disk, resulting in readers reading the old
value. KeyCorruptions do not occur as the maximum allowed key size is 511B.

As CuttleFSbtrfs reports errors immediately, it does not face the problems seen in CuttleFSext4d.
FalseFailures do not occur as the file is reverted to its previous consistent state. We observe this
same pattern in many of the applications and omit them from the rest of the discussion unless
relevant.

LevelDB:. LevelDB is a widely used key-value store based on LSM trees. It stores data internally
using MemTables and SSTables [36]. Additionally, LevelDB writes operations to a log file before
updating the MemTable. When a MemTable reaches a certain size, it becomes immutable and is
written to a new file as an SSTable. SSTables are always created and never modified in place. On a
restart, if a log file exists, LevelDB creates an SSTable from its contents.
We configure LevelDB to fsync the log after every write, for stronger durability guarantees. If

fsync fails, the MemTable is not updated and the user is notified about the failure. If fsync fails
during SSTable creation, the operation is cancelled and the SSTable is left unused.

On CuttleFSext4o,xfs, as seen in Table 2, LevelDB exhibits FalseFailures only on App=Restart with
BufferCache=Keep. When LevelDB is notified of fsync failure to the log file, the user is notified
of the failure. However, on restart, since the log entry is in the page cache, LevelDB includes it
while creating an SSTable from the log file. Read operations from this point forward return the
new value, reflecting FalseFailures. FalseFailures do not occur on BufferCache=Evict as LevelDB
is able to detect invalid entries through CRC checksums [36]. Faults in the SSTable are detected
immediately and do not cause any errors as the newly generated SSTable is not used by LevelDB in
case of a failure.
On CuttleFSext4d, LevelDB exhibits KeyNotFound and OldVersion errors when faults occur in

the log file. When inserting a key-value pair, fsync returns successfully, allowing future read
operations to return the new value. However, on BufferCache=Evict and App=Restart, LevelDB
rejects the corrupted log entry and returns the old value for future read operations. Depending
on whether we insert a new or existing key, we observe KeyNotFound or OldVersion errors when
the log entry is rejected. Additionally, LevelDB exhibits KeyCorruption, ValueCorruption, and
KeyNotFound errors for faults that occur in the SSTables. Ext4 data mode may only place the data
in the journal and return a successful fsync. Later, during checkpointing, the SSTable is corrupted
due to the fault. These errors manifest only on BufferCache=Evict, either while the application is
running or on restart, depending on when the SSTable is read from disk.

SQLite: SQLite is an embedded RDBMS that uses BTree data structures. A separate BTree is used
for each table and index but all BTrees are stored in a single file on disk, called the “main database
file” (maindb). During a transaction, SQLite stores additional information in a second file called the
“rollback journal” (rj) or the “write-ahead log” (wal) depending on which mode it is operating in.
In the event of a crash or restart, SQLite uses these files to ensure that committed or rolled-back
transactions are reflected in the maindb. Once a transaction completes, these files are deleted. We
perform experiments for both modes.
SQLite RollBack: In rollback journal mode, before SQLite modifies its user-space buffers, it

writes the original contents to the rj. On commit, the rj is fsyncd. If it succeeds, SQLite writes a
header to the rj and fsyncs again (2 fsyncs on the rj). If a fault occurs at this point, only the state
in the user-space buffers need to be reverted. If not, SQLite proceeds to write to the maindb so
that it reflects the state of the user-space buffers. maindb is then fsyncd. If the fsync fails, SQLite
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needs to rewrite the old contents to the maindb from the rj and revert the state in its user-space
buffers. After reverting the contents, the rj is deleted.
On CuttleFSext4o,xfs, SQLite Rollback exhibits FalseFailures and ValueCorruptions on Buffer-

Cache=Evict, regardless of whether the application restarts or not. When faults occur in the rj,
SQLite chooses to revert in-memory state using the rj itself as it contains just enough information
for a rollback of the user-space buffers. This approach works well as long as the latest contents are
in the page cache. However, on BufferCache=Evict, when SQLite reads the rj to rollback in-memory
state, the rj does not contain the latest write. As a result, SQLite’s user-space buffers can still have
the new contents (FalseFailure) or a corrupted value, depending on where the fault occurs.
SQLite Rollback exhibits FalseFailures in CuttleFSext4d for the same reasons mentioned above

as the fsync failure is caught on the second fsync to the rj. Additionally, due to the late error
reporting in CuttleFSext4d, SQLite Rollback exhibits ValueCorruption and KeyNotFound errors when
faults occur in the maindb. SQLite sees a successful fsync after writing data to the maindb and
proceeds to delete the rj. However, on App=Restart and BufferCache=Evict, the above mentioned
errors manifest depending on where the fault occurs.
On CuttleFSbtrfs, SQLite Rollback exhibits FalseFailures for the same reasons mentioned above.

However, they occur irrespective of whether buffer-cache state changes due to the fact that the
contents in the rj are reverted. As there is no data in the rj to recover from, SQLite leaves the
user-space buffers untouched. ValueCorruptions cannot occur as no attempt is made to revert the
in-memory content.
SQLite WAL: Unlike SQLite Rollback, changes are written to a write-ahead log (wal) on a

transaction commit. SQLite calls fsync on the wal and proceeds to change in-memory state. If
fsync fails, SQLite immediately returns a failure to the user. If SQLite has to restart, it rebuilds
state from the maindb first and then changes state according to the entries in the wal. To ensure
that the wal does not grow too large, SQLite periodically runs a Checkpoint Operation to modify
maindb with the contents from the wal.

On CuttleFSext4o,xfs, as seen in Table 2, SQLite WAL exhibits FalseFailures only on App=Restart
with BufferCache=Keep, for reasons similar to LevelDB. It reads valid log entries from the page
cache even though they might be invalid due to faults on disk.
On CuttleFSext4d, SQLite WAL exhibits ValueCorruption and KeyNotFound Errors when there

are faults in the maindb during a Checkpoint Operation for the same reasons mentioned in SQLite
Rollback.

PostgreSQL:. PostgreSQL is an object-relational database system that maintains one file per
database table. On startup, it reads the on-disk tables and populates user-space buffers. Similar to
SQLite WAL, PostgreSQL reads entries from the write-ahead log (wal) and modifies user-space
buffers accordingly. Similar to SQLite WAL, PostgreSQL runs a checkpoint operation, ensuring
that the wal does not grow too large. We evaluate two configurations of PostgreSQL: the default
configuration and a DirectIO configuration.
PostgreSQL Default: In the default mode, PostgreSQL treats the wal like any other file, using

the page cache for reads and writes. PostgreSQL notifies the user of a successful commit operation
only after an fsync on the wal succeeds. During a checkpoint, PostgreSQL writes data from its
user-space buffers into the table and calls fsync. If the fsync fails, PostgreSQL, aware of the
problems with fsync [8], chooses to crash. Doing so avoids truncating the wal and ensures that
checkpointing can be retried later.
On CuttleFSext4o,xfs, PostgreSQL exhibits FalseFailures for reasons similar to LevelDB. While

App=Restart is necessary to read the entry from the log, BufferCache=Evict is not. Further, the
application restart cannot be avoided as PostgreSQL intentionally crashes on an fsync failure. On
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BufferCache=Keep, PostgreSQL reads a valid log entry in the page cache. On BufferCache=Evict,
depending on which block experiences the fault, PostgreSQL either accepts or rejects the log entry.
FalseFailures manifest when PostgreSQL accepts the log entry. However, if the file system were
to also crash and restart, the page cache would match the on-disk state, causing PostgreSQL to
reject the log entry. Unfortunately, ext4 currently does not behave as expected with mount options
data_err=abort and errors=remount-ro (§3.3.1).

Due to the late error reporting in CuttleFSext4d, as seen in Table 2, PostgreSQL exhibits OldVersion
and KeyNotFound Errors when faults occur in the database table files. As PostgreSQL maintains
user-space buffers, these errors manifest only on BufferCache=Evict with App=Restart. During a
checkpoint operation, PostgreSQL writes the user-space buffers to the table. As the fault is not yet
reported, the operation succeeds and the wal is truncated. If the page corresponding to the fault is
evicted and PostgreSQL restarts, it will rebuild its user-space buffers using an incorrect on-disk
table file. The errors are exhibited depending on where the fault occurs. While KeyNotFound errors
occur in other applications when a new key is inserted, PostgreSQL loses existing keys on updates
as it modifies the table file in-place.

PostgreSQL DIO: In the DirectIO mode, PostgreSQL bypasses the page cache and writes to the
wal using DirectIO. The sequence of operations during a transaction commit and a checkpoint are
exactly the same as the default mode.

FalseFailures do not occur as the page cache is bypassed. However, OldVersion and KeyNotFound
errors still occur in CuttleFSext4d for the same reasons mentioned above as writes to the database
table files do not use DirectIO.

5 DISCUSSION
We now present a set of observations and lessons for handling fsync failures across file systems
and applications.
#1: Existing file systems do not handle fsync failures uniformly. In an effort to hide cross-
platform differences, POSIX is intentionally vague on how failures are handled. Thus, different file
systems behave differently after an fsync failure (as seen in Table 1), leading to non-deterministic
outcomes for applications that treat all file systems equally. We believe that the POSIX specification
for fsync needs to be clarified and the expected failure behavior described in more detail.
#2: Copy-on-Write file systems such as Btrfs handle fsync failures better than existing
journaling file systems like ext4 and XFS. Btrfs uses new or unused blocks when writing data to
disk; the entire file system moves from one state to another on success and no in-between states
are permitted. Such a strategy defends against corruptions when only some blocks contain newly
written data. File systems that use copy-on-write may be more generally robust to fsync failures than
journaling file systems.
#3: Ext4 data mode provides a false sense of durability. Application developers sometimes
choose to use a data journaling file system despite its lower performance because they believe data
mode is more durable [12]. Ext4 data mode does ensure data and metadata are in a “consistent state”,
but only from the perspective of the file system. As seen in Table 2, application-level inconsistencies
are still possible. Furthermore, applications cannot determine whether an error received from
fsync pertains to the most recent operation or an operation sometime in the past. When failed
intentions are a possibility, applications need a stronger contract with the file system, notifying them
of relevant context such as data in the journal and which blocks were not successfully written.
#4: Existing file-system fault-injection tests are devoid of workloads that continue to run
post failure.While all file systems perform fault-injection tests, they are mainly to ensure that
the file system is consistent after encountering a failure. Such tests involve shutting down the file
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system soon after a fault and checking if the file system recovers correctly when restarted. We
believe that file-system developers should also test workloads that continue to run post failure, and
see if the effects are as intended. Such effects should then be documented. File-system developers
can also quickly test the effect on certain characteristics by running those workloads on CuttleFS
before changing the actual file system.
#5: Application developers write OS-specific code, but are not aware of all OS-differences.
The FreeBSD VFS layer chooses to re-dirty pages when there is a failure (except when the device
is removed) [6] while Linux hands over the failure handling responsibility to the individual file
systems below the VFS layer (§3.3.4).We hope that the Linux file-system maintainers will adopt a
similar approach in an effort to handle fsync failures uniformly across file systems. Note that it is
also important to think about when to classify whether a device has been removed. For example,
while storage devices connected over a network aren’t really as permanent as local hard disks,
they are more permanent than removable USB sticks. Temporary disconnects over a network need
not be perceived as device removal and re-attachment; pages associated with such a device can be
re-dirtied on write failure.
#6: Application developers do not target specific file systems.We observe that data-intensive
applications configure their durability and error-handling strategies according to the OS they are
running on, but treat all file systems on a specific operating system equally. Thus, as seen in Table 2,
a single application can manifest different errors depending on the file system. If the POSIX standard
is not refined, applications may wish to handle fsync failures on different file systems differently.
Alternatively, applications may choose to code against failure handling characteristics as opposed to
specific file systems, but this requires file systems to expose some interface to query characteristics
such as “Post Failure Page State/Content” and “Immediate/Delayed Error Reporting”.
#7: Applications employ a variety of strategies when fsync fails, but none are sufficient. As
seen in Section 4.3, Redis chooses to trust the file system and does not even check fsync return
codes, LMDB, LevelDB, and SQLite revert in-memory state and report the error to the application
while PostgreSQL chooses to crash. We have seen that none of the applications retry fsync on
failure; application developers appear to be aware that pages are marked clean on fsync failure
and another fsync will not flush additional data to disk. Despite the fact that applications take
great care to handle a range of errors from the storage stack (e.g., LevelDB writes CRC Checksums
to detect invalid log entries and SQLite updates the header of the rollback journal only after the
data is persisted to it), data durability cannot be guaranteed as long as fsync errors are not handled
correctly.While no one strategy is always effective, the approach currently taken by PostgreSQL to
use direct IO may best handle fsync failures. If file systems do choose to report failure handling
characteristics in a standard format, applications may be able to employ better strategies. For
example, applications can choose to keep track of dirtied pages and re-dirty them by reading and
writing back a single byte if they know that the page content is not reverted on failure (ext4, XFS).
On Btrfs, one would have to keep track of the page as well as its content. For applications that
access multiple files, it is important to note that the files can exist on different file systems.
#8: Applications run recovery logic that accesses incorrect data in the page cache.Applications
that depend on the page cache for faster recovery are susceptible to FalseFailures. As seen in LevelDB,
SQLite, and PostgreSQL, when the wal incurs an fsync failure, the applications fail the operation
and notify the user; In these cases, while the on-disk state may be corrupt, the entry in the page
cache is valid; thus, an application that recovers state from the wal might read partially valid entries
from the page cache and incorrectly update on-disk state. Applications should read the on-disk
content of files when performing recovery.
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#9: Application recovery logic is not tested with low level block faults. Applications test
recovery logic and possibilities of data loss by either mocking system call return codes or emulating
crash-restart scenarios, limiting interaction with the underlying file system. As a result, failure
handling logic by the file system is not exercised. Applications should test recovery logic using
low-level block injectors that force underlying file-system error handling. Alternatively, they could
use a fault injector like CuttleFS that mimics different file-system error-handling characteristics.

6 RELATEDWORK
In this section, we discuss how our work builds upon and differs from past studies in key ways. We
include works that study file systems through fault injection, error handling in file systems, and
the impact of file-system faults on applications.
Our study on how file systems react to failures is related to work done by Prabhakaran et al.

with IRON file systems [53] and a more recent study conducted by Jaffer et al. [43]. Other works
study specific file systems such as NTFS [31] and ZFS [62]. All these studies inject failures beneath
the file system and analyze if and how file systems detect and recover from them. These studies use
system-call workloads (e.g., writes and reads) that make the file system interact with the underlying
device.
While prior studies do exercise some portions of the fsync path through single system-call

operations, they do not exercise the checkpoint path. More importantly, in contrast to these past
efforts, our work focuses specifically on the in-memory state of a file system and the effects of future
operations on a file system that has encountered a write fault. Specifically, in our work, we choose
workloads that continue after a fault has been introduced. Such workloads help in understanding
the after-effects of failures during fsync such as masking of errors by future operations, fixing the
fault, or exacerbating it.

Mohan et al. [49] use bounded black-box crash testing to exhaustively generate workloads and
discover many crash-consistency bugs by simulating power failures at different persistence points.
Our work focuses on transient failures that may not necessarily cause a file system to crash and the
effect on applications even though a file system may be consistent. Additionally, we inject faults in
the middle of an fsync as opposed to after a successful fsync (persistence point).
Gunawi et al. describe the problem of failed intentions [39] in journaling file systems and

suggest chained transactions to handle such faults during checkpointing. Another work develops
a static-analysis technique named Error Detection and Propagation [40] and conclude that file
systems neglect many write errors. Even though the Linux kernel has improved its block-layer
error handling [11], file systems may still neglect write errors. Our results are purely based on
injecting errors in bio requests that the file system can detect.
Vondra describes how certain assumptions about fsync behavior led to data loss in Post-

greSQL [60]. The data loss behavior was reproduced using a device mapper with the dm-error
target which inspired us to build our own fault injector (dm-loki [4]) atop the device mapper,
similar to dm-inject [43]. Additionally, the FSQA suite (xfstests) [7] emulates write errors using
the dm-flakey target [5]. While dm-flakey is useful for fault-injection testing, faults are injected
based on current time; the device is available for x seconds and then exhibits unreliable behavior
for y seconds (x and y being configurable). Furthermore, any change in configuration requires
suspending the device. To increase determinism and avoid relying on time, dm-loki injects faults
based on access patterns (e.g., fail the 2nd and 4th write to block 20) and is capable of accepting
configuration changes without device suspension.
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Recent work has shifted the focus to study the effects of file-system faults in distributed storage
systems [37] and high-performance parallel systems [32]. Similarly, our work focuses on under-
standing how file systems and applications running on top of them behave in the presence of
failures.

7 CONCLUSIONS
Applications that care about data must care about how data is written to stable storage. IO requests
such as read and write system calls do not always translate to device level requests as the page cache
buffers contents in volatile memory. Therefore, applications are able to leverage the performance
benefits of the page cache without any modification to their source code. However, in cases where
applications require specific data in the page cache to be written to disk immediately, fsync must
be invoked.

In this paper, we described why fsync may fail, and how three different file systems (ext4, XFS,
Btrfs) currently handle these failures. We also described how applications use fsync to provide
durability guarantees, and the consequences of incorrectly handling fsync failures.

7.1 File Systems
File systems are tasked with a heavy burden. They must be able to support applications that care
about performance as well as those that care about durability. They must make both options efficient
while leaving the trade-off decision to the application developers. File-system developers have
spent considerable time and effort optimizing the common case and ensuring durability, year after
year, as hardware technology advances. However, while most hardware advancements introduce
increased performance and robustness, advancements in availability have changed the way devices
fail. Changes from the fail-stop model to the fail-partial model [52, 53] required changes in how
failures were handled. With incomplete specifications for failure handling, file-system developers
chose to interpret the standard differently, causing non-uniform behavior across file systems as
seen in Section 3.3.
We hope that file-system developers will eventually agree on a standard way to handle fsync

failures. However, the current situation requires application developers to be aware of differences
between file systems. Unfortunately, the post-failure characteristics described in this paper were
either not documented or not easily accessible; most of the error-handling knowledge lies with
file-system maintainers. Tracing and visualization tools like blockviz (§3.2.3) can provide useful
insights into file-system behavior. While application developers are free to download and use these
tools, we hope that file-system maintainers can use them to aid in better documentation; short
traces can clearly explain file-system behavior for common workloads.

A good fault-injection toolchain facilitates easier failure-handling studies and testing. While the
device-mapper framework has a few modules to inject errors, it is far from complete. The dm-loki
kernel module (§3.2.2) and an error emulation tool in prior work by Jaffer et al. [43] are useful
contributions that can aid future fault-injection studies. However, such tools currently work under
the neatly abstracted block layer in the kernel. With the advent of low-latency storage devices and
kernel-bypass techniques, fault-injection toolchains must change accordingly.

7.2 Applications
Most applications that provide durability guarantees are aware that fsync can fail. Of the five
applications we studied, Redis was the only one that did not have any fsync error-handling code.
However, due to the differences in file-system fsync failure handling, no single application-level
error-handling strategy works well for all file systems.
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One way that applications expand their user base is by supporting multiple operating systems.
Making an application portable can take significant effort just for the commonly used features. Given
the current state of non-uniform post-failure characteristics, achieving correct failure handling on
every file system and operating system is a herculean task. However, informing users of durability
guarantees and potential data-loss concerns on different file systems they support, would be an
excellent addition to the already well maintained online documentation that current applications
provide.
While many of our application findings are tied to the fact that file systems mark dirty pages

clean even on a failed write, they may remain relevant even after the issue is fixed. If a file system
were to re-dirty the previously marked clean pages belonging to the failed write, an application
may still recover state from the dirty pages rather than from disk. Such an application may then
proceed to serve results which could potentially be lost if the machine crashes before the dirty
pages are written to disk successfully. However, if file systems choose to revert the content of all
dirty pages involved in a failed fsync (as seen in Btrfs), our findings will no longer be applicable to
applications using write-ahead log strategies with fsync error-handling code.

Applications that choose to test their error-handling strategies and provide durability guarantees
must not rely entirely on mocking system call return values. Since error-handling code may involve
accessing state on the erroneous system, mocks must also replicate state of said system after the
error. While injecting faults at the device level is a more reliable method, it is challenging to express
fault-injection intents at the block level without access to file-level abstractions. We believe that
tools like CuttleFS (§4.1) that offer the ability to inject faults for certain file offsets and evict
cached pages on demand will be useful for applications that wish to test the effectiveness of their
error-handling strategies.
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