Scale and Performance in a Filesystem Semi-Microkernel

Jing Liu, Anthony Rebello, Yifan Dai, Chenhao Ye,
Sudarsun Kannan*, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseauu

University of Wisconsin-Madison

Abstract

We present uFS, a user-level filesystem semi-microkernel.
uFS takes advantage of a high-performance storage devel-
opment kit to realize a fully-functional, crash-consistent,
highly-scalable filesystem, with relative developer ease. uFS
delivers scalable high performance with a number of novel
techniques: careful partitioning of in-memory and on-disk
data structures to enable concurrent access without lock-
ing, inode migration for balancing load across filesystem
threads, and a dynamic scaling algorithm for determining
the number of filesystem threads to serve the current work-
load. Through measurements, we show that uFS has good
base performance and excellent scalability; for example,
uFS delivers nearly twice the throughput of ext4 for Lev-
elDB on YCSB workloads.

CCS Concepts: » Software and its engineering — File
systems management; Operating systems.

Keywords: Filesystem, Microkernel, Direct Access

1 Introduction

Recent work in high-performance networking has ushered
in a renaissance of microkernel-based approaches [31,
38, 45, 52]. Made possible by the large number of CPU
resources available in modern, multicore machines, these
systems deliver high performance to end applications via a
user-level multi-threaded networking service, thus hoisting
most networking functionality out of the kernel, while leav-
ing other OS functionality in the main monolithic OS (i.e.,
Linux). We call this kernel architecture a semi-microkernel.
The advantages of the semi-microkernel approach
are manifold, including much faster code velocity for
the hoisted subsystem (kernel code being challenging
to develop quickly and correctly) and better vertical
integration with end applications (kernel code being hard
to tailor to specific use cases) [38, 41]. Importantly, these
ends are achieved without sacrificing security and other
important kernel properties.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permissions @acm.org.
SOSP’21, October 26-29, 2021, Virtual Event, Germany
Copyright is held by the Owner/Author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8709-5/21/10...$15.00.
http://dx.doi.org/10.1145/3477132.3483581

Rutgers University*

In this paper, we explore the semi-microkernel approach
but for a different and important OS subsystem: the local
filesystem. The time is ripe for such an investigation for the
following three reasons. First, high performance storage
devices, based on non-volatile memory technologies,
stress existing kernel protection mechanisms; there is a
notable and high overhead to trapping in and out of the
kernel [9, 54]. Second, the same code velocity issues that
exist in networking stacks exist in kernel filesystems; the
development of new features is slow [37]. Finally, the
advent of new storage development kits — essentially custom
libraries that give direct and powerful device controls to
applications — are readily utilized at user-level and can
deliver high performance without kernel involvement.

To assess the utility of the filesystem semi-microkernel
(or “filesystem as a process” [35]), we design, implement,
and evaluate uFS, a crash-consistent user-level filesystem.
The uFS system consists of two main components: the uFS
server and the uFS library. The uFS server is implemented as
amulti-threaded process built atop the Storage Performance
Development Kit (SPDK) [55]; applications link with
the uFS library to communicate with it and request file
service via high-performance interprocess communication
channels. The rest of the operating system remains as
is, acting as an intermediary on rare events (e.g., process
startup) to provide authentication, but (importantly) does
not participate in filesystem requests.

Our main focus within this paper is on the absolute
performance and scale of uFS. Can such a system deliver
high performance under varying application demands,
while enabling the benefits of user-level development and
deployment? What are the key mechanisms and policies
necessary to extract peak performance from underlying
high-performance devices?

uFS achieves its performance goals through the following
design. The basic architecture of the uFS server contains
a single primary and a variable number of worker threads,
much like the original Google File System [21]. For
simplicity, the primary handles the metadata workload
(e.g., file creations and deletions), whereas workers handle
the mainline data path (e.g., reads and writes to files). uFS
adopts a “shared nothing” data parallel architecture [56]
across workers to improve cache locality and increase
scalability; important data structures are designed so as not

to require synchronization across workers. The key unit of
allocation across workers is the inode; at any moment, a file
inode is owned by a single worker which serves all reads
and writes to that file. To provide scalable crash consistency,
uFS again carefully partitions data structures. Finally,
uFS reassigns inodes across workers to balance load and
dynamically scales the number of workers to demand, thus
utilizing only as many CPU cores as needed.

The uFS library is also carefully designed for perfor-
mance, including lease-based [23] caching of data and file
descriptors to reduce client-server communication. The
library also includes various other optimizations, mostly
designed to reduce copying while maintaining security.

We evaluate uFS with a series of microbenchmarks and
real application workloads. We compare to Linux ext4 [40],
a traditional, time-tested and optimized kernel-based
filesystem. Via microbenchmarks, we establish the baseline
performance of uFS, showing that when utilizing only a
single thread, it performs similarly to ext4 (sometimes
better, sometimes slightly worse). We also show that the
adaptive load management works well, achieving nearly
peak performance while minimizing the number of cores
used by uFS. Finally, through a series of real application
workloads, we demonstrate the most significant benefits
of the scalable semi-microkernel approach. Specifically,
uFS improves performance of a mail server, a web server,
and a database application from 1.2x to 3x.

The rest of this paper is structured as follows. We
first cover background on microkernels and storage
development kits (§2), and then dive into the design of
uFS (§3). We next evaluate uFS (§4), discuss related work
(§5), and conclude (§6).

2 Background

Two trends motivate our work. The first is the emergence
of the semi-microkernel as a high-performance approach
to subsystem design, mostly in the domain of networking.
The second is the development of storage development
kits, which enable high-performance, user-level direct
access to modern devices. Together these trends provide
the foundations for the creation of uFS.

2.1 Microkernel-based Approaches

Microkernels have long played a part in the discussion of
how to best structure operating system services. One of
the earliest microkernels, developed in the late 1960’s, was
Brinch Hansen’s Nucleus [24], argued for a microkernel
approach based on modularity. The next generation of
microkernels used similar arguments. For example, in
the mid-1980s Mach [48, 66] stated: “[Mach] provides a
small set of primitive functions designed to allow more
complex services and resources to be represented as
references to objects.” However, performance studies
revealed high caching costs [10], perhaps reducing interest
in microkernels for general-purpose usage.

In later years, microkernels have seen a resurgence, both
in research and in practice, across various domains. For
example, some variants of the L3 microkernel provide high
performance [34], and L3 is widely used on phones and
other embedded devices. Furthermore, the more compact
nature of these systems has led to pioneering efforts in OS
verification [32].

Most relevant to this work, recent efforts in the net-
working domain, including IsoStack, Snap, TAS, and
Shenango [31, 38, 45, 52], have created a new type of
microkernel, which we refer to as a semi-microkernel.
A semi-microkernel works in tandem with the main
(monolithic) operating system, but realizes a partial or even
entire OS subsystem (in this case, the networking stack)
inside a user-level process. Applications wishing to use its
services communicate with the semi-microkernel process
via high-performance IPC channels.

The semi-microkernel approach has numerous benefits,
as these works have articulated. Likely most important is
code velocity, i.e., the ability to quickly develop, modify,
and deploy system software. Instead of the slow pace
common in kernel development, the hoisted subsystem can
be developed in a manner more similar to application code.
Application-level tools and testing frameworks can also be
utilized, further improving developer productivity.

However, other benefits exist as well [31, 38]. Partic-
ularly important is the ability to scale system services
independently from the applications using them [31]. When
a particularly system-intensive workload is running, the
semi-microkernel can recruit more resources and handle
the load, regardless of the number of application threads.
Similarly, when there are a large number of application
threads but little system demand, the semi-microkernel can
reduce its usage (perhaps down to one core).

While this approach has seen a great deal of activity and
success in the networking domain, less work has arisen
in the context of filesystems, where high performance
approaches have mostly centered around user-level libraries
(possibly with some kernel support) [9, 17, 30, 28, 33].
However, the emergence of storage development kits has
now made it possible to explore the utility of a filesystem
semi-microkernel; we discuss these kits next.

2.2 Storage Performance Development Kit
High-performance devices have led to the rise of user-level
development kits. These libraries allow applications to
directly access devices and bypass the kernel entirely. For
example, the Data Plane Development Kit (DPDK) [19]
consists of libraries to accelerate packet processing
on a range of CPU architectures, enabling a variety of
network-oriented applications to be readily implemented.
The Storage Performance Development Kit (SPDK) [55]
is open-source software that enables the creation of high
performance user-mode storage applications running on
NVMe devices. In our approach, uFS is the “application”

while the user applications link with the uFS library to pass
requests to the uFS server, which then directly uses the
SPDK library APIs to perform I/O and provide the expected
filesystem services.

The SPDK is realized as a user-mode device driver, and,
as such, the kernel is not involved in any interactions with
the device (indeed, once active, the kernel no longer can
access the device at all). SPDK provides an abstraction of a
queue pair to submit requests and receive responses; within
an application (in our case, the uFS server), each thread is
assigned its own queue pair, and can submit requests to the
device without coordination (i.e., locking).

In this work, we focus on the lowest level SPDK APIs,
which enable direct submission of requests to the device.
Specifically, reads and writes are submitted via calls to
spdk_nvme_ns_cmd_read and spdk_nvme_ns_cmd_write,
respectively. Higher level interfaces (such as the block
stack) are provided by SPDK but not utilized herein.

SPDK provides a polling-based interface via a non-
blocking call to spdk_nvme_gpair_process_completions.
This approach works well for high-performance de-
vices [43] and is more natural at user-level (where event
handling can be clumsy or inefficient) but requires care, as
excessive polling will waste CPU resources.

Memory management is also important when using
the SPDK, as memory must be pinned to enable DMA to
and from the NVMe device. To facilitate this, two calls
(spdk_dma_malloc and spdk_dma_free) are provided. The
current SPDK implementation uses Linux huge pages, and
thus the calls to allocate memory must be used judiciously.

In general, the growing popularity of these types of
toolkits gives rise to the question: can SPDK (or similar
libraries) enable the construction of not only a specific
high-performance application (which was perhaps the
intended use-case), but a high-performance user-space
filesystem? We believe the answer is yes, and develop an
architecture to investigate this question more deeply.

3 uFS Design and Implementation

Designing and implementing a new filesystem using the
semi-microkernel approach involves addressing a wide
range of issues. To begin, we describe issues necessary for
correctness and base-line efficiency given a single-threaded
uFS server: managing interactions between the application,
uFSserver, and I/O device; scheduling requests; and
library-side caching to avoid unnecessary interactions. We
then expand to issues related to scalable performance with
a multi-threaded server; we efficiently partition on-disk
and in-memory structures across threads with an approach
where each inode is owned by a specific worker and
directory operations are handled by a primary thread. Next,
we describe how crash consistency can be added to uFS
without harming performance; each thread independently
writes to a globally-ordered logical journal. Finally, we
discuss how a multi-threaded server can scalably allocate

App-1 App-2

init() exit()

OS Kernel

@ App-Wi MsgRing

@ Shared Mem

Pinned Mem

0000

uServer
Figure 1: Architecture of uFS, a Filesystem Semi-Microkernel.
Multiple applications can share a single uF'S. App-1 has a separate
ring-buffer to communicate with each uServer worker; to mini-
mize data transfer, App-1 contains fd and data caches and shares
memory with uServer. uServer contains multiple workers pinned
to cores, of which one acts as a primary; the load manager thread
is not pinned. Only initialization must pass through the OS kernel.

cores and distribute load using an approach where each
worker is assigned a goal to accomplish.

3.1 Single-Threaded uServer

We introduce a single-threaded version of uFS to discuss
the fundamental issues for a filesystem semi-microkernel:
request scheduling, data structures, and caching.

Basic Architecture: As shown in Figure 1, uFS is com-
posed of a filesystem process (uServer) and a library (uLib)
linked with each application. The uServer is a user-level
process within its own address space; we begin by assuming
uServer is composed of a single thread, but this limitation
is removed in the next section. We generally assume that
each thread of uServer is pinned to a dedicated core. uServer
interacts with the storage device with a hardware submis-
sion/completion queue pair containing NVMe commands;
pinned memory is used to transfer data. uLib, which is dy-
namically linked into each application, offers POSIX com-
patibility and coordinates the connection to uServer. Control
and data transfers between uLib and uServer are separated.
For control, uFS uses a per-application thread-safe lockless
ring buffer. For data, each application I/O thread performs
allocations from thread-private memory that is shared with
uServer.

The only time in which uFS interacts with the OS kernel
is for initial authentication: when an application begins,
uLib transparently invokes a new system call uFS __init. This
system call assigns a key to each application and retrieves
the application’s credentials (i.e., pid, uid, and gid), which
are then stored in uServer. This key is returned to the
application and passed to uServer as part of any operation
that requires permission checks.

uFS is POSIX-compliant with the exception of support
for extended attributes, links, mmap, and chmod/chown.

Many applications run seamlessly with uFS because of
such compatibility [28, 60]. Supporting mmap could
further improve the usability of uFS. One could leverage
userfaultfd to dispatch an application’s uFS-related page
faults for mmap’d files to the uServer; we leave this to
future work. uFS is still an initial implementation and is
missing some optimizations found in mature filesystems
such as read-ahead and delayed allocation.

Scheduling: To provide low latency and high through-
put across clients, uFS balances attending to client requests
with keeping the device utilized. The single-threaded server
iterates through five tasks: receiving requests from clients
in the message rings and placing them in a single inter-
nal ready queue; processing requests in the ready queue
(currently in FIFO order); attending to background activity
(e.g., flushing dirty blocks to the device and freeing blocks
from deleted inodes); initiating device requests; polling the
device for request completion; and notifying the client of re-
sults. Processing a client request may generate intermediate
operations that are also placed in the ready queue (e.g., path-
name lookup creates intermediate operations for reading
and checking the permissions of each intermediate inode
and directory). The server continues polling and serving
requests while other I/O operations are underway.

Data Structures: uFS uses on-disk data structures simi-
lar to other UNTX-based filesystems: superblocks, inodes,
bitmaps, and directory entries. On-disk inodes are 512 bytes
with standard information; in-memory inodes track related
FDs and states (dirty, deleted, checkpointed). Bitmaps track
blocks of different extent sizes.

Directory entries are simple mappings of name to inode
number. The dentry cache is combined with a recursive
permission map. For example, for the directory /a/b, the
root map stores the pair <a, perms+map for /a>; the map
of /a, stores <b, perms+map of /a/b>. As path are visited,
they are cached in this permission map, with information
obtained from inodes as needed.

Caching and Copy Elimination: uFS reduces data
movement across the application, uServer, and device with
three techniques: caching, leases, and shared memory. First,
to avoid unnecessary I/O between the server and device,
uServer contains a pinned user-level block buffer cache for
inodes and data blocks. This simple LRU cache is accessed
by physical block number; therefore, in-memory data struc-
tures contain pointers to the original on-disk representa-
tions.

Second, to avoid IPC round trips between the client and
server, file descriptors and data are cached on clients with
leases. Client caching of file descriptors (FDs) enables a
subsequent open, close, or Iseek (if it does not depend on
current file size) to be handled locally by the client. The FD
lease is invalidated if another client renames or unlinks this
file, at which point the local objects are flushed to the server.
FD caching improves the latency of an open from 5.5us

down to 1.5us. The client cache of read data blocks is pri-
vate to each process (but shared by threads). Multiple client
processes can simultaneously hold a read lease; if a write re-
quest arrives at the server, the read lease will not be renewed
and the writer must wait for two lease terms to expire. When
there are no read leases, all reads are sent to the server. Read
caching improves the latency of 16KB reads from 10us on
the server down to 4.3-8us. We have also implemented a
prototype write cache, which is only enabled for the ScaleFS-
Bench and LevelDB experiments. When cached, writes to
newly created, private files are kept local until fsync is called
on that file, at which point the dirty data is flushed to uServer.

Third, to avoid copying data between the application
itself and uLib, applications can directly access a memory
region shared between uLib and uServer. uFS introduces
uFS_malloc to allocate from this shared space; the shared
buffer can be exposed to the end application for maximum
performance, or hidden within uLib for portability. For
example, an application can use a buffer from uFS_malloc
and pass it to uFS_allocated_write to avoid any copies
between the application, uLib, and uServer. Alternatively, if
an application calls uFS_write(buf), uLib calls uFS_malloc,
copies the contents of buf to shared memory, and then calls
uFS_allocated_write. Avoiding this extra copy significantly
improves latency; for a 16KB append, copying data to the
server requires 8.5us, sharing an allocated buffer requires
6.5us, and local caching requires only 2.3us.

3.2 Multi-Threaded uServer

A single-threaded semi-microkernel may not be able
to deliver the full bandwidth of current I/O devices to
applications. Traditional kernel filesystems scale with
additional cores with task parallelism: application threads
running in privileged mode can concurrently access the
same data on different cores. However, kernel filesystems
have scalability bottlenecks from data dependencies and
synchronization [13, 42].

In contrast, uFS adopts data parallelism for scalability,
dividing filesystem data structures across different cores in
a shared-nothing architecture [56]. Thus, the server process
can be composed of multiple threads. A multi-threaded
server must chose the granularity at which to divide
filesystem data across threads: the more fine-grained, the
more parallelism, but also the higher the complexity and
synchronization. In uFS, each server thread holds exclusive
ownership of an individual file and each file can be mapped
to any thread. Unlike other approaches that have statically
partitioned files or data across nodes [27, 29], in uFS the
mapping of inodes to threads is dynamic and independent
of the directory hierarchy. The drawback of per-inode
partitioning is that traffic to a single (or busy) large file
cannot be split across server threads.

Basic Architecture: uServer is divided into multiple
threads, with each thread pinned to a dedicated core. Each
thread accesses the shared storage device directly with its

W0 WI W2 W3 W4
@ Primary Core

@ Active Core
@ Unactive Core

Directory Inode
File Inode

ol & el -
W

Figure 2: Dynamic Inode Ownership. The dashed line indicates
sets of inodes owned by each worker other than the primary;
there is no relationship between the directory namespace and
ownership. All inodes begin on the primary, but may be reassigned
based on load. The primary owns all directory inodes.
own qpair; gpairs are not shared across threads, so no lock-
ing is needed. Similarly, each server thread has its own ring
buffer to communicate with uLib in each application.
uServer is composed of one or more worker threads;
one of the worker threads also acts as a primary. A ring
buffer is added between the primary and other workers for
communication within uServer. Each worker owns different
file inodes and thus handles corresponding file operations.
Beyond regular inode operations, the primary has two addi-
tional responsibilities. First, the primary owns all directory
inodes; as a result, directory operations are serialized in
the primary. By locating all directories in the primary, uFS
avoids complex coordination for cross-directory operations.
Second, the primary tracks the assignment of file inodes
to threads. The primary possesses global knowledge of
current inode assignments and serves as the central hub
for the mechanism of reassigning inodes. All file inodes
are initially assigned to the primary, but will be reassigned
to other workers depending on load. A division of inodes
across server threads is illustrated in Figure 2.

For directory operations, uLib contacts the primary
thread. For file operations, uLib can contact any thread; if
the contacted thread is not currently the file owner, uLib
is notified and redirects requests accordingly.

Scheduling and Caching: With a multi-threaded server,
each thread has its own ring buffer per-application, its own
ready queue, and its own gpairs with the storage device. In its
scheduling loop, each worker now also handles requests sent
by the primary. A multi-threaded server changes caching
only in that the server user-level buffer cache is now per-
worker. In our prototype, each thread is allocated a fixed
amount of pinned memory; dynamically sizing the buffer
cache per worker remains future work.

Data Structures: Filesystem data structures are dynam-
ically divided across server threads, with the inode as the
unit of division. The worker that currently owns an inode is
guaranteed to be the sole thread accessing the corresponding
data, both in-memory and on-disk; thus, the ownership of an
inode grants access to the data structures for handling opera-
tions involving only this inode (e.g., reading/writing/allocat-
ing data and reading inode metadata). With this separation,
there is no lock or data contention for file operations. To

-share-boundar;
Inode-Map no-share-boundary Inode-Map

Lol i]2] o[1]
10 -1 10 -1 I3

wo%(------ 2 aEwi wu(% %)Wl
. 1) -
K
[o4]
12
o

2,
/3.
W;% [1-0] [10]

Figure 3: Inode Reassignment. The left side shows initial state
and 5 steps for inode 2 to be reassigned from wli to w2. The right
shows final state: the InodeMap on the primary is updated and
w2 can use data associated with inode 2 in the buffer cache.

no-share-boundary

=
w
=
Z

PIN MEM

o

enable independent writing of inodes across threads uFS
ensures an inode fits in the atomic unit of the storage device
(512B).

To manage the dynamic assignment of inodes to workers,
the primary contains an inode map mapping inodes to work-
ers; each worker tracks a list of inodes it owns. Given the
primary owns all directory inodes, the primary modifies all
dentries and performs all directory operations (e.g., creat);
as a result, only the primary can allocate and deallocate
inodes. Thus, the primary owns the imap and all dentries.

The on-disk representation of data bitmaps are more
complex to handle since workers must allocate data blocks
without synchronization; although bitmaps provide efficient
allocation, they do entangle operations across threads given
512B atomic updates. The in-memory bitmap, in contrast,
can be shared by several threads given atomic updates to a
single cache line. Thus, the primary contains a dbmap block
allocation table that maps data bitmap blocks to workers.
Once a data bitmap block is used by a worker, that assign-
ment is immutable; each worker allocates many dbmaps
at a time to efficiently perform its own block allocations.

uServer also minimizes the sharing of in-memory data
structures across cores. The dentry cache plays a critical
role in performance, particularly for path resolution and per-
mission checking [61]. The scalable lock-free concurrent
dentry cache in uFS is based on an industry-quality hash
map [2]. As described previously, each level of a pathname
is a key in the map to retrieve the inode and the next level’s
map; the inode’s permission bits are compared with the
application’s uid and gid. The dentry cache is single-writer
(primary) and multi-reader (other workers). For most calls
to open or stat, the paths are present in the dentry cache and
readable by any worker. When an entry is not present, the
primary finishes the lookup and inserts the items into the
dentry cache. To guarantee atomicity, the primary handles
some operations. For example, for atomic renames, no
clients should see both filenames; thus, the primary deletes
the relevant items from the dentry cache, forcing workers
to redirect lookups to the primary.

Inode assignment mechanism: Figure 3 shows the
mechanisms for reassigning a file inode to a worker; the
policies for load balancing and determining the number of

cores are described in Section 3.4. The assignment steps are
as follows. 1) The owning thread, w1, initiates the migration
of inode 12 by removing 12 from its inode list and complet-
ing any related requests. The owner notifies the primary of
all state associated with I2 (e.g., opened FDs and entries in
the buffer cache). 2) The primary marks the owner of I2 in
its inode map as unknown and forwards this request to the
new owner, w2. 3) The new owner sets up 12’s context by
linking I2 into its own inode list and extracting the buffer
cache entries it can use (no copying is performed); it sends
an ack to the primary. 4) The primary changes 12’s owner
to w2 in the inode map 5) The primary notifies w1 that the
reassignment is complete. Any requests that arrive at a non-
owner are returned to the client to retry at the primary. Once
the primary knows the owner, it informs the client to redirect
requests to the new owner.

3.3 Crash Consistency
uFS is a crash-consistent filesystem based on ordered
metadata journaling [47]. Like other ordered metadata
journaling filesystems, uFS first writes user data blocks to
their in-place locations on disk; then, within a transaction
in the on-disk journal, it logs a description of the metadata
changes; after the transaction is marked committed, the
in-place metadata can be checkpointed and the transaction
marked free. If a crash occurs after the transaction is com-
mitted but before it is freed, recovery replays the changes
from the transaction. Without journaling, while running,
uFS only flushes dirty data blocks for files and directories
and on a graceful shutdown writes bitmaps and inodes.

Basic Architecture: uFS achieves highly-scalable per-
formance with crash consistency by allowing each thread
to write to a shared journal with minimum coordination.
uFS achieves this by leveraging the property that each inode
has one owner and, therefore, the owner can perform the
transactions involving that inode. However, this ownership
is complicated by the fact a migrated inode may contain
blocks that were allocated on different workers. Physical
journaling at the per-block level, as in ext4, would require
writing block bitmaps that are not owned by the inode owner,
requiring coordination.

uFS avoids coordination with logical journaling. Each
in-memory inode tracks the associated updates to other
metadata structures (e.g., the data bitmap) in its ilog, an
in-memory per-inode logical log that moves with its inode
if reassigned. Thus, when a worker writes a transaction with
an inode, it owns everything needed to apply the logical
changes. When an inode is reassigned, it leaves no residual
state with the previous thread [18]; as a result, an fsync
on a reassigned inode requires no coordination with other
threads. The primary performs similar operations for all
directories with a logical dirlog.

uFS uses a global journal; the global journal simplifies
the task of applying transactions in order, while still
allowing threads to write concurrently. Because each thread

knows the number of journal blocks for a transaction, it can
atomically reserve a contiguous range of blocks; threads
writing later simply reserve the next range. Journal recovery
handles the case where entries that appear earlier in the
journal are not committed.

Commits: In the common case of an fsync of a file, the
owning thread commits the single ilog. For batched trans-
actions, multiple ilog entries from the same worker can be
placed in the same journal entry. For a full system sync, each
worker fsyncs its own inodes. Directory operations (such
as rename) that require atomicity across inodes imply that
those inodes have the same owner; in uFS, all directories are
owned by the primary fulfilling this requirement. Like ext4,
fsync on a dirty directory will fsync all dirty directories; the
primary commits the dirlog and ilogs of all dirty directory
inodes. uFS avoids orphaned inodes and correctly handles
directories that may be committed before the new inodes
they reference.

While most data structures across threads are indepen-
dent of one another, some exceptions exist. First, an unlink
of an inode owned by a worker other than the primary
(which owns the directory) requires reassigning the inode to
the primary. Second, dependencies can occur across file in-
odes due to re-allocated data blocks. For example, unlinking
an inode X may deallocate a block B which is then allocated
to inode Y. To prevent the incorrect ordering of Y, X in the
journal, deallocated blocks can be reallocated only after
they are committed (similar to reuse after notification [12]).

Checkpoints: A checkpoint, triggered by low free space
in the journal, writes committed metadata (i.e., inodes,
bitmaps, and directory data) to their in-place locations. Since
the current in-memory metadata may be dirty and not yet
be committed, uFS maintains a stable in-memory copy of
all committed metadata that is used for checkpoints. uFS
uses message passing to update stable versions of data block
bitmaps on other workers.

Recovery: After a crash, committed transactions are re-
played. The primary challenge in uFS is to replay all com-
mitted transactions even if some appear after uncommitted
entries; this can occur since threads write concurrently to
the journal. If recovery were to stop at an incomplete trans-
action, committed transactions would be lost.

Incomplete transactions can be skipped for the following
reasons. First, multiple fsyncs to the same inode are
handled serially by the owner (or workers, in the case of
inode reassignment); thus, a later fsync to the same inode
will not complete if the previous fsync to that inode did
not. Similarly, if an incomplete entry contains multiple
inodes, it is guaranteed that none of those inodes are in
later transactions. Second, similar to other filesystems such
as ext4, XFS, and Btrfs [49], on an fsync failure, uFS will
accept no more writes; thus, if recovery encounters an
incomplete entry, no subsequent journal entries will involve
the same uServer thread.

Recovery finds the end of the journal by reading its
superblock. Since uFS updates this on-disk superblock only
periodically, the contents may be stale by N blocks; thus
recovery reads N blocks past the end to find valid entries.

3.4 Load Management

The final feature of uFS, load management, adapts the num-
ber of cores dedicated to the server and balances the alloca-
tion of inodes across those cores as a function of the current
workload. Determining the number of cores is both a chal-
lenge and an opportunity that does not exist for traditional
kernel filesystems. One option is to statically set the number
of uServer threads equal to the number of I/O-intensive
application threads; this enables each application thread to
send most of its work to a dedicated server thread. However,
for many workloads, there is a mismatch between the ideal
number of application and server threads: if a few server
threads saturate the I/O device, there is no benefit to adding
more; if a single client generates significant I/O, additional
threads may be useful. Therefore, the option we explore
is to dynamically choose the number of server threads to
obtain both high I/O throughput and a low core count.

For a given number of cores, uFS determines an
assignment of inodes to workers that balances the load with
a minimum of inode reassignments. This inode assignment
must take into account a number of factors. First, the amount
of work for each inode is different, depending on the rate of
requests, the types of requests (e.g., reads vs. writes or size),
and current system state (e.g., whether data is cached and
operations will be in-memory). Second, the amount of work
associated with an inode can change substantially over time
(e.g., accesses to a particular file can be bursty or only occur
in one phase of an application [25, 53]). Finally, co-locating
inodes from the same client can improve performance, due
to queueing delays.

Basic Architecture: uFS adds a low-overhead load man-
ager thread to the server (not pinned to a dedicated core); the
manager wakes periodically to gather load statistics from
each worker, decide on the number of cores to use in the
next window, and to direct the workers to perform load bal-
ancing. The manager has minimal responsibilities: it tells
each over-loaded worker only the goal it must achieve in
terms of how much load to redistribute; the manager does
not tell workers how to achieve this goal (e.g., which inodes
to redistribute). Thus, the overhead of identifying inodes
is distributed across the workers; each worker contains de-
tailed knowledge of the load caused by each inode and can
accurately determine which inodes should be moved. The
primary, handling all directory operations, has extra work
compared to other workers; this load is included naturally
in this approach and thus fewer file inodes may be allocated
to the primary.

Goal and Statistics: Though different goals are possible,
uFsS tries to minimize both the number of cores and the queu-
ing time of each request, by keeping each below a config-

urable threshold. Thus, each worker collects the CPU cycles
spent on useful work within its scheduling loop, the CPU
cycles spent on work for each client, and congestion, the
average number of independent requests in the queue ahead
of each request.! Statistics are smoothed across collection
windows; the manager does not need a globally-consistent
view and may read worker statistics at slightly different
times.

The manager translates between per-client congestion
and per-client load; both metrics are needed because clients
care about their observed congestion, whereas the system
can more easily manage load. The conversion takes into
account dependencies across synchronous requests from
the same client and non-linear effects at high loads.

Algorithm: Periodically (every 2ms), the manager de-
termines whether cores should be added/removed and/or
load should be redistributed. The current N workers are
split into source and destination sets based on whether their
congestion falls above or below a threshold. If there are no
workers with high congestion, the manager predicts that the
workers can be reduced to N — 1 if a set of workers can
accept all the load from the least-busy worker while main-
taining low congestion. Otherwise, the manager determines
if better load balancing on the current N workers would
reduce congestion below the threshold. Because keeping re-
quests from one client on the same worker reduces queueing
delays for synchronous requests, the manager first attempts
to move all load associated with an entire client; if this is
not sufficient, the manager determines percentages of client
load to move. Finally, if no amount of load can be moved
to meet the congestion goals, these steps are repeated with
N +1 cores. To increase stability, the predicted congestion
must match measurements for several windows before the
number of cores will be changed or load shifted.

At the end of each balancing window, the manager has
determined the amount of per-client load to shift from each
over-loaded worker to each under-loaded worker. This goal
is shared with each over-loaded worker, which uses per-
inode load statistics to determine a set of inodes with appro-
priate load. Workers avoid reassigning inodes with low (or
unknown) activity, since moving those inodes incurs over-
head without substantially shifting load. The worker uses
the inode reassignment mechanism described previously.

4 Evaluation

We evaluate uFS by answering the following questions:
How good is the baseline of single-threaded uFS compared
to ext4? Is uFS scalable with multiple server cores? Is
client-side caching effective? Does crash consistency add
significant overhead? Can uFS adapt to workload changes?
And, finally, how well does uFS handle an I/O-intensive
application such as LevelDB running the YCSB workloads?

Requests to the same inode are not independent because reassigning
that inode will not reduce the waiting time for related requests.

a) Rand | Mem Priv

Seq Disk | Share b) Parameter - c) Param Workload Range St
d read-a | in-mem/on-disk (4KB) core-a | On-disk/ | Nwrite@K) | N: | 19
rea X X X read-b | 4KB/16KB (on-disk) ; :
write X X X . in-mem + flush (1, o0) 7
read-c hot/ cold (4KB, in-mem) -
append - X X read-abe 2ra 21b. 2 rc core-b Think In-mem read T (us): 20
statl - - X - time + think(T) (15,2) 6
write-e 4KB/ 16KB (fsync) 2
statAll - - X . g core-c #files In-mem read clients: 12
o write-f overwr / appnd (in-mem)
listdir)) X write hot/ cold (overwr, in-mem) .6 4
creat - - X o8 ; core-d Write write(N) N(KB): | 17
R write-efg 2 w-e,2 w-f,2 w-g .
unlink - - X - size + flush (64,4K) | 5
all-abcefg | read-abc, write-efg
rename - - X

Figure 4: Microbenchmarks. Three new sets of microbenchmarks. a) 32 Single Op Benchmarks. An x indicates the specified parameter
is varied; - indicates it is not. Data operations are 4KB; writes are non-allocating. b) 9 Load-Balancing Benchmarks. Each base
workload contains 6 clients generating work that varies per inode. The combination workloads contain 6 clients from the base workloads.
Each client accesses between 50 and 200 different inodes. c) 8 Core Allocation Benchmarks. Each workload varies over time a specific
parameter: on-disk vs. in-memory, think time, number of files, and the size of operations. One version varies the parameter gradually
(e.g., in 19 discrete steps) while a second more abruptly (e.g., in 7 steps). Each workload contains up to 6 clients each accessing 40 files.

4.1 Platform and Correctness

We run all of our experiments on an Intel Xeon Scalable
Gold 6138 SkyLake 2.9GHZ processor with 20 physical
cores. We use one machine with 60GB (for microbench-
marks) and another with 120GB of RAM (for Filebench,
ScaleFS-Bench, and LevelDB). Each filesystem runs on an
Intel Optane 905P Series (960GB) SSD. The OS is Linux
5.4.0 and uFS uses SPDK 18.04.

uFS is implemented in about 35K lines of C++ code
and is publicly available [5]. We have also developed tools
to simplify development and to check correctness. Our
command line tool, cli, supports operations like listdir,
stat, and mkdir; cli also transfers files to and from the host
filesystem, explicitly manages inode ownership, and dumps
metadata for checking.

We ensure uFS passes the test cases in Linux’s LTP
project [36], adding inode reassignment across workers at
controlled points. We use LevelDB extensively to validate
data integrity since it stresses the filesystem and checksums
all operations.

We have experimentally verified that uFS is crash con-
sistent for a range of scenarios. Using an approach similar
to others [44, 46],> we emulate crashes by systematically
corrupting blocks in the on-disk journal; we recover with
those corrupted images and verify that the recovered
filesystem matches expectations. We use workloads with
multiple applications that perform allocations and commit
to the journal. After recovery, all files had the expected size
and data, and all bitmaps were consistent. We also test creat,
rename, mkdir, and unlink; all directories and files are as
expected and uFS is consistent after recovery.

4.2 Single-Threaded uFS

We have two goals in evaluating single-threaded uFS. First,
we demonstrate that with a single client, uFS delivers
reasonable performance relative to that of a traditional
kernel filesystem, ext4. We use ext4 as our standard because

2We cannot use CrashMonkey because the tool replays bio_requests
not present in SPDK.

itis a widely-used highly-optimized kernel filesystem that
scales well under many different workloads[42]; uFS uses
similar mechanisms and data structures to those in ext4 (as
opposed to the B-Trees in XFS [58] and Btrfs [39]). Second,
we show that as the number of clients increases, a single
uServer core is a bottleneck for I/O-intensive workloads.

To evaluate base performance and scalability, we
have created 32 single op microbenchmarks for data and
metadata primitives as described in the first table in Figure 4.
We present the base performance of single-threaded
uFS and ext4 in Figure 5 (data operations) and Figure 6
(metadata operations), both in (a) for later comparison with
the scaled uServerin (b) (§4.3).

For base performance, we examine only the left-most
point in each graph (1 client). For many in-memory data
operations, specifically read (sequential and random) and
append, ext4 and uFS perform similarly. The exceptions
are that ext4 performs better on in-memory overwrites
(sequential and random, shared and private files); one client
performs particularly well on ext4 because data is not
shared (nor invalidated) across CPU caches.

For on-disk workloads, uFS performs better for append
and random reads; with a single client, uFS outperforms
ext4 by 1.5x for random reads due to the efficiency of its
device-access path. Ext4 performs better for sequential
reads because read-ahead is not yet implemented in uFS;
disabling read-ahead in ext4 removes this advantage.
For on-disk overwrite workloads, we lower the kernel’s
dirty_flush_ratio to ensure that ext4 writes a similar amount
of data to disk as uFS; however, overwrites still perform
worse on uFS because it does not yet perform sophisticated
batching for background flushes. Finally, uFS performs
notably better for synchronous journal-intensive workloads
(e.g., sequential appends to disk) due to its fast device access.

For metadata operations from a single client (Figure 6 (a)),
uFS performs better than ext4 on listdir, create, and rename,
and similarly on stat and unlink; uFS performs especially
well on listdir by pre-fetching dentries during opendir. Over-

(a) Single-threaded uServer
RandRead-Disk-S

(b) Multi-threaded uServer

RandRead-Mem-P, RandRead-Mem-S50 RandRead-Disk-F;SOK_ RandRead-Disk-S

RandRead-Mem-P. RandRead-Mem-§ RandRead-Disk-P,
25M1 '25M- 50K 750K . 25M 25M Kq
0 o - - - 0 o
SeqRead-Mem-P SeqRead-Disk-P SeqRead-Disk-S SeqRead-Mem-P
25M 225N 3M4 25M 25M
. //
0 [0+= 0 [0
RandWrite-Mem-P RandWrite-Disk-P RandWrite-Disk-S RandWrite-Mem-P
10M4 1M 500K~ 10M4 1M 500K~
»"'— PO o 4 - sommtt
= ! !'l-— /4 =
0- [0 0- [[0
SeqWrite-Mem-P SeqWrite-Disk-P. SeqWrite-Disk-S SeqWrite-Mem-P SeqWrite-Disk-P. SeqWrite-Disk-S
5M- 1 M-+ 750KA 5M 1M M-+ 750K
© A d-Mem-P o A d-Mem-S o A d-Disk-P o A d-Disk-S ° :{‘F" o A d-Mem-S o A d-Disk-P o A d-Disk-S
end-Mem-| end-Mem- end-Disk- end-Disk- end-Mem-| end-Mem- end-Disk-| end-Disk-
5M PP 500K~ PP 500K PP 250K PP 5M PP 500K~ PP 500K PP 250K~ PP
D P i Y ——
__,-"' //—,@ _______________ -
0- = [[0 0- [[
= uFSnj -- ext4n] ext4nj-nora = uFS -- ext4 ext4-nora

Figure 5: Data Operation Performance: Single-Threaded vs. Multi-Threaded. I (a), the number of uServer cores is fixed at 1; in (b),
the number of uServer cores is scaled to match the number of clients (up to 10). In “*-Mem-*" workloads, client read-caches and the
server cache are warmed for uF'S; the buffer cache is warmed for ext4; writing cache in uF'S is not enabled and we ensure no disk access
happen in “*Write-Mem-*" cases. Results with ext4 no-readahead (i.e., nora) are shown for sequential reads from disk. “nj” indicates

the journaling is disabled and both ext4 and uF'S use journaling in (b).

(a) Single-threaded uServer

(b) Multi-threaded uServer

M- Stat1-Mem-P Stat1-Mem-S StatAll-Mem-P StatAll-Mem-S M- Stat1-Mem-P Stat1-Mem-S StatAll-Mem-P StatAll-Mem-S
¢"' t"' 4"" o"" &"'
[0- 0 [[0- 0
Listdir-Mem-P Listdir-Mem-S Create-Mem-P Create-Mem-S Listdir-Mem-P Listdir-Mem-S Mem-R
250K 250K 500K 250K 250K 250K1 500K "7 2250K1
/ / g / /
— e~
[T —— 0 P S — = 0 [S —— [o o
Unlink-Mem-P Unlink-Mem-S Rename-Mem-P Rename-Mem-S Unlink-Mem-P Unlink-Mem-S Rename-Mem-P
1My 750K 250K~ 250K ™ 750K 250K 250K
LT ~— ~——
‘4" > glimmmmmmmmee | mmmmmmmmmmmmmsmt | e L= ————mmw— | CTTTTTTTTTTTTT | e
0 0 o o o— 0 o o
— uFSnj -- extdnj — uFS -- ext4

Figure 6: Metadata Operation Performance: Single-Threaded vs. Multi-Threaded. In (a), the number of uServer cores is fixed at 1;
in (b), the number of uServer cores is scaled to match the number of clients (up to 10). In all the experiments, the benchmark suite performs
warmup round for both systems. “nj” indicates the journaling is disabled and both ext4 and uF'S use journaling in (b).

all, uFS is sufficiently well-optimized relative to ext4 for
uFS to be a reasonable semi-microkernel building block.

As illustrated by the full set of data points in Figure 5
(a) and Figure 6 (a), the scalability of uFS and ext4 with
additional clients is dramatically different. Although many
write and append workloads had comparable performance
on a single core, ext4 scales with the number of clients,
whereas uFS does not. For many of the metadata operations,
scalability is flat for both systems; one exception is stat,
for which ext4 scales but uFS does not. For many read
workloads, while both ext4 and uFS scale somewhat, ext4
scales better. We explore uFS for random on-disk reads
in more detail. Figure 7 shows the CPU utilization of the
uServer as a function of the bandwidth it is able to deliver;
although increasing the size of reads (4KB-64KB, across
lines) and the number of clients (within a line) improves
bandwidth, the single core is 100% utilized with just 2 or

3 clients and thus never obtains the peak device bandwidth
of 2.5GB/s. These results show that multiple server cores
are required for scalable performance.

4.3 Multi-Threaded uFS

Given a more intense I/O workload, the multi-threaded
uServer can effectively utilize additional cores. We demon-
strate this scalability for the single op microbenchmarks,
for Filebench’s Varmail and Webserver [59], and for
ScaleFS-Bench [7]. We show that journaling does not harm
the scalability of uFS, and uFS benefits significantly from
client-side caching.

Single Operations: Figure 5 (b) and Figure 6 (b) show
the performance of uFS and ext4, both with ordered meta-
data journaling, on the single op microbenchmarks. The
server is allocated as many cores as there are clients; this
represents the best-case performance for uFS when no shar-
ing of workers or load balancing is needed.

100 -

S

— 801

c

2 60 1

©

= 40

= - 4K
2 = 16K
z 20+ 32K
O -+ 64K

0 T T T 1

T
0.0 0.3 0.6 0.9 1.2
Device Bandwidth (GB/s)
Figure 7: Single-threaded Server Bottlenecks. CPU utilization
as a function of delivered bandwidth for different random read
sizes and numbers of clients with 1 uServer core.

1.5

Comparing uFS’s performance to that in Figure 5 (a),
we see that many operations benefit significantly from
additional server cores. In particular, the throughput of
reads to private on-disk files increases significantly since
each worker can perform independent I/O and quickly
reach the device throughput limit; uFS now scales slightly
better than ext4 with read-ahead disabled. Similarly, writes
(both random and sequential) and appends to private files,
whether in-memory or on-disk, scale since each worker can
be used effectively. The scalability of writes and appends
to shared files does not improve because the load is directed
to a single worker. uFS makes this trade-off based on the as-
sumption that even though file sharing is common, intensive
shared-file access within a small time interval is rare.

The scalability of reads to memory remains similar to
that with a single core since client caching was effective
to begin with. Finally, metadata operations involving
directories are still handled by the primary, and thus do
not scale; stat on private files and statall on private and
shared directories all scale well since groups of files can
be handled by different workers.

Comparing ext4 with journaling in Figure 5 (b) to ext4
without journaling in Figure 5 (a), we see that random writes
to private in-memory files perform much worse with ext4
journaling, because ext4 starts a journal transaction (and
suffers from spinlock contention) even though an overwrite
operation doesn’t require a new journal transaction [4]. The
improved performance of ext4 with journaling on create
is a known anomaly [42].

Journaling in uFS does not have as strong of an impact
because each worker thread participates in writing to the
journal. With more detailed experiments of uFS journaling
(not shown), we have verified that as the frequency of fsync
increases, performance of journaling decreases, as expected,
and this decrease is due to writing more data to the device
and not synchronization. Writing to the global journal
involves a small critical section to reserve the contiguous
blocks, but eliminating this synchronization does not
improve performance (validated by writing to per-worker
journals). We have also verified that journaling in uFS
does not impose overheads on write-intensive in-memory

workloads which must track logical changes to in-memory
inodes in ilogs. Journaling and no-journaling uFS obtain
equivalent throughput (graph not shown): about 900kops/s
with 64 byte writes and 350kops/s with 4K writes. All of our
subsequent experiments use journaling in both ext4 and uFS.

Varmail: uFS obtains good base performance and scala-
bility on I/O-intensive workloads beyond single operations.
The Varmail benchmark in Filebench [59] performs reads
and writes to many 16 KB files; we modify Varmail to per-
form periodic fsyncs so that data is written to disk during
the benchmark. Varmail stresses file allocation and deletion,
and is characterized by many small writes to separate files
followed by fsyncs. In uFS, the file creates are all performed
on the primary.

We compare uFS and ext4 scaling the number of clients,
closely examining the benefits of additional workers.® As
shown in the first graph of Figure 8, uFS is much more
scalable than ext4 on Varmail. Ext4 does not scale well
with additional clients because the one jbd2 journaling
thread becomes a bottleneck performing the many fsync
operations. uFS is well-suited to the Varmail workload
because each client reads and writes independent files,
which can be distributed efficiently across workers.

Even for the base case of a single client and worker, uFS
performs better than ext4 due largely to the difference in
fsync time (30us vs. 100us). When the number of clients is
scaled but uFS is limited to a single worker, uFS performs
better than ext4 up through 7 clients. Increasing the number
of uServer workers to 2, 3, and 4 continues to increase
throughput as each worker initiates more I/O requests;
increasing beyond 4 workers does not improve performance
because the primary is the bottleneck (CPU > 75%). These
results motivate the need to dynamically choose the number
of workers to not waste resources.

Webserver: We evaluate how well uFS handles read-
intensive in-memory workloads using the Webserver in
Filebench [59]. Each client opens, reads, and closes 10,000
16KB private files; a small write is performed to a log file
after 10 reads. Both ext4 and the uFS server easily cache the
working sets for all clients in main memory and thus neither
triggers substantial I/O read traffic. The Webserver stresses
the ability of a single worker to handle many appends to
a single file and for clients to efficiently cache recently-
accessed in-memory data.

We isolate uFS client cache performance by configuring
each client’s read cache to contain from O to 100% of
the client’s working set; each client’s FD cache fits all its
opened files (requiring only 64B/FD). The second graph of
Figure 8 shows uFS outperforms ext4 when the client cache
hit rate is above 25%: handling reads within the uLib client
is extremely efficient. Furthermore, uFS outperforms ext4

3Since Varmail is relatively static, uFS performs static inode balancing
such that the primary handles no file inodes given many other workers
(> 3), and only a percentage of file inodes with 1 or 2 others.

X
o == =
S uFS-1 uFS-2 0| — yFS-100% =+ uFS-75% o[— yFS -~ fdlease
v | — uFS-3 — uFS-4 s | uFS-50% uFS-0% s | readlease nolease
=1 =2 <
S == ext4
(5]
nx [2) % (2] %
a o o a
OoR O s| O s|
x| £ ccsememmmmmmTTTEITT N B
ol ——
Sl g 2 2]
T T T T T T T T 1 T T T T T T T T 1 T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10 1 2 3 5 6 7 8 9 10 i1 2 3 4 5 6 7 8 9 10

Number of Clients

4
Number of Clients

Number of Clients

Figure 8: Multi-threaded Varmail and Webserver. The first graph shows Varmail performance; different lines represent different
numbers of uServer threads. The second graph shows Webserver with different percentages of the workload fitting in the client cache.
The third graph shows the impact of leases in uFS for a 50% client cache hit rate.

50K smallfile 2- largefile . -
40K e~ L) e
3 o158 g
» 30K 2
7] o 1
2504
=20K © —ext4 .
10K 0.51 - ext4-ramdisk
—uFS-nocache
—=uFS
0 0 ———
0 0 2 4 6 8 10
num app num app

Figure 9: ScaleFS-Bench Performance. The throughput of
smallfile and largefile workloads. ext4-ramdisk indicates ext4 is
using ramdisk. In the second graph, uFS enables the write cache
to handle 256K continuous 4KB append before fsync().

with only a few clients when their append rate to a single
file can be handled by a single worker.

The third graph of Figure 8 shows the effectiveness of
FD and read leases for a 50% read-cache hit rate (patterns
for other hit rates, not shown, are similar). In this workload,
read leases without FD leases are not beneficial because
every read is preceded by an open. FD leases on their own
are effective since the benefit of an FD lease is much higher
than a read lease (open: 5.5us on server vs. 1.5us local;
16KB read: 10us on server vs. 4.3-8us local). As shown by
the final uFS performance, given an FD lease, a read lease
provides additional benefits.

Since the cost of a client opening a file and reading
from the buffer cache in ext4 (2.5us and 6.5us) is less
than the cost of a client transferring data from the server,
uFS performs client caching with read and FD leases.
While both leases are needed for uFS to outperform ext4
for read-intensive in-memory workloads, FD leases are
especially valuable given their low memory overhead.

ScaleFS-Bench: We evaluate uFS with two more work-
loads to better understand how uFS compares to ScaleFS,
a scalable kernel filesystem developed in xv6 [7]. We port
their smallfile and largefile benchmarks (with minimal mod-
ifications) and follow their methodology of using ext4 on
ramdisk as the baseline. We cannot compare ScaleFS di-
rectly to uFS due to a lack of hardware support for NVMe
in xv6.

In the first graph of Figure 9, each application creates
10,000 1KB files, calls sync once, reads each file, and
unlinks each file. uFS performs better than ext4 at each

data point in the graph, yet ext4 scales better due to the
burst unlink phase that stresses uFS’s primary worker. If we
eliminate the unlink phase, uFS has 1.4x performance on the
right-most data point, indicating an optimization for bulk
primary-only operations (such as unlink) would be useful.

In the second graph, each benchmark instance creates one
private file, issues 100MB of writes (4KB at a time), and fi-
nally calls fsync. uFS achieves device bandwidth (2GB/sec)
much faster than any others, yet shows some fluctuation
when increasing the number of applications. We believe that
more careful scheduling of device 10 is required to regulate
bursts from multiple concurrent uServer threads and provide
consistently high performance. Enabling the write cache
avoids unnecessary IPC and thus better utilizes the device.

One surprising finding is that comparisons should be
performed on actual devices — not ramdisk — even when
focusing on CPU scalability. As seen from the graphs,
ext4 on the fast SSD has similar or better performance
than ext4 on ramdisk. Upon further investigation (with the
RandRead-Disk-P workload in Figure 5), we found that the
kernel spends a large amount of time waiting on ramdisk
IO after yielding at io_schedule. Thus, the performance
of a filesystem run on ramdisk may be limited by the
less-optimized block layer.

4.4 Load Management

uFS balances load across available workers and adjusts the
number of workers to achieve low client congestion (perfor-
mance) and a reasonable core count (CPU efficiency). We
evaluate the load balancing and core allocation strategies
using well-controlled, dynamic workloads.

Load Balancing: We first demonstrate that uFS can bal-
ance inodes with different costs across a fixed number of
cores. We compare uFS to two alternatives: uFS_RR (round-
robin inode allocation on the same number of cores as
uFS) and uFS_max (each client is matched with a dedicated
worker). We stress different costs per inode by constructing
9 load balancing microbenchmarks that each vary one pa-
rameter as shown in the second table of Figure 4. For six
clients, uFS and uFS_RR are allocated only four workers
whereas uFS_max uses six.

Figure 10 compares the throughput of uFS and uFS_RR,
scaled to uFS_max. For all workloads, uFS achieves

B uFS

B uFS_RR

a b

(] abc e f 9 efg abcefg
read write all

Figure 10: Load Balancing Performance with Fewer Cores.
The throughput of uF'S and uF'S_RR running on only 4 workers are
each normalized to the throughput where each of the 6 clients has
its own dedicated worker. Each experiment is repeated 5 times.

B gradual | bursty
100%— 4.6 47 4336 2224 3334

a b c d

Figure 11: Core Allocation Performance. Each bar shows the
performance of uF'S normalized to that of uF'S_max, where each
of the 6 clients has its own dedicated worker. The numbers on top
of each bar are the average number of cores used by uF'S. Each
epxeriment is repeated 5 times.

between 88% and 100% of the uFS_max’s throughput, but
on 4 cores as instead of 6; uFS_RR achieves throughput
only between 61% and 84%. Across workloads, the more
significant the difference across operation costs (e.g.,
workloads read-abc and all-abcdef), the more important
it is to quickly find a suitable placement of inodes. For
all workloads, the median time for uFS to find a stable
placement is low, between 25 and 75m:s.

Core Allocation: To show that uFS dynamically adjusts
the number of cores, we create core allocation microbench-
marks that vary the load placed on the filesystem in a single
dimension as shown in Figure 4. We again consider a max-
imum of 6 client threads. In these experiments, uFS deter-
mines a minimal number of cores that provides sufficiently
low congestion and then balances inodes across them. We
compare to uFS_max where each client has a dedicated core.
Figure 11 shows that uFS delivers between 91% and 98%
of the throughput of uFS_max with only 60% of the cores.

We illustrate the adjustments of uFS over time with a
challenging workload: 8 different I/O-intensive clients
enter and exit the system and change their offered load
(described in the caption of Figure 12). The first graph of
Figure 12 shows the CPU utilization on uFS_max given 8
dedicated cores. Even with 8 I/O-bound clients, 8 server
cores leads to many wasted cycles: each core is below 50%
utilization and some are below 20%.* Due to polling by

4The periodic CPU spikes are due to long tail latencies when polling
the device and occur on cores with more on-disk work.

the server thread, the OS scheduler believes each thread
is using 100% of the CPU once the worker is active (i.e.,
has non-zero utilization in the graph); for utilization, we
show the percentage of CPU cycles effectively performing
uFS work. Using an average of 4.73 active (up to 8) cores,
clients on uFS_max achieve 695Kops/s (not shown),

The second two graphs show the throughput and CPU uti-
lization of uFS; uFS is configured to start on 1 core but can
grow to § cores. The CPU graph shows that one core handles
the load of the first two clients; as more clients join through
time 8s, uFS activates new cores when congestion is high
and rebalances inodes. At time 8, uFS observes that core
0 is congested, so adds another core and shifts work from
both core 0 and 4 to core 5. When the workload decreases
after time 9, uFS removes cores and rebalances inodes. Due
to its rebalancing and core allocation policies, uFS achieves
similar throughput with a smaller number of cores; uFS
delivers 609Kops/sec on an average of 3.4 (up to 6) cores,
or 88% of the throughput with 72% of the CPU resources.

4.5 LevelDB

We lastly show that uFS performs and scales well for
LevelDB [51] with YCSB workloads. We measure
LevelDB with two ways to load the database and six YCSB
workloads [14]. Figure 13 shows that on all workloads, uFS
has better base performance than ext4, and much better
scalability. For I/O-intensive workloads, ext4 becomes a
bottleneck due to its single-threaded journaling, and adding
more load to the system does not lead to an increase in
ext4 throughput. uFS scales very well with increasing load.
Due to the many private writes performed by LevelDB
clients, the write cache is especially beneficial in uFS.
With additional load, the uFS load manager determines
that additional cores are beneficial and thus allocates an
average of 6 server cores for the 10 clients across the eight
workloads. Thus, the throughput of uFS scales well with
the number of clients; for example, on YCSB-F with 10
clients, uFS delivers 1.88x the throughput of ext4.

In Figure 13, the system with uFS (uServer) uses between
4 and 8 more cores than that with ext4. We conduct another
experiment (not shown) in which the number of Level DB
clients running on ext4 is increased to use the same number
of cores as uFS. However, since the additional cores cannot
be used effectively by ext4, more clients and cores do not
result in any significant performance gain (a maximum
of 7% improvement on ycsb-e¢ and some performance
degration on other workloads).

Experimental Summary: Microbenchmarks and real
application workloads demonstrate that filesystem semi-
microkernels, such as uFS, can have competitive base per-
formance to traditional kernel filesystems, such as ext4; fur-
thermore, because semi-microkernels scale independently
of applications, they can benefit from additional cores and
provide scalable performance.

1007 1007 X
75] Core-0 75] ore-1 10 Core-0 100+ Core-1 = =
50 50 ; ;g
25 25 m
a-0 a-1
0 ———7T— 17— 07— T1 T 1+ °2 257 | — T T — T T
13 5 7 9 11 138 5 7 9 11 71— 7T T T 18 5 7 9 11 18 5 7 9 11
1004 Core-2 100 Core-3 18 5 7 1 13 5 7 9 11 ¥ X
751 751 371 | 21
50 50 100+ Core-2 100+ Core-3 o o
254 ZS_M 75 754 b-0 b-1
0 T T T T T 01— T T T T T 50 50 T T T T T T T T T T T
100 8.5 7 o8 11 3 5 7 9 11 ol 25 « 55 7 9 111 5 7 9,1
75] Core-4 75] Cores L T S 2 o O A R S A R e 5]
50- 50-]' ARl mw
257 257 1 1001 Core-4 100+ Core-5 c-0 c-1
0 —r—T—7—— T T T — T T T
100 138 5 7 9 1 100 138 5 7 9 1 ;g ;g o ! 5 7 9 1 1 8 5 7 91
5] Core-6 5] Core-7 251 251 " =1 =1
]] T I E i n "7 3% 57 oo
25 251 S 0 S N
o S ..~ S . yaxis: CPU Utilization (100%) xaxis:Time (second) L™ d'O g NS d,1
T3 5 7 9 11 ()1 3 5 7 9 N @) T3 5 7 9 113 1 35 7 9 1

Figure 12: Dynamic Behavior with Load Management. First graph keeps the number of uServer cores set at 8. Workloads: a-0: large
on-disk read, a-1: small on-disk read, b-0: cold in-memory read, b-1: hot in-memory read, c-0: write+sync large, c-1: write+sync small,
d-0: append, d-1: overwrite. Seconds 0-7: one app joins each second (b,c,a,d); sec 8: a,d increase thinktime; 9: a,d exit; 10: b,c increase
thinktime; 11: b,c exit.

fillseq fillrand ycsb-a ycsb-b ycsb-c

ycsb-d ycsb-e ycsb-f

13M ™ ™ 2M

500K:

™

12345678910 12345678910 12345678910 12345678910 12345678910
= uFS - ext4

Figure 13: Performance of LevelDB on YCSB. The number of clients is increased along the x-axis. The workloads are: Sequential Load,

Random Load, A (write-heavy, w:50%, r:50%), B (read-heavy, w:5%, r:95%), C (read-only), D (read latest, w:5%, r:95%), E (range-heavy,

w:5%, range:95%), and F (read-modify-write:50%, r:50%). We use 16B keys and 80B values with 10M entries, for IGB per client. YCSB

12345678910 12345678910 12345678910

runs 100K operations. Across the 8 workloads uFS allocates 4, 7,4, 8, 7, 6, 5, and 5 cores for 10 clients.

5 Related Work

uFS draws on a broad range of recent work in filesystems.
We first discuss systems that explore new filesystem
architectures; then we present systems that address
scalability; finally, we examine related work on user-level
filesystem development.

New Filesystem Architectures: Emergent devices (such
as NVM and SSDs [65, 1]) have placed a spotlight on
kernel overheads and have motivated researchers to revisit
filesystem architecture. One approach is to enable appli-
cations to directly access the device via user-level libraries,
sometimes bypassing a centralized and trusted entity.
Because library-based solutions avoid the high cost of trap-
ping into and out of the kernel [62, 33, 30, 28, 17, 67, 50],
they generally provide high performance as compared to
traditional kernel filesystems.

However, there are challenges with the library-based
approach [30]. For example, to maintain filesystem integrity,
the manipulation of metadata requires the involvement of a
trusted entity, either to update the metadata or to validate the
updates done by the library. Thus, maintaining metadata in-
tegrity not only slows down metadata-intensive operations,
but also complicates the write path, as metadata updates are
intertwined with data operations in the traditional filesystem
interface (e.g., an append to a file also changes its size).

One early example of this approach is found in Aerie [62],
whose library can directly access filesystem data but is
read-only for metadata; a separate trusted user-level process
takes care of metadata updates and inter-process sharing
via a distributed locking mechanism. Strata [33] decouples

layout and access methods of different devices via data
migration between media. The Strata library accelerates
performance by appending to a per-process private
NVM log. The library also maintains a DRAM cache for
structures (such as inodes) to improve read performance and
acquires leases from the trusted entity for shared-file access.
ZoFS [17] offloads filesystem functionality into the user’s
address space, where the library can directly update any
data or metadata. To enforce security and permission, ZoFS
includes a cooperative protocol between trusted library
instances based on Intel MPK [3], but assumes the library
is trusted. Similarly, KucoFS [11] equips the library with
a per-file range lock to accelerate intra-process concurrent
writing to a file. The library directly translates naming into
device location, such that the trusted kernel only needs
validation instead of costly look-ups for metadata updates.

SplitFS [28] proposes another approach where the library
handles data operations and a kernel NVM filesystem
(ext4-DAX) processes metadata operations. The SplitFS
library improves performance by replacing data copying
with linking pages and avoiding page faults on the write
path. However, it has the same performance problem for
metadata operations as a kernel filesystem. NOVA [64],
a DAX kernel filesystem, provides atomic filesystem
operations for NVM via an atomic mmap; it optimizes
device access performance through per-core structures but
still suffers from kernel overhead above the VFS layer.

Finally, a different approach is to push filesystem
functionality further down into the devices themselves.
For example, DevFES [30] pushes the filesystem entirely

into the device, thus providing direct access and serving
as a centralized, trusted entity, but at a cost: the device
must provide the full filesystem API — a large change
from today’s devices — and also be able to serve filesystem
needs with limited resources (device CPU and memory).
Follow-on work on CrossFS [50] distributes filesystem
functionality across hardware, software, and firmware, but
requires significant changes to device firmware.

A filesystem semi-microkernel differs from these ap-
proaches in that it retains the same key property of kernel-
based filesystems: trust is centralized (in server software) in-
stead of being distributed (across library, trusted process, OS,
and hardware) and no special hardware is required. As such,
itis relatively straightforward to implement, and can deliver
scalable high performance across the entire filesystem API.

Filesystems and Multicore Scalability: Researchers
have been studying the limitations of OS scalabil-
ity [8, 13, 16, 22]; most of them find that the poor scalability
of applications is primarily attributed to the OS. The kernel
scalability bottleneck usually stems from some highly
contended lock, leading to significant effort to introduce
fine-grained locks and resolve the subsequent concurrency
bugs [37]. The most recent Linux kernel filesystem scal-
ability study [42] explores how the design of each kernel
filesystem and the VFS layer affects application scalability,
which leads to a conclusion of “speculating scalability is
precarious.” It is thus natural for a semi-microkernel like
uFS to consider a scalable-by-design approach.

Clements et al. [13] take a principled approach by using
the scalable commutativity rule to reason about system
scalability. ScaleFS [7] follows these scalability guidelines,
implementing concurrency-optimized data structures and
a per-core private operation log for durability. Scalability
is also a critical design point in recent library-heavy filesys-
tems [63, 50, 11], commonly introducing fine-grained
concurrency control into the libraries. Unlike ScaleFS, uFS
generally uses per-core partitioned structures (no locking
needed) and a global journal (with a small critical section).

Several kernel filesystems [29, 27, 15] exploit data
partitioning for better scalability. SpanFS [29] and
Hare [27] partition both files and directories into cores
in a static manner. uFS, instead, dynamically change the
mapping of files (excluding directories) into cores. Recent
work in WAFL [15] incrementally re-architects a kernel
filesystem for scalability by sharding stripes of files to cores
and multi-granularity partitioning of directory tree based
on the request type. Like uFS, message passing is used
for users to submit requests and communication between
filesystem threads. WAFL incorporates a scheduling policy
that chooses a filesystem thread with more requests into
the kernel CPU scheduler, which shares the same purpose
as uServer’s load balancing and core allocation. The data
mapping in WAFL remains static and exploits NetApp’s
enterprise data to accelerate the common workload scal-

ability. uFS’s dynamic data mapping mechanism relies on
runtime performance monitoring, and similar optimization
based on offline workload characteristics could also apply.
User-level Filesystems: Lastly, we discuss related work
on user-level filesystem development. FUSE [20, 26, 57]
has been the de facto framework for user-level filesystem
development. However, FUSE-based filesystems focus on
functionality (e.g., ssh-based remote file access, encryption,
etc.). Performance is a well-known weakness for FUSE
filesystems, arising from its design.

Recently, Bento [41] provides user-space development
and debugging without performance cost, by downloading
the memory-safe filesystem directly into the kernel.
Despite matching kernel filesystem performance (i.e., ext4),
Bento still suffers from the performance overhead in VFS
and other kernel subsystems, whereas uFS outperforms
ext4 along numerous axes. Furthermore, Bento restricts
the choice of language (to Rust) whereas uFS could be
developed in any language framework.

6 Conclusion

We presented uFS, a filesystem semi-microkernel designed
to extract scalable, high performance from modern devices.
uFS demonstrates that the semi-microkernel approach
works well for filesystems, enabling flexible scaling to
match workload needs. Across a range of microbenchmarks
and application workloads, uFS meets or exceeds Linux
ext4 performance, in some cases by a large margin under
high application demand.

Acknowledgments

We thank Simon Peter (our shepherd), the anonymous
reviewers and the members of ADSL for their valuable
feedback. We are grateful to Mike Swift for his suggestions
and Shawn Zhong for his help on testing our artifact. We
also thank the anonymous artifact evaluators for their effort.
This material was supported by funding from NSF grants
CNS-1838733 and CNS-1763810 and funding from Intel,
Samsung, Seagate, and VMware. Sudarsun Kannan was
partially supported by NSF CNS-1910593. Any opinions,
findings, and conclusions or recommendations expressed
in this material are those of the authors and may not reflect
the views of NSF or any other institutions.

References

[1

—

[2

—

[3

[4

=

[5

=

[6

=

[8]

[9

[10]

(1]

[12]

[13]

[14]

[15]

Intel Optane SSD 905P Series Specification. https:
//ark.intel.com/content/www/us/en/ark/products/series/
129835/intel-optane-ssd-905p-series.html, 2018.

Folly: Facebook Open-source Library. https://github.com/

facebook/folly.git, 2020.

Intel® 64 and TA-32 Architectures Software Developers Man-
ual. https://software.intel.com/content/www/us/en/develop/
articles/intel-sdm.html, 2020.

Optimize ext4 file overwrites - perf improvement.
https://lore.kernel.org/linux-ext4/cover.1600401668.
git.riteshh @linux.ibm.com/, 2020.

uFS Code and Benchmarks. https://research.cs.wisc.edu/adsl/
Software/uFS/, 2021.

ARPACI-DUSSEAU, R. H., AND ARPACI-DUSSEAU, A. C. Oper-
ating Systems: Three Easy Pieces, 1.00 ed. Arpaci-Dusseau Books,
August 2018.

BHAT, S. S., EQBAL, R., CLEMENTS, A. T., KAASHOEK, M. F.,
AND ZELDOVICH, N. Scaling a File System to Many Cores Using
an Operation Log. In Proceedings of the 26th ACM Symposium on
Operating Systems Principles (SOSP '17) (Shanghai, China, October
2017).

BOYD-WICKIZER, S., CLEMENTS, A. T., MAO, Y., PESTEREV,
A., KAASHOEK, M. F., MORRIS, R., AND ZELDOVICH, N. An
Analysis of Linux Scalability to Many Cores. In Proceedings of the
9th Symposium on Operating Systems Design and Implementation
(OSDI ’10) (Vancouver, Canada, December 2010).

CAULFIELD, A. M., DE, A., COBURN, J., MOLLOW, T. 1., GUPTA,
R. K., AND SWANSON, S. Moneta: A High-Performance Storage
Array Architecture for Next-Generation, Non-volatile Memories. In
Proceedings of the 43rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO’ 10) (Atlanta, Georgia, December
2010).

CHEN, J. B., AND BERSHAD, B. The Impact of Operating System
Structure on Memory System Performance. In Proceedings of the
14th ACM Symposium on Operating Systems Principles (SOSP ’93)
(Asheville, North Carolina, December 1993).

CHEN, Y., LU, Y., ZHU, B., ARPACI-DUSSEAU, A. C., ARPACI-
DUSSEAU, R. H., AND SHU, J. Scalable Persistent Memory File
System with Kernel-Userspace Collaboration. In Proceedings of the
19th USENIX Conference on File and Storage Technologies (FAST
’21) (Virtual conference, February 2021).

CHIDAMBARAM, V., PILLAIL T. S., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. Optimistic Crash Consistency. In
Proceedings of the 24th ACM Symposium on Operating Systems
Principles (SOSP ’13) (Nemacolin Woodlands Resort, Farmington,
Pennsylvania, October 2013).

CLEMENTS, A. T., KAASHOEK, M. F., ZELDOVICH, N., MORRIS,
R. T., AND KOHLER, E. The Scalable Commutativity Rule: Design-
ing Scalable Software for Multicore Processors. In Proceedings of
the 24th ACM Symposium on Operating Systems Principles (SOSP
’13) (Nemacolin Woodlands Resort, Farmington, Pennsylvania, Oc-
tober 2013).

COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN, R.,
AND SEARS, R. Benchmarking Cloud Serving Systems with YCSB.
In Proceedings of the ACM Symposium on Cloud Computing (SOCC
’10) (Indianapolis, Indiana, June 2010).

CURTIS-MAURY, M., DEVADAS, V., FANG, V., AND KULKARNI,
A. To waffinity and beyond: A scalable architecture for incremen-
tal parallelization of file system code. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementa-
tion (OSDI "16) (Savannah, GA, November 2016).

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

[31]

DAVID, T., GUERRAOUL, R., AND TRIGONAKIS, V. Everything You
Always Wanted to Know About Synchronization but Were Afraid
to Ask. In Proceedings of the 24th ACM Symposium on Operat-
ing Systems Principles (SOSP ’13) (Nemacolin Woodlands Resort,
Farmington, Pennsylvania, October 2013).

DoNG, M., Bu, H., Y1, J., DONG, B., AND CHEN, H. Perfor-
mance and Protection in the ZoFS User-Space NVM File System.
In Proceedings of the 26th ACM Symposium on Operating Systems
Principles (SOSP ’19) (Ontario, Canada, October 2019).

DoUGLIS, F., AND OUSTERHOUT, J. K. Process Migration in the
Sprite Operating System. In Proceedings of the 7th International
Conference on Distributed Computing Systems (Berlin, West Ger-
many, September 1987), IEEE, pp. 18-25.

DPDK DEVELOPMENT TEAM. Data Plane Development Kit. https:
/Iwww.dpdk.org/, 2021.

FUSE. Linux FUSE (Filesystem in Userspace) interface. https:
//github.com/libfuse/libfuse.

GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The Google File
System. In Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP '03) (Bolton Landing, New York, October
2003), pp. 29-43.

GOLESTANI, H., MIRHOSSEINI, A., AND WENISCH, T. F. Software
Data Planes: You Can’t Always Spin to Win. In Proceedings of the
ACM Symposium on Cloud Computing (SOCC ’19) (Santa Cruz,
California, November 2019).

GRAY, C. G., AND CHERITON, D. R. Leases: An Efficient Fault-
Tolerant Mechanism for Distributed File Cache Consistency. In
Proceedings of the 12th ACM Symposium on Operating Systems
Principles (SOSP ’89) (Litchfield Park, Arizona, December 1989).

HANSEN, P. B. The Nucleus of a Multiprogramming System. Com-
munications of the ACM 13,4 (April 1970), 238-241.

HARTER, T., DRAGGA, C., VAUGHN, M., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. A File is Not a File: Un-
derstanding the I/O Behavior of Apple Desktop Applications. In
Proceedings of the 23rd ACM Symposium on Operating Systems
Principles (SOSP ’11) (Cascais, Portugal, October 2011).

Hual, Q., Hsu, W., Lu, J., LIANG, H., XU, H., AND CHEN, W.
XFUSE: An Infrastructure for Running Filesystem Services in User
Space. In Proceedings of the USENIX Annual Technical Conference
(USENIX ’21) (Virtual Conference, July 2021).

I, C. G., SIRONI, F., KAASHOEK, M. F., AND ZELDOVICH, N.
Hare: a file system for non-cache-coherent multicores. In Proceed-
ings of the EuroSys Conference (EuroSys ’15) (Bordeaux, France,
April 2015).

KADEKODI, R., LEE, S. K., KASHYAP, S., KiM, T., KOLLI, A.,
AND CHIDAMBARAM, V. SplitFS: Reducing Software Overhead in
File Systems for Persistent Memory. In Proceedings of the 26th ACM
Symposium on Operating Systems Principles (SOSP ’19) (Ontario,
Canada, October 2019).

KANG,J.,ZHANG,B., W0, T., YU, W.,DU,L.,MA, S., AND HUAI,
J. SpanFS: A Scalable File System on Fast Storage Devices. In
Proceedings of the USENIX Annual Technical Conference (USENIX
’15) (Santa Clara, California, June 2015).

KANNAN, S., ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU,
R. H., WANG, Y., XU, J., AND PALANI, G. Designing a True
Direct-Access File System with DevFS. In Proceedings of the 16th
USENIX Conference on File and Storage Technologies (FAST ’18)
(Oakland, CA, February 2018).

KAUFMANN, A., STAMLER, T., PETER, S., SHARMA, N. K., KR-
ISHNAMURTHY, A., AND ANDERSON, T. TAS: TCP Acceleration as
an OS Service. In Proceedings of the EuroSys Conference (EuroSys
’19) (Dresden, Germany, March 2019).

https://ark.intel.com/content/www/us/en/ark/products/series/129835/intel-optane-ssd-905p-series.html
https://ark.intel.com/content/www/us/en/ark/products/series/129835/intel-optane-ssd-905p-series.html
https://ark.intel.com/content/www/us/en/ark/products/series/129835/intel-optane-ssd-905p-series.html
https://github.com/facebook/folly.git
https://github.com/facebook/folly.git
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://lore.kernel.org/linux-ext4/cover.1600401668.git.riteshh@linux.ibm.com/
https://lore.kernel.org/linux-ext4/cover.1600401668.git.riteshh@linux.ibm.com/
https://research.cs.wisc.edu/adsl/Software/uFS/
https://research.cs.wisc.edu/adsl/Software/uFS/
https://www.dpdk.org/
https://www.dpdk.org/
https://github.com/libfuse/libfuse
https://github.com/libfuse/libfuse

[32]

[33]

[34]

[35]

[36]

(37]

[38]

[39

[40]

[41]

[42]

[43]

[44]

[45]

[46]

KLEIN, G., ELPHINSTONE, K., HEISER, G., ANDRONICK, J.,
COCK, D., DERRIN, P., ELKADUWE, D., ENGELHARDT, K., NOR-
RISH, M., KOLANSKI, R., SEWELL, T., TUCH, H., AND WINWOOD,
S. seL4: Formal Verification of an OS Kernel. In Proceedings of the
22nd ACM Symposium on Operating Systems Principles (SOSP '09)
(Big Sky, Montana, October 2009).

KwoN, Y., FINGLER, H., HUNT, T., PETER, S., WITCHEL, E., AND
ANDERSON, T. Strata: A Cross Media File System. In Proceedings
of the 26th ACM Symposium on Operating Systems Principles (SOSP
’17) (Shanghai, China, October 2017).

LIEDTKE, J. On micro-kernel construction. In Proceedings of the
15th ACM Symposium on Operating Systems Principles (SOSP ’95)
(Copper Mountain Resort, CO, December 1995), pp. 237-250.

L1u,J., ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU, R. H., AND
KANNAN, S. File Systems as Processes. In HotStorage’19 (July
2019).

LTP TEAM. The Linux LTP Project. http://linux-test-project.
github.io, 2021.

Lu, L., ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU, R. H., AND
Lu, S. A Study of Linux File System Evolution. In Proceedings
of the 11th USENIX Symposium on File and Storage Technologies
(FAST ’13) (San Jose, CA, February 2013).

MARTY, M., DE KRUUJF, M., ADRIAENS, J., ALFELD, C., BAUER,
S., CONTAVALLI, C., DALTON, M., DUKKIPATI, N., EVANS, W.C.,
GRIBBLE, S., KIDD, N., KONONOV, R., KUMAR, G., MAUER, C.,
MUSICK, E., OLSON, L., RYAN, M., RUBOW, E., SPRINGBORN,
K., TURNER, P., VALANCIUS, V., WANG, X., AND VAHDAT, A.
Snap: a Microkernel Approach to Host Networking. In Proceedings
of the 26th ACM Symposium on Operating Systems Principles (SOSP
’19) (Ontario, Canada, October 2019).

MASON, C. The Btrfs Filesystem. 0ss.oracle.com/projects/btrfs/
dist/documentation/btrfs-ukuug.pdf, September 2007.

MATHUR, A., CAO, M., BHATTACHARYA, S., ANDREAS
DILGE AND, A. T., AND VIVIER, L. The New Ext4 filesystem:
Current Status and Future Plans. In Ottawa Linux Symposium (OLS
’07) (Ottawa, Canada, July 2007).

MILLER, S., ZHANG, K., CHEN, M., JENNINGS, R., CHEN, A.,
ZHUO, D., AND ANDERSON, T. E. High Velocity Kernel File
Systems with Bento. In Proceedings of the 19th USENIX Conference
on File and Storage Technologies (FAST °21) (Virtual conference,
February 2021).

MIN, C., KASHYAP, S., MAASS, S., AND KiM, T. Understand-
ing Manycore Scalability of File Systems. In Proceedings of the
USENIX Annual Technical Conference (USENIX ’16) (Denver, CO,
June 2016).

MOGUL, J., AND RAMAKRISHNAN, K. Eliminating Receive Live-
lock in an Interrupt-driven Kernel. In Proceedings of the 2nd Sympo-
sium on Operating Systems Design and Implementation (OSDI "96)
(Seattle, WA, October 1996).

MOHAN, J., MARTINEZ, A., PONNAPALLIL, S., RAJU, P., AND CHI-
DAMBARAM, V. Finding Crash-Consistency Bugs with Bounded
Black-Box Crash Testing. In Proceedings of the 13th USENIX Con-
ference on Operating Systems Design and Implementation (OSDI
’18) (Carlsbad, CA, October 2018).

OUSTERHOUT, A., FRIED, J., BEHRENS, J., BELAY, A., AND BAL-
AKRISHNAN, H. Shenango: Achieving High CPU Efficiency for
Latency-sensitive Datacenter Workloads. In Proceedings of the
16th Symposium on Networked Systems Design and Implementation
(NSDI ’19) (Boston, MA, February 2019).

PiLLAI, T. S., CHIDAMBARAM, V., ALAGAPPAN, R., AL-
KISWANY, S., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU,
R. H. All File Systems Are Not Created Equal: On the Complexity
of Crafting Crash-Consistent Applications. In Proceedings of the
11th Symposium on Operating Systems Design and Implementation
(OSDI ’14) (Broomfield, CO, October 2014).

[47]

(48]

[49]

[50]

(51]

(52]

(53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

PRABHAKARAN, V., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Analysis and Evolution of Journaling File Sys-
tems. In Proceedings of the USENIX Annual Technical Conference
(USENIX ’05) (Anaheim, CA, April 2005), pp. 105-120.

RASHID, R., TEVANIAN, A., YOUNG, M., GOLUB, D., BARON, R,
BLACK, D., BOLOSKY, W., AND CHEW, J. Machine-Independent
Virtual Memory Management for Paged Uniprocessor and Multi-
processor Architectures. In Proceedings of the 2nd International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS IV) (Palo Alto, CA, 1991), pp. 31—
39.

REBELLO, A., PATEL, Y., ALAGAPPAN, R., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. Can Applications Recover
from fsync Failures? In Proceedings of the USENIX Annual Techni-
cal Conference (USENIX ’20) (Virtual Conference, June 2020).

REN, Y., MIN, C., AND KANNAN, S. CrossFS: A Cross-layered
Direct-Access File System. In Proceedings of the 14th USENIX Con-
ference on Operating Systems Design and Implementation (OSDI
’20) (Virtual conference, November 2020).

SANJAY GHEMAWAT AND JEFFREY DEAN. LevelDB. https://
github.com/google/leveldb, 2014.

SHALEYV, L., SATRAN, J., BOROVIK, E., AND BEN-YEHUDA, M.
IsoStack — Highly Efficient Network Processing on Dedicated
Cores. In Proceedings of the USENIX Annual Technical Confer-
ence (USENIX ’10) (Boston, MA, June 2010).

SHERWOOD, T., PERELMAN, E., HAMERLY, G., AND CALDER,
B. Automatically Characterizing Large Scale Program Behavior.
In Proceedings of the 10th International Conference on Architec-
tural Support for Programming Languages and Operating Systems
(ASPLOS X) (San Jose, CA, October 2002).

SOARES, L., AND STUMM, M. FlexSC: Flexible System Call
Scheduling with Exception-Less System Calls. In Proceedings of the
9th Symposium on Operating Systems Design and Implementation
(OSDI ’10) (Vancouver, Canada, December 2010).

SPDK OPEN-SOURCE TEAM. The Storage Performance Develop-
ment Kit. https://spdk.io/doc, 2021.

STONEBRAKER, M. Readings in Database Systems. Morgan-
Kaufmann, 1994.

SUNDARARAMAN, S., VISAMPALLI, L., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. Refuse to Crash with Re-
FUSE. In Proceedings of the EuroSys Conference (EuroSys '11)
(Salzburg, Austria, April 2011).

SWEENEY, A., DOUCETTE, D., HU, W., ANDERSON, C., NISHI-
MOTO, M., AND PECK, G. Scalability in the XFS File System. In
Proceedings of the USENIX Annual Technical Conference (USENIX
’96) (San Diego, CA, January 1996).

TARASOV, V., ZADOK, E., AND SHEPLER, S. Filebench: A Flexible
Framework for File System Benchmarking. USENIX; login 41, 1
(2016), 6-12.

Tsal,C.-C.,JAIN, B., ABDUL, N. A., AND PORTER, D. E. A Study
of Modern Linux API Usage and Compatibility: What to Support
When You’re Supporting. In Proceedings of the EuroSys Conference
(EuroSys '16) (London, United Kingdom, April 2016).

Tsal, C.-C., ZHAN, Y., REDDY, J., JIAO, Y., ZHANG, T., AND
PORTER, D. E. How to Get More Value From Your File System
Directory Cache. In Proceedings of the 25th ACM Symposium on
Operating Systems Principles (SOSP ’15) (Monterey, California,
October 2015).

VoLOS, H., NALLI, S., PANNEERSELVAM, S., VARADARAJAN, V.,
SAXENA, P., AND SWIFT, M. M. Aerie: Flexible File-system Inter-
faces to Storage-class Memory. In Proceedings of the EuroSys Con-
ference (EuroSys ’14) (Amsterdam, The Netherlands, April 2014).

http://linux-test-project.github.io
http://linux-test-project.github.io
oss.oracle.com/projects/btrfs/dist/documentation/btrfs-ukuug.pdf
oss.oracle.com/projects/btrfs/dist/documentation/btrfs-ukuug.pdf
https://github.com/google/leveldb
https://github.com/google/leveldb

[63]

[64]

[65]

[66]

[67]

XU, J.,KiM, J., MEMARIPOUR, A., AND SWANSON, S. Finding
and Fixing Performance Pathologies in Persistent Memory Software
Stacks. In Proceedings of the 24th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’19) (Providence, RI, USA, April 2019).

XU, J., AND SWANSON, S. NOVA: A Log-structured File System
for Hybrid Volatile/Non-volatile Main Memories. In Proceedings
of the 14th USENIX Conference on File and Storage Technologies
(FAST ’16) (Santa Clara, CA, February 2016).

YANG, J., KiM, J., HOSEINZADEH, M., [IZRAELEVITZ, J., AND
SWANSON, S. An Empirical Guide to the Behavior and Use of
Scalable Persistent Memory. In Proceedings of the 18th USENIX
Conference on File and Storage Technologies (FAST ’20) (Virtual
conference, February 2020).

YOUNG, M., TEVANIAN, A., RASHID, R., GOLUB, D., EPPINGER,
J., CHEW, J., BOLOSKY, W., BLACK, D., AND BARON, R. The
Duality of Memory and Communication in the Implementation of a
Multiprocessor Operating System. In Proceedings of the 11th ACM
Symposium on Operating Systems Principles (SOSP ’87) (Austin,
Texas, November 1987), pp. 63-76.

ZHENG, S., HOSEINZADEH, M., AND SWANSON, S. Ziggurat: A
Tiered File System for Non-Volatile Main Memories and Disks. In
Proceedings of the 17th USENIX Conference on File and Storage
Technologies (FAST *19) (Boston, Massachusetts, February 2019).

	Introduction
	Background
	Microkernel-based Approaches
	Storage Performance Development Kit

	uFS Design and Implementation
	Single-Threaded uServer
	Multi-Threaded uServer
	Crash Consistency
	Load Management

	Evaluation
	Platform and Correctness
	Single-Threaded uFS
	Multi-Threaded uFS
	Load Management
	LevelDB

	Related Work
	Conclusion

