
New York Journal of Mathematics
New York J. Math. 25 (2019) 1–44.

Cyclic pairings and derived Poisson
structures

Ajay C. Ramadoss and Yining Zhang

Abstract. By a fundamental theorem of D. Quillen, there is a natu-
ral duality - an instance of general Koszul duality - between differential
graded (DG) Lie algebras and DG cocommutative coalgebras defined
over a field k of characteristic 0. A cyclic pairing (i.e., an inner product
satisfying a natural cyclicity condition) on the cocommutative coalge-
bra gives rise to an interesting structure on the universal enveloping
algebra Ua of the Koszul dual Lie algebra a called the derived Poisson
bracket. Interesting special cases of the derived Poisson bracket include
the Chas-Sullivan bracket on string topology. We study the derived
Poisson brackets on universal enveloping algebras Ua, and their relation
to the classical Poisson brackets on the derived moduli spaces DRepg(a)
of representations of a in a finite dimensional reductive Lie algebra g.
More specifically, we show that certain derived character maps of a in-
tertwine the derived Poisson bracket with the classical Poisson structure
on the representation homology HR•(a, g) related to DRepg(a).
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1. Introduction

Fix a field k of characteristic 0. In [14], Goldman discovered a symplectic
structure on the G-character variety of the fundamental group π of a Rie-
mann surface, where G is a connected Lie group (for example, GLn). In
[15], he further found a Lie bracket on the free k-vector space k[π̂] spanned
by the conjugacy classes of π. It was shown that the natural trace maps

Trn : k[π̂] −→ O[Repn(π)]GLn

are Lie algebra homomorphisms, where Repn(π) is the affine scheme parame-
trizing the n-dimensional representations of π. It was later understood that
the above structure is a special case of an H0-Poisson structure on an asso-
ciative algebra in the sense of [8]: such a structure on an associative algebra
A is given by a Lie bracket on A/[A,A] satisfying a certain (noncommuata-
tive) version of the Leibniz rule. If A has an H0-Poisson structure, there is
an induced Poisson structure on the commutative algebra O[Repn(A)]GLn

for each n. Further, in this case, the canonical trace map

Trn : A/[A,A] −→ O[Repn(A)]GLn

is a Lie algebra homomorphism for each n. The notion of an H0-Poisson
structure was extended in [1] to arbitrary DG (augmented) associative al-
gebras: a Poisson structure on R ∈ DGAk/k is a Lie bracket on R\ :=
R/(k+[R,R]) satisfying the noncommutative Leibniz rule referred to above.
A derived Poisson structure on A ∈ DGAk/k is a Poisson structure on some
cofibrant resolution of A. In particular, a derived Poisson structure on A
gives a graded Lie bracket on the reduced cyclic homology HC•(A) of A such
that the canonical higher character map,

Trn : HC•(A) −→ HR•(A,n)GLn

is a graded Lie algebra homomorphism for each n (see [1, Thm. 2]), where
HR•(A,n) stands for the representation homology parametrizing n-dimen-
sional representations of A (see Section 2.1 for the definition).

When A ∈ DGAk/k is Koszul dual to a cyclic DG coalgebra C, then A
acquires a canonical derived Poisson structure (see [1, Thm. 15, Lem. 8]).
The general properties of such derived Poisson structures have been stud-
ied in [7]. In this sequel to [5], we study the behaviour of certain derived
character maps of a (DG) Lie algebra a with respect to a canonical derived
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Poisson structure on the universal enveloping algebra Ua acquired from a
cyclic pairing on the Koszul dual coalgebra of a. In order to state our main
results, we recall that a natural direct sum decomposition of the (reduced)
cyclic homology HC•(Ua) that is Koszul dual to the Hodge (or λ-) decom-
position of cyclic homology of commutative algebras was found in [2] (also
see [16]):

HC•(Ua) ∼=
∞⊕
p=1

HC
(p)
• (a) . (1.1)

The direct summands of (1.1) appeared in [2] as domains of the Drinfeld

traces. The Drinfeld trace Trg(P, a) : HC
(p)
• (a) −→ HR•(a, g) associated

with an invariant polynomial P ∈ Ip(g) := Symp(g∗)ad g is a certain derived
character map with values in the representation homology of a in a finite
dimensional Lie algebra g (see Section 3.3 for a recapitulation of the con-
struction). A natural interpretation of the strong Macdonald conjecture for
a reductive Lie algebra g has been given in terms of the Drinfeld traces in
[2, Sec. 9]. It was shown in [5] that if a is the Quillen model of a simply
connected space X, then the summands of (1.1) are the common eigenspaces

of Frobenius operations on the S1-equvariant homology HS1

• (LX; k) of the
free loop space LX of X.

If a is Koszul dual to a cyclic cocommutative (DG) coalgebra C, then Ua
acquires an associated derived Poisson structure. As a result, there is a Lie
bracket on HC•(Ua). Such derived Poisson structures arise in topology: it
is known that if M is a closed simply connected manifold, there is a derived
Poisson structure on UaM (where aM is the Quillen model of M) that is as-
sociated with a cyclic pairing1 on the Lambrechts-Stanley model of M (see

[1, Sec. 5.5]). The induced Lie bracket2 on HC•(UaM ) ∼= H
S1

• (LM ; k) corre-
sponds to the Chas-Sullivan bracket on string topology. This Poisson struc-
ture on UaM induces a graded Poisson structure on H•(UaM ) ∼= H•(ΩM ; k)
(of degree 2−dimM), while the Goldman bracket may be seen as a Poisson
structure on H•(ΩΣ; k) ∼= k[π]. The above Poisson structure on UaM may
therefore be viewed as an analog of the Goldman bracket. In [5], it was
shown that the above cyclic Poisson structure on Ua preserves the Hodge
filtration

FpHC•(Ua) :=
⊕
r6p+2

HC
(r)
• (a) ,

thus making HC•(Ua) a filtered Lie algebra. Moreover, in general,

{HC
(2)
• (a),HC

(p)
• (a)} ⊆ HC

(p)
• (a) ,

making HC
(p)
• (a) a graded Lie module over HC

(2)
• (a). If, in addition, g is re-

ductive, there is a derived Poisson structure on the (homotopy commutative

1This pairing is of degree −n, where n = dimM .
2This bracket is of degree 2− n.
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DG algebra) DRepg(a) representing the derived scheme parametrizing the
representations of a in g. This induces a graded Poisson structure on the
representation homology HR•(a, g). In the case when a = aM , this Poisson
structure is of degree 2− n, where n = dimM (see [1, 5]).

In this context, it is natural to ask how the Drinfeld traces intertwine
these structures. The first step in this direction was made in [5] where it was

shown that the Drinfeld trace Trg(a) : HC
(2)
• (a) −→ HR•(a, g) corresponding

to the Killing form is a graded Lie algebra homomorphism. The map Trg(a)
therefore equips HR•(a, g) with the structure of a graded Lie module3 over

HC
(2)
• (a). The following theorem is our first main result.

Theorem 1.1 (see Theorem 4.1). For any P ∈ Ip(g), the Drinfeld trace

Trg(P, a) : HC
(p)
• (a) −→ HR•(a, g) is a homomorphism of graded HC

(2)
• (a)-

modules.

Recall that

HH•(Ua) ∼= H•(a;Ua) ∼=
∞⊕
p=0

H•(a; Symp(a)) ,

where a acts on Ua and the Symp(a) via the adjoint action (see [17, Thm.

3.3.2]). Let HH
(p)
• (a) := H•(a; Symp(a)). It was shown in [5] that the Connes

differential B : HC•(Ua) −→ HH•+1(Ua) restricts to a map B : HC
(p)
• (a) −→

HH
(p−1)
•+1 (a) for all p > 1. In this paper, we extend the construction of the

Drinfeld traces to give a map Trg(P, a) : HH
(p)
•+1(a) −→ H•[Ω

1(DRepg(a))]

for any P ∈ Ip+1(g), where Ω1(DRepg(a)) stands for the DG module of
Kähler differentials of any (cofibrant) commutative DG algebra representing
the derived affine scheme DRepg(a). Assume that a is Koszul dual to a
cyclic cocommutative DG coalgebra C. In this case, it was shown in [5]

that HH
(p)
• (a) is a graded Lie module over HC

(2)
• (a) for all p, and that

B : HC
(p)
• (a) −→ HH

(p−1)
•+1 (a) is a graded HC

(2)
• (a)-module homomorphism.

Our next result extends Theorem 1.1 as follows.

Theorem 1.2 (see Theorem 4.2). For any P ∈ Ip+1(g), there is a com-

muting diagram of graded Lie modules over HC
(2)
• (a)

HC
(p+1)
• (a)

B
- HH

(p)
•+1(a)

HR•(a, g)

Trg(P, a)

? d
- H•[Ω

1(DRepg(a))]

Trg(P, a)

?

,

3In what follows, all Lie brackets as well as Lie module structures are of homological
degree n + 2, where n is the degree of the cyclic pairing on the Koszul dual coalgebra.
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where the horizontal arrow in the bottom of the above diagram is induced by
the universal derivation.

Next, we consider (augmented) associative (DG) algebras that are Koszul
dual to cyclic coassociative (conilpotent, DG) coalgebras. In this case,
HC•(A) is a graded Lie algebra, over which HH•+1(A) is a graded Lie
module. In line with the Kontsevich-Rosenberg principle in noncommu-
tative geometry, HC•(A) should be seen as a derived space of functions on
‘SpecA’. Similarly, HH•+1(A) should be viewed as a derived space of 1-forms
on ‘SpecA’ (see [3, Sec. 5]). The Connes differential B is an analog of the de
Rham differential. Given that the the module of 1-forms of a (commutative)
Poisson algebra is a Lie module over that algebra itself, with the universal
derivation being a Lie module homomorphism, it is natural to expect that
HH•+1(A) to be a graded Lie module over HC•(A), with B being a Lie mod-
ule homomorphism. Indeed, by [7, Thm. 1.2], B : HC•(A) −→ HH•+1(A)
is a homomorphism of graded Lie modules over HC•(A). The Kontsevich-
Rosenberg principle also leads one to expect the trace maps Trn to induce the
classical Poisson structures on DRepn(A) and its space of 1-forms. Confirm-
ing this expectation, we prove the following associative analog of Theorem
1.2, which was stated in [7] (see loc. cit., Theorem 1.3) without proof.

Theorem 1.3 (see Theorem 4.4). There is a commutative diagram of HC•(A)-
module homomorphisms

HC•(A)
B

- HH•+1(A)

HR•(A,n)

Trn

? d
- H•[Ω

1(DRepn(A))]

Trn

?

.

Our final result is a common generalization of [1, Thm. 2] (for derived
Poisson structures induced by cyclic pairings) and [5, Thm. 5.1]. Following
[1, 8, 13], we define the notion of a Poisson structure for an algebra over a
(finitely generated) cyclic binary quadratic operad P and show that if A is
a P-algebra that is Koszul dual to a cyclic coalgebra C over the (quadratic)
Koszul dual operad Q, then A acquires a derived Poisson structure. Fur-
ther, if S is a finite dimensional P-algebra with a nondegenerate cyclic pair-
ing, then the representation homology HR•(A, S) acquires a graded Poisson
structure such that a certain canonical trace map from the P-cyclic homol-
ogy HC•(P, A) of A to HR•(A, S) is a graded Lie algebra homomorphism
(see Theorem 5.1).
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2. Preliminaries

In this section we review derived representation schemes and derived
Poisson structures. The material in this section is primarily drawn from
[1, 3, 2, 4, 5].

2.1. Derived representation schemes. We begin by reviewing derived
representation schemes of associative and Lie algebras. Let DGAk (resp.,
DGCAk) denote the category of associative (resp., commutative) DG k-algebras.
Let Mn(k) denote the algebra of n× n matrices with entries in k.

2.1.1. Associative algebras. Consider the functor

(–)n : DGAk/k −→ DGCAk/k , A 7→ [(A ∗kMn(k))Mn(k)]\\ , (2.1)

where (A ∗k Mn(k))Mn(k) denotes the subalgebra of elements in the free
product A∗kMn(k) that commute with every element ofMn(k) and where
(–)\\ denotes abelianization. Note that if A is augmented, then An has a
natural augmentation coming from (2.1) applied to the augmentation map of
A. This defines a functor DGAk/k −→ DGCAk/k from the category of augmented
associative DG algebras to the category of augmented commutative DG
algebras, which we again denote by (–)n.

Recall that DGAk/k and DGCAk/k are model categories where the weak
equivalences are the quasi-isomorphisms and the fibrations are the degree-
wise surjections. Let M′n(–) : DGCAk/k −→ DGAk/k denote the functor B 7→
k ⊕ Mn(B̄). The functors (–)n : DGAk/k � DGCAk/k : M′n(–) form a
(Quillen) adjoint pair.

Thus, An is the commutative (DG) algebra corresponding to the (DG)
scheme Repn(A) parametrizing the n-dimensional representations of A. Since
the functor (–)n is left Quillen, it has a well behaved left derived functor

L(–)n : Ho(DGAk/k) −→ Ho(DGCAk/k) .

Like for any left derived functor, we have L(A)n ∼= Rn in Ho(DGCAk/k),

where R
∼−→ A is any cofibrant resolution in DGAk/k. We define

DRepn(A) := L(A)n in Ho(DGCAk/k) , HR•(A,n) := H•[L(A)n] .

DRepn(A) is called the derived representation algebra for n-dimensional rep-
resentations of A. The homology HR•(A,n) is called the representation ho-
mology parametrizing n-dimensional representations of A. It is easy to verify
that GLn(k) acts naturally by automorphisms on the graded (commutative)
algebra HR•(A,n). We denote the corresponding (graded) subalgebra of
GLn(k)-invariants by HR•(A,n)GL.
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Let R
∼−→ A be a cofibrant resolution. The unit of the adjunction (–)n :

DGAk/k � DGCAk : M′n(–) is the universal representation

πn : R −→M′n(Rn) ↪→Mn(Rn) .

It is not difficult to verify that the composite map

R
πn- Mn(Rn)

Id⊗ Trn- Rn

vanishes on [R,R] and that the image of the above composite map is con-
tained in RGL

n . The above composite map therefore induces a map of com-
plexes

Trn : R/(k + [R,R]) −→ RGL
n ,

which on homologies gives the derived character map

Trn : HC•(A) −→ HR•(A,n)GL .

2.1.2. Lie algebras. Let g be a finite dimensional Lie algebra. Consider
the functor

(–)g : DGLAk −→ DGCAk/k , a 7→ ag ,

where

ag :=
Symk(a⊗ g∗)

〈〈(x⊗ ξ1).(y ⊗ ξ2)− (−1)|x||y|(y ⊗ ξ1).(x⊗ ξ2)− [x, y]⊗ ξ〉〉
,

DGLAk is the category of DG Lie algebras over k, g∗ is the vector space dual
to g and where ξ 7→ ξ1 ∧ ξ2 is the map dual to the Lie bracket on g. The
augmentation on ag is the one induced by the map taking the generators
a ⊗ g∗ to 0. Let g(–) : DGCAk/k −→ DGLAk denote the functor B 7→ g(B̄) :=

g⊗B̄. Recall that DGLAk is a model category where the weak-equivalences are
the quasi-isomorphisms and the fibrations are the degree-wise surjections. It
is shown in [2, Section 6.3] that the functors (–)g : DGLAk � DGCAk/k : g(–)
form a (Quillen) adjoint pair.

Thus, ag is the commutative (DG) algebra corresponding to the (DG)
scheme Repg(a) parametrizing representations of a in g. Since the functor
(–)g is left Quillen, it has a well behaved left derived functor

L(–)g : Ho(DGLAk) −→ Ho(DGCAk/k) .

Like for any left derived functor, we have L(a)g ∼= Lg in Ho(DGCAk/k), where

L ∼−→ a is any cofibrant resolution in DGLAk. We define

DRepg(a) := L(a)g in Ho(DGCAk/k) , HR•(a, g) := H•[L(a)g] .

DRepg(a) is called the derived representation algebra for representations of
a in g. The homology HR•(a, g) is called the representation homology of
a in g. It is not difficult to check that g acts naturally by derivations on
the graded (commutative) algebra HR•(a, g). We denote the corresponding
(graded) subalgebra of g-invariants by HR•(a, g)ad g.
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2.2. Derived Poisson structures. The notion of a derived Poisson al-
gebra was first introduced in [1], as a higher homological extension of the
notion of an H0-Poisson algebra introduced by Crawley-Boevey in [8].

2.2.1. Definitions. Let A be an (augmented) DG algebra. The space
Der(A) of graded k-linear derivations of A is naturally a DG Lie algebra
with respect to the commutator bracket. Let Der(A)\ denote the subcom-
plex of Der(A) comprising derivations with image in k + [A,A] ⊆ A . It is
easy to see that Der(A)\ is a DG Lie ideal of Der(A), so that Der(A)\ :=

Der(A)/Der(A)\ is a DG Lie algebra. The natural action of Der(A) on
A induces a Lie algebra action of Der(A)\ on the quotient space A\ :=
A/(k+ [A,A]). We write % : Der(A)\ → End(A\) for the corresponding DG
Lie algebra homomorphism.

Now, following [1], we define a Poisson structure on A to be a DG Lie
algebra structure on A\ such that the adjoint representation ad : A\ →
End(A\) factors through % : i. e., there is a morphism of DG Lie algebras
α : A\ −→ Der(A)\ such that ad = % ◦ α . It is easy to see that if A is a
commutative DG algebra, then a Poisson structure on A is the same thing as
a (graded) Poisson bracket on A. On the other hand, if A is an ordinary k-
algebra (viewed as a DG algebra), then a Poisson structure on A is precisely
a H0-Poisson structure in the sense of [8].

Let A and B be two Poisson DG algebras, i.e. objects of DGAk/k equipped
with Poisson structures. A morphism f : A −→ B of Poisson algebras
is then a morphism f : A → B in DGAk/k such that f\ : A\ −→ B\ is a
morphism of DG Lie algebras. With this notion of morphisms, the Poisson
DG algebras form a category which we denote DGPAk. Note that DGPAk
comes with two natural functors: the forgetful functor U : DGPAk → DGAk/k
and the cyclic functor ( – )\ : DGPAk → DGLAk. We say that a morphism f is
a weak equivalence in DGPAk if Uf is a weak equivalence in DGAk/k and f\ is
a weak equivalence in DGLAk; in other words, a weak equivalence in DGPAk
is a quasi-isomorphism of DG algebras, f : A → B , such that the induced
map f\ : A\ −→ B\ is a quasi-isomorphism of DG Lie algebras.

Although we do not know at the moment whether the category DGPAk
carries a Quillen model structure (with weak equivalences specified above),
it has a weaker property of being a saturated homotopical category in the
sense of Dwyer-Hirschhorn-Kan-Smith [10] (see [5, Sec. 3.1]). This allows
one to define a well-behaved homotopy category of Poisson algebras and
consider derived functors on DGPAk: we define the homotopy category

Ho(DGPAk) := DGPAk[W
−1] ,

where W is the class of weak equivalences.
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Definition 1. By a derived Poisson algebra we mean a cofibrant associa-
tive DG algebra A equipped with a Poisson structure (in the sense of Defin-
tion 2.2.1), which is viewed up to weak equivalence, i.e. as an object in
Ho(DGPAk).

Since the complex A\ computes the (reduced) cyclic homology of a cofi-
brant DG algebra A, the (reduced) cyclic homology of a derived Poisson
algebra A carries a natural structure of a graded Lie algebra (see [5, Prop.
3.3]).

Another important result of [1] that holds for the derived Poisson algebras
in Ho(DGPAk) and that motivates our study of these objects is the following

Theorem 2.1 (see [1, Theorem 2]). If A is a derived Poisson DG al-
gebra, then, for any n, there is a unique graded Poisson bracket on the
representation homology HR•(A,n)GL, such that the derived character map
Trn : HC•(A)→ HR•(A,n)GL is a Lie algebra homomorphism.

2.2.2. Necklace Lie algebras. The simplest example of a derived Poisson
algebra is when A = TkV , the tensor algebra generated by an even dimen-
sional k-vector space V equipped with a symplectic form 〈–, –〉 : V ×V −→ V .
In this case, A acquires a double Poisson structure in the sense of [20]. The
double bracket

{{–, –}} : Ā⊗ Ā −→ A⊗A

is given by the formula

{{(v1, . . . , vn), (w1, . . . , wm)}} =∑
i=1,...,n
j=1,...,m

〈vi, wj〉(w1, . . . , wj−1, vi+1, . . . , vn)⊗ (v1, . . . , vi−1, wj+1, . . . , wm) ,

(2.2)

where (v1, . . . , vn) denotes the element v1⊗ . . .⊗ vn ∈ TkV for v1, . . . , vn ∈
V . This double bracket can be extended to A ⊗ A by setting {{a, 1}} =
{{1, a}} = 0. The above double bracket induces a (derived) Poisson structure
on A: the corresponding Lie bracket on A\ is given by the formula

{ᾱ, β̄} = µ ◦ {{α, β}} ,

where µ : A ⊗ A −→ A is the product and where ā denotes the image of
a ∈ A under the canonical projection A −→ A\. A\ = TkV\ equipped with
the above Lie bracket is the well known necklace Lie algebra (see [6, 13]).

3. Koszul, Calabi-Yau algebras

In this section, we recall results about derived Poisson structures on
Koszul Calabi-Yau algebras from [7, 5].
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3.1. Cyclic coalgebras. We now describe our basic construction of de-
rived Poisson structures associated with cyclic coalgebras. Recall (cf. [12])
that a graded associative k-algebra is called n-cyclic if it is equipped with a
symmetric bilinear pairing 〈–, –〉 : A×A −→ k of degree n such that

〈ab, c〉 = 〈a, bc〉 , ∀ a, b, c ∈ A .

Dually, a graded coalgebra C is called n-cyclic if it is equipped with a sym-
metric bilinear pairing 〈–, –〉 : C × C −→ k of degree n such that

〈v′, w〉v′′ = ±〈v, w′′〉w′ , ∀ v, w ∈ C,

where v′ and v′′ are the components of the coproduct of v written in the
Sweedler notation. Note that if A is a finite dimensional graded −n-cyclic
algebra whose cyclic pairing is non-degenerate, then C := Homk(A, k) is a
graded n-cyclic coalgebra. A DG coalgebra C is n-cyclic if it is n-cyclic as
a graded coalgebra and

〈du, v〉 ± 〈u, dv〉 = 0 ,

for all homogeneous u, v ∈ C, i.e, if 〈–, –〉 : C[n] ⊗ C[n] −→ k[n] is a map
of complexes. By convention, we say that C ∈ DGCk/k is n-cyclic if C̄ is
n-cyclic as a non-counital DG coalgebra.

Assume that C ∈ DGCk/k is equipped with a cyclic pairing of degree n
and let R := Ω(C) denote the (associative) cobar construction of C. Recall
that R ∼= Tk(C̄[−1]) as a graded k-algebra. For v1, . . . , vn ∈ C̄[−1], let
(v1, . . . , vn) denote the element v1 ⊗ . . .⊗ vn of R. By [1, Theorem 15], the
cyclic pairing on C of degree n induces a double Poisson bracket of degree
n+ 2 (in the sense of [20])

{{–, –}} : R̄⊗ R̄ −→ R⊗R
given by the formula

{{(v1, . . . , vn), (w1, . . . , wm)}} =∑
i=1,...,n
j=1,...,m

±〈vi, wj〉(w1, . . . , wj−1, vi+1, . . . , vn)⊗ (v1, . . . , vi−1, wj+1, . . . , wm) .

(3.1)

The above double bracket can be extended to R ⊗ R by setting {{r, 1}} =
{{1, r}} = 0. Let {–, –} be the bracket associated to (3.1):

{–, –} := µ ◦ {{–, –}} : R⊗R −→ R , (3.2)

where µ is the multiplication map on R. Let \ : R −→ R\ be the canonical
projection and let {–, –} : \ ◦ {–, –} : R ⊗ R −→ R\. We recall that the
bimodule R⊗R (with outer R-bimodule structure) has a double bracket (in
the sense of [7, Defn. 3.5]) given by the formula

{{–, –}} : R× (R⊗R) −→ R⊗ (R⊗R)⊕ (R⊗R)⊗R ,

{{r, p⊗ q}} := {{r, p}} ⊗ q ⊕ (−1)|p|(|r|+n)p⊗ {{r, q}} .
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This double bracket restricts to a double bracket on the sub-bimodule Ω1R
of R ⊗ R ( [7, Corollary 5.2]). Let {–, –} : R ⊗ Ω1R −→ Ω1R be the map
µ◦{{–, –}}, where µ is the bimodule action map and let {–, –} : R⊗Ω1R −→
Ω1R\ denote the map \ ◦ {–, –}.

The bracket {–, –} : R ⊗ R −→ R\ descends to a DG (n + 2)-Poisson
structure on R. In particular, it descends to a (DG) Lie bracket {–, –}\
on R\ of degree n + 2. The restriction of the bracket (3.2) to R̄ induces
a degree n + 2 DG Lie module structure over R\ on R̄ and the bracket
{–, –} : R⊗ Ω1R −→ Ω1R\ induces a degree n+ 2 DG Lie module structure
over R\ on Ω1R\ (see [7, Proposition 3.11]). On homologies, we have (see [7],
Theorem 1.1 and Theorem 1.2)

Theorem 3.1. Let A ∈ DGAk/k be an augmented associative algebra Koszul
dual to C ∈ DGCk/k. Assume that C is n-cyclic. Then,

(i) HC•(A) has the structure of a graded Lie algebra (with Lie bracket of
degree n+ 2).
(ii) HH•(A) has a graded Lie module structure over HC•(A) of degree n+2.
(iii) The maps S,B and I in the Connes periodicity sequence are homomor-
phisms of degree n+ 2 graded Lie modules over HC•(A).

The Lie bracket of degree n+ 2 on HC•(A) that is induced by a (n+ 2)-
Poisson structure on R\ as above is an example of a derived (n+ 2)-Poisson
structure on A.

3.1.1. Convention. Since we work with algebras that are Koszul dual to
n-cyclic coalgebras, all Lie algebras that we work with have Lie bracket of
degree n + 2. Similarly, all Lie modules are degree n + 2 Lie modules. We
therefore, drop the prefix “degree n+2” in the sections that follow. Following
this convention, we shall refer to (derived) (n + 2)-Poisson structures as
(derived) Poisson structures.

3.2. Dual Hodge decomposition. Given a Lie algebra a over k, we con-
sider the symmetric ad-invariant k-multilinear forms on a of a (fixed) degree
p ≥ 1. Every such form is induced from the universal one: a× a× . . .× a→
λ(p)(a) , which takes its values in the space λ(p)(a) of coinvariants of the ad-

joint representation of a in Symp(a) . The assignment a 7→ λ(p)(a) defines
a (non-additive) functor on the category of Lie algebras that extends in a
canonical way to the category of DG Lie algebras:

λ(p) : DGLAk −→ Comk , a 7→ Symp(a)/[a, Symp(a)] . (3.3)

The category DGLAk has a natural model structure (in the sense of Quillen
[19]), with weak equivalences being the quasi-isomorphisms of DG Lie alge-
bras. The corresponding homotopy (derived) category Ho(DGLAk) is obtained
from DGLAk by localizing at the class of weak equivalences, i.e. by formally
inverting all the quasi-isomorphisms in DGLAk. The functor (3.3), however,
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does not preserve quasi-isomorphisms and hence does not descend to the
homotopy category Ho(DGLAk). To remedy this problem, one has to replace

λ(p) by its (left) derived functor

Lλ(p) : Ho(DGLAk)→ D(k) , (3.4)

which takes its values in the derived category D(k) of k-complexes. We write

HC
(p)
• (a) for the homology of Lλ(p)(a) and call it the Lie-Hodge homology

of a.
For p = 1, the functor λ(1) is just abelianization of Lie algebras; in this

case, the existence of Lλ(1) follows from Quillen’s general theory (see [19,

Chapter II, §5]), and HC
(1)
• (a) coincides (up to shift in degree) with the

classical Chevalley-Eilenberg homology H•(a, k) of the Lie algebra a. For

p = 2, the functor λ(2) was introduced by Drinfeld [9]; the existence of Lλ(2)

was established by Getzler and Kapranov [12] who suggested that HC
(2)
• (a)

should be viewed as an (operadic) version of cyclic homology for Lie algebras.

Observe that each λ(p) comes together with a natural transformation to
the composite functor U\ := ( – )\ ◦ U : DGLAk → DGAk/k → Comk, where U
denotes the universal enveloping algebra functor on the category of (DG)

Lie algebras. The natural transformations λ(p) → U\ are induced by the
symmetrization maps

Symp(a)→ Ua , x1x2 . . . xp 7→
1

p!

∑
σ∈Sp

±xσ(1) · xσ(2) · . . . · xσ(p) , (3.5)

which, by the Poincaré-Birkhoff-Witt Theorem, assemble to an isomorphism
of DG a-modules Symk(a) ∼= Ua . From this, it follows that λ(p) → U\
assemble to an isomorphism of functors

∞⊕
p=1

λ(p) ∼= U\ . (3.6)

On the other hand, by a theorem of Feigin and Tsygan [11] (see also [3]),
the functor ( – )\ has a left derived functor L( – )\ : Ho(DGAk/k)→ D(k) that

computes the reduced cyclic homology HC•(R) of an associative algebra
R ∈ DGAk/k. Since U preserves quasi-isomorphisms and maps cofibrant DG
Lie algebras to cofibrant DG associative algebras, the isomorphism (3.6)
induces an isomorphism of derived functors from Ho(DGLAk) to D(k):

∞⊕
p=1

Lλ(p) ∼= L( – )\ ◦ U . (3.7)

At the level of homology, (3.7) yields the direct decomposition (cf. [2, The-
orem 7.2].
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HC•(Ua) ∼=
∞⊕
p=1

HC
(p)
• (a) . (3.8)

As explained in [2], the existence of (3.7) is related to the fact that Ua is
a cocommutative Hopf algebra, and in a sense, the Lie Hodge decomposition
(3.8) is Koszul dual to the classical Hodge decomposition of cyclic homology
for commutative algebras.

The Lie Hodge decomposition (3.8) also extends to (reduced) Hochschild
homology (see [5, Sec. 2.1]):

HH•(Ua) ∼=
∞⊕
p=0

HH
(p)
• (a) .

Under Kassel’s isomorphism HH•(Ua) ∼= H•(a; Sym(a)) (see [17, Theo-

rem 3.3.2]), the summand HH(p)(a) is identified with H•(a; Symp(a)). The
Connes periodity sequence for Ua decomposes into a direct sum of Hodge
components (see [5, Theorem 2.2]): the summand of Hodge degree p is given
by the long exact sequence

. . .
S
- HC

(p+1)
n−1 (a)

B
- HH(p)

n (a)
I
- HC(p)

n (a)
S
- HC

(p+1)
n−2 (a) - . . . .

(3.9)
Note that a is Koszul dual to a cocommutative (coaugmented, conilpotent)
DG coalgebra C (for example, C may be taken to be the Chevalley-Eilenberg
coalgebra C(a; k)). Thus, Ua is Koszul dual to C viewed as a coassocia-
tive DG coalgebra. When C carries a cyclic pairing (of degree n), Ua ac-
quires a derived Poisson structure, giving a Lie bracket (of degree n+ 2) on
HC•(Ua). Further, in this case, HH•(Ua) has a graded Lie module structure
over HC•(Ua) of degree n+ 2. We have (see [5, Theorems 3.3 and 3.4]):

Theorem 3.2. For all p, the derved Poisson bracket on HC•(Ua) equips the

direct summand HC
(p)
• (a) with a graded Lie module structure over HC

(2)
• (a)

(of degree n+ 2), i.e.,

{HC
(2)
• (a),HC

(p)
• (a)} ⊂ HC

(p)
• (a) .

Further, HH
(p)
• (a) is equipped with a graded Lie module structure over HC

(2)
• (a)

(of degree n+ 2).

There exists a cyclic cocommutative DG coalgebra Koszul dual to a for
a large class of interesting examples: unimodular Lie algebras (of which
semisimple Lie algebras are examples), Quillen models of simply connected
manifolds, etc.
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3.3. Drinfeld traces and Poisson structures on representation al-
gebras.

3.3.1. Drinfeld traces. Let L ∼−→ a be a cofibrant resolution. The unit of
the adjunction (–)g : DGLAk � DGCAk/k : g(–) is the universal representation

πg : L −→ g(Lg) .

Let λ(p) : DGLAk −→ Comk be the functor a 7→ Symp(a)/[a, Symp(a)]. There is

a natural map λ(p)[g(Lg)] −→ Lg ⊗ λ(p)(g). For P ∈ Ip(g) := Symp(g∗)ad g,

evaluation at P gives a linear functional evP on λ(p)(g). One thus has the
composite map

λ(p)(L)
λ(p)(πg)- λ(p)[g(Lg)] - Lg ⊗ λ(p)(g)

Id⊗ evP- Lg

for P ∈ Ip(g). On homologies, this gives the map

Trg(P, a) : HC
(p)
• (a) −→ HR•(a, g)ad g ,

which we call the Drinfeld trace map associated to P (see [2, Section 7] for
further details regarding this construction). If g is semisimple, the Killing
form is a canonical element of I2(g). We denote the associated Drinfeld
trace by

Trg(a) : HC
(2)
• (a) −→ HR•(a, g)ad g .

3.3.2. Cyclic Lie coalgebras. Recall from [12, Sec. 4.5] that a cyclic
pairing 〈–, –〉 of degree n on a DG Lie algebra a is a symmetric, ad-invariant
pairing (of degree n) that is compatible with differential: compatibility with
differential is equivalent to the assertion that 〈–, –〉 : a ⊗ a −→ k[−n] is a
map of complexes.

Dually, a cyclic pairing of degree n on a DG Lie coalgebra G is a symmetric
pairing compatible with differential satisfying

x1〈x2, y〉 = ±y2〈x, y1〉

for all x, y ∈ G, where ]x[ = x1 ⊗ x2, etc. in the Sweedler notation. It is
not difficult to verify that if a is a finite dimensional DG Lie algebra with
a non-degenerate cyclic pairing, then a∗ is a DG Lie coalgebra with cyclic
pairing (see [22, Prop. 2.1]).

Recall that for a DG Lie coalgebra G, one has the Chevalley-Eilenberg
algebra Cc(G; k) which is the construction formally dual to the Chevalley-
Eilenberg coalgebra C(a; k) of a DG Lie algebra. In particular, Cc(G; k) is
an augmented, commutative DG algebra.

Lemma 3.1 (see [5, Lemma 5.1]). If G ∈ DGLCk is equipped with a cyclic
pairing of degree n, then the Chevalley-Eilenberg algebra Cc(G; k) acquires a
DG Poisson structure of degree n+ 2.
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Indeed, Cc(G; k) ∼= Sym(G[−1]) as a graded algebra. The symmetric
pairing of degree n on G gives a skew-symmetric pairing on G[−1] of de-
gree n + 2. This in turn, gives the required graded Poisson structure on
Sym(G[−1]). Cyclicity ensures that this structure is compatible with the
differential on Cc(G; k).

3.3.3. Poisson structures. Let a ∈ DGLAk be Koszul dual to C ∈ DGCCk/k.
Assume that C is equipped with a cyclic pairing of degree n. By [2, Theorem
6.7],

DRepg(a) ∼= Cc(g∗(C̄); k) .

If g is semisimple, tensoring the cyclic pairing on C̄ with the paring dual
to the Killing form on g∗ gives a cyclic pairing of degree n on the DG Lie
coalgebra g∗(C̄) := g∗ ⊗ C̄. It follows from Lemma 3.1 that Cc(g∗(C̄); k)
has a DG Poisson structure of degree n + 2. Thus, HR•(a, g) has a graded

Poisson structure of degree n + 2. By Theorem 3.2, HC
(2)
• (a) has a Lie

bracket of degree n + 2 arising from the derived Poisson structure on Ua
corresponding to the cyclic pairing on C.

Theorem 3.3 (see [5, Theorem 5.1]). The Drinfeld trace

Trg(a) : HC
(2)
• (a) −→ HR•(a, g)

corresponding to the Killing form on g is a homomorphism of graded Lie
algebras.

4. Main results

Throughout this section, unless stated otherwise, let a ∈ DGLAk be Koszul
dual to C ∈ DGCCk/k. Further assume that C is equipped with a cyclic
pairing of degree n. By Theorem 3.2, the corresponding derived Poisson
structure on Ua equips HC•(Ua) with the structure of a graded Lie algebra

(with the Lie bracket having degree n + 2) of which HC
(2)
• (a) is a graded

Lie subalgebra. Moreover, the corresponding Lie bracket equips each Lie

Hodge summand HC
(p)
• (a) with the structure of a graded Lie module over

HC
(2)
• (a).

4.1. The main theorem. Let g be a finite dimensional semisimple Lie
algebra. By Theorem 3.3, there is a Poisson structure on HR•(a, g) such

that the Drinfeld trace Trg(a) : HC
(2)
• (a) −→ HR•(a, g) corresponding to the

Killing form on g is a homomorphism of graded Lie algebras. This equips

HR•(a, g) with the structure of a graded Lie module over HC
(2)
• (a).

Theorem 4.1. For any P ∈ Ip(g), the Drinfeld trace

Trg(P, a) : HC
(p)
• (a) −→ HR•(a, g)

is a homomorphism of graded Lie modules over HC
(2)
• (a).
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We recall some technicalities before proving Theorem 4.1. Let R :=
Ω(C) ∈ DGAk/k. Let L := ΩComm(C) ∈ DGLAk. Then R ∼= UL. Recall (see
Section 3.1) that the cyclic pairing on C equips R with a double Poisson
bracket, and therefore, a derived Poisson structure. In particular, R\ is a
DG Lie algebra. By [7, Prop. 3.11], the bracket (3.2) equips R̄ with the
structure of a DG Lie module over R\, with R\ acting on R̄ by derivations.
The isomorphism of functors (3.6) applied to L gives an isomorphism

R\ ∼=
∞⊕
p=1

λ(p)(L) . (4.1)

By [5, Prop. 3.4, Cor. 3.1], λ(2)(L) is a Lie subalgebra of R\, and each

λ(p)(L) is a λ(2)(L)-module. Again by [5, Prop. 3.4, Cor. 3.1], L is a

λ(2)(L)-submodule of R, and the symmetrization map gives an isomorphism

of λ(2)(L)-modules

Sym(L) ∼= R ,

where the λ(2)(L)-action on L is extended to an action on Sym(L) by deriva-
tions. By (the proof of) [2, Thm. 6.7], Lg = Cc(g∗(C̄); k). It follows that Lg
has a Poisson structure induced by the cyclic pairing pairing on g∗(C̄) ob-
tained by tensoring the pairing on C̄ with the Killing form on g (see Section

3.3.3). By (the proof of) [5, Thm. 5.1], the trace Trg(L) : λ(2)(L) −→ Lg is
a graded Lie algebra homomorphism. This equips Lg with the structure of

a graded Lie module over λ(2)(L). Since Lg is freely generated by g∗⊗ V as
a graded commutative algebra, where V := C̄[−1], Ω1(Lg) ∼= Lg ⊗ g∗ ⊗ V
as a graded Lg-module. Let ∂̄ : λ(2)(L) −→ L ⊗ V denote the cyclic deriv-
ative (see [5, Lemma 6.2]) and let d : Lg −→ Ω1(Lg) denote the universal
derivation. The proof of Theorem 4.1 relies on the following Lemma, whose
detailed proof we postpone.

Lemma 4.1 (see [5, Lemma 5.2]). The following diagram commutes:

λ(2)(L)
∂̄
- L ⊗ V

πg ⊗ Id
- Lg ⊗ g⊗ V

Lg
d

-

Trg(L)
-

Ω1(Lg)

∼=

?

Here, the vertical isomorphism on the right identifies g with g∗ through the
Killing form.

Proposition 4.1. The universal representation πg : L −→ Lg ⊗ g is a

λ(2)(L)-module homomorphism, where λ(2)(L) acts trivially on g.

Proof. Since λ(2)(L) acts on R (resp., Lg) by derivations, it acts on the DG
Lie algebras L (resp., Lg⊗ g) by Lie derivations. Since L is freely generated
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as a graded Lie algebra by V := C̄[−1], it suffices to verify that for any

α ∈ λ(2)(L) and for any u ∈ V ,

πg({α, u}) = {Trg(L)(α), πg(u)} . (4.2)

It follows from (3.1) and [5, Lemma 6.2] that the restriction of the action

of λ(2)(L) on L to the (graded) subspace V of L is given by the composite
map

λ(2)(L)⊗ V
∂̄ ⊗ Id

- (L ⊗ V )⊗ V - L ⊗ (V ⊗ V )
Id⊗ 〈– , –〉

- L ,

where ∂̄ : λ(2)(L) −→ L⊗V is the cyclic derivative. Since the Poisson struc-
ture on Lg arises from a skew symmetric pairing on g∗⊗V , the restriction of
the action of Lg on itself (via the Poisson bracket) to the (graded) subspace
g∗ ⊗ V is given by the composite map

Lg ⊗ g∗ ⊗ V
d⊗ Id

- Ω1(Lg)⊗ g∗ ⊗ V ∼=

Lg ⊗ g∗ ⊗ V ⊗ g∗ ⊗ V
IdLg ⊗ 〈–, –〉- Lg .

Now, for all v ∈ V ,

πg(v) =
∑
α

(ξ∗α ⊗ v)⊗ ξα ∈ Lg ⊗ g ,

where {ξα} is an orthonormal basis of g with respect to the Killing form and
{ξ∗α} is the dual basis on g∗. In particular, πg(V ) ⊂ g∗ ⊗ V ⊗ g. Therefore,
(4.2) follows once we verify the commutativity of the following diagram:

λ(2)(L)⊗ V

L ⊗ V ⊗ V

∂̄ ⊗ IdV
?

Lg ⊗ g∗ ⊗ V ⊗ g

Trg(L)⊗ πg
-

Lg ⊗ g⊗ V ⊗ V

πg ⊗ Id
?

Lg ⊗ g∗ ⊗ V ⊗ g∗ ⊗ V ⊗ g

d⊗ Idg∗⊗V⊗g
?

Lg ⊗ g

IdLg⊗g ⊗ 〈–, –〉
? Id

- Lg ⊗ g

IdLg ⊗ 〈–, –〉 ⊗ Idg
?

. (4.3)

By Lemma 4.1, and since the pairing on g∗ ⊗ V is the pairing on V ten-
sored with the (pairing dual to the) Killing form, the commutativity of (4.3)
follows once we verify that for all x ∈ g,∑

α

〈η(x), ξ∗α〉ξα = x ,

where η denotes the identification of g with g∗ via the Killing form. This is
immediately seen for all ξα, and hence, for all elements of g. This completes
the proof of the desired proposition. �
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Proof of Theorem 4.1. It follows from Proposition 4.1 that the map

Sym(πg) : Sym(L) −→ Sym(Lg ⊗ g)

is λ(2)(L)-equivariant, where the λ(2)(L) action on L (resp., Lg ⊗ g) is ex-
tended to an action on Sym(L) (resp., Sym(Lg ⊗ g)) by derivations. In
particular, for any p, the map Symp(πg) : Symp(L) −→ Symp(Lg ⊗ g) is

λ(2)(L)-equivariant. Note that Lg acts on Lg ⊗ g by Lie derivations and
on Lg ⊗ Sym(g) by derivations: both actions are induced by the Poisson
bracket on Lg and the trivial Lg-action on g. It can be easily verified that
the canonical projection Sym(Lg ⊗ g) −→ Lg ⊗ Sym(g) is Lg-equivariant,
where the Lg-action on Sym(Lg⊗ g) is obtained by extending the action on

Lg ⊗ g by derivations. Since the λ(2)(L)-action on Lg factors through the

Lie algebra homomorphism Trg(L) : λ(2)(L) −→ Lg, the canonical projection

Sym(Lg ⊗ g) −→ Lg ⊗ Sym(g) is λ(2)(L)-equivariant. Hence, the composite
map

Symp(L)
Symp(πg)- Symp(Lg ⊗ g) - Lg ⊗ Symp(g) (4.4)

is λ(2)(L)-equivariant. It follows that the map λ(p)(L) −→ Lg ⊗ λ(p)(g), is

λ(2)(L)-equivariant, since it fits into the commutative diagram

Symp(L)
(4.4)

- Lg ⊗ Symp(g)

λ(p)(L)

??
- Lg ⊗ λ(p)(g)

??

.

For any P ∈ Ip(g), the Drinfeld trace Trg(P,L) is given by composing the

map λ(p)(L) −→ Lg ⊗ λ(p)(g) with evaluation at P . It follows that Trg(P,L)

is λ(2)(L)-equivariant. Since L is a cofibrant resolution of a, the desired
theorem follows on homologies. �

We end this section with a tedious computation verifying Lemma 4.1.

Proof of Lemma 4.1. Note that every element in λ(2)(L) can be expressed
as a linear combination of images of elements of the form x · w ∈ Sym2(L)

under the canonical projection Sym2(L)� λ(2)(L), where

x = [v1, [v2, · · · [vn−1, vn] · · · ]]

for some v1, . . . , vn ∈ V and w ∈ V . Here, V := C̄[−1]. Observe that

∂̄(x · w) =∑
16j6n

±[[vj+1, [vj+2, · · · [vn−1, vn] · · · ]], [[· · · [w, v1] · · · , vj−2], vj−1]]⊗ vj

+[v1, [v2, · · · [vn−1, vn] · · · ]]⊗ w , (4.5)
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where the signs are determined by the Koszul sign rule. To verify (4.5), recall
that restriction of the cyclic derivative ∂̄ to V ⊗n is given by the composite
map

V ⊗n
N · (–)

- V ⊗n - V ⊗n−1 ⊗ V ,
where N =

∑n−1
i=0 τ

i and where the last arrow is the obvious isomorphism
that permutes no factors. Here, τ : V ⊗n −→ V ⊗n denotes the cyclic per-
mutation (v1, . . . , vn) 7→ ±(v2, . . . , vn, v1), where the signs are given by the

Koszul sign rule. Since x · w = 1
2(xw + (−1)|x||w|wx), and since N (and

hence, ∂̄) vanish on commutators in R := Ω(C), ∂̄(x ·w) = ∂̄(xw). It is easy
to see that the summand of N(xw) ending in w is xw itself. For 1 ≤ i ≤ n,
we note that

x · w = ±[vi, z1] · z2 ,
in λ(2)(L) ⊂ R\, where z1 := [vi+1, [vi+2, · · · [vn−1, vn] · · · ]] and
z2 := [[· · · [w, v1] · · · , vi−2], vi−1]. It follows from [4, Lemma A.1] that the
summand of N(x ·w) ending in vi is given by ±[z1, z2]⊗ vi. This completes
the verification of (4.5).

Let {ξi} be an orthonomal basis of g with respect to the Killing form
and let {ξ∗i } denote the dual basis of g∗. For v ∈ V and ξ∗ ∈ g∗, let
ξ∗(v) := ξ∗⊗ v ∈ g∗⊗ V . In addition, for ξ1, · · · , ξn ∈ g, let [ξ1, · · · , ξn] :=
[ξ1, [ξ2, · · · [ξn−1, ξn] · · · ]] ∈ g. Since for all v ∈ V ,

πg(v) =
∑
i

ξ∗i (v)⊗ ξi ∈ Lg ⊗ g ,

πg(x) =
∑

i1,··· ,in

ξ∗i1(v1) · · · ξ∗in(vn)⊗ [ξi1 , ξi2 , · · · , ξin ] ∈ Lg ⊗ g .

Hence,

Trg(L)(x · w) =
∑

i0,i1,··· ,in

〈[ξi1 , ξi2 , · · · , ξin ] , ξi0〉ξ∗i1(v1) · · · ξ∗in(vn)ξ∗i0(w) ,

where the pairing 〈–, –〉 is the Killing form. Identifying Ω1(Lg) with Lg ⊗
g∗ ⊗ V , we have

d ◦ Trg(L)(x · w) = (4.6)∑
i0,i1,··· ,in

{ ∑
16j6n

±〈[ξi1 , · · · , ξin ] , ξi0〉ξ∗i1(v1)·̂ · ·
j
ξ∗in(vn)ξ∗i0(w)⊗ ξ∗ij (vj)

+〈[ξi1 , · · · , ξin ] , ξi0〉ξ∗i1(v1) · · · ξ∗in(vn)⊗ ξ∗i0(w)
}
.

By (4.5), in Lg ⊗ g⊗ V ,

(πg ⊗ Id)(∂̄(x · w)) = (4.7)∑
i0,i1,··· ,in

{ ∑
16j6n

±ξ∗i1(v1)·̂ · ·
j
ξ∗in(vn)ξ∗i0(w)⊗[[ξij+1 , · · · , ξin ], [ξi0 , · · · , ξij−1 ]′]⊗vj

+ξ∗i1(v1) · · · ξ∗in(vn)⊗ [ξi1 , · · · , ξin ]⊗ w
}
,
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where [ξ1, · · · , ξn]′ := [[· · · [ξ1, ξ2] · · · , ξn−1], ξn] for ξ1, · · · , ξn ∈ g. Since g
is identified with g∗ via the Killing form, the desired lemma follows from
(4.6) and (4.7) once we verify that for 1 6 j 6 n,∑

i0,i1,··· ,in

〈[[ξij+1 , · · · , ξin ], [ξi0 , · · · , ξij−1 ]′], ξij 〉

=
∑

i0,i1,··· ,in

〈[ξi1 , [ξi2 , · · · [ξin−1 , ξin ] · · · ]] , ξi0〉 .

This is immediate from the symmetry and invariance of the Killing form. �

4.2. Traces to Hochschild homology. Let V := C̄[−1], R := Ω(C) and

L := ΩComm(C) (note that R ∼= UL). By assumption, L ∼−→ a is a cofibrant

resolution of a in DGLAk, and R
∼−→ Ua is a cofibrant resolution of Ua.

For a R-bimodule M , let M\ := M/[R,M ]. Since Ω1R ∼= R ⊗ V ⊗ R
as graded R-bimodules, Ω1R\ ∼= R ⊗ V as graded vector spaces. We equip
R ⊗ V ⊗ R (resp., R ⊗ V ) with the differential inherited from Ω1R (resp.,
Ω1R\). Let β : Ω1R\ −→ R̄ denote the map given by r ⊗ v 7→ [r, v]. It s
known that there is an isomorphism of homologies

HH•(Ua) ∼= H•[cône(β : Ω1R\ −→ R̄)] .

For p > 1, let θ(p)(L) denote the subcomplex Symp(L)⊗ V of R⊗ V , where
Symp(L) is embedded in R via the symmetrization map. It is easy to verify

that β[θ(p)(L)] ⊂ Symp(L) (see [5, Lemma 2.1]). By (the proof of) [5, Thm.
2.2],

HH
(p)
• (a) ∼= H•[cône(β : θ(p)(L) −→ Symp(L))] .

Let θ : V −→ g⊗ g∗ ⊗ V denote the map v 7→
∑

i ξi ⊗ ξ∗i ⊗ v. Let g∗(V ) :=
g∗ ⊗ V . Given P ∈ Ip+1(g), consider the composite map

Symp(L)⊗ V

Symp(Lg ⊗ g)⊗ g⊗ g∗(V )

Symp(πg)⊗ θ
?

Lg ⊗ Symp(g)⊗ g⊗ g∗(V )
?

- Lg ⊗ Symp+1(g)⊗ g∗(V )
evP- Lg ⊗ g∗(V )

,

where the unlabelled arrows stand for maps multiplying the obvious factors
out. Identifying Ω1(Lg) with Lg ⊗ g∗(V ), we see that the above composite
map gives a map

Trg(P,L) : θ(p)(L) −→ Ω1(Lg) (4.8)
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of complexes such that the following diagram commutes:

θ(p)(L)
β
- Symp(L)

Ω1(Lg)

Trg(P,L)

?
0

- Lg

Trg(P
′,L)

?

.

Here, the vertical arrow on the right is the composition of the canonical
projection Symp(L) � λ(p)(L) with the Drinfeld trace Trg(P

′,L) for any
P ′ ∈ Ip(g). The Drinfeld tace therefore extends to give a composite map
(independent of the choice of P ′)

Trg(P,L) : cône(β : θp(L) −→ Symp(L))

- cône( 0 : Ω1(Lg) −→ Lg) -- Ω1(Lg)[1]

On homologies, we obtain a map

Trg(P, a) : HH
(p)
•+1(a) −→ H•[Ω

1(DRepg(a))] .

The following theorem is our second main result:

Theorem 4.2. For any P ∈ Ip+1(g), there is a commuting diagram of

graded Lie modules over HC
(2)
• (a)

HC
(p+1)
• (a)

B
- HH

(p)
•+1(a)

HR•(a, g)

Trg(P, a)

? d
- H•[Ω

1(DRepg(a))]

Trg(P, a)

?

,

where the horizontal arrow in the bottom of the above diagram is induced by
the universal derivation.
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4.2.1. Proof of Theorem 4.2. Let Φg : Ω1R −→ Ω1(Lg)⊗ Ug denote the
composite map

Ω1(R) ∼= R⊗ V ⊗R

U(Lg ⊗ g)⊗ g⊗ g∗(V )⊗ U(Lg ⊗ g)

Uπg ⊗ θ ⊗ Uπg
?

(Lg ⊗ Ug)⊗ g∗(V )⊗ g⊗ (Lg ⊗ Ug)
?

(Lg ⊗ Lg)⊗ g∗(V )⊗ (Ug⊗ g⊗ Ug)
?

Lg ⊗ g∗(V )⊗ Ug ∼= Ω1(Lg)⊗ Ug .

µLg ⊗ Id⊗ µUg
?

It is easy to check that Φg is a R-bimodule map, where the R-bimodule
structure on Lg⊗g∗(V )⊗Ug is induced by the composite map (also denoted
by Uπg)

R
Uπg- U(Lg ⊗ g) - Lg ⊗ Ug .

Recall from Section 3.1 that the R-bimodule Ω1R acquires a double bracket.
Composing this double bracket with the bimodule action map gives a map
R ⊗ Ω1R −→ Ω1R. By [7, Prop. 3.10], this map equips Ω1R with the struc-

ture of a DG Lie module over R\ (and, by restriction, λ(2)(L)). On the
other hand, by Lemma 3.1, Lg acquires a DG Poisson structure such that

the Drinfeld trace Trg : λ(2)(L) −→ Lg corresponding to the Killing form
is a homomorphism of DG Lie algebras (see [5, Sec. 5]). There is a Pois-
son action of Lg on Ω1(Lg) making the latter a DG Lie module over the
former. This equips Ω1(Lg) with the structure of a DG Lie module over

λ(2)(L). Equip Ω1(Lg)⊗Ug with the λ(2)(L)-module structure coming from

the above λ(2)(L)-action on Ω1(Lg) and the trivial action on Ug. The fol-
lowing proposition summarizes the main facts used for the proof of Theorem
4.2.

Proposition 4.2. All maps in the commutative diagram below are λ(2)(L)-
equivariant:

R
d

- Ω1R

Lg ⊗ Ug

Uπg

? d⊗ IdUg- Ω1(Lg)⊗ Ug

Φg

?

(4.9)
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The following lemma is required for the proof of Proposition 4.2.

Lemma 4.2. The action of R on Ω1R ∼= R⊗ V ⊗R is given by:

{a, b⊗ v ⊗ c} = {a, b} ⊗ v ⊗ c+ (−1)(|a|+n)(|b|+|v|)b⊗ v ⊗ {a, c}
+(−1)(|a|+n)|b|b(d{a, v})c . (4.10)

Proof. the isomorphism I : R⊗ V ⊗R→ Ω1
R ⊂ R⊗R is given by

I{(v1 · · · vp−1)⊗ vp ⊗ (vp+1 · · · vm)}

= (v1 · · · vp)⊗ (vp+1 · · · vm)− (v1 · · · vp−1)⊗ (vp · · · vm) .

Under this isomorphism, the universal derivation d : R −→ Ω1R is given by

d(v1 · · · vm) =
m∑
i=1

(v1 · · · vi−1)⊗ vi ⊗ (vi+1 · · · vm) ,

and for all r ∈ R,

I(dr) = r ⊗ 1− 1⊗ r .
For a, b, c ∈ R and v ∈ V , consider

{{a, I(b⊗ v ⊗ c)}} = {{a, bv ⊗ c− b⊗ vc}}
= {{a, bv}} ⊗ c+ (−1)(|a|+n)(|b|+|v|)bv ⊗ {{a, c}}
−{{a, b}} ⊗ vc− (−1)(|a|+n)|b|b⊗ {{a, vc}}

= {{a, b}}v ⊗ c+ (−1)(|a|+n)|b|b{{a, v}} ⊗ c
+(−1)(|a|+n)(|b|+|v|)bv ⊗ {{a, c}} − {{a, b}} ⊗ vc
−(−1)(|a|+n)|b|b⊗ {{a, v}}c
−(−1)(|a|+n)(|b|+|v|)b⊗ v{{a, c}}

= {{a, b}}v ⊗ c− {{a, b}} ⊗ vc
+(−1)(|a|+n)(|b|+|v|)(bv ⊗ {{a, c}} − b⊗ v{{a, c}})
+(−1)(|a|+n)|b|(b{{a, v}} ⊗ c− b⊗ {a, v} ⊗ c)
+(−1)(|a|+n)|b|(b⊗ {a, v} ⊗ c− b⊗ {{a, v}}c) .

Note that both {{a, b}}v⊗ c−{{a, b}}⊗ vc and b⊗{a, v}⊗ c− b⊗{{a, v}}c
belong to R⊗Ω1R, and both bv ⊗ {{a, c}} − b⊗ v{{a, c}} and b{{a, v}} ⊗ c−
b⊗ {a, v} ⊗ c belong to Ω1R⊗R. Hence,

{a, I(b⊗ v ⊗ c)} = µ ◦ {{a, I(b⊗ v ⊗ c)}}
= {a, b}v ⊗ c− {a, b} ⊗ vc

+(−1)(|a|+n)(|b|+|v|)(bv ⊗ {a, c} − b⊗ v{a, c})
+(−1)(|a|+n)|b|(b{a, v} ⊗ c− b⊗ {a, v}c)

= I({a, b} ⊗ v ⊗ c) + (−1)(|a|+n)(|b|+|v|)I(b⊗ v ⊗ {a, c})
+(−1)(|a|+n)|b|I(bd({a, v})c) .
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In the above computation, µ : R ⊗ Ω1R ⊕ Ω1R ⊗ R −→ Ω1R denotes the
bimodule action map. The above computation completes the proof of the
desired lemma. �

For the convenience of the reader, we break Proposition 4.2 into the fol-
lowing two lemmas:

Lemma 4.3. The diagram (4.9) commutes.

Proof. For v1, · · · , vn ∈ V ,

Φg ◦ d(v1 · · · vn) = Φg

( n∑
i=1

(v1 · · · vi−1)⊗ vi ⊗ (vi+1 · · · vn)
)

=

n∑
i=1

∑
j1, ··· , jn

(
± ξ∗j1(v1) · · · ξ̂∗ji(vi) · · · ξ

∗
jn(vn)

⊗ξ∗ji(vi)⊗ (ξj1 · · · ξjn)
)
.

On the other hand,

(d⊗ Id) ◦ Uπg(v1 · · · vn) = (d⊗ Id)
( ∑
j1, ··· , jn

ξ∗j1(v1) · · · ξ∗jn(vn)⊗ (ξj1 · · · ξjn)
)

=
∑

j1, ··· , jn

n∑
i=1

(
± ξ∗j1(v1) · · · ξ̂∗ji(vi) · · · ξ

∗
jn(vn)

⊗ ξ∗ji(vi)⊗ (ξj1 · · · ξjn)
)
.

This proves the desired lemma. �

Lemma 4.4. All maps in the diagram (4.9) are λ(2)(L)-equivariant.

Proof. It follows immediately from Proposition 4.1 that Uπg is λ(2)(L)-

equivariant. Since the λ(2)(L)-action on Lg (resp., Ω1(Lg)) factors through
the Poisson action of Lg on itself (resp., Ω1(Lg)), the universal derivation

d : Lg −→ Ω1(Lg) is λ(2)(L)-equivariant. Indeed, the Poisson action of Lg on
Ω1(Lg) is explicitly given by

{η, βdγ} = {η, β}dγ + (−1)(|η|+n)|β|βd{η, γ} (4.11)

for η, β, γ ∈ Lg, since the Poisson bracket on Lg has degree n + 2. The

R\-equivariance (and therefore, λ(2)(L)-equivariance) of d : R −→ Ω1R is a
direct consequence of Lemma 4.2 and the fact that R\ acts by derivations

on R. It therefore, remains to verify that Φg is λ(2)(L)-equivariant. This is

equivalent to the assertion that for α ∈ λ(2)(L), p, q ∈ R and u ∈ V ,

{Trg(L)(α), Φg(p⊗ u⊗ q)} = Φg

(
{α, p⊗ u⊗ q}

)
. (4.12)

By Lemma 4.2,

{α, p⊗ u⊗ q} = {α, p} ⊗ u⊗ q + (−1)(|α|+n)(|p|+|u|)p⊗ u⊗ {α, q}
+(−1)(|α|+n)|p|p(d{α, u})q (4.13)
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where d : R → R ⊗ V ⊗ R is the noncommutative de Rham differential.
Since Φg is an R-bimodule map, Φg(p⊗u⊗q) = Uπg(p)Φg(1⊗u⊗1)Uπg(q).
Therefore,

Φg

(
{α, p⊗ u⊗ q}

)
= Uπg

(
{α, p}

)
Φg(1⊗ u⊗ 1)Uπg(q) (4.14)

+ (−1)(|α|+n)|p|Uπg(p)Φg

(
d{α, u}

)
Uπg(q)

+ (−1)(|α|+n)(|p|+|u|)Uπg(p)Φg(1⊗ u⊗ 1)Uπg
(
{α, q}

)
.

On the other hand,

{Trg(L)(α), Φg(p⊗ u⊗ q)} (4.15)

= {Trg(L)(α), Uπg(p)Φg(1⊗ u⊗ 1)Uπg(q)}
= {Trg(L)(α), Uπg(p)}Φg(1⊗ u⊗ 1)Uπg(q)
+(−1)(|α|+n)|p|Uπg(p){Trg(L)(α), Φg(1⊗ u⊗ 1)}Uπg(q)
+(−1)(|α|+n)(|p|+|u|)Uπg(p)Φg(1⊗ u⊗ 1){Trg(L)(α), Uπg(q)}.

Since Uπg is λ(2)(L)-equivariant,

{Trg(L)(α), Uπg(p)} = Uπg
(
{α, p}

)
and

{Trg(L)(α), Uπg(q)} = Uπg
(
{α, q}

)
.

By (4.14) and (4.15), (4.12) follows once we verify that for all α ∈ λ(2)(L)
and u ∈ V ,

{Trg(L)(α), Φg(1⊗ u⊗ 1)} = Φg

(
{α, 1⊗ u⊗ 1}

)
. (4.16)

By Lemma 4.3, Φg(1⊗ u⊗ 1) = (d⊗ Idg)[πg(u)], where u is viewed on the
right hand side as an element of V ⊂ L. Therefore,

{Trg(L)(α), Φg(1⊗ u⊗ 1)} = {Trg(L)(α), (d⊗ Idg)[πg(u)]}
= (d⊗ Idg){Trg(L)(α), πg(u)}
= (d⊗ Idg)[πg({α, u})] (by Prop. 4.1)

= Φg[d{α, u}] (by Lemma 4.3)

= Φg

(
{α, 1⊗ u⊗ 1}) (by Lemma 4.2) .

The second equality above is because d : Lg −→ Ω1Lg is equivariant with
respect to the Poisson action of Lg. This verifies (4.16), completing the
proof of the desired lemma. �
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Let ϕg : Ω1R\ −→ Ω1(Lg)⊗ Ug denote the composite map

Ω1R\ ∼= R⊗ V

U(Lg ⊗ g)⊗ g∗(V )⊗ g

Uπg ⊗ θ
?

(Lg ⊗ Ug)⊗ g∗(V )⊗ g
?

- Lg ⊗ g∗(V )⊗ (Ug⊗ g)
Id⊗ µUg- Lg ⊗ g∗(V )⊗ Ug

.

It is easy to verify that

(Φg − ϕg ◦ \)(Ω1R) ⊂ Ω1(Lg)⊗ [Ug,Ug] = Ω1(Lg)⊗ [g,Ug] , (4.17)

where \ : Ω1R −→ Ω1R\ denotes the canonical projection. Any P ∈ Ip+1(g)
determines a linear functional evP on Sym(g), which coincides with the usual
evaluation map on Symp+1(g) and vanishes on other symmetric powers of
g. Composing this linear functional with the inverse of the symmetrization
map Ug −→ Sym(g) determines a linear functional on Ug, which we still
denote by evP . Since P is ad-invariant, evP ([g,Ug]) = 0. It follows from
(4.17) that

(Id⊗ evP ) ◦ Φg = (Id⊗ evP ) ◦ ϕg ◦ \ . (4.18)

Lemma 4.5. There is a commutative diagram of λ(2)(L)-equivariant maps

R
∂̄

- Ω1R\

Lg

(Id⊗ evP ) ◦ Uπg

? d
- Ω1(Lg)

(Id⊗ evP ) ◦ ϕg

?

(4.19)

Proof. The commutativity of (4.19) is immediate from Proposition 4.2,

(4.18) and the fact that \ ◦ d = ∂̄. Since Φg is λ(2)(L)-equivariant so is
(Id ⊗ evP ) ◦ Φg. Since \ : Ω1R −→ Ω1R\ is surjective and R\-equivariant

(and hence, λ(2)(L)-equivariant as well), the map (Id⊗ evP ) ◦ϕg : Ω1R\ −→
Ω1(Lg) is λ(2)(L)-equivariant as well. The R\-equivariance of \ and the

R\ equivariance of d together imply R\-equivariance (and hence, λ(2)(L)-

equivariance) of ∂̄. Since Uπg is λ(2)(L)-equivariant by Proposition 4.2, so

is (Id ⊗ evP ) ◦ Uπg. That d is λ(2)(L)-equivariant is part of the proof of
Proposition 4.2. �
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Corollary 4.1. There is a commutative diagram of λ(2)(L)-equivariant maps

λ(p+1)(L)
∂̄
- θ(p)(L)

Lg

Trg(P,L)

? d
- Ω1(Lg)

Trg(P,L)

?

(4.20)

Proof. It is easy to verify that the restriction of (Id⊗evP )◦ϕg to the λ(2)(L)-

submodule θ(p)(L) of Ω1R\ coincides with Trg(P,L) : θ(p)(L) −→ Ω1(Lg).
Similarly the map ∂̄ factors through R\: by [5, Lemma 6.2], ∂̄(λ(p+1)(L)) ⊂
θ(p)(L). Since P is ad-invariant, the map (Id ⊗ evP ) ◦ Uπg factors through

R\: the restriction of the corresponding map R\ −→ Lg to λ(p+1)(L) is easily

seen to coincide with Trg(P,L) : λ(p+1)(L) −→ Lg. The desired statement is
immediate from the above observations and Lemma 4.5. �

Since β ◦ ∂̄ = 0, ∂̄ defines a map of complexes

∂ : λ(p+1)(L) −→ cône(β : θ(p)(L) −→ Symp(L))[−1] .

It follows from Corollary 4.1, as well as the λ(2)(L)-equivariance of β that

there is a commutative diagram of λ(2)(L)-equivariant maps

λ(p+1)(L)
∂
- cône(β : θ(p)(L) −→ Symp(L))[−1]

Lg

Trg(P,L)

? d
- Ω1(Lg)

Trg(P,L)

?

.

On homologies, this yields a commutative diagram of HC
(2)
• (a)-equivariant

maps

HC
(p+1)
• (a)

B
- HH

(p)
•+1(a)

HR•(a, g)

Trg(P, a)

? d
- H•[Ω

1(DRepg(a))]

Trg(P, a)

?

.

This completes the proof of Theorem 4.2.

4.3. The associative case. For this section, let C ∈ DGCk/k be a d-
cyclic coassociative (coaugmented, conilpotent) DG coalgebra Koszul dual
to A ∈ Algk/k. In particular, we do not assume that C is cocommutative.

Throughout this section, let R := Ω(C) and let V := C̄[−1]. Thus, as
graded algebras, R ∼= TkV .
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In this setting, A acquires a derived Poisson structure, whence HC•(A)
has a graded Lie bracket of degree. Further, HH•(A) becomes a graded
Lie module over HC•(A) (see Theorem 3.1. By [1, Theorem 9], there is a
unique graded Poisson structure on HR•(A,n)GL such that Trn : HC•(A) −→
HR•(A,n)GL is a graded Lie algebra homomorphism. As in Convention
3.1.1, all Lie brackets and Lie actions in this section are of homological
degree d+ 2.

Recall that one has the Van den Bergh functor

(–)n : DGBimod(R) −→ DG Mod(Rn) , P 7→ P ⊗ReMn(Rn) .

There is an adjunction

(–)n : DGBimod(R)� DG Mod(Rn) : Mn(–) . (4.21)

We continue to denote the unit of this adjunction by πn. Explicitly, for any
DG R-bimodule P , the map πn : P −→Mn(Pn) is give by the formula

πn(p) =
∑

16i,j6n

(p⊗Re eji)⊗k eij ,

where the eij ’s are the elementary matrices and each eji above is viewed as
an element of Mn(Rn). The composition Tr ◦ πn : P −→ Pn induces a map
of complexes

Trn : P\ := P/[R,P ] −→ Pn .

By [3, Example 5.1], (Ω1R)n ∼= Ω1Rn. On homologies, the map Trn :
Ω1R\ −→ Ω1Rn gives

Trn : HH•+1(A) −→ HR•(Ω
1A,n) ,

where HR•(Ω
1A,n) denotes the representation homology of the A-bimodule

Ω1A (see [3, Thm. 5.1(b)] for the definition). By [3, Thm. 5.2], there is a
commutative diagram

HC•(A)
B
- HH•+1(A)

HR•(A,n)

Trn

? Bn- HR•(Ω
1A,n)

Trn

?

, (4.22)

where B denotes the Connes differential and Bn denotes the map induced on
homologies by the universal derivation Rn −→ Ω1Rn. The following theorem,
which is analogous to [5, Theorem 5.1], is a homological generalization of a
special case of [20, Prop. 7.5.1, Prop. 7.5.2 and Prop. 7.7.2].

Theorem 4.3. There is a DG Poisson structure on HR•(A,n) such that
Trn : HC•(A) −→ HR•(A,n) is a graded Lie algebra homomorphism.
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Remark. Theorem 4.3 implies that the (unique) DG Poisson structure on
HR•(A,n)GL in [1, Theorem 9] extends to all of HR•(A,n).

Proof. Let M̄∗n(C) denote the coalgebra k⊕M∗n(k)⊗ C̄, so that M̄∗n(C) =
M∗n(k)⊗ C̄. Let gl∗n(C) (resp., gl∗n(C̄)) denote M̄∗n(C) (resp., M∗n(k)⊗ C̄)
viewed as a Lie coalgebra. Note that Mn(k) has a nondegenerate cyclic
pairing given by

〈M,N〉 := Tr(MN) .

Identifying Mn(k) with M∗n(k) via the above pairing, we obtain a cyclic
pairing on M∗n(k). Tensoring this pairing with the pairing on C̄, we obtain

a n-cyclic pairing on M̄∗n(C), which can be extended to a n-cyclic pairing on

M̄∗n(C). It is not difficult to verify that the cyclic pairing on M̄∗n(C) is cyclic
as a pairing on gl∗n(C̄). By [5, Lemma 5.1], the Chevalley-Eilenberg algebra
Cc(gl∗n(C̄); k) acquires a DG Poisson structure. Since Rn ∼= Cc(gl∗n(C̄); k)
by [2, Thm. 3.1], Rn has a DG Poisson structure as well. That Trn :
R\ −→ Rn is a DG Lie algebra homomorphism is an immediate consequence
of Proposition 4.3 below. The desired result then follows on homology. �

Proposition 4.3. The universal representation πn : R −→ Mn(Rn) is R\-
equivariant.

Proof. Recall that the R\ action onMn(Rn) is obtained by composing the
Poisson action of Rn on Mn(Rn) with the map Trn : R\ −→ Rn. Since Rn
acts on Mn(Rn) by derivations, so does R\. Since πn is a homomorphism
of DG algebras and since R\ acts on R by derivations, it suffices to verify
that for any u ∈ V and for α := (v1, . . . , vk) ∈ R for v1, . . . , vk ∈ V ,

πn({α, u}) = {Trn(α), πn(u)} . (4.23)

Here, α denotes the image of α in R\ under the canonical projection. Indeed,
the restriction of the R\-action on R to the subspace V is given by the
composite map

R\ ⊗ V
∂ ⊗ Id

- R⊗ V ⊗ V
Id⊗ 〈–, –〉

- R .

Similarly, the restriction of the Poisson action of Rn on the subspaceM∗n(V )
of Rn is given by the composite map

Rn ⊗M∗n(V )
d⊗ Id

- Ω1Rn ⊗M∗n(V )

∼= Rn ⊗M∗n(V )⊗M∗n(V )
Id⊗ 〈–, –〉

- Rn .
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By [3, Lemma 5.2], the following diagram commutes.

R\
∂
- Ω1R\

Rn

Trn

? d
- Ω1Rn

Trn

?

.

It follows that the following diagram commutes.

R\ ⊗ V
∂ ⊗ Id

- Ω1R\ ⊗ V

Rn ⊗M∗n(k)⊗ V ⊗Mn(k)

Trn ⊗ θn

? d⊗ Id
- Ω1Rn ⊗M∗n(k)⊗ V ⊗Mn(k)

Trn ⊗ θn
?

,

where θ : V −→ M∗n(k) ⊗ V ⊗Mn(k) denotes the restriction of πn to V .
Explicitly, for v ∈ V ,

θn(v) =
∑

16i,j6n

e∗ij ⊗ v ⊗ eij ,

where {e∗ij} denotes the basis ofM∗n(k) dual to the basis comprising the ele-

mentary matrices. (4.23) therefore follows once we check that the following
diagram commutes:

Ω1R\ ⊗ V

R⊗ V ⊗ V

∼=

? Id⊗ 〈–, –〉
- R

Ω1Rn ⊗M∗n(k)⊗ V ⊗Mn(k)

Trn ⊗ θn
?

Rn ⊗Mn(k)

πn

?

Rn ⊗ (M∗n(k)⊗ V )⊗2 ⊗Mn(k)

∼=
?

Id⊗ 〈–, –〉 ⊗ Id
- Rn ⊗Mn(k)

Id

?

. (4.24)
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For r ∈ R let rij ∈ Rn denote the coefficient of the elementary matrix eij
in πn(r). Then, for v ∈ V ,

Trn(r ⊗ v) =
∑

16i,j6n

rij ⊗ vji

where Ω1R (resp., Ω1Rn) is identified with R⊗V (resp., Rn⊗M∗n(k)⊗V ).
Hence, for all w ∈ V ,

Trn ⊗ θn(r ⊗ v ⊗ w) =
∑

16i,j,k,l6n

rij ⊗ vji ⊗ wkl ⊗ ekl .

Note that 〈vji, wkl〉 = 〈e∗ji, e∗kl〉〈v, w〉 = δikδjl〈v, w〉. Hence,∑
16i,j6n

〈v, w〉rij ⊗ eij =
∑

16i,j,k,l6n

〈vji, wkl〉rij ⊗ ekl .

This proves that the diagram (4.24) commutes as desired. �

The following theorem was stated without proof in [7] (see loc. cit., The-
orem 1.3).

Theorem 4.4. There is a commutative diagram of HC•(A)-module homo-
morphisms

HC•(A)
B
- HH•+1(A)

HR•(A,n)

Trn

? Bn- HR•(Ω
1A,n)

Trn

?

.

Proof. Since Trn ◦ \ = Tr ◦ πn, where \ : Ω1R −→ Ω1R\ is the canonical
projection (which is R\-equivariant), the R\-equivariance of Trn would follow
once it is verified that πn : Ω1R −→Mn(Ω1Rn) isR\-equivariant. By Lemma
4.2, for all α ∈ R\, a, b ∈ R and for all m ∈ Ω1R,

{α, a ·m · b} = {α, a} ·m · b± a · {α,m} · b± a ·m · {α, b} ,

where the signs come from the Koszul sign rule. Similarly, for x ∈ Rn,
u, v ∈ Mn(Rn) and w ∈ Mn(Ω1Rn),

{x, u · w · v} = {x, u} · w · v ± u · {x,w} · v ± u · w · {x, v} .

Since the R\ action on Rn (resp., Ω1Rn) factors through the Poisson action
of Rn on Rn (resp., Ω1Rn), since πn : Ω1R −→Mn(Ω1Rn) is an R-bimodule
homomorphism, and by Proposition 4.3, the R\-equivariance of πn : Ω1R −→
Mn(Rn) would follow once we verify that for all α ∈ R\ and for all u ∈ V ,

πn({α, 1⊗ u⊗ 1}) = {Trn(α), πn(1⊗ u⊗ 1)} . (4.25)
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A trivial modification of the proof of Lemma 4.3 (see also [3, Sec. 5]) shows
that the following diagram commutes.

R
d

- Ω1R

Mn(Rn)

πn

? d⊗ IdMn(k)- Mn(Ω1Rn)

πn

?

(4.26)

It follows that πn(1⊗u⊗ 1) = (d⊗ IdMn(k))[πn(u)], where u is viewed on
the right hand side as an element of V ⊂ R. Therefore,

{Trn(α), πn(1⊗ u⊗ 1)} = {Trn(α), (d⊗ IdMn(k))[πn(u)]}
= (d⊗ IdMn(k)){Trn(α), πn(u)}
= (d⊗ IdMn(k))[πn({α, u})] ( by Prop. 4.3)

= πn[d({α, u})] ( by (4.26))

= πn({α, 1⊗ u⊗ 1}) ( by Lemma 4.2) .

The second equality above is because d : Rn −→ Ω1Rn is equivariant with
respect to the Poisson action of Rn. This verifies (4.25), completing the
proof of the desired theorem. �

5. An operadic generalization

Throughout this section, let P denote a finitely generated binary qua-
dratic operad and let Q = P ! denote its (quadratic) Koszul dual. Let DGPA

denote the category of DG P-algebras and let DGQC denote the category of
conilpotent DG Q-coalgebras.

5.1. Invariant bilinear forms.

5.1.1. Definitions. A symmetric bilinear form B on A ∈ DGPA is called
invariant if for all µ ∈ P(2),

B(µ(a, b), c) = (−1)|a||µ|B(a, µ(b, c)) for all a, b, c ∈ A .
Recall that if P is a cyclic operad, there is an Sn+1 action on P(n) for

each n ≥ 0. There is also a notion of invariant bilinear form on algebra over
a cyclic operad:

Definition 2. [12, Definition 4.1] Let P be a cyclic DG operad and let A
be a P-algebra. A bilinear form B (with values in a k-vector space V ) is

invariant if for all n > 0, the map Bn : P(n)⊗A⊗(n+1) −→ V defined by the
formula

Bn(µ⊗ x1 ⊗ · · · ⊗ xn ⊗ xn+1) = B(µ(x1, · · · , xn), xn+1)

is invariant under the action of Sn+1 on P(n)⊗A⊗(n+1).
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If P is a cyclic binary quadratic operad, the two notions of invariant
bilinear forms agree with each other (see [12, Proposition 4.3]).

5.1.2. Universal invariant bilinear form. Let A\ denote the target of
the universal invariant bilinear form on A: this is equal to the quotient of
A⊗A by the subcomplex spanned by the images of the maps

A⊗A⊗A
µ⊗ Id− Id⊗ µ

- A⊗A ,

where µ runs over all (homogeneous) elements of P(2).
If P is cyclic binary quadratic, then A\ is equal to the quotient of A⊗A

by the subcomplex spanned by the images of the maps (see [12, Sec. 4.7]):

P(n)⊗A⊗(n+1) 1− σ
- P(n)⊗A⊗(n+1) - A⊗A

for all n > 1 and σ ∈ Sn+1, where the last arrow is given by

µ⊗ x1 ⊗ · · · ⊗ xn ⊗ xn+1 7→ µ(x1, · · · , xn)⊗ xn+1 ,

and σ acts diagonally. This quotient is denoted in [12] by λ(A). In particular,
taking µ = Id ∈ P(1), we see that the canonical projection from A ⊗ A to
A\ is symmetric. Moreover, if R = TPV the free P-algebra generated by V ,

Proposition 5.1 (see [12, Proposition 4.9]). There is a natural isomorphism
of chain complexes

R\ ∼=
∞⊕
n=0

P(n)⊗Sn+1 V
(n+1) .

Proof. If µ ∈ P(n) and ν ∈ P(m), and vi, wj ∈ V , the image of the element

µ(v1, · · · , vn)⊗ ν(w1, · · · , wm) ∈ A\
is equal to the image of

±(τ−1µ)(v2, · · · , vn, ν(w1, · · · , wm))⊗ v1
which is the same as

±((τ−1µ) ◦n ν)(v2, · · · , vn, w1, · · · , wm)⊗ v1 .

Thus, one can see that R\ is a quotient of

TPV ⊗ V ∼=
∞⊕
n=0

P(n)⊗Sn V
n ⊗ V .

Using once more the coinvariance under the action of the cyclic group Zn+1,
it can be shown that there is an isomorphism

R\ ∼=
∞⊕
n=0

P(n)⊗Sn+1 V
(n+1) .

�
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Remark 5.1. By the above proof, every element in R\ has a representative
in the form of (µ⊗ v1 ⊗ · · · ⊗ vn)⊗ w for some n > 0 and µ ∈ P(n), where
vi, w ∈ V .

The category DGPA is a model category where the fibrations are the de-
greewise surjections and the weak equivalences are the quasi-isomorphisms.
By [2, Thm. A.5], the functor (–)\ : DGPA −→ Comk , A 7→ A\ has a (total)

left derived functor L(–)\ : Ho(DGPA) −→ Ho(Comk) , A 7→ R\, where R
∼−→ A

is any cofibrant resolution of A in DGPA. We denote the homology H•[LA\]
by HC•(P, A) and call it the P-cyclic homology of A. When P is the Lie

operad and when A = a, HC•(P, A) = HC
(2)
• (a).

5.1.3. Invariant 2-tensor. Dually, if C is a DG P-coalgebra, a (homo-
geneous) 2-tensor α is called invariant if it is a (homogeneous) element in
C⊗ C such that for all µ ∈ P(2), the composite map of complexes

k[|α|]
α
- C⊗ C

µ⊗ Id− Id⊗ µ
- C⊗ C⊗ C

vanishes. We denote the subcomplex of invariant 2-tensors on C by C\.
Notice that a non-degenerate invariant bilinear form on a DG P-algebra A
induces a invariant 2-tensor on its linear dual DG P-coalgebra A∗.

5.2. Derived representation schemes. Let C be a DG P-coalgebra. Note
that the complex Hom(C, B̄) naturally acquires the structure of a DG P-
algebra for any B ∈ DGCAk/k. This gives a functor

Hom∗(C, –) : DGCAk/k −→ DGPA , B 7→ Hom(C, B̄) .

By [2, Prop. A.1], the functor Hom∗(C, –) has a left adjoint Cn– : DGPA −→
DGCAk/k. For A ∈ DGPA, let πA : A −→ Hom(C,CnA) denote the composite
map

A - Hom∗(C,CnA) ⊂- Hom(C,CnA) ,

where the first arrow is the unit of the adjunction described above. By
[2, Thm. A.2], the functor Cn – has a (total) left derived functor CnL – :
Ho(DGPA) −→ Ho(DGCAk/k). For A ∈ DGPA, we call CnLA the derived represen-
tation scheme of A over C and denote it by DRepC(A). The representation
homology of A over C is the homology

HR•(A,C) := H•[DRepC(A)] .

If C is finite dimensional, S := C∗ is a P-algebra and we write HR•(A, S)
(resp., DRepS(A)) for HR•(A,C) (resp., DRepC(A)).

5.2.1. Traces. Assume that C is equipped with a degree 0 invariant 2-
tensor

coTr : k −→ C\ .
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Abusing notation, let πA⊗A denote the composite map

A⊗A
π⊗2A- Hom(C,CnA)⊗2

∼= Hom(C⊗ C, (CnA)⊗2) - Hom(C⊗ C,CnA) ,

where the last arrow is induced by the product on C n A. The map of
complexes

A⊗A
πA⊗A- Hom(C⊗ C,CnA) - Hom(C\,CnA)

induced by the inclusion C\ ↪→ C ⊗ C factors through A\, giving a map of
complexes

A\ −→ Hom(C\,CnA) .

Composing this with the map Hom(C\,C n A) −→ Hom(k,C n A) induced
by coTr, we obtain map

Tr : A\ −→ CnA .

By construction, Tr gives a natural transformation of functors (–)\ −→ Cn –
(which, of course, depends on the choice of coTr). As a result, this gives a
natural transformation of derived functors

L(–)\ −→ CnL – : Ho(DGPA) −→ Ho(Comk) .

Applying this to A ∈ DGPA and taking homologies, we obtain maps of graded
vector spaces

Tr : HC•(P, A) −→ HR•(A,C) .

If P is the Lie operad, C = g∗ for g semisimple and coTr is the Killing form,
then the above construction recovers the Drinfeld trace associated with the
Killing form.

5.2.2. Poisson structures on representation homology. We say that
C is cyclic if it is equipped with a symmetric bilinear form 〈– , –〉 : C×C −→ k
such that for all µ ∈ P(2), the following diagram commutes

C⊗ C
µ⊗ Id

- C⊗ C⊗ C

C⊗ C⊗ C

Id⊗ µ
? 〈– , –〉 ⊗ Id

- C

Id⊗ 〈– , –〉
?

(5.1)

Remark 5.2. If the pairing 〈– , –〉 is also non-degenerate, then it induces an
isomorphism between C and its linear dual C∗. In this case, it also induces
an invariant bilinear form on C∗ under the above isomorphism.

Let ΩQ : DGQC −→ DGPA denote the cobar construction (see [18, Sec.
11.2.5]). For C ∈ DGQC, the underlying graded algebra of ΩQ(C) is the free
P-algebra generated by C[−1], and the differential on ΩQ(C) is the sum
of two degree −1 derivations, one induced by the differential on C and the
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other induced by operations from Q. We say that C ∈ DGQC is Koszul dual
to A ∈ DGPA if there is a quasi-isomorphism ΩQ(C)

∼−→ A.

Proposition 5.2. Let A ∈ DGPA be Koszul dual to C ∈ DGQC. If C is
cyclic, and if C ∈ DGPA is cyclic, then DRepC(A) acquires a derived Poisson
structure. As a consequence, HR•(A,C) acquires a graded Poisson structure.

Proof. Note that C⊗C is a conilpotent DG coalgebra over the Hadamard
product P ⊗H Q. Further, it is not difficult to verify that if C (resp., C)
is a cyclic DG P-coalgebra (resp., cyclic DG Q-coalgebra), then C ⊗ C is
cyclic as a DG coalgebra over P ⊗H Q. By [18, Propositon 7.6.5], there is a
morphism of operads Lie −→ P ⊗HQ. Let Liec(C⊗C) denote C⊗C viewed
as a Lie coalgebra. It follows that Liec(C⊗C) is a cyclic Lie coalgebra. By
[5, Lemma 5.1], ΩLie[Liec(C ⊗ C)] acquires a DG Poisson structure. Since
ΩLie[Liec(C ⊗ C)] is a cofibrant representative of DRepC(A) by [2, Thm.
A.4], the desired proposition follows. �

5.3. Derived Poisson structures on algebras over operads. Let A
be a DG P-algebra. Let DerP(A) denote the DG Lie algebra of derivations
from A to itself. Then A and therefore, A ⊗ A are DG Lie modules over
DerP(A). It is not difficult to verify that the DerP(A)-module structure on
A⊗ A descends to a DerP(A)-module structure on A\. Following Crawley-
Boevey [8], we define a Poisson structure on A to be a Lie bracket {–, –} on
A\ such that for all α ∈ A\, the operator {α, –} : A\ −→ A\ is induced by
a derivation ∂α ∈ DerP(A). A derived Poisson structure on A is defined to
be a Poisson structure on some cofibrant resolution of A.

For the rest of this section, we further assume that the operad P is cyclic.
Recall that in this case, there is an action of the cyclic permutation τ of
order n+1 on P(n) for each n > 0. By [18, 13.14.6], τ may be thought of as
changing the last input into the output and the output into the first input.
The following formulas relate the τ -action with the partial compositions of
P:

τ(µ ◦i ν) = τ(µ) ◦i+1 ν, 1 6 i < n ,

τ(µ ◦n ν) = τ(ν) ◦1 τ(µ) ,

where µ ∈ P(n) and ν ∈ P(m). The reader may refer to [18, Fig. 13.2] for
the illustration of the formulas above. For fixed n, we write N =

∑n
i=0 τ

i.
Let A be Koszul dual to a cyclic (conilpotent) DG Q-coalgebra C. Let C

be a finite dimensional P-coalgebra in degree 0 equipped with an invariant
2-tensor coTr : k −→ C\. Let S := C∗. Let Tr : S\ −→ k denote the dual of
coTr. Assume that the pairing

S⊗ S - S\
Tr

- k

is non-degenerate. Since the above pairing is cyclic on S by definition, it
induces a cyclic pairing on C as well. By Proposition 5.2, HR•(A, S) :=
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HR•(A,C) acquires a graded Poisson structure. The following generalization
of Theorem 2.1 and Theorem 3.3 is the main result of this section.

Theorem 5.1. There is a derived Poisson structure on A such that Tr :
HC•(P, A) −→ HR•(A, S) is a graded Lie algebra homomorphism.

5.3.1. Proof of Theorem 5.1. Let V := C[−1]. We shall denote v1⊗· · ·⊗
vn ∈ V ⊗n by (v1, · · · , vn) for notational brevity. There is an isomorphism
of P-algebras ΩQ(C) ∼= TPV , where TPV is the free P-algebra generated
by V . For notational brevity, let R := TPV . We define the cyclic derivative
∂̄ : R\ −→ R ⊗ V as follows. On the direct summand P(n) ⊗Sn+1 V

(n+1) of
R\, it is given by

P(n)⊗Sn+1 V
(n+1) N · (–)

- P(n)⊗Sn+1 V
(n+1) - P(n)⊗Sn V

n ⊗ V ,
(5.2)

where N acts diagonally and where the last arrow is the obvious map that
permutes no factors. Explicitly, given µ⊗ v1 ⊗ · · · ⊗ vn ⊗ vn+1 ∈ R\,

∂̄(µ⊗ (v1, · · · , vn+1) =
n+1∑
i=1

(τn+1−iµ)⊗ τn+1−i(v1, · · · , vn+1) (5.3)

=
n+1∑
i=1

±(τn+1−iµ)⊗ (vi+1, · · · , vn+1, v1, · · · , vi)

=
n+1∑
i=1

±(τn+1−iµ)⊗ (vi+1, · · · , vn+1, v1, · · · , vi) .

Note that the cyclic pairing on C gives a skew-symmetric pairing on V .
Following [13, Sec. 6], define a bilinear bracket {– , –} : R\ ⊗ R\ −→ R\ as
the following composition

R\ ⊗R\
∂̄ ⊗ ∂̄

- (R⊗ V )⊗2
∼

- (5.4)

R⊗R⊗ V ⊗ V
IdR⊗R ⊗ 〈– , –〉

- R⊗R - R\ ,

where the last arrow is the canonical projection from R ⊗ R to R\. By
Lemma 5.1 below, the above bracket defines a Poisson structure on ΩQ(C):
the compatibility of the Lie bracket on R\ constructed therein with the
differential on ΩQ(C)\ follows from the cyclicity of C. By definition, this
gives A a derived Poisson structure.

Lemma 5.1. The bracket (5.4) defines a Poisson structure on R. In par-
ticular, it is a Lie bracket on R\.
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Proof. Since the canonical projection R⊗R� R\ is symmetric, the bracket

{–, –} on R\ is skew-symmetric. Define an action4 of R\ on R via

{α, x} =
n+1∑
i=1

m∑
j=1

±〈vi, wj〉(ν ◦j (τn+1−iµ))⊗

(w1, · · · , wj−1, vi+1, · · · , vi−1, wj+1, · · · , wm) ,

where α = µ ⊗ (v1, · · · , vn+1) ∈ R\ and x = ν ⊗ (w1, · · · , wm) ∈ R. By
definition, the endomorphism {α, –} : R −→ R is a graded derivation for any
(homogeneous) α ∈ R\. The above action of R\ on R extends to an action
of R\ on R⊗R via the Leibniz rule.

To prove that the bracket (5.4) satisfies the Jacobi identity, we begin by
showing that the canonical projection p : R ⊗ R −→ R\ is R\-equivariant,
i.e., given α = µ ⊗ (v1, · · · , vn+1) ∈ R\, x = µ′ ⊗ (w1, · · · , wm), y = µ′′ ⊗
(u1, · · · , ul) ∈ R, we want to show that

{α, p(x⊗ y)} = p
(
{α, x⊗ y}

)
= p
(
{α, x} ⊗ y +±x⊗ {α, y}

)
, (5.5)

Notice that

p(x⊗ y) = ±(τ−1µ′)⊗ w2 ⊗ · · · ⊗ wm ⊗ µ′′(u1, · · · , ul)⊗ w1

= ±((τ−1µ′) ◦n µ′′)⊗ (w2, · · · , wm, u1, · · · , ul, w1) .

Hence

{α,p(x⊗ y)}

=

n+1∑
i=1

m∑
j=1

±〈vi, wj〉((τn−iµ) ◦n (τm+1+l−j((τ−1µ′) ◦n µ′′)))⊗

(vi+2, · · · , vi−1, wj+1, · · · , wm, u1, · · · , ul, w1, · · · , wj−1, vi+1)

+
n+1∑
i=1

l∑
k=1

±〈vi, uk〉((τn−iµ) ◦n (τ l+1−k((τ−1µ′) ◦n µ′′)))⊗

(vi+2, · · · , vi−1, uk+1, · · · , ul, w1, · · · , wm, u1, · · · , uk−1, vi+1)

=
n+1∑
i=1

m∑
j=1

±〈vi, wj〉((τn−iµ) ◦n ((τm+1−jµ′) ◦m+1−j µ
′′))⊗

(vi+2, · · · , vi−1, wj+1, · · · , wm, u1, · · · , ul, w1, · · · , wj−1, vi+1) (5.6)

+

n+1∑
i=1

l∑
k=1

±〈vi, uk〉((τn−iµ) ◦n ((τ l+1−kµ′′) ◦l+1−k µ
′))⊗

(vi+2, · · · , vi−1, uk+1, · · · , ul, w1, · · · , wm, u1, · · · , uk−1, vi+1) (5.7)

4At this stage, we have not proven any fact about the structure of R\. The term ‘action’
of R\ on a vector space V simply means a linear map from R⊗ V −→ V .
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On the other hand,

p
(
{α,x} ⊗ y

)
=

n+1∑
i=1

m∑
j=1

±〈vi, wj〉((τ−1(µ′ ◦j (τn+1−iµ))) ◦n+m−1 µ′′)⊗

(w2, · · · , wj−1, vi+1, · · · , vi−1, wj+1, · · · , wm, u1, · · · , ul, w1)

=
n+1∑
i=1

m∑
j=1

±〈vi, wj〉(τn+m−j(µ′ ◦j (τn+1−iµ))) ◦n+m−j µ′′)⊗

(vi+2, · · · , vi−1, wj+1, · · · , wm, u1, · · · , ul, w1, · · · , wj−1, vi+1) (5.8)

Similarly

± p
(
x⊗ {α, y}

)
=

n+1∑
i=1

l∑
k=1

±〈vi, uk〉((τ−1µ′) ◦m ((µ′′ ◦k (τn+1−iµ)))⊗

(w2, · · · , wm, u1, · · · , uk−1, vi+1, · · · , vi−1, uk+1, · · · , ul, w1)

=

n+1∑
i=1

l∑
k=1

±〈vi, uk〉((τn+l−k(µ′′ ◦k (τn+1−iµ))) ◦n+l−k µ′)⊗

(vi+2, · · · , vi−1, uk+1, · · · , ul, w1, · · · , wm, u1, · · · , uk−1, vi+1) (5.9)

It is easy to see that (5.6) equals (5.8) and (5.7) equals (5.9). This verifies
(5.5).

Next, we show that given α = µ⊗(v1, · · · , vn+1), β = ν⊗(w1, · · · , wm+1) ∈
R\ and u ∈ V ⊆ R,

{{α, β}, u} = {α, {β, u}} − ±{β, {α, u}} . (5.10)

Indeed, by (5.4),

{α, β} =
n+1∑
i=1

m+1∑
j=1

±〈vi, wj〉(τn+1−iµ)(vi+1, · · · , vi−1)

⊗(τm+1−jν)(wj+1, · · · , wj−1)

=

n+1∑
i=1

m+1∑
j=1

±〈vi, wj〉((τn−iµ) ◦n (τm+1−jν))⊗

(vi+2, · · · , vi−1, wj+1, · · · , wj−1, vi+1) .
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Hence

{{α, β}, u}

=
n+1∑
i=1

m+1∑
j=1

j−1∑
k=1

±〈vi, wj〉〈wk, u〉τ j−k((τn−iµ)◦n

(τm+1−jν))⊗ (wk+1, · · · , wj−1, vi+1, · · · , vi−1, wj+1, · · · , wk−1) (5.11)

+
n+1∑
i=1

m+1∑
j=1

m+1∑
k=j+1

±〈vi, wj〉〈wk, u〉τm+1+j−k((τn−iµ)◦n

(τm+1−jν))⊗ (wk+1, · · · , wj−1, vi+1, · · · , vi−1, wj+1, · · · , wk−1) (5.12)

+
n+1∑
i=1

m+1∑
j=1

i−1∑
k=1

±〈vi, wj〉〈vk, u〉τm+i−k((τn−iµ)◦n

(τm+1−jν))⊗ (vk+1, · · · , vi−1, wj+1, · · · , wj−1, vi+1, · · · , vk−1) (5.13)

+
n+1∑
i=1

m+1∑
j=1

n+1∑
k=i+1

±〈vi, wj〉〈vk, u〉τm+n+1+i−k((τn−iµ)◦n

(τm+1−jν))⊗ (vk+1, · · · , vi−1, wj+1, · · · , wj−1, vi+1, · · · , vk−1) (5.14)

Now,

{β, u} =

m+1∑
k=1

±〈wk, u〉(τm+1−kν)(wk+1, · · · , wk−1) .

Hence

{α, {β, u}}

=
n+1∑
i=1

k−1∑
j=1

m+1∑
k=1

±〈vi, wj〉〈wk, u〉((τm+1−kν)◦m+1+j−k

(τn+1−iµ))⊗ (wk+1, · · · , wj−1, vi+1, · · · , vi−1, wj+1, · · · , wk−1) (5.15)

+
n+1∑
i=1

m+1∑
j=k+1

m+1∑
k=1

±〈vi, wj〉〈wk, u〉((τm+1−kν)◦j−k

(τn+1−iµ))⊗ (wk+1, · · · , wj−1, vi+1, · · · , vi−1, wj+1, · · · , wk−1) (5.16)
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Similarly,

{β, {α, u}}

=
m+1∑
j=1

k−1∑
i=1

n+1∑
k=1

±〈wj , vi〉〈vk, u〉((τn+1−kµ)◦n+1+i−k

(τm+1−jν))⊗ (vk+1, · · · , vi−1, wj+1, · · · , wj−1, vi+1, · · · , vk−1) (5.17)

+
m+1∑
j=1

n+1∑
i=k+1

n+1∑
k=1

±〈wj , vi〉〈vk, u〉((τn+1−kµ)◦i−k

(τm+1−jν))⊗ (vk+1, · · · , vi−1, wj+1, · · · , wj−1, vi+1, · · · , vk−1) (5.18)

One can check that (5.11) equals (5.16), (5.12) equals (5.15), (5.13) is iden-
tical to (5.18), and (5.14) equals (5.17). This verifies (5.10). Since R\ acts
on R by derivations,

{{α, β}, x} = {α, {β, x}} − ±{β, {α, x}}

for any x ∈ R. Therefore, for α, β ∈ R\ and x⊗ y ∈ R⊗R, we have

{{α, β}, x⊗ y} = {α, {β, x⊗ y}} − ±{β, {α, x⊗ y}} . (5.19)

Since p : R⊗R −→ R\ is R\-equivariant,

{{α, β}, γ} = {α, {β, γ}} − ±{β, {α, γ}} (5.20)

for any γ ∈ R\. This verifies the Jacobi identity for the bracket (5.4),
proving that it is a Lie bracket. Since this bracket descends from an action
of R\ on R ⊗ R induced by an action of R\ on R by derivations (recall the
R\-equivariance of p), this bracket defines a Poisson structure on R. �

It remains to show that Tr : R\ −→ CnR is a DG Lie algebra homomor-
phism. By [2, Theorem A.2], C n R ∼= ΩLie[Liec(C ⊗ C)]. By Proposition
5.2, Cn R acquires a structure of DG Poisson (and therefore, Lie) algebra.
Hence there is an action of R\ on CnR via Tr. Since CnR is freely generated
by C⊗ V as a graded commutative algebra, Ω1(CnR) ∼= (CnR)⊗ C⊗ V .
Since C is finite dimensional, Hom(C, B) ∼= B ⊗ S for any B ∈ DGCAk/k.
Let πR be the universal representation

R - Hom∗(C,CnR) ⊂- Hom(C,CnR) ∼= (CnR)⊗ S .

The following lemma generalizes Lemma 4.1. We leave its proof (which is
very similar to that of Lemma 4.1) to the interested reader.
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Lemma 5.2. The following diagram commutes:

R\
∂̄
- R⊗ V

πR ⊗ Id
- (CnR)⊗ S⊗ V

CnR
d

-

Tr
-

Ω1(CnR)

∼=

?

Here, the vertical isomorphism on the right identifies S with C via the pairing
on S.

The following proposition follows from Lemma 5.2 just as Proposition 4.1
follows from Lemma 4.1.

Proposition 5.3. The universal representation πR : R −→ (C n R) ⊗ S is
R\-equivariant, where R\ acts trivially on S.

It follows from Proposition 5.3 that the composite map

R⊗R
πR ⊗ πR- (CnR)⊗ S⊗ (CnR)⊗ S

∼= (CnR)⊗2 ⊗ S⊗2
µ⊗ 〈–, –〉

- CnR

is R\-equivariant. Denote the above map by TrR⊗R. Since the diagram
below commutes,

R⊗R
TrR⊗R- CnR

R\

p

?

Tr

-

and since p is R\-equivariant as well, Tr is R\-equivariant. This proves that
Tr : R\ −→ Cn L is a DG Lie algebra homomorphism. The second assertion
of Theorem 5.1 follows on homologies.
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