2011.11270v1 [cs.RO] 23 Nov 2020

arxiv

COCOI: Contact-aware Online Context Inference for
Generalizable Non-planar Pushing

Zhuo Xu"?* Wenhao Yu?, Alexander Herzog', Wenlong Lu!, Chuyuan Fu!,
Masayoshi Tomizuka2, Yunfei Bail, C. Karen Liu?, Daniel Ho®

Abstract— General contact-rich manipulation problems are
long-standing challenges in robotics due to the difficulty of
understanding complicated contact physics. Deep reinforcement
learning (RL) has shown great potential in solving robot
manipulation tasks. However, existing RL policies have limited
adaptability to environments with diverse dynamics properties,
which is pivotal in solving many contact-rich manipulation
tasks. In this work, we propose Contact-aware Online COntext
Inference (COCOI), a deep RL method that encodes a context
embedding of dynamics properties online using contact-rich
interactions. We study this method based on a novel and
challenging non-planar pushing task, where the robot uses a
monocular camera image and wrist force torque sensor reading
to push an object to a goal location while keeping it upright.
We run extensive experiments to demonstrate the capability of
COCOI in a wide range of settings and dynamics properties
in simulation, and also in a sim-to-real transfer scenario on a
real robot (Video: https://youtu.be/nrmJYkshlKc).

I. INTRODUCTION

Contact rich manipulation problems are ubiquitous in the
physical world. In millions of years of evolution, humans
have developed the remarkable capability to understand
environment physics, so as to achieve general contact rich
manipulation skills. Combining visual and tactile perception
with end-effectors like fingers and palms, humans effort-
lessly manipulate objects with various shapes and dynamics
properties in complex environments. Robots, on the other
hand, lack this capability — due to the difficulty of un-
derstanding high dimensional perception and complicated
contact physics. Recent development in deep reinforcement
learning (RL) has shown great potential towards solving
manipulation problems [1]-[3] by leveraging two key ad-
vantages. First, the representative capability of a deep neural
network structure can capture complicated dynamics models.
Second, control policy optimization explores vast contact
interactions. However, contact-rich manipulation tasks are
generally dynamics-dependent; since the RL policies are
trained in a specific dynamics setting, they specialize within
the training scenario and are vulnerable to variations of
dynamics. Learning a policy that is robust to dynamics
variations is pivotal for deployment to scenarios with diverse
object dynamics properties.

In this work, we design a deep RL method that takes
multi-modal perception input and uses deep representative

1Everyday Robots, X The Moonshot Factory, Mountain View, CA, USA
2University of California, Berkeley, Berkeley, CA, USA

3Robotics at Google, Mountain View, CA, USA

4Stanford University, Stanford, CA, USA

*Work done as an Al Resident at Everyday Robots.

o

Fig. 1: Our method, COCOI, achieves dynamic-aware, non-
planar pushing of an upright 3D object. The method is
robust against domain variations, including various objects
and environments, in both simulation and the real world. The
first and second columns show the table simulation setting
in the robot’s perspective and the third party perspective,
respectively. The third column shows the simulated and real
world trash bin settings in the robot perspective.

structure to capture contact-rich dynamics properties. The
proposed method, Contact-aware Online COntext Inference
(COCOI), uses prior camera frames and force readings in
a contact-aware way to encode dynamics information into a
latent context representation. This allows the RL policy to
plan with dynamics-awareness and improves in robustness
against domain variations.

We apply COCOI to a novel pushing task where dynamics
property reasoning plays a vital role: the robot needs to
push an object to a target location while avoiding knocking
it over (Fig. 1). Prior work in pushing mostly focus on
objects inherently stable when pushed on a flat surface. This
essentially reduces the task to a 2D planar problem [4] [5].
As a result, they cannot handle our proposed class of “non-
planar pushing tasks” where real-world 3D objects can move
with the full six degrees of freedom during pushing. Despite
being commonly seen in everyday life, these tasks have the
following challenges:

1) Visual perception: unlike in planar pushing, where
concrete features can be retrieved from a top down
view, in non-planar pushing, key information can not
be easily extracted from the third angle perspective
image.

2) Contact-rich dynamics: the task dynamics properties

https://youtu.be/nrmJYksh1Kc

are not directly observable from raw sensor infor-
mation. Furthermore, in our non-planar pushing task,
dynamics property reasoning is vital to avoid knocking
the object over.

3) Generalizable across domain variations: the policy
needs to be effective for objects with different appear-
ances, shapes, masses, and friction properties.

The paper is structured as follows: In Section II, we review
and compare with related works. We formalize the problem
of interest in Section III and describe the RL pushing
controller in Section IV. We explain COCOI in Section V
and the handling of the sim-to-real visual gap in Section VI.
The capability of COCOI is validated with the experiments
in Section VII, before we make the conclusions in Section
VIIL.

II. RELATED WORK

In order to adapt a learning based policy to different
task settings, variation of dynamics, and unknown distur-
bances, previous researchers train policies on randomized
environments with possible variations to gain robustness.
Rajeswaran et al. [6]. and Peng et al. [7] learn RL policies
in randomized simulated environments and directly apply
them to different domains. Chebotar et al. leverage real world
experiences to adapt the simulation randomization [8]. Other
work aim to derive a representation of the task context for
domain specific planning. Rakelly et al. take a meta learning
direction to learn patterns within the task to help plan [9].
Yu et al. learn a universal policy and use an online system
identification module to learn the dynamics parameters [10].
Beyond learning based methods, planning-control framework
can also overcome the domain gap. Harrison et al. use model
predictive control to track a reference trajectory derived from
a learning policy [11], and Xu et al. use a robust controller
to reject dynamics variation and external disturbances [12]
[13]. COCOI is different from previous methods in that we
focus on the contact-rich manipulation problem, and use a
contact-aware structure to infer the contact dynamics context
online.

Another thread of related research is the pushing task
[14]. Earlier studies on pushing are based on analytical
approaches and consider quasi-static planar pushing [15].
Later, researchers have introduced data driven methods to
model pushing physics. Zhou et al. develop a dynamics
model for planar friction and design force control method
for planar sliding [4]. Yu, Bauza et al created a planar
pushing dataset for data-driven modeling [16], [17]. More
recent works involve using deep learning to learn object
properties [5], [18], [19], but they only focus on planar
pushing problems. Stuber et al. [20] and Byravan et al. [21]
learn motion models for pushing simple blocks.

On non-planar pushing, the majority of works are still in
the exploration stage. Ridge et al. propose an object image
fragment matching method for 3D objects [22], albeit for a
limited library of objects. Zhu et al. use a simulator as a
predictive model [23]. Kopicki et al. learn a 3D dynamics
model in the PhysX simulator [24]. These works all rely

on carefully selected objects and precise detection and lo-
calization; our model takes monocular camera image input
and solves a generalized non-planar pushing task for diverse
objects.

III. PROBLEM STATEMENT

In this section, we formally define the proposed non-planar
pushing task and formulate the problem using a Partially
Observable Markov Decision Process (POMDP). We focus
on the class of pushing tasks where maintaining the upright
pose of the object is critical. For example, when pushing a
glass of water on the table, the glass should not tilt and spill.
In our work, we assume that an object is randomly placed on
a flat surface with an upright initial pose. The task objective
is to use the robot end effector to push the object to a random
target position on the surface, while maintaining its upright
orientation. The object can have irregular shape and mass
distribution, and the robot may push at any point on the
object, making the contact dynamics physics complicated.

We use state s € .S to represent the full task state. In a
POMDP, the state is not directly available and can only be
inferred using observations. Concretely, we use the image
captured using the robot’s monocular camera as the high
dimensional observation (Fig. 1, first and third columns), in
which the target location is rendered using a red dot. We
also include a low dimensional proprioception observation
of the gripper height and open/close status. We use state
and observation interchangeably in the following sections.
The action a € A contains the designated position and
orientation of the gripper, the gripper open/close command,
and a termination boolean. The system transition function
T :5x A — S follows the physical model, and we use a
sparse binary reward function R : S x A — R with value
1 when the distance between the object and the target is
smaller than a threshold and the object is upright. The task
objective is to maximize the expectation of the discounted
cumulative reward, or the return

t=00
R= E Wtr (1)
{(sva0)} lz t]

t=0
where + is the discount coefficient, and r, = R(s, a¢) is
the reward obtained at time ¢.
IV. LEARNING BASIC PUSHING CONTROLLER

We use Q-learning to train object pushing control policy.
The definition of the Q function is

t=00
,a)= E rel 2
Qs.a)= E [Z o n])

s,a

the expected return starting from state s and taking a. The
Q function satisfies the Bellman function:

Q(st,at) =Es, ,, [R(st,at) +7 - Q(St41,7(s¢41))] ()

where 7(s¢41) represents the action selected by the optimal
policy at the current iteration and state s;41. The optimal

Fig. 2: The feed forward neural network Q function for
object pushing. The stacked current and initial images are fed
into a convolutional neural network (CNN) encoder, and the
low dimensional input is fed into a fully connected network
(FCN) encoder. The output of these two streams are added
together and then fed into another CNN-followed-by-FCN
structure, the Q value prediction head.

policy is defined by:
m(s¢) = arg max Q(st,a) “4)

One Q-learning iteration uses the collected data tuples
(st, @, S¢41) in two steps:

1) Estimate the optimal policy output
m(St+1) = argmax Q(s¢41, Q) ®)
acA
2) Minimize the Bellman error

Q(s¢, at) — [R(st, at) +7- Q(St41, T(Se41))]|| (6)

For the object pushing task, we represent the Q function
with a two stream deep neural network Qy(s¢,at) param-
eterized by 6, as shown in Fig. 2, similiar to [2]. The high
dimensional stream feeds stacked current and initial images
into a convolutional neural network (CNN) encoder. The
low dimensional stream feeds stacked low dimensional state
(gripper height and open/close status) and action (designated
gripper pose, the gripper open/close command, and a ter-
mination boolean) into a fully connected network (FCN)
encoder. The outputs of the two streams are added together
and fed into another CNN-followed-by-FCN structure to
predict the Q function value for the pushing task.

For Q function network training, we adopt QT-Opt, a dis-
tributional variant of the Q learning framework for continu-
ous state-action tasks [2], [25]. Concretely, we use distributed
workers to collect data tuples (s¢, @t, S¢+1), and we store
them into a replay buffer. Each optimization iteration samples
a batch of data tuples. For equation (5), the optimal policy
output is estimated using an online sampling-based cross
entropy method (CEM) based on the current Q function. For
equation (6), the Q function network weights are updated
using gradient descent with the following loss function:

1(0) = |Qo(st, as) — [R(s¢,ae) + - Q0(8t+177r(3t+1)2]7‘)‘

Fig. 3: The proposed COntext Inference (COI) module,
which works in parallel with the state-action stream. The
COlI takes as input a history sample consisting of the stacked
pre-impact and post-impact images and the force reading, to
infer the dynamics representations. The representations of
different samples are averaged and concatenated to derive
the state-action representation, which is then fed into a final
Q value prediction network. Networks with same color share
architectures, but not necessarily network weights.

V. CONTACT-AWARE ONLINE CONTEXT INFERENCE
A. Online Context Inference

The architecture in Fig. 2 has been demonstrated on
challenging tasks like grasping [2]. However, given it only
has access to a single sensory input, it is not able to infer
the dynamics properties of the object, which is necessary
for our non-planar pushing task. In this section, we describe
online COntext Inference (COI), a module that takes history
observation samples and encodes them into a dynamics
context representation — thus equipping the control policy
with the ability to infer dynamics of the object.

As shown in Figure 3, COI consists of a set of additional
streams in the policy network that encode history sensor
observations into a dynamics context representation. Each
stream of COI takes a pair of consecutive sensory inputs
separated in time by 0.5s (the sensor update interval in our
robot system). We denote each sensory input pair as a tuple
H, = (I;,1;41, f;), where I and f refer to the camera
image and force reading respectively, and 7 represents the
time at which the sensor inputs are retrieved. The encoded
sensory input for each stream is then averaged to obtain
the final dynamics context representation of COI, which is
concatenated with the state-action representation to estimate
the Q value.

B. The Contact-aware Sampling Strategy

Given an architecture that can process multiple history
sensor observation pairs, key questions are:

1) How many history samples should we include?

History[t-2]

History[t-1] Current[t]

Fig. 4: Tllustrations of the sampling strategies. For VCOI, the
samples are retrieved with a uniform sampling interval. CO-
COI takes a contact-aware sampling method which actively
checks the contact force, and only retrieve samples when the
force magnitude is larger than 1 Newton.

2) At what time should we retrieve the sensor observa-
tions?

With a higher number of history samples, the policy has
more information to infer a potentially less noisy object
dynamics representation, at the cost of higher computation
time and memory. In our experiments, we found three history
samples to be a reasonable number to achieve good inference
performance with manageable computation cost.

The timings at which sensor observations are sampled is
vital for the performance of COI. An arbitrarily sampled sen-
sor observation pair may contain limited information about
the object dynamics (e.g. when gripper is far away from the
object) and contribute little to the learning performance. To
ensure that each history sample contains useful information,
we propose a contact-aware sampling strategy which actively
checks the force torque sensor mounted at the robot gripper
and only collects a sample when the contact force magnitude
is considerably large (> 1 N), as shown in Fig. 4. This
strategy guarantees the samples to be representative, in that
the gripper and the object are in contact. We call this
sampling strategy COntact-aware-COI, or COCOI.

In our experiments, we validate the performance of CO-
COI by comparing it to a naive strategy: vanilla COI, or
VCOI, where history samples are retrieved with a uniform
sampling interval, as shown in Figure 4.

VI. GAN FOR VISUAL GAP BRIDGING

In order to adapt the RL policy trained in simulation to
the real world, we also need to overcome the discrepancy
between the rendered, simulated image and the image cap-
tured by a real-camera. We adopt RetinaGAN, a generative
adversarial network (GAN) approach to generate synthetic
images that look realistic with object-detection consistency
[26]. See the concurrent submission! for further details;
this work focuses on contact inference independently of the
visual discrepancy. Qualitative performance is shown in Fig.
5. We train the RL policy with simulation data only and
directly deploy it on the real robot.

'https://retinagan.github.io

Fig. 5: Images of the pushing-in-station setting in simulation,
with RetinaGAN visual adaptation, and in the real world.

Fig. 6: A subset of the 75 different 3D objects used for
training and testing.

VII. EXPERIMENTS
A. Setup

We train the control policies in PyBullet simulation [27].
We first define a flat surface randomly placed in front of
the robot. The surface can be either a desk surface or a
designated flat area inside a trash bin, as shown in Fig.
1. We use a 3D model set containing 75 different objects,
such as cups, bottles, cans, mugs, etc. (Fig. 6). We divide
the objects into a training set containing 64 objects and an
unseen testing set of 11 objects including a stack of cups.
Note that the upper cups in the stack have the degrees of
freedom to tilt when pushed, which makes the pushing task
more challenging. In PyBullet, the contact physics between
the robot gripper and the object is modelled using a point
contact model with an elliptic friction cone.

At the beginning of each episode, the object and the target
position are randomly placed within a rectangular area. We
set the object upright on the surface, and the target position
is rendered using a red dot. The robot gripper is initialized
at a randomized position beside the object. The push policy
controls the robot gripper to push the object to the red dot.
An episode is considered successful if the object is pushed to
within 5 cm of the target, and the object tilting angle remains
smaller than 0.1 rad. We also apply a small penalty at each
timestep to encourage faster execution. The discount factor
~ of the POMDP is 0.9.

B. Policy Models

The deep neural networks for the Q functions are con-
structed as in Fig. 2 and Fig. 3, and the blocks with the same
names share the same network architecture. The detailed
architecture is shown in Table I.

https://retinagan.github.io

TABLE I: Architecture of each module in the Q networks

Architecture

Tensor with shape (472, 472, 6)
2 dim vector
7 dim vector
3 dim vector

Conv(64, 6, 2)

Block name

Images input
Low dim state input
Low dim action input
Force torque sensor reading

CNN encoder MaxPool(3)
Repeat x6: Conv(64, 5, 1)
MaxPool(3)
FC(256)
FCN encoder FC(64)

Reshape(1, 1, 64)

Conv(64, 3, 1)
MaxPool(2)
Repeat x3: Conv(64, 3, 1)

(8, 8, 64) dim matrix
(8, 8, 64) dim matrix

CNN

state-action representation
dynamics context representation

FC(64)
FCN FC(64)
Sigmoid

Q function 1 dim vector

We train and compare four models:

1) The baseline model: the basic feed forward Q function
network as described in Section IV and shown in Fig.
2. This model is the most straightforward and shows
the capability of the baseline RL method.

2) The VCOI model: the VCOI method as shown in
Figure 3. The history observations are sampled using
uniform sampling.

3) The oracle: the architecture of this model is the same as
the baseline, but we expand the low dimensional state
input with 2 key, unobservable dynamics parameters:
the object mass and friction coefficient. We directly
extract the ground truth parameter values from the
simulator to obtain an oracle model.

4) The COCOI: the proposed COntact-aware Online
COntext inference model as shown in Figure 3. The
active contact-aware sampling strategy is applied.

C. Policy Learning and Comparison

We adopt the QT-Opt framework [2] to train the policies.
In the training setting, the objects and goal locations are
randomly sampled in a 0.5m x 0.3m area, the object mass
is randomized from 0.05 kg to 0.5 kg, and the friction
coefficient is randomized from 0.5 to 1.0. We train the
models using stochastic gradient descent, using a learning
rate of 0.0001 and momentum of 0.9. We train the models
with a batch size of 2048 for 80k steps.

In the early stage of training, we use a rule-based scripted
policy, which moves the gripper along the line connects the
object and the target, to generate successful episodes and
improve the exploration efficiency. This rule-based method
only achieves less than 5% success rate, illustrating the
difficulty of the non-planar pushing task. During training,

Fig. 7: Training success rate as a function of training steps
for the four RL models in Section VII-B

we observe that the policy first obtains the capability to
solve easier scenarios where the object-goal distance is short
and then gradually learns to push objects that are initialized
far from the goal. Fig. 7 shows a comparison of training
performance for the four models.

As shown in Fig. 7, COCOI and the oracle model perform
significantly better than VCOI and the baseline model. CO-
COI reaches even higher success rate than the oracle, which
indicates that COCOI is capable to capture more than just
the oracle information (object mass and friction coefficient)
- there are other factors such as the object shape and contact
point that affect the dynamics properties.

D. Performance under Domain Variations

Overall, the RL policy succeeds in pushing the upright
object and learns to perform smart behaviors. For example,
the robot can break contact with object when the object
leans, and it can open its gripper to use its finger to make
subtle impacts. We evaluate pushing performance for the four
models on a large variety of settings.

First, the initial range of the object and the target are varied
and the results are shown in Table II. COCOI consistently
outperforms VCOI and baseline and achieves a similar
performance to the oracle. Specifically, COCOI shows an
average relative improvement of 50% and 20% success rate
compared to the baseline and VCOI, respectively.

Second, we fix the initial object placement to 0.4m x
0.3m and vary dynamics properties. We change the friction
coefficient and the object mass to be outside the training
range. We also test performance of the models on unseen
objects and a stack of cups whose inertia can change during
pushing. Evaluation results with these setting variations are
reported in Table III.

Across different domains, COCOI consistently outper-
forms other methods. The performance of the oracle model
is especially poor in cases where the real friction parameter
is not in the range of the training set. This could be due to
the policy overfitting to the input dynamics parameters.

TABLE II: Comparison of success rate for models evaluated with different initial placement settings.

Initial range 03m x 0.6m 03m x 0.5m 03m x 04m 03m x 0.3m 0.25m x 0.5m 0.25m x 0.5m
Baseline 26.5% 34.1% 51.1% 59.2% 40.0% 42.5%
Col 36.0% 43.2% 63.4% 72.2% 49.0% 50.8%
Oracle 43.8% 53.9% 73.8% 78.2% 60.5% 62.4%
COCoOI 43.0% 59.3% 73.2% 75.7% 64.7 % 62.6%

TABLE III: Comparison of success rate for models evaluated with different dynamics properties settings.

Model default setting 0.0-0.5 friction 1.0-1.5 friction 0.5-1.0kg mass Unseen objects Cup stack
Baseline 51.1% 53.8% 32.1% 32.6% 42.5% 26.2%
(¢(0) 63.4% 59.6% 44.2% 44.7% 48.3% 38.8%
Oracle 73.8% 39.6% 38.2% 41.4% 60.9% 36.5%
COCOI 73.2% 72.6% 47.2% 49.9% 58.9% 43.7%

o,

Fig. 8: t-SNE visulization of the inferred context represen-
tation for three different dynamics parameters settings. For
each setting, the context representations from a randomly
chosen episode is highlighted with a brighter color. The
clusters show clear separation and are distributed with an
order consistent with the friction magnitude.

E. Interpretation of Context Representations

To inspect the dynamics context learned by COCOI, we
visualize the inferred representations for three settings with
different dynamics parameters. For each setting, we run
our controller for 20-30 episodes to fill a buffer of 256
dynamics context representations. We then visualize these
representations using a combination of principle compo-
nent analysis (PCA) and t-distributed stochastic neighbor
embedding (t-SNE) [28] (Fig. 8). The visualization shows
clear separation between settings, which indicates COCOI
learns to infer the dynamics properties. Also, representations
within one episode are grouped closer to each other than to
other episodes, suggesting that learned representations are
consistent and structured. Moreover, we observe the order of
the clusters is consistent with the dynamics properties: the
clusters with the largest mass and friction and the smallest
mass and friction are farthest apart, while the cluster with
intermediate parameters is in the center.

F. Real World Deployment

To test real world deployment, we design a push-in-bin
task in both the simulator and in the real world, as shown

Fig. 9: Visualization of sim-to-real pushing policy transfer.

in Fig. 1. We adopt the method described in Section VI and
train a RetinaGAN model to adapt the simulation images
to synthetic images with realistic appearance. We train the
pushing policy with COCOI based on synthetic images and
run 10 real world pushing episodes. We achieve 90% success,
demonstrating the capability of our 3D pushing policy to
overcome both the visual and dynamics domain gap. Fig. 9
shows example sequences in simulation and the real world.

VIII. CONCLUSIONS

We propose COCOI, a deep RL method that uses history
robot-object interaction samples to infer contact dynamics
context, and we show it outperforms baseline in contact-
rich manipulation tasks with domain variations. We design
and study COCOI on a non-planar pushing task commonly
seen in everyday life. Extensive experiments demonstrate the
capability of COCOI in a wide range of settings, dynamics
properties, and sim-to-real transfer scenarios.

There are many promising future work directions to pursue
based on our approach. For example, we study the non-planar
pushing task with a single object on the surface. It would be
interesting to train manipulation controllers that can perform
pushing with multiple objects or in a cluttered environment.
In addition, extending our approach to push non-rigid objects
such as a piece of cloth is another important direction that
can further expand the capability of our controller.

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

REFERENCES

S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 1334-1373, 2016.

D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, et al., “Qt-
opt: Scalable deep reinforcement learning for vision-based robotic
manipulation,” arXiv preprint arXiv:1806.10293, 2018.

J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
Robotics, vol. 5, no. 47, 2020.

J. Zhou, R. Paolini, J. A. Bagnell, and M. T. Mason, “A convex
polynomial force-motion model for planar sliding: Identification and
application,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA), pp. 372-377, 1EEE, 2016.

J. K. Li, W. S. Lee, and D. Hsu, “Push-net: Deep planar pushing for
objects with unknown physical properties.,” in Robotics: Science and
Systems, vol. 14, pp. 1-9, 2018.

A. Rajeswaran, S. Ghotra, B. Ravindran, and S. Levine, “Epopt:
Learning robust neural network policies using model ensembles,”
arXiv preprint arXiv:1610.01283, 2016.

X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” in 2018
IEEE international conference on robotics and automation (ICRA),
pp. 1-8, IEEE, 2018.

Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac,
N. Ratliff, and D. Fox, “Closing the sim-to-real loop: Adapting simula-
tion randomization with real world experience,” in 2019 International
Conference on Robotics and Automation (ICRA), pp. 8973-8979,
IEEE, 2019.

K. Rakelly, A. Zhou, C. Finn, S. Levine, and D. Quillen, “Efficient off-
policy meta-reinforcement learning via probabilistic context variables,”
in International conference on machine learning, pp. 5331-5340,
2019.

W. Yu, J. Tan, C. K. Liu, and G. Turk, “Preparing for the unknown:
Learning a universal policy with online system identification,” arXiv
preprint arXiv:1702.02453, 2017.

J. Harrison, A. Garg, B. Ivanovic, Y. Zhu, S. Savarese, L. Fei-Fei, and
M. Pavone, “Adapt: zero-shot adaptive policy transfer for stochastic
dynamical systems,” in Robotics Research, pp. 437-453, Springer,
2020.

Z. Xu, C. Tang, and M. Tomizuka, “Zero-shot deep reinforcement
learning driving policy transfer for autonomous vehicles based on
robust control,” in 2018 21st International Conference on Intelligent
Transportation Systems (ITSC), pp. 2865-2871, 1IEEE, 2018.

C. Tang, Z. Xu, and M. Tomizuka, “Disturbance-observer-based
tracking controller for neural network driving policy transfer,” IEEE
Transactions on Intelligent Transportation Systems, 2019.

J. Stiiber, C. Zito, and R. Stolkin, “Let’s push things forward: A survey
on robot pushing,” Frontiers in Robotics and Al, vol. 7, p. 8, 2020.
M. T. Mason, “Mechanics and planning of manipulator pushing
operations,” The International Journal of Robotics Research, vol. 5,
no. 3, pp. 53-71, 1986.

K.-T. Yu, M. Bauza, N. Fazeli, and A. Rodriguez, “More than a million
ways to be pushed. a high-fidelity experimental dataset of planar
pushing,” in 2016 IEEE/RSJ international conference on intelligent
robots and systems (IROS), pp. 30-37, IEEE, 2016.

M. Bauza and A. Rodriguez, “A probabilistic data-driven model for
planar pushing,” in 2017 IEEE International Conference on Robotics
and Automation (ICRA), pp. 3008-3015, IEEE, 2017.

A. Ajay, J. Wu, N. Fazeli, M. Bauza, L. P. Kaelbling, J. B. Tenenbaum,
and A. Rodriguez, “Augmenting physical simulators with stochastic
neural networks: Case study of planar pushing and bouncing,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 3066-3073, IEEE, 2018.

Z. Xu, J. Wu, A. Zeng, J. B. Tenenbaum, and S. Song, “Densephysnet:
Learning dense physical object representations via multi-step dynamic
interactions,” arXiv preprint arXiv:1906.03853, 2019.

J. Stiiber, M. Kopicki, and C. Zito, “Feature-based transfer learning for
robotic push manipulation,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA), pp. 1-5, IEEE, 2018.

A. Byravan and D. Fox, “Se3-nets: Learning rigid body motion using
deep neural networks,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), pp. 173-180, IEEE, 2017.

[22]

[23]

[24]

[25]

[26]
[27]

[28]

B. Ridge, A. Leonardis, A. Ude, M. Denisa, and D. Skocaj, “Self-
supervised online learning of basic object push affordances,” Inter-
national Journal of Advanced Robotic Systems, vol. 12, no. 3, p. 24,
2015.

S. Zhu, A. Kimmel, and A. Boularias, “Information-theoretic model
identification and policy search using physics engines with application
to robotic manipulation,” arXiv preprint arXiv:1703.07822, 2017.

M. Kopicki, S. Zurek, R. Stolkin, T. Moerwald, and J. L. Wyatt,
“Learning modular and transferable forward models of the motions
of push manipulated objects,” Autonomous Robots, vol. 41, no. 5,
pp. 1061-1082, 2017.

C. Bodnar, A. Li, K. Hausman, P. Pastor, and M. Kalakrishnan,
“Quantile qt-opt for risk-aware vision-based robotic grasping,” arXiv
preprint arXiv:1910.02787, 2019.

D. Ho, K. Rao, Z. Xu, E. Jang, M. Khansari, and Y. Bai, “Retinagan:
An object-aware approach to sim-to-real transfer,” 2020.

E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” 2016.

L. van der Maaten and G. Hinton, “Visualizing data using t-sne,
Journal of Machine Learning Research, vol. 9, no. 86, pp. 2579-2605,
2008.

>

	I Introduction
	II Related Work
	III Problem Statement
	IV Learning Basic Pushing Controller
	V Contact-aware Online Context Inference
	V-A Online Context Inference
	V-B The Contact-aware Sampling Strategy

	VI GAN for Visual Gap Bridging
	VII Experiments
	VII-A Setup
	VII-B Policy Models
	VII-C Policy Learning and Comparison
	VII-D Performance under Domain Variations
	VII-E Interpretation of Context Representations
	VII-F Real World Deployment

	VIII Conclusions
	References

