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Abstract—Optimized sensing is important for computational imaging in low-resource environments, when images must be recovered

from severely limited measurements. In this paper, we propose a physics-constrained, fully differentiable, autoencoder that learns a

probabilistic sensor-sampling strategy for optimized sensor design. The proposed method learns a system’s preferred sampling

distribution that characterizes the correlations between different sensor selections as a binary, fully-connected Ising model. The

learned probabilistic model is achieved by using a Gibbs sampling inspired network architecture, and is trained end-to-end with a

reconstruction network for efficient co-design. The proposed framework is applicable to sensor selection problems in a variety of

computational imaging applications. In this paper, we demonstrate the approach in the context of a very-long-baseline-interferometry

(VLBI) array design task, where sensor correlations and atmospheric noise present unique challenges. We demonstrate results broadly

consistent with expectation, and draw attention to particular structures preferred in the telescope array geometry that can be leveraged

to plan future observations and design array expansions.

Index Terms—Computational Imaging, Optimized Sensing, Ising Model, Deep Learning, VLBI, Interferometry
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1 INTRODUCTION

C
OMPUTATIONAL imaging systems tightly integrate algorithm

and sensor design, making it possible to observe phenomena

previously difficult or impossible to see with traditional sensors.

A common constraint in these imaging systems is that they must

operate in low-resource environments. For instance, the measure-

ments collected are severely limited due to radiation dosage in

computed tomography (CT) [1], speed in Magnetic Resonance

Imaging (MRI) [2] and microscopy [3], and cost in very-long-

baseline-interferometry (VLBI) [4]. Imaging methods are then

designed to intelligently fill in the gaps of missing information

in order to recover the targeted image. We propose a framework to

jointly learn the ideal sampling structure of non-linear, correlated

measurements simultaneously with the image recovery procedure,

for the purpose of sensor design. We apply this framework to study

optimal VLBI telescope array geometries in different observing

conditions.

A computational imaging system typically consists of two

primary components: the sensing system and the image recon-

struction method. The sensing system is most often described by

a physics-based forward model y = f(z), which defines how the

selected measurements, y, are related to the underlying image, z.

These measurements often experience noise and do not contain

enough information on their own to fully specify z. Therefore,

imaging methods are designed to recover an image, ẑ, from

the observed measurements by imposing pre-defined assumptions,

such as image priors or hard physical constraints.

In addition to developing image reconstruction methods, op-

timization of the sensor is critical for producing high-quality

reconstructions. In many applications the placement (i.e., sam-

pling) of sensors controls the nature of information gathered in
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measurements. It is especially important that this information be

optimized for a specific task when the measurement space can’t

be fully observed. Previous work in 3D reconstruction [5], mi-

croscopy [6], [7], and astronomical imaging [8], [9] have proposed

strategies to optimize sensor placement to achieve maximally

informative measurements. Seminal work in compressed sensing

showed that, under particular sampling distributions, it is possible

to recover a sparse signal with near perfect accuracy [10]; this

idea revolutionized a number of real-world applications, including

MRI [11]. However, these theoretical results only hold under

certain assumptions, such as a linear forward model or limited

noise. Consequently, these sampling strategies are surely under-

optimized and could be improved in complex imaging systems.

The optimal sensing problem is typically idealized and con-

sidered independently from the image reconstruction problem.

However, these two problems are intimately related: existing imag-

ing algorithms inform what data we are capable of interpreting

and therefore should collect, and the particular data we measure

informs what imaging algorithms we should use. Inspired by this

insight, we address co-designing the sensor-sampling strategy and

the image reconstruction algorithm. The complexity of real-world

measurements makes it difficult to tackle this co-design problem

analytically. Therefore, we propose to solve a joint optimization

problem using deep learning, where the optimal sampling policy

is represented as a trainable joint probability distribution over

candidate sensors. The proposed framework enables 1) tackling

complicated sampling problems where measurements are cor-

related and experience substantial noise, 2) exploring multiple

plausible sampling strategies simultaneously rather than focus on

a single deterministic design, and 3) qualitatively understanding

the importance of each sensor and correlation among sensors.

The content of the paper is organized as follows. In Sec. 2,

we review related work on reconstruction algorithms and optimal

sensing. In Sec. 3, we present our method that jointly optimizes the

sensor-sampling pattern and image reconstruction. In Sec. 4, we

demonstrate our method on the astronomical imaging VLBI array
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design problem to identify which telescopes are most important to

observe with in different conditions. In Sec 5, we summarize our

work and discuss additional sensor-selection applications.

2 RELATED WORK

2.1 Image Reconstruction Techniques

2.1.1 Regularized Inverse Model

A common approach taken in computational imaging is to re-

construct the target image from limited sensor measurements by

solving a regularized inverse problem:

ẑ = argmin
z

[L(y, f(z)) + αR(z)] , (1)

where f(z) is the forward model of the underlying imaging

system, which produces measurements y from the true image

z, L(·) is inspired by the data negative log-likelihood, R(·) is

a regularization function, α is the coefficient balancing the two

terms, and ẑ is the reconstructed image. The L(·) and R(·)
terms quantify the image’s fit with the measurements and the

prior knowledge, respectively. The regularization term shrinks the

solution domain, consequently making the solution unique even

with an incomplete set of measurements. Typically, this inverse

problem can be solved using iterative optimization algorithms

when explicit image regularizer functions are imposed, such as

total variation (TV) [12], maximum entropy (MEM) [13], sparsity

in Fourier or wavelet transformed domain [14], or locally-learned

distributions [15].

2.1.2 Learned Inverse Model

Deep learning techniques have also been used for computational

imaging reconstruction by either directly training a deep recon-

struction neural network [16] or inserting deep learning “priors”

into model-based optimization frameworks [17]. Unlike many

classic computer vision tasks, such as face or object recognition,

computational imaging problems are fundamentally related to

the physics of a known imaging system. Therefore, recent deep

learning based reconstruction methods focus on incorporating

known physics to improve computational efficiency, reconstruc-

tion accuracy, and robustness. For example, this can be done by

adding physics-informed regularization to the neural network loss

function [18], only learning the residuals between ground truth

and physics-based solutions [19], or unrolling the physics-based

optimization procedure as a neural network [20], [21].

2.2 Sensor-Sampling Strategies

2.2.1 Analytic Strategies

Conventionally, sparse sensor sampling is achieved by adopting

the Nyquist-Shannon sampling theorem. For instance, in imaging

applications with Fourier component measurements, such as VLBI

and MRI, since the images are approximately band-limited, the

signal sampling rate in the Fourier domain (e.g., κ-space) can be

reduced to twice the maximum frequency [22]. This observation

can be used to define metrics that characterize sampling quality

independent of image reconstruction techniques [23]. Modern

advances in the theory of compressed sensing demonstrate that,

when the underlying image is sparse, certain sampling schemes

can achieve the same quality reconstruction with an even smaller

number of samples [10], [24]. However, both Nyquist sampling

and compressed sensing typically consider only linear forward

models and assume no noise or only i.i.d. Gaussian noise, which

is unrealistic for many real-world problems.

2.2.2 Learned Strategies

Recently, approaches have been proposed to explore the joint

optimization of a sensing strategy and image reconstruction

method using deep neural networks. This idea has been used to

design the color multiplexing pattern of camera sensors [25], the

LED illumination pattern in Fourier ptychography [7], the optical

parameters of a camera lens [26], and the exposure pattern in

video compressed sensing [27]. However, all these approaches

yield only a single deterministic sensing pattern that ignores

the possibility of multiple, equally good sensing strategies. In a

recent study of “compressed sensing” MRI, the sensing sampling

strategy in the κ-space is modeled as Bernoulli distributions, so

that multiple sensing patterns are explored simultaneously [28].

This formulation helps characterize which sampling frequencies

are important for different anatomy. However, none of these prior

approaches address complicated non-Gaussian noise, or explicitly

model the correlations among measurements.

3 PROPOSED METHOD

We propose a learning method that jointly optimizes the sensor-

sampling distribution and the image reconstruction method for

forward models that contain correlated measurements and compli-

cated noise. In Sec. 3.1, we discuss the problem setup. In Sec. 3.2

we introduce the sensor-sampling distribution, formulated as an

Ising model. In Sec. 3.3 we discuss the image reconstruction sub-

network architecture.

3.1 Joint Sensing and Imaging Optimization

We formulate the joint sensing and imaging optimization as a

deep autoencoder. This autoencoder is trained to identify an

efficient image representation that is then used to make limited

observations, from which an image can be recovered. The encoder

represents the sensing strategy and the decoder represents the

image reconstruction method. Both the encoder and decoder are

formulated as deep neural networks in this framework. However,

to ensure the sensing system design obeys physical constraints,

the encoder samples from all possible measurements generated by

the physics simulator.

This optimization problem can be written as

argmin
θ,ω

EM∼pθ(M)





n
∑

j=1

s(ẑj , zj) + λR(M)



 ,

s.t. ẑj = Aω{g(M, f(zj))},

(2)

where M is a sensor-sampling pattern, whose distribution is

pθ(·) parameterized by θ, s(ẑj , zj) is a function defining the

similarity between the reconstruction result ẑj and the true image

zj in the n image training set, R(·) is the regularization on

the sensing samples, Aω{·} is the image reconstruction neural

network parameterized by ω, and g(·, ·) is the sensing function

that produces the observed measurements. In this loss function,

the first term quantifies the image reconstruction performance,

while the second term quantifies desired properties of the sensor-

sampling pattern (e.g., sparsity; see Sec. 3.2.3). These two terms

are balanced by the hyper-parameter λ. The sampling pattern

M ∈ [0, 1]K is a binary vector that indicates which of the K

sensor sources is selected or excluded from observations. This is

equivalent to selecting elements from the forward model’s vector

of measurements, i.e.

g(M,f(zj)) = S(M)� f(zj), (3)





3.2.2 Differentiable Gibbs Sampling Sub-Network

We design a sub-network to perform successive MCMC sampling

iterations of an Ising model (parameterized by θ), which enables

sampling masks from pθ(M) and facilitates computing Eq. (2).

MCMC methods have been widely used for approximating

complicated statistical distributions. In a commonly used MCMC

method, Gibbs sampling, one samples from the joint probability

distribution by conditionally sampling each variable in turn until

convergence. The detailed procedure of Gibbs sampling for a

binary state space can be summarized as:

1) Randomly draw an initial sample

X(0) = (x
(0)
1 , · · · , x(0)

n ), (7)

from an independent Bernoulli distribution.

2) Compute the next sample X(i) based on X(i−1) with

each component x
(i)
j sequentially updated using its con-

ditional distribution given the other states

p
(i)
j = pθ(x

(i)
j = 1|x

(i)
1 , · · · , x

(i)
j−1, x

(i−1)
j+1 , · · · , x(i−1)

n ).
(8)

For each p
(i)
j , draw a random number from a uniform

distribution

u
(i)
j ∼ U(0, 1). (9)

If u
(i)
j < p

(i)
j , assign x

(i)
j = +1; otherwise, assign

x
(i)
j = −1.

3) Repeat step 2 for N iterations.

Gibbs sampling is often used to sample from Ising models, as the

conditional probability of an Ising model can also be described as

an Ising model:

Hθ({xj} ∈ Λu|{xl} ∈ Λk)

= −
∑

j
xj∈Λu

(θjj +
∑

l
xl∈Λk

θjlxl)xj −
∑

j<k
xj ,xk∈Λu

θjkxjxk

= −
∑

j
xj∈Λu

θ′jj({xl} ∈ Λk)xj −
∑

j<k
xj ,xk∈Λu

θjkxjxk

(10)

where Λk and Λu are the known and unknown/to-be-updated

subsystems respectively, and θ′jj defines the new Ising model

parameter conditioned on the known subsystem. Eq. (10) indicates

the conditional distribution of a single element is a Bernoulli

distribution, making it possible to implement each Gibbs sampling

iteration as a neural network layer.

In order to sample a mask M from the distribution pθ(M),
we design a neural network where each dense layer corresponds

to an iteration of Gibbs sampling for an Ising model. Each Gibbs

sampling layer can be mathematically described as a function of

θ:

x
(i)
j = sgn



σ(2(
∑

k<j

θjkx
(i)
k + θjj +

∑

k>j

θjkx
(i−1)
k ))− u

(i)
j



 ,

(11)

where sgn(·) is a sign step function and σ(·) is a sigmoid function,

sgn(y) =

{

−1 y ≤ 0

+1 y > 0
, σ(y) =

1

1 + exp (−y)
. (12)

The initial sample X(0) is initialized using uniform random

values, x
(0)
j = sgn(0.5 − u

(0)
j ). Eq. (11) defines a layered Ising

sampling function, which converges to a sample from the Ising

model after a sufficient number N of iterations. However, the

sign function in Eq. (11) has no gradient (zero or undefined),

rendering back-propagation strategies impossible. To address this,

we replace the sign function with a hyperbolic tangent function

x
(i)
j = tanhs1



σ(2(
∑

k<j

θjkx
(i)
k + θjj +

∑

k>j

θjkx
(i−1)
k ))− u

(i)
j



,

(13)

where tanhs1(a) = tanh(s1a). Using a moderate s1 slope enables

us to approximately binarize the states to [−1, 1] between suc-

cessive Gibbs layers, while still allowing gradients to propagate

through the network.

To obtain the sampling mask, M , we apply a strong sigmoid

function to the final sampling layer of the Ising model to convert

the states from approximately [−1, 1] to nearly binary states [0, 1]:

M = σs2(X
(N)) = σ(s2X

(N)), (14)

where s2 is a slope of the sigmoid function that should be large

enough to approximate the Heaviside function well.

For notational simplicity, we represent this sampling procedure

as a nested function,

M ∼ pθ(M)

= σs2(X
(N))

= σs2(Gθ(U
(0), · · · , U (N))),

(15)

with Ising model coefficient θ as its parameters, uniformly dis-

tributed random numbers, {U (0), · · · , U (N)} as inputs, and the

[0, 1] binary samples in M as outputs. The architecture of the

Gibbs sampling neural network is shown at the bottom of Fig. 1.

3.2.3 Ising Model Regularization

To encourage sparse samples and promote sample diversity (in

order to explore multiple observational strategies), we define the

regularization on Ising samples (M ∼ pθ(M)) as consisting of

two terms:

R(M) = λ1‖M‖1 − λ2Hθ(X
(N)), (16)

where the first term is a `1 regularization on the number of

participating sensors (sparsity loss), and the second term is the

negative Hamiltonian of the Ising samples (diversity loss). The

Hamiltonian of an Ising model is a good approximation of the

distribution entropy as it only differs in its log partition function,

Sθ = −
∑

X

pθ(X) log pθ(X)

= −
∑

X

pθ(X)[−Hθ(X)− logZθ]

= EX∼pθ(X)[Hθ(X)] + logZθ.

(17)

Therefore, maximizing the Hamiltonian typically increases the

system entropy, thus diversifying the samples from our Ising

model. Substituting Eq. (16) into Eq. (2) and approximating the

expectation using the empirical average via MCMC samples, we





TABLE 1
Telescope sites in ”EHT+” array.

Sites Location SEFD

PV? Pico Veleta, Spain 1400

PDB Plateau de Bure, France 1500

ALMA? Atacama Desert, Chile 90

APEX? Atacama Desert, Chile 3500

LMT? Sierra Negra, Mexico 600

SMT? Mt. Graham, Arizona 5000

SPT? South Pole 5000

OVRO Owens Valley, California 10000

JCMT? Maunakea, Hawai’i 6000

SMA? Maunakea, Hawai’i 4900

KP Tucson, Arizona 10000

GLT Thule Air Base, Greenland 10000

ation of the thermal noise depends on each telescope’s “system

equivalent flux density” (SEFD):

νp,q ∝
√

SEFDp × SEFDq, (20)

where a higher SEFD indicates the measurements using that

telescope contain more thermal noise (i.e., lower SNR) [32]. When

atmospheric turbulence is not considered, g = 1 and φ = 0.

Although the absolute gains g can often be sufficiently calibrated,

phase errors due to atmospheric turbulence cannot be calibrated

a priori since φ varies rapidly and is uniformly sampled from

[0, 2π) [32]. Thus, in the case of atmospheric error, recovering an

image amounts to solving a phase retrieval problem.

In the case of atmospheric noise, data products called closure

quantities can be used to constrain the image reconstruction [35].

Closure phase is obtained by multiplying three visibilities from

telescopes in a closed loop:

Ct
p,q,b = ∠

(

V t
p,qV

t
q,bV

t
b,p

)

(21)

Since the atmospheric errors are site dependent, Cp,q,b is robust

to any phase errors φ. Data products called closure amplitudes are

robust to gain errors [35]. Since amplitudes can often be much

better calibrated than phases, in this paper we do not consider

closure amplitudes but make use of visibility amplitudes, |V t
p,q|.

4.2 Implementation Details

4.2.1 Telescope Arrays

In this paper, we consider two arrays of radio telescopes: “EHT+”

and “FUTURE” (Fig. 3). “EHT+” includes twelve telescopes sites,

as listed in Table 1. Eight of these sites (marked with a star) were

used by the EHT in 2017 [33], while the other four sites host

existing radio telescopes that plan to eventually join the EHT. Each

telescope’s SEFD (i.e., noise coefficient) is reported in the table.

The “FUTURE” array consists of nine additional sites that do not

currently host a suitable telescope, but have sufficient atmospheric

conditions for a constructed telescope to successfully observe at

230 GHz with the EHT.1

1. Our analysis conservatively assumes each new telescope in the “FU-
TURE” array has an SEFD of 10000.

Fig. 3. Site map of potential future EHT telescope locations. Twelve sites
(“EHT+”) marked with blue stars are existing telescopes currently partic-
ipating in or planning to join the EHT. The other nine sites (“FUTURE”),
marked with orange dots, are potential locations where new telescopes
could be added. “FUTURE” sites are selected as locations that can
observe at the necessary 230 GHz (1.3 mm wavelength) observed by
the EHT.

4.2.2 Ising Model Sampler

The VLBI forward model f(·) produces as a vector of complex

visibilities or visibility amplitudes and closure phases. The mask,

M , is a binary vector representing whether each telescope is

selected for observation. We define the masking function for each

VLBI measurement in f(·) as Sp,q(M) = MpMq for a visibility

Vp,q or visibility amplitude |Vp,q|, and Sp,q,b(M) = MpMqMb

for a closure phase Cp,q,b. The mask is generated from the Ising

model sampler in Section 3.2, which is built using five MCMC

layers. The sampling order of telescopes for each MCMC layer is

randomly shuffled for each training trial. In Section 4.3, we run the

joint optimization five times for each experiment to approximate

the mean and standard deviation of the learned Ising model

parameters. The slopes for binary conversion layers (Eq. 13 and

Eq. 14) are empirically set to s1 = 3 and s2 = 10.

4.2.3 Image Reconstruction Architectures

Two different neural network architectures (Fig. 4) are used for

the image reconstructions (Section 3.3), with input corresponding

to either complex visibilities or visibility amplitudes and closure

phases, as shown in Fig. 4. Both networks output a 32× 32 pixel

image.

In the case of no atmospheric turbulence, Reconstruction

network A is used (Fig. 4). The input to this network are com-

plex visibilities. The network architecture consists of one fully

connected layer and a U-Net (four down-size layers + four up-

size layers). Ideally, the fully connected layer transforms the

Fourier measurements from the frequency domain back to the

image domain. Then, the U-Net removes aliasing effects caused

by missing data and noise. Since the image’s phase information is

preserved when there is no atmospheric turbulence, we can define

the image similarity loss, s(·, ·) as an `1 norm of the difference

between the reconstructed and blurred original image:

s(ẑj , zj) = ‖ẑj −K(res) ∗ zj‖1, (22)

where K is a Gaussian kernel that defines our desired recon-

struction resolution. The nominal resolution of our telescope
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