2003.10424v1 [eess.IV] 23 Mar 2020

arxiv

Learning a Probabilistic Strategy
for Computational Imaging Sensor Selection
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Abstract—Optimized sensing is important for computational imaging in low-resource environments, when images must be recovered
from severely limited measurements. In this paper, we propose a physics-constrained, fully differentiable, autoencoder that learns a
probabilistic sensor-sampling strategy for optimized sensor design. The proposed method learns a system’s preferred sampling
distribution that characterizes the correlations between different sensor selections as a binary, fully-connected Ising model. The
learned probabilistic model is achieved by using a Gibbs sampling inspired network architecture, and is trained end-to-end with a
reconstruction network for efficient co-design. The proposed framework is applicable to sensor selection problems in a variety of
computational imaging applications. In this paper, we demonstrate the approach in the context of a very-long-baseline-interferometry
(VLBI) array design task, where sensor correlations and atmospheric noise present unique challenges. We demonstrate results broadly
consistent with expectation, and draw attention to particular structures preferred in the telescope array geometry that can be leveraged

to plan future observations and design array expansions.

Index Terms—Computational Imaging, Optimized Sensing, Ising Model, Deep Learning, VLBI, Interferometry

1 INTRODUCTION

OMPUTATIONAL imaging systems tightly integrate algorithm
C and sensor design, making it possible to observe phenomena
previously difficult or impossible to see with traditional sensors.
A common constraint in these imaging systems is that they must
operate in low-resource environments. For instance, the measure-
ments collected are severely limited due to radiation dosage in
computed tomography (CT) [1], speed in Magnetic Resonance
Imaging (MRI) [2] and microscopy [3], and cost in very-long-
baseline-interferometry (VLBI) [4]. Imaging methods are then
designed to intelligently fill in the gaps of missing information
in order to recover the targeted image. We propose a framework to
jointly learn the ideal sampling structure of non-linear, correlated
measurements simultaneously with the image recovery procedure,
for the purpose of sensor design. We apply this framework to study
optimal VLBI telescope array geometries in different observing
conditions.

A computational imaging system typically consists of two
primary components: the sensing system and the image recon-
struction method. The sensing system is most often described by
a physics-based forward model y = f(z), which defines how the
selected measurements, y, are related to the underlying image, 2.
These measurements often experience noise and do not contain
enough information on their own to fully specify z. Therefore,
imaging methods are designed to recover an image, Z, from
the observed measurements by imposing pre-defined assumptions,
such as image priors or hard physical constraints.

In addition to developing image reconstruction methods, op-
timization of the sensor is critical for producing high-quality
reconstructions. In many applications the placement (i.e., sam-
pling) of sensors controls the nature of information gathered in
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measurements. It is especially important that this information be
optimized for a specific task when the measurement space can’t
be fully observed. Previous work in 3D reconstruction [5], mi-
croscopy [6], [7], and astronomical imaging [8], [9] have proposed
strategies to optimize sensor placement to achieve maximally
informative measurements. Seminal work in compressed sensing
showed that, under particular sampling distributions, it is possible
to recover a sparse signal with near perfect accuracy [10]; this
idea revolutionized a number of real-world applications, including
MRI [11]. However, these theoretical results only hold under
certain assumptions, such as a linear forward model or limited
noise. Consequently, these sampling strategies are surely under-
optimized and could be improved in complex imaging systems.
The optimal sensing problem is typically idealized and con-
sidered independently from the image reconstruction problem.
However, these two problems are intimately related: existing imag-
ing algorithms inform what data we are capable of interpreting
and therefore should collect, and the particular data we measure
informs what imaging algorithms we should use. Inspired by this
insight, we address co-designing the sensor-sampling strategy and
the image reconstruction algorithm. The complexity of real-world
measurements makes it difficult to tackle this co-design problem
analytically. Therefore, we propose to solve a joint optimization
problem using deep learning, where the optimal sampling policy
is represented as a trainable joint probability distribution over
candidate sensors. The proposed framework enables 1) tackling
complicated sampling problems where measurements are cor-
related and experience substantial noise, 2) exploring multiple
plausible sampling strategies simultaneously rather than focus on
a single deterministic design, and 3) qualitatively understanding
the importance of each sensor and correlation among sensors.
The content of the paper is organized as follows. In Sec. 2,
we review related work on reconstruction algorithms and optimal
sensing. In Sec. 3, we present our method that jointly optimizes the
sensor-sampling pattern and image reconstruction. In Sec. 4, we
demonstrate our method on the astronomical imaging VLBI array



design problem to identify which telescopes are most important to
observe with in different conditions. In Sec 5, we summarize our
work and discuss additional sensor-selection applications.

2 RELATED WORK
2.1 Image Reconstruction Techniques
2.1.1 Regularized Inverse Model

A common approach taken in computational imaging is to re-
construct the target image from limited sensor measurements by
solving a regularized inverse problem:

£ = argmin [L(y, f(2)) + aR(2)], (1)

where f(z) is the forward model of the underlying imaging
system, which produces measurements y from the true image
z, L(-) is inspired by the data negative log-likelihood, R(-) is
a regularization function, « is the coefficient balancing the two
terms, and Z is the reconstructed image. The L£(-) and R(-)
terms quantify the image’s fit with the measurements and the
prior knowledge, respectively. The regularization term shrinks the
solution domain, consequently making the solution unique even
with an incomplete set of measurements. Typically, this inverse
problem can be solved using iterative optimization algorithms
when explicit image regularizer functions are imposed, such as
total variation (TV) [12], maximum entropy (MEM) [13], sparsity
in Fourier or wavelet transformed domain [14], or locally-learned
distributions [15].

2.1.2 Learned Inverse Model

Deep learning techniques have also been used for computational
imaging reconstruction by either directly training a deep recon-
struction neural network [16] or inserting deep learning “priors”
into model-based optimization frameworks [17]. Unlike many
classic computer vision tasks, such as face or object recognition,
computational imaging problems are fundamentally related to
the physics of a known imaging system. Therefore, recent deep
learning based reconstruction methods focus on incorporating
known physics to improve computational efficiency, reconstruc-
tion accuracy, and robustness. For example, this can be done by
adding physics-informed regularization to the neural network loss
function [18], only learning the residuals between ground truth
and physics-based solutions [19], or unrolling the physics-based
optimization procedure as a neural network [20], [21].

2.2 Sensor-Sampling Strategies
2.2.1 Analytic Strategies

Conventionally, sparse sensor sampling is achieved by adopting
the Nyquist-Shannon sampling theorem. For instance, in imaging
applications with Fourier component measurements, such as VLBI
and MRI, since the images are approximately band-limited, the
signal sampling rate in the Fourier domain (e.g., k-space) can be
reduced to twice the maximum frequency [22]. This observation
can be used to define metrics that characterize sampling quality
independent of image reconstruction techniques [23]. Modern
advances in the theory of compressed sensing demonstrate that,
when the underlying image is sparse, certain sampling schemes
can achieve the same quality reconstruction with an even smaller
number of samples [10], [24]. However, both Nyquist sampling
and compressed sensing typically consider only linear forward
models and assume no noise or only i.i.d. Gaussian noise, which
is unrealistic for many real-world problems.

2.2.2 Learned Strategies

Recently, approaches have been proposed to explore the joint
optimization of a sensing strategy and image reconstruction
method using deep neural networks. This idea has been used to
design the color multiplexing pattern of camera sensors [25], the
LED illumination pattern in Fourier ptychography [7], the optical
parameters of a camera lens [26], and the exposure pattern in
video compressed sensing [27]. However, all these approaches
yield only a single deterministic sensing pattern that ignores
the possibility of multiple, equally good sensing strategies. In a
recent study of “compressed sensing” MRI, the sensing sampling
strategy in the x-space is modeled as Bernoulli distributions, so
that multiple sensing patterns are explored simultaneously [28].
This formulation helps characterize which sampling frequencies
are important for different anatomy. However, none of these prior
approaches address complicated non-Gaussian noise, or explicitly
model the correlations among measurements.

3 PROPOSED METHOD

We propose a learning method that jointly optimizes the sensor-
sampling distribution and the image reconstruction method for
forward models that contain correlated measurements and compli-
cated noise. In Sec. 3.1, we discuss the problem setup. In Sec. 3.2
we introduce the sensor-sampling distribution, formulated as an
Ising model. In Sec. 3.3 we discuss the image reconstruction sub-
network architecture.

3.1 Joint Sensing and Imaging Optimization

We formulate the joint sensing and imaging optimization as a
deep autoencoder. This autoencoder is trained to identify an
efficient image representation that is then used to make limited
observations, from which an image can be recovered. The encoder
represents the sensing strategy and the decoder represents the
image reconstruction method. Both the encoder and decoder are
formulated as deep neural networks in this framework. However,
to ensure the sensing system design obeys physical constraints,
the encoder samples from all possible measurements generated by
the physics simulator.
This optimization problem can be written as

n

arg Iélin E]V[NPG(M) Z S(éj, Zj) + /\R(M) R @)
$w j:l

s.t. 2j :Aw{g(M7f(Z]))}7

where M is a sensor-sampling pattern, whose distribution is
po(-) parameterized by 6, s(Z;,z;) is a function defining the
similarity between the reconstruction result Z; and the true image
zj in the n image training set, R(-) is the regularization on
the sensing samples, A, {-} is the image reconstruction neural
network parameterized by w, and g(-,-) is the sensing function
that produces the observed measurements. In this loss function,
the first term quantifies the image reconstruction performance,
while the second term quantifies desired properties of the sensor-
sampling pattern (e.g., sparsity; see Sec. 3.2.3). These two terms
are balanced by the hyper-parameter A. The sampling pattern
M € [0,1)¥ is a binary vector that indicates which of the K
sensor sources is selected or excluded from observations. This is
equivalent to selecting elements from the forward model’s vector
of measurements, i.e.

9(M, f(z;)) = S(M) © [(z), 3)
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Fig. 1. The architecture of the proposed joint sensing and imaging
optimization problem. We draw a connection between optimizing a
computational imaging system and learning the parameters of an au-
toencoder: the encoder consists of a known physics-based forward
model that generates all possible measurements and a sensor-sampling
block that chooses among those measurements; the decoder drives
image reconstruction from measurements. We combine the proposed
decoder and physically-motivated encoder into a single, differentiable
neural network. By maximizing the similarity between the input and
output images, the sensor-sampling strategy and image reconstruction
are jointly optimized. The trainable blocks, sensor-sampling distribution
and reconstruction method, are highlighted in yellow, where the corre-
sponding trainable parameters are 6 and w.

The architecture of the sampling sub-network is inspired by the Gibbs
sampling procedure. Each Gibbs sampling layer acts as an MCMC
iteration: it takes samples X (:—1) from the previous layer and generates
more likely samples X (¥) based on the states’ joint distributions (param-
eterized by 0_;. The input to the sub-network is a set of uniform random
numbers U(*) and an initial random set of states, X (9, € [—1,1]. After
N Gibbs layers, the states are converted to approximately binary by
using a sigmoid function with large slope. Mathematical representations
of the successive Gibbs sampling layers and the binary conversion layer
are shown in Eq. (13) and Eq. (14), respectively.

where S(-) is the binary selection function based on the mask
M, whose dimensionality is the same as the forward model f(-).
This formulation is a generalization of [28], which used a similar
optimization designed specifically for MRI acquisition.

Based on Eq. (2) and Eq. (3), we build a joint sensing and
imaging autoencoder, as shown in Fig. 1. The trainable blocks
in our neural network are the sensor-sampling distribution pg(-)

(from which the mask M is sampled) and the reconstruction net-
work A, (), where 6 and w are the trainable network parameters.
In the following sections we describe how to build Eq. (2) as
a single, differentiable neural network and solve for 6 and w
simultaneously.

3.2 Physics-Constrained Encoder

The goal of the encoder in Fig. 1 is to select measurements from
the physics-based forward model to pass on to the decoder. The
forward model and procedure for masking measurements are both
well defined; the challenge is to design a network architecture
that can sample a mask from a parameterized distribution. In
order to capture the correlations among observations, we model
the proposed sensor-sampling distribution pg(-) in Eq. (2) as a
fully-connected, Ising model (binary Markov random field). In this
section we explain the Ising model sensor-sampling distribution
and describe how to sample from this model using a differentiable
network architecture.

3.2.1 Ising model

In an Ising model, the state of an n-element system is represented
by a set of binary random variables, X = (z1, -+ ,2p),z; €
{+1,—-1},Vj € [1,n]. The total energy of a fully-connected
Ising model is given by the Hamiltonian function,

Hy(X) == 052 — ) Ojxjar, @
J i<k
where 0, are the Ising model parameters. The first term models
the energy of single elements and the second term models the
potential from the interactions between pairs of elements. The
state’s probability can be derived according to the Boltzmann
distribution

exp|—Hg(X
Do (X) = wv (3)
0
where Zy is the partition function,
Zg =Y _exp[—Hy(X)]. (6)
X

The lower the total energy of a state, the higher the probability it
will occur.

We use a fully-connected Ising model to model the presence
(+1) or absence (-1) of a particular sensor, and capture correlations
among sensors. Parameter 0);; characterizes how important it is to
include the j-th sensor, and 6, characterizes how the j-th and
the k-th sensor are positively or negatively correlated: if 6 > 0,
observing the j-th and the k-th sensor are favored or disfavored
together; while if 6, < 0, the j-th sensor is disfavored when
the k-th is selected, or visa versa. Although an Ising model only
explicitly defines pairwise correlations, higher order correlations
among sensors are implicitly captured by the model. These higher
order correlations can be partially extracted by interpreting the
Ising model as an affinity graph and performing clique analysis on
the pruned edges (see an example in Sec. 4.3.3).

Solving the optimization problem in Eq. 2 requires sampling
the Ising model according to parameters 6 = {0;,|Vj, k €
[1,n]}. However, unlike simple distributions such as Bernoulli,
Uniform, or Gaussian, it is difficult to sample an Ising model
directly, because the binary variables are correlated and the num-
ber of possible states grows exponentially with the dimension of
elements. To build a computationally efficient and fully differen-
tiable sampling network, we propose a Markov chain Monte Carlo
(MCMC) inspired method.



3.2.2 Differentiable Gibbs Sampling Sub-Network

We design a sub-network to perform successive MCMC sampling
iterations of an Ising model (parameterized by 6), which enables
sampling masks from py (M) and facilitates computing Eq. (2).

MCMC methods have been widely used for approximating
complicated statistical distributions. In a commonly used MCMC
method, Gibbs sampling, one samples from the joint probability
distribution by conditionally sampling each variable in turn until
convergence. The detailed procedure of Gibbs sampling for a
binary state space can be summarized as:

1) Randomly draw an initial sample

x0) — (x50)7 .. ,x(o)), (7

from an independent Bernoulli distribution.

2) Compute the next sample X () based on X1 with
each component mgl) sequentially updated using its con-
ditional distribution given the other states

pgl) ng(xy) = 1|x§l)v"' ’ 5)17335111)7"' ,ziY).

_ 3
For each pg-z), draw a random number from a uniform
distribution

Wl ~ U(0,1).
it ul? < p§ ), assign ;v() =
W= 1.

3) Repeat step 2 for [V iterations.

©

+1; otherwise, assign

Gibbs sampling is often used to sample from Ising models, as the
conditional probability of an Ising model can also be described as
an Ising model:

Hyo({z;} € Au[{m1} € Ag)

- - Z (655 + Z DL > s

i<k

m]eAu JflEAk zj,xp €Ny (10)
= - Z J{m) e M)z — Y O
<k
:L’jGAu l‘jwwkeAu

where Ay and A, are the known and unknown/to-be-updated
subsystems respectively, and 03]. defines the new Ising model
parameter conditioned on the known subsystem. Eq. (10) indicates
the conditional distribution of a single element is a Bernoulli
distribution, making it possible to implement each Gibbs sampling
iteration as a neural network layer.

In order to sample a mask M from the distribution pg(M),
we design a neural network where each dense layer corresponds
to an iteration of Gibbs sampling for an Ising model. Each Gibbs
sampling layer can be mathematically described as a function of
0:

xy) =sgn [ of Z‘gak%) + 055 + Zejkxk ))) - u§-i) )
k<j k>j
1n
where sgn(-) is a sign step function and o (-) is a sigmoid function,
-1 y<0 1
sgn(y) = -, oy =——"8H—. 12
n(y) {+1 y >0 (v) T+ o (=7) (12)

The initial sample X ) is initialized using uniform random

values, 1( ) = sgn(0.5 — (0)) Eq. (11) defines a layered Ising

sampling function, which converges to a sample from the Ising
model after a sufficient number N of iterations. However, the
sign function in Eq. (11) has no gradient (zero or undefined),
rendering back-propagation strategies impossible. To address this,
we replace the sign function with a hyperbolic tangent function

( ) Z 9]k$k 0+ Z 9Jk$§f 1) u§_i) ’

k<j k>j
(13)

where tanhg, (a) = tanh(s;a). Using a moderate s; slope enables
us to approximately binarize the states to [—1, 1] between suc-
cessive Gibbs layers, while still allowing gradients to propagate
through the network.

tanhg, | o(

To obtain the sampling mask, M, we apply a strong sigmoid
function to the final sampling layer of the Ising model to convert
the states from approximately [—1, 1] to nearly binary states [0, 1]:

M =0, (XM) = g(s3X), (14)

where s3 is a slope of the sigmoid function that should be large
enough to approximate the Heaviside function well.

For notational simplicity, we represent this sampling procedure
as a nested function,

M ~ pg(M)
(X))
(Go(U

= Og,

(15)
, UMy,

= 0-82
with Ising model coefficient 8 as its parameters, uniformly dis-
tributed random numbers, {U OR UWw )} as inputs, and the
[0, 1] binary samples in M as outputs. The architecture of the
Gibbs sampling neural network is shown at the bottom of Fig. 1.

3.2.3 Ising Model Regularization

To encourage sparse samples and promote sample diversity (in
order to explore multiple observational strategies), we define the
regularization on Ising samples (M ~ pg(M)) as consisting of
two terms:

R(M) = M| M|y — A Hg (X)), (16)
where the first term is a £; regularization on the number of
participating sensors (sparsity loss), and the second term is the
negative Hamiltonian of the Ising samples (diversity loss). The
Hamiltonian of an Ising model is a good approximation of the
distribution entropy as it only differs in its log partition function,

Zpe
= *Zpe X) -

= EXNpa(X) [Hg( )] + log Zy.

) log po(X)

log Zg] a7

Therefore, maximizing the Hamiltonian typically increases the
system entropy, thus diversifying the samples from our Ising
model. Substituting Eq. (16) into Eq. (2) and approximating the
expectation using the empirical average via MCMC samples, we



derive a stochastic formulation of the joint optimization problem
under Ising sampling,

n
argmin Y s(5,2) + Arll Ml — A Ho (X)),
1“ J:l
st 2j = Au{S(M) © f(2)},

N
M; = o (X)),

N 0 N

v, U™ ~U(0,1).

(18)

3.3

The image reconstruction decoder sub-network is not restricted
to any particular neural architecture, but should have enough
model capacity to be able to reconstruct with multiple sensing
scenarios simultaneously. For imaging problems with a compli-
cated forward model and noise, physics-based neural networks
(PbNN) [7] and unrolled neural networks [20], [29] have proven
successful. However, with sufficient training data, general deep
learning frameworks such as the U-Net and its variants [30], [31]
often perform sufficiently well. The U-Net combines local and
global information during image reconstruction by incorporating
hierarchical down-sampling and up-sampling blocks and multiple
skip connections in its architecture. In our VLBI case study, two
variants of the U-Net are used for reconstruction. We discuss the
details of their architectures in Sec. 4.2.3.

Image Reconstruction Decoder

4 CASE STuDY: VLBI ARRAY DESIGN

Very-Long-Baseline-Interferometry (VLBI) is a radio interferom-
etry technique for high-resolution astronomical imaging. In VLBI,
telescopes are linked to form an imperfect, virtual telescope with
a maximum resolution defined by the longest baseline between
participating telescopes [32]. Recently, this technique was used
by Event Horizon Telescope (EHT) to capture the first image
of a black hole, the image of M87* [33], by joining telescopes
(observing at 230 GHz) from across the globe. Building on this
recent success, the EHT is continuing to improve its telescope
array by adding new sites, in order to improve M87*’s image
quality as well as image additional astronomical sources, such as
the Milky Way’s black hole, Sagittarius A*.

It is important to carefully study which new sites should be
added to the next-generation EHT to best improve future results.
Adding a new telescope to the existing EHT VLBI array is ex-
tremely expensive: equipping a pre-built telescope to work as part
of the array costs over two million dollars, and the construction
of a new telescope can easily cost over 10 million dollars [34].
Therefore, limited budgets require selecting only a handful of new
sites that can be added to the future array. Since only a select
number of ground sites are suitable for constructing telescopes
that can observe at 230 GHz (e.g., due to altitude and weather), the
problem of choosing telescope locations for the next-generation
EHT reduces to a site selection problem. Studying the impact of
a telescope on imaging quality is not only important for planning
an EHT expansion but also becomes a powerful tool during an
observing campaign; when coordinating future observations it is
essential to evaluate the impact of losing a particular telescope —
should costly observations proceed if weather is poor or there are
instrumental problems at a particular site?
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Fig. 2. VLBI baselines and measurements. The left figure indicates the
baselines between telescopes in the EHT array at a particular time,
where the Earth is being viewed from the direction of Sgr A*. The right
figure shows the corresponding 2D spatial-frequency coverage of mea-
surements collected by the telescopes. Each dot represents a visibility
measurement, where the 2D spatial-frequency of the visibility is related
to the projected baselines between two telescopes at a given time. An
example baseline and its Fourier measurement (two symmetric dots due
to the constraint the the image is real-valued) are marked in green. As
Earth rotates, the projected baseline vectors change, resulting in a more
complete frequency coverage (marked with light blue) collected over a
night.

We optimize the design of a VLBI array by solving a site
selection problem. The goal is to decide which sites from a
given list we should build into the array, and which sites can
be excluded without substantial loss to the reconstructed image.
Although many factors are ultimately important for site selection
(e.g., construction cost, weather stability), in this paper we focus
solely on the location of sites, as the array geometry usually has
the largest influence over resulting image quality. As explained in
Sec. 4.1, VLBI measurements are produced from data collected at
multiple telescopes, so it is important to consider how telescopes
interact with one another. We capture the telescope correlations
through the fully-connected binary Ising model, and optimize the
telescope sampling distribution jointly with the image reconstruc-
tion method using the proposed approach.

4.1 Problem Setup

In radio interferometry (e.g., VLBI), data simultaneously collected
from a pair of telescopes is used to produce a single mea-
surement. Each measurement corresponds to a two-dimensional
Fourier component of the image, with the frequency related to the
baseline between the two participating telescopes, projected in the
direction of the observed astronomical source. This measurement
is typically referred to as a visibility. For a K telescope array, there
are (12( ) possible visibility measurements at a single time. Due to
Earth’s rotation, the projected baselines change over time, causing
sparse elliptical measurements in the spatial-frequency domain to
be collected over the course of a night (see Fig. 2).
The measurement equation for each visibility, V, is given by
Vog = 9p9qexp [—i(¢y, — )] Fp g2 + 1y 0 (19)
for telescope pair (p, q). F, zi g% extracts a Fourier component from
the image z corresponding to the baseline between telescopes p
and ¢ at time ¢t. Each measurement experiences time-dependent
telescope-based gain, g, and phase error, ¢, and baseline-based
thermal noise, n, where n;,q ~ N (O, l/th). The standard devi-



TABLE 1
Telescope sites in "EHT+” array.

Sites ‘ ‘ Location SEFD
PV* Pico Veleta, Spain 1400
PDB Plateau de Bure, France 1500
ALMA* Atacama Desert, Chile 90
APEX* Atacama Desert, Chile 3500
LMT* Sierra Negra, Mexico 600
SMT* Mt. Graham, Arizona 5000
SPT* South Pole 5000
OVRO Owens Valley, California 10000
JCMT* Maunakea, Hawai’i 6000
SMA* Maunakea, Hawai’i 4900
KP Tucson, Arizona 10000
GLT Thule Air Base, Greenland 10000

ation of the thermal noise depends on each telescope’s “system
equivalent flux density” (SEFD):

Vpq X \/SEFD, x SEFD,, 20)
where a higher SEFD indicates the measurements using that
telescope contain more thermal noise (i.e., lower SNR) [32]. When
atmospheric turbulence is not considered, ¢ = 1 and ¢ = 0.
Although the absolute gains g can often be sufficiently calibrated,
phase errors due to atmospheric turbulence cannot be calibrated
a priori since ¢ varies rapidly and is uniformly sampled from
[O, 27r) [32]. Thus, in the case of atmospheric error, recovering an
image amounts to solving a phase retrieval problem.

In the case of atmospheric noise, data products called closure
quantities can be used to constrain the image reconstruction [35].
Closure phase is obtained by multiplying three visibilities from
telescopes in a closed loop:

Crap =< (VogVasVop)

d "4,

2

Since the atmospheric errors are site dependent, Cy, ;5 is robust
to any phase errors ¢. Data products called closure amplitudes are
robust to gain errors [35]. Since amplitudes can often be much
better calibrated than phases, in this paper we do not consider
closure amplitudes but make use of visibility amplitudes, V; q|.

4.2
4.2.1

Implementation Details
Telescope Arrays

In this paper, we consider two arrays of radio telescopes: “EHT+”
and “FUTURE?” (Fig. 3). “EHT+” includes twelve telescopes sites,
as listed in Table 1. Eight of these sites (marked with a star) were
used by the EHT in 2017 [33], while the other four sites host
existing radio telescopes that plan to eventually join the EHT. Each
telescope’s SEFD (i.e., noise coefficient) is reported in the table.
The “FUTURE” array consists of nine additional sites that do not
currently host a suitable telescope, but have sufficient atmospheric
conditions for a constructed telescope to successfully observe at
230 GHz with the EHT.!

1. Our analysis conservatively assumes each new telescope in the “FU-
TURE” array has an SEFD of 10000.

* EHT+ -

© FUTURE

Y

Fig. 3. Site map of potential future EHT telescope locations. Twelve sites
(“EHT+”) marked with blue stars are existing telescopes currently partic-
ipating in or planning to join the EHT. The other nine sites (“FUTURE”),
marked with orange dots, are potential locations where new telescopes
could be added. “FUTURE” sites are selected as locations that can
observe at the necessary 230 GHz (1.3 mm wavelength) observed by
the EHT.

4.2.2 Ising Model Sampler

The VLBI forward model f(-) produces as a vector of complex
visibilities or visibility amplitudes and closure phases. The mask,
M, is a binary vector representing whether each telescope is
selected for observation. We define the masking function for each
VLBI measurement in f(-) as .S, (M) = M, M, for a visibility
V.4 or visibility amplitude |V}, 4|, and S, 4 (M) = M, M, M,
for a closure phase C} 4. The mask is generated from the Ising
model sampler in Section 3.2, which is built using five MCMC
layers. The sampling order of telescopes for each MCMC layer is
randomly shuffled for each training trial. In Section 4.3, we run the
joint optimization five times for each experiment to approximate
the mean and standard deviation of the learned Ising model
parameters. The slopes for binary conversion layers (Eq. 13 and
Eq. 14) are empirically set to s; = 3 and so = 10.

4.2.3 Image Reconstruction Architectures

Two different neural network architectures (Fig. 4) are used for
the image reconstructions (Section 3.3), with input corresponding
to either complex visibilities or visibility amplitudes and closure
phases, as shown in Fig. 4. Both networks output a 32 x 32 pixel
image.

In the case of no atmospheric turbulence, Reconstruction
network A is used (Fig. 4). The input to this network are com-
plex visibilities. The network architecture consists of one fully
connected layer and a U-Net (four down-size layers + four up-
size layers). Ideally, the fully connected layer transforms the
Fourier measurements from the frequency domain back to the
image domain. Then, the U-Net removes aliasing effects caused
by missing data and noise. Since the image’s phase information is
preserved when there is no atmospheric turbulence, we can define
the image similarity loss, s(-,-) as an ¢ norm of the difference

between the reconstructed and blurred original image:
5(25,27) = 12 — K(res) * zj]|1, (22)

where C is a Gaussian kernel that defines our desired recon-
struction resolution. The nominal resolution of our telescope
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Fig. 4. VLBI reconstruction sub-network architectures. Reconstruction Network A is designed to recover an image from complex visibility
measurements that experience, at most, baseline-varying Gaussian thermal noise. Reconstruction Network B is designed to recover an image
when measurements experience corrupting atmospheric phase error in addition to thermal noise; since the absolute phase information in the
complex visibilities are lost in this case, the network takes visibility amplitudes and closure phases as input (rather than complex visibilities) and
uses a shift-invariant loss (rather than a simpler ¢; loss). For each network variant we show a single representative test reconstruction obtained
from measurements, which corresponds to the ring truth image shown in Fig. 7.

array (== 25 pas full-width-half-max (FWHM)) is found using
the longest baseline. Image reconstructions that recover structure
smaller than the nominal resolution are super-resolving the target.

In the case of atmospheric turbulence, reconstruction network
B is used (Fig. 4). The input is constructed from visibility am-
plitudes and closure phases (rather than complex visibilities). The
reconstruction network architecture is designed through physical
intuition in order to handle the more challenging phase-retrieval
problem. First, the visibility amplitudes and closure phases are
sent to three general dense layers whose purpose is to disentangle
the corrupted visibility phases. Second, the disentangled phases
are combined with the visibility amplitudes to produce modified
complex visiblities. These modified complex visibilities are then
passed to the same architecture used above (Dense + U-Net). Since
the absolute phase is lost in the presence of atmospheric noise, we
use a shift-invariant loss that represents the negative inner product
between the true and reconstructed images:

max{Z; * (K(res) x z;)}

S(,’:’j72j) =1- (23)

1Z5ll2]1C(res) * 22

4.2.4 Training

We train our joint optimization problem using images from
the “Fashion-MNIST” dataset [36], and validate on the rest of
“Fashion-MNIST”, classic “MNIST”, and simple geometric model
images meant to resemble a black hole. Each image is 32 x 32
pixels and corresponds to a 100 p-arcsecond field of view (FOV)
with a total flux of 1 Jansky (Jy), unless otherwise specified.
The training set is augmented by introducing local deformations
and random rotations to the original “Fashion-MNIST” images.
Data augmentation is found to be especially important for training
reconstruction network B to avoid overfitting. Each network is
trained until convergence with Adam in TensorFlow [37], requir-
ing between 50-300 epochs with a learning rate of 1073, VLBI
visibity measurements are produced using the eht-imaging Python
library [35].

4.3 Experiments

‘We demonstrate the proposed optimization framework in a variety
of different VLBI scenarios. The purpose of the proposed method
is to learn sensor-sampling designs in complex scenarios where
intuition is limited. We choose to show some examples in simple
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Fig. 5. The learned sensor-sampling Ising model parameters. In the
VLBI array design problem, 6;; represents the activity of each site
(roughly proportional to how frequently a telescope is sampled), and
0,1 represents the correlation between each pair of telescopes. Rep-
resentative hyper-parameters (explained in Sec. 4.3) are used in this
optimization: the “EHT+” telescope array, science target Sgr A*, \; =
A2 = 0.005, 0.75x the nominal resolution target resolution, and recon-
struction network A with complex visibilities. No noise is introduced on
the measurements so as to purely investigate the influence of baseline
geometry on the recovered distributions.

scenarios where intuition can be used to confirm that our method
provides reasonable results (e.g., Section 4.3.2). However, what
is most interesting are the more realistic, complicated cases that
cannot be as easily judged from intuition (e.g., Section 4.3.3).

Fig. 5 shows a representative Ising model learned from
our proposed method. It has been trained using the complex
visibility reconstruction network, with representative coefficients
A1 = A2 = 0.005. In this example, we considered the “EHT+”
array with the black hole Sagittarius A*(Sgr A*) as the science
target. We define KC(res) in s(-, ) as corresponding to a Gaussian
kernel with a FWHM of 0.5 X the nominal beam. To investigate
the influence of baseline geometry on the recovered distributions,
we did not include any noise on the measurements.

Note that in the site correlation plot (6% ), the two pairs of
telescopes at same location, ALMA-APEX in Chile and JCMT-
SMA in Hawaii, are both highly negatively correlated. This agrees
with intuition, as the baselines from any telescope to either co-
located telescope will produce identical measurements (when
ignoring noise). The parameters, #;;, represent the activity of each
telescope site, and is roughly proportional to how frequently a
telescope is sampled. As can be seen, the most important sites in
the EHT network for Sgr A* observations are ALMA, APEX,
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that participate in short baselines, such as LMT. The long baseline telescope pairs (SPT-ALMA, SPT-APEX, SPT-JCMT and SPT-SMA) become
more positively correlated with increased resolution, while zero baseline pairs (APEX-ALMA and JCMT-SMA) become more negatively correlated.
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Fig. 7. Image reconstructions for different resolution requirements. Reconstruction Network A (refer to Fig. 4) was trained as part of the full proposed
network shown in Fig. 1 at different target resolutions. We show the results of the reconstruction sub-network in three test cases at different target
resolutions. The reconstruction mean and standard deviation are computed based on 1000 samples from the learned sensor-sampling distribution.
Each reconstruction sample uses a different mask, M ~ pg(M ), corresponding to a different set of observing telescopes; the sub-network must be
able to handle multiple telescope sampling patterns simultaneously. Resolution requirements are specified during training by changing K(res) in
the image similarity loss. The resolution of the array, as defined by the longest baseline (i.e., highest spatial-frequency), is defined as the nominal

resolution. Recovering images at a fraction of this resolution (e.g., 0.5 x and 0.50 x the nominal array) require super resolving the target.
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Fig. 8. Effect of regularization weights. In the left sparsity-diversity
tradeoff figure, we show that (1) sparsity regularization (A1) controls
the average number of telescopes selected, and (2) as diversity reg-
ularization (\2) is increased, the probability a telescope is selected
approaches 50%, resulting in the average number of telescopes con-
verging to 6 out of 12. The right figure shows the array size (num-
ber of telescopes) histogram for a fixed diversity regularization weight
(A2 = 0.005) and changing sparsity regularization weights (A1
—0.05, —0.005,0.005, 0.05). Larger sparsity regularization drives the
sensor-sampling distribution to learn to sample fewer telescopes, as
expected.

SPT and LMT, which produce measurements covering low to
high spatial-frequency. To the contrary, since GLT provides no
measurements (it is occluded by Earth since Sgr A* is in the
southern hemisphere), it is the least important site and has a

We conduct a grid search on the sparsity and diversity regular-
ization coefficients and explore their influence on the learned
optimal sensor-sampling distributions. In our experiments, the
diversity regularization coefficient (A2) ranges from 0.001 to
0.05, and the sparsity regularization coefficient (A1) ranges from
—0.05 to 0.05. Negative sparsity regularization favors observing
with more telescopes. Apart from the regularization weights, we
use the representative parameters described in the beginning of
Section 4.3.

Fig. 8 shows the diversity-sparsity relationship recovered from
different combinations of regularization weights. The diversity
regularizer characterizes the entropy of the Ising model: when
the diversity (i.e., the Ising model energy) is large (large o),
all telescope sites have around a 50% chance of being selected
or excluded. Therefore, the mean number of selected telescopes
gradually converges to six out of twelve with increasing As.
As shown by the array size histogram, increasing the sparsity
regularizer (A1) results in a fewer number of sampled telescopes.

4.3.2 Effect of Reconstruction Resolution

We investigate the optimal sensor-sampling for different recon-
struction resolution requirements by optimizing the joint sensing



and imaging network at four different fractions (1, 0.75, 0.5 and
0.25) of the nominal resolution in KC(res). Apart from K(res),
we use the representative parameters described in the beginning of
Section 4.3. Fig 6 reports the activity of four telescopes (ALMA,
APEX, LMT and SPT) that change most with the target resolution,
and the learned correlation matrix at 1x, 0.75x and 0.25x the
nominal resolution. The correlation matrix at 0.5x the nominal
resolution can be found in Fig. 5.

As the resolution becomes higher (right to left in the activity
plot), LMT becomes increasingly less important, but ALMA,
APEX and especially SPT become more important. This agrees
with intuition, as SPT baselines measure the highest spatial-
frequency information for Sgr A* and LMT is contained in
many of the shorter baselines probing low spatial-frequencies.
The correlation coefficients between short-baseline pairs (such as
APEX-ALMA, JCMT-SMA) become lower at higher resolution,
while the correlation coefficients between long-baseline pairs
(such as SPT-APEX, SPT-ALMA, SPT-JCMT and SPT-SMA)
become higher. This satisfies physical intuition as long baselines
are most important for high-resolution reconstructions.

Fig. 7 shows the blurred images and reconstruction results
at different resolutions. We select one example from each type
of validation dataset (Fashion-MNIST, MNIST and geometric
models). More precisely, we show the reconstruction mean and
standard deviation obtained by taking 1000 telescope samples
from each learned model. The higher resolution reconstructions
are more challenging as they attempt to super-resolve the image,
and as expected they have larger standard deviations. Although
the goal of this work is not to develop a new image reconstruction
method, we find that the proposed neural network appears to
produce promising results for the simplified VLBI reconstruction
problem, and is powerful enough to be able to tackle a variety of
possible array configurations simultaneously.

4.3.3 Effect of Noise

The previous experiments assume no noise in the VLBI measure-
ments. In this section, we compare the optimal telescope sensor-
sampling under six different noise assumptions, (1) no noise, (2)
equal thermal noise (using the average thermal noise derived from
Table 1), (3) site-varying thermal noise (as derived from Table 1),
(4) atmospheric phase noise, (5) atmospheric phase noise & equal
thermal noise, and (6) atmospheric phase noise & site-varying
thermal noise. For the latter three cases, the visibility amplitudes
and closure phases are used for the image reconstruction. All cases
assume a target source of Sgr A* with a constant total flux of 1 Jy
using the “EHT+” array.

Fig. 9 shows the learned Ising model parameters for these
cases. As can be seen in the site activity plots, the sensor-sampling
distributions are not significantly influenced by thermal noise only:
(1), (2) and (3) are almost identical. However, the atmospheric
noise significantly impacts telescope placement. With the presence
of atmospheric phase error, LMT and OVRO become much more
important, while SPT becomes less important. This effect is
further amplified when both thermal noises and atmospheric errors
appear. Short baselines, such as OVRO-LMT, are sampled more
frequently, suggesting that it is especially important to include
shorter baselines in high-resolution VLBI imaging when dealing
with atmospheric phase errors.

Based on the undirected graph defined by the Ising model
correlation matrix, we can also analyze all “cliques” of size three
to understand the importance of each closure triangle (i.e., closure
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Fig. 9. Effect of measurement noise on array design. Two rows respec-
tively show the Ising model parameters without and with atmospheric
phase error. The top row uses Reconstruction Network A from Fig. 4,
while the bottom row uses Reconstruction Network B to handle atmo-
spheric noise. Thermal noise, no matter equal or site-varying, does
not significantly change the learned telescope sensor-sampling. How-
ever, atmospheric phase noise is very impactful. According to a clique
analysis in Sec. 4.3.3, nearly colinear telescopes are less favored after
introducing atmospheric phase error. In both cases, only the correlation
matrices for site-varying noise (cases (3) and (6) in Sec. 4.3.3) are
shown.

phase measurement). In the affinity graph, telescopes are vertices
and the pairwise correlations define edges. We define a subset
of telescopes (z;, 2k, ;) as a “three-clique” if the correlations
between each pair are significantly positive (larger than a threshold
T), i.e.

0jk>7'70kl>7'70jl>7'- 24)
For instance, in case (6), eight three-cliques can be found in the
corresponding graph given 7 = 0.04. After ranking them with a
simple metric,

me = Oji + Ok + 051, (25)
we find the five most important three-cliques are “LMT-OVRO-
JCMT”, “LMT-OVRO-SMA”, “APEX-LMT-JCMT”, “ALMA-
LMT-JCMT” and “LMT-JCMT-KP”, all of which form triangles
with similar baseline lengths (see Fig. 3). This suggests that
closure phases from sites that are nearly colinear may not be as
important for image reconstruction with atmospheric phase error.

4.3.4 EHT Design for Different Science Targets

In this section, we compare the results of two different targets, Sgr
A* and M87%*. They are in the southern and northern celestial
hemisphere, respectively (Sgr A* declination: -29.24°, M87*
declination: 12.39°). Therefore Sgr A* and M87* should have dif-
ferent preferences for telescope site selections. Fig. 10 reports the
learned EHT sensor-sampling distributions considering no noise
or only atmospheric phase noise. For both noise assumptions,
SPT (occluded for M87* observations) becomes less important for
M87* compared with Sgr A*, while PV, PDB and GLT become
more important.



Sgr A* & M87 Site Activity

Sgr A* Site Correlation

M87 Site Correlation

© 0.5 oLT oL 0.6
— § Sgra*
2 0.4 i wm87 KP u Kp H N 0.4
o < SMA SMA !
8 g 0.3 Jemr Jemt 0.2
c o s @ i OVRO OVRO B [ |
=R ] SPT SPT
0.2 .
I8 ool ' C RS " E
S ol ] LMT LMT 0.2
_8 a = . v " e APEX .. APEX .. e
L]

] ALMA ALMA
£ oo] -0.
; . . PDB PDB E. 0.4

_o1 PV i -0.6

« QQ% Q;W ?g“j’\}ﬁ‘ c}ﬁ‘ BN 04?'0,\0\6 5& e &

BRI o o

F SRS

0.6
3 sgrar| OT GLT 1
g 0.8 i Ms7 KP ﬁ kP . 0.4
T . SMA SMA
< § JCMT JeMT
g Q06 0.2
A = 8 | ovro OVRO [ | [ | -
o w o4 . SPT SPT 00
£ g 'y st st moE_mg
<0g 3 N LM || LM || 02
< o 02 ' - APEX
h=d = ® ALMA
; PDB —04
0.0{ e @ [] []
v
-0.6

& P PG S PP S

SR GRS

O SRS o
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least important for Sgr A*, because it is occluded by Earth when observing targets in southern celestial hemisphere. The opposite is true for SPT.
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Fig. 11. Ising model parameters for the “FUTURE” array. The top figure shows the joint distribution of all sites in the “FUTURE” array. Negative
correlations among close telescopes are strongly detected. The bottom row reports the Ising model distributions of nine additional sites conditioned
on all the “EHT+” telescopes being included in the array. We find that adding telescopes in Africa, particularly DRAK, would be particularly helpful
in constraining both Sgr A* and M87* reconstructions. BAJA, which is close to KP, SMT and OVRO, has the least conditional activity.

4.3.5 Site Selection for “FUTURE” array

We study the site selection for a “FUTURE” array, which includes
nine additional telescope sites in addition to the twelve in “EHT+”.
The same representative parameters described at the beginning of
Sec. 4.3 are applied and no noise is introduced. The learned Ising
model parameters for both Sgr A* and M87 are shown in Fig. 11.
As can be seen, the results successfully capture the negative
correlations among co-located telescopes, such as ALMA-APEX-
VLT-BOL and JCMT-SMA-KAUAL

Since the conditional distribution of a subset of Ising model
elements is also an Ising model (shown in Eq. 10), we also report

the conditional activities and correlations of nine additional sites
assuming all the “EHT+” telescopes are selected. Although nearly
all nine sites have negative activities (due to the sparsity constraint
of the original Ising model), the rank of these sites’ importance
still holds. We find that telescopes in Africa, particularly DRAK,
would be helpful in constraining both Sgr A* and MS87* re-
constructions. However, we caution that more factors should be
considered in the model before drawing conclusions about the
importance of any one site, such as realistic atmospheric noise,
weather assumptions, the science target’s expected evolution, and
both social and economic costs.



4.3.6 Swapping Sampling Strategies

In this section, we study the interaction of learned sampling
strategies (encoders) and reconstruction methods (decoders) in
order to demonstrate the advantage of co-design. In particular,
we swap the sampling strategy learned for different types of noise
(no noise & atmospheric phase noise) and science targets (Sgr A*
& M87%*), while keeping the reconstruction methods fixed. For
instance, for two co-designed networks, we evaluate the quality
of images reconstructed with the decoder of network 1, when the
telescope measurements were sampled from the policy learned by
network 2, and visa versa. To meaningfully compare networks,
A1 and Ao were tuned so that the expected number of sampled
telescopes in the EHT+ array for the different networks were
nearly equal (= 8).

Table 2 reports shift-invariant reconstruction losses (Eq. 23)
of various “recombined” autoencoders for a res FWHM of 0.5 x
the nominal beam. Each row represents a learned reconstruction
method and each column represents a learned sensor sampling
distribution. The reconstruction metric is computed based on 1000
test images in the “MNIST” dataset. As expected, the optimal
sampling strategy and reconstruction method are those that are
learned jointly: a particular VLBI array sampling policy works
best with its corresponding reconstruction method.

Fig. 12 shows the mean reconstruction and standard deviation
resulting from 1000 sampling trials of the same truth image (see
Fig. 7) for each “recombined” autoencoder. The standard deviation
is significantly lower for autoencoders that were co-designed.
This simple tests help to confirm the co-designed sensor-sampling
and reconstruction strategies outperform independently learned
strategies.

5 DISCUSSION

Optimal sensing is important for resource-limited image recon-
struction. We presented an approach to learn an optimal sensor-
sampling distribution for a computational imaging system. This
method optimizes an Ising sensor-sampling distribution jointly
with an image reconstruction method, implemented in a physics-
constrained, fully differentiable, autoencoder.

We demonstrated the proposed framework on a VLBI tele-
scope array design task, where sensor correlations and atmo-
spheric noise present unique challenges. Experiments show that
the proposed technique can be helpful in planing future telescope
array designs and developing observation strategies. We also
believe the proposed framework is applicable to a variety of other
sensor selection/sampling problems in computational imaging,
such as the optimization of LED array illumination patterns in
Fourier ptychography [7] and the sampling pattern in x-space for
fast-MRI [28]. Changing the application simply requires changing
the physics-based forward model, f(z), the decoder, 4,{-}, in
Eq. 2 and the training data. By co-designing the Ising model sam-
pling distribution simultaneously with the reconstruction decoder,
we can better optimize the design of future computational imaging
systems.
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